
Dim B, C As Byte B is Variant, C is 0..255
Boolean True (<> 0), False (=0)
Integer 16 bit, -32,786 .. 32,767
Long 32 bit integer, -2.14E9 .. 2.14E9
Currency 64 bit integer / 10,000
Single 32 bit, -3.4E38 .. 3.4E38, 6 digits
Double 64 bit, -1.8E308 .. 1.8E308, 14 digits
Date Double, days since 30. Dec 1899, 0:00
Object Reference to any object
Form Reference to any Form
Variant Any of the types or Null, Empty, Nothing,
Error - plus a type tag. All database fields are Variant
String Variable length, max 2E9 characters
String * 50 Fixed length, space filled
Initial values String = “”, Boolean = False
Number, date = 0 Database field = Null
Object = Nothing Variant = Empty
Dim c(5, 1 To 6) As t Same as c(0..5, 1..6)
Dim d() As Single Dynamic array declaration
ReDim d(5, 1 To 6) Statement

Index range (re)defined, data lost
ReDim Preserve d(5, 1 To 8)

Last index range redefined, data preserved
Erase d Releases memory for dynamic array
Type Customer Simple modules only

custID As Long
custName As String * 50
custAddress As String

End Type
Dim custTable(20) As Customer

Declarations

i = i+2 ‘ Comment
s = “long text A” & _

“long text B” ‘ Comment in last line only
Set f = Forms(0) Store a reference
Set f = New Form_frmG Create object, store ref
Set f = Nothing Delete object if last ref

Line continuation, comments, assignment

If a=1 Then c=d+2 Single statement
If a=1 Then

c=d+2 . . . Multiple statements
ElseIf a=2 Then

c=d / 2 . . .
Else

c=0 . . .
End If
Select Case zip
Case 4000

type = a . . .
Case 4001, 5000 To 5999

type = b . . .
Case Else

type = c . . .
End Select
On Error Resume Next Ignore error
. . . If Err > 0 Then . . . Test for error
On Error GoTo fail Enable error handler

. . .
fail: MsgBox(. . .) Continue here at error
On Error GoTo 0 Let VBA handle errors

Optional

Optional

Optional

Conditional statements

While a<10 May be empty loop
c=c*2
. . . Exit not allowed

Wend
Do While a<10 May be empty loop

c=c*2
. . . Exit Do Exit optional
. . .

Loop
Do Loop at least once

c=c*2
. . . Exit Do Exit optional
. . .

Loop While a<10
For i=1 To last Step 2 Step optional

c=c*2 May be empty loop
. . . Exit For Exit optional
. . .

Next i
Don’t trust value of i when loop ends without Exit
For Each f In Forms Scan collection

call print(f.name . . .)
. . . Exit For Exit optional
. . .

Next

Loops

proc a, b, , d Parenthesis-free notation
Call show(a, b, , d) Subroutines only
res = fnc(a, b, , d) Functions only
Sub show(a, b As t, Optional c, d)

If IsMissing(c) Then . . .
Exit Sub Optional
. . .

End Sub
Function fnc(a, b As t, Optional c, d) As String

As String is optional
If IsMissing(c) Then . . .
fnc= result . . .
Exit Function Exit optional
. . .

End Function

Procedures = Subroutines and Functions

Dim a Visible in this module only
Public b Visible to all modules
Private Sub show(p) Visible in this module only

Dim c Visible in this sub only
Static d Visible in this sub only,
. . . but survives calls

End Sub
Public Sub show(p) Visible to all modules

Dim c Visible in this sub only
. . .

End Sub

Module and Scope

23, -23, 0, -4.9E-20 Decimal numbers
&h09A0FF, &o177 Hex and Octal, color: BGR
“Letter to:” Strings
Chr(65), Chr(vbKeyA) The text “A”
“John” & Chr(10) & “Doe” Two-lines, Chr(10)=new line
“Don’t say “”no”” “ Don’t say “no”
“select * from g where a=‘simpson’ ;”

Single quotes are suited for SQL
True, False Booleans

Date/time
#10/24/02# 24th Oct 2002
#10/24/02 14:15:00# 24th Oct 02 at 14:15
#10/24/02 2:15 pm# 24th Oct 02 at 14:15
Null, Empty Special values
Nothing Object reference to nothing
Constant declaration
Const max=10, start=#3/24/2#

Constants

Forms(i) Element in collection
Forms(“frmCst” & i)
Forms!frmCst2 Bang-operator

Me.Name, Me!name Property~Control in module
Me.subLst.Form.name Property in subform
Me.Parent.txtName Control in main form

basCommon.simDate Variable in foreign module
c(row, col) Indexing an array
custTable(i).custID Field in array of records

With Me.Recordset Apply before dot and bang
.addr = .addr & zip
!name = Null
.MoveNext
. . .

End With

Addressing

Errors: “Invalid use of Null” for Null parameters
Overflow or type mismatch for bad parameters.
CByte(“37”) =37. Overflow outside 0..255
CInt(“2.6”) = 3
Round(2.6) = 3.0000 (Double)

Rounding down: See Math functions Int, Fix.
CLng(“99456”) = 99456
CCur(1/3) =0.3333 (always 4 decimals)
CSng(“-2.6e-2”) = -0.026
CDbl(“-2.6”) = -2.6
CDbl(#12/31/1899#) = 1.0
CDate(“23-10-03”) = #10/23/2003# (as Double)

Uses regional setting for input format
CDate(1) = #12/31/1899#
CStr(23) = “23”. No preceding space.
Str(23) = “ 23”. Preceding space when >= 0
CStr(#10/23/2003#) = “23-10-03”

Converts to regional date format
CVar(X) = X As Variant. X may be Null

Simple conversion functions

Null parameters: A Null string as input will give the
result Null. Null as another parameter is an error.
Asc(“AB”) = 65, Ascii code for first character
Chr(65) = “A”, a one-letter string with this

ascii character
Len(“A_B”) = 3, length of string.
Left(“abc”, 2) = “ab”, leftmost two characters
Left(“abc”, 8) = “abc”, as many as available
Right(“abc”, 2) = “bc”, rightmost two characters
Mid(“abcdef”, 2, 3) = “bcd”, three chars, chars 2-4
LTrim(“ ab ”) = “ab ”, leading spaces removed
RTrim(“ ab “) = “ ab”, trailing spaces removed
Trim(“ ab “) = “ab”, leading and trailing removed
Lcase(“A-b”) = “a-b”, lower case of all letters
Ucase(“A-b”) = “A-B”, upper case of all letters
Space(5) = String of 5 spaces
Option Compare Text | Binary | Database
Option in start of module. Text: string comparison is
case insensitive and follows regional settings.
Binary: comparison is based on the internal ASCII code.
Database: comparison is defined by the SQL-engine.
StrComp(“ab”, “abc”) = -1, first string smallest
StrComp(“ab”, “ab”) = 0, strings equal
StrComp(“ac”, “abc”) = 1, first string largest
If “ab” < “abc” . . . Works just as well

String functions

Iif(a=a, b, c) = b
Iif(a<>a, b, c) = c
Iif(Null, b, c) = c
Choose(2, a, b, c) = b
Choose(4, a, b, c) = Null
Choose(Null, a, b, c) Error

Iif and Choose

LBound(d) Lower bound for first index
LBound(d, 2) Lower bound for second index
UBound(d) Upper bound for first index
UBound(d, 3) Upper bound for third index

Array bounds

© Soren Lauesen 2007Page 4 - VBA Reference card

Nulls: Any Null operand gives a Null result, except . . .
^ Exponentiation
- Unary minus, 2*-3 = -6
* Multiply, Result type is Integer, Double, etc.
/ Divide, Single or Double result
\ Integer divide, result truncated, 5\3 = 1
Mod Modulus (remainder), 5 Mod 3 = 2
+ - Add and subtract
& Concatenation, String result (local date format)
= <> < > <= >= Equal, unequal, less than, etc.
Is Compare two object references, e.g.
If r Is Nothing Test for nil-reference
Partition(22, 0, 100, 10) = "20:29"
a Between 3 and 9 Not in VBA, okay in SQL
a IN (2, 3, 5, 7) Not in VBA, okay in SQL
Not Negation. Bit-wise negation for integers
And Logical And. Bit-wise And of integers
Or Logical Or. Bit-wise Or of integers
X Exclusive Or. Bitwise on integers
Eqv Logical equivalence. Bitwise on integers
Imp Logical implication. Bitwise on integers
s Like “s?n” Wildcard compare. ? any char here.

any digit here. * any char sequence here . . .

Operators, decreasing precedence

VBA Reference Card

DLookup(“name”, “tblGuest”, “guestID=7”)
= name of guest with guestID=7.
All three parameters are texts inserted into SQL.
DMin(“roomID”, “tblRooms”, “roomType=2”)
= smallest room number among double rooms.
DMax, DSum, DCount, DAvg
Similar, just finds largest, sum, number of, average.
Null treatment, see SQL.

DLookup, DMin, etc.

Sqr(x) Square root of x. Sqr(9) = 3.
Sin(x), Cos(x), Tan(x), Atn(x) Trigonometric functions.

X measured in radian (180 degrees = π =
3.141592 radian)
Sin(0) = 0, Sin(3.141592 / 2) = 1

Exp(x) e to the power of x (e = 2.7182...)
Log(x) Natural logarithm of x. Log(e) = 1.
Rnd() A random number between 0 and 1.

Type is Single.
Abs(x) Returns x for x>=0, -x otherwise.
Sgn(x) Returns 1 for x>0, 0 for x=0, -1 for x<0
Int(x) Rounds x down to nearest integral value
Fix(x) Rounds x towards zero
Hex(x) Returns a string with the hexadecimal

value of x. Hex(31) = “1F”
Oct(x) Returns a string with the octal value of x.

Oct(31) = “37”

Math functions

A date value is technically a Double. The integer
part is the number of days since 12/30-1899, 0:00. The
fractional part is the time within the day.
Several functions accept date parameters as well as
string parameters that represent a date and/or time.
Null parameters: Always give the result Null.
Now() = current system date and time
Date() = current date, integral date part
Time() = current time, fractional date part
Timer() = Number of seconds since

midnight, with fractional seconds.
Date = . . . Sets current system date
Time = . . . Sets current system time
DateSerial(2002, 12, 25) = #12/25/2002#
TimeSerial(12, 28, 48) = 0.52 (Time 12:28:48)
Day(#12/25/02#) = 25, the day as Integer
Month(#12/25/02#) = 12, the month as Integer
Year(#12/25/02#) = 2002, the year as Integer
Weekday(#12/25/02#) = 4 (Sunday=1)
Hour(35656.52) = 12 (Time 12:28:48)
Minute(35656.52) = 28
Second(35656.52) = 48

Date and time functions

MsgBox(“Text”, vbYesNo+vbCritical) =vbYes
Also: vbInformation, vbQuestion, vbExclamation

MsgBox

Returns True if v is declared with the type tested for, is a
Variant currently with this type, or is a constant of this
type. IsDate and IsNumeric also test whether v is a text
that can be converted to that type.
IsArray(v) Tests for any type of array
IsDate(v) Tests whether v is a date or a string

that can be converted to a date
IsEmpty(v) Tests whether v is unallocated

(Strings of length 0 are not Empty)
IsError (v) Tests whether v is an error code
IsMissing (v) Tests whether v is a parameter that

is missing in the current call.
IsNull (v) Tests whether v is of type Null.

(Strings of length 0 are not Null)
IsNumeric(v) Tests whether v is a numeric type

(Byte, Integer, Currency, etc.) or a
string that can be converted to a
numeric type.

IsObject(v) Tests whether v is a reference to
an object, for instance a Form. True
also if v is Nothing (the nil-pointer)

VarType(v) Integer showing the type:
0 vbEmpty 8 vbString
1 vbNull 9 vbObject
2 vbInteger 10 vbError
3 vbLong 11 vbBoolean
4 vbSingle 12 vbVariant (array)
5 vbDouble 17 vbByte
6 vbCurrency 36 vbUserDefinedType
7 vbDate 8192 vbArray (added)

Type check functions

NPV(0.12, d()) The array d must be of type Double
and contain a list of payments. Returns the net
present value of these payments at an interest
rate of 0.12, i.e. 12%.

IRR(d()) The array d must be of type Double and
contain a list of payments. Returns the internal
rate of return, i.e. the interest rate at which these
payments would have a net present value of 0. If
the list of payments have many changes of sign,
there are many answers, but IRR returns only
one.

IRR(d(), 0.1) The second parameter is a guess at the
interest rate, to allow IRR to find a reasonable
result.

SYD, NPer and many other financial functions are
available for finding depreciated values, number
of periods to pay a loan back, etc.

Financial functions

Dim rs As Recordset, clone As Recordset, Dim A()
s = “SELECT * . . . “ Or “tblCustomer”
Set rs = CurrentDB.OpenRecordset(s)
Set clone = rs.Clone
While Not rs.EOF EndOfFile (BOF similar)

rs.Edit (or rs.AddNew) Prepare edit buffer
rs ! fieldX = . . . Change edit buffet
rs.Update Update current record
. . .
rs.Delete Delete current record
rs.MoveNext Not after AddNew

Wend
A = rs.GetRows(n) Copy n rows to A
A(0, 3) First field of 4th record
rs.Close

Other properties:
rs.AbsolutePosition = 0
rs.Bookmark = clone.Bookmark
rs.Move(n) Move current n records back/forward
rs.MoveNext . . . MovePrevious, MoveFirst, MoveLast
rs.FindFirst(“a=‘simp’ ”)

. . . FindPrevious, FindNext, FindLast
rs.NoMatch True if Find didn’t succeed
rs.Requery Re-compute query after changes
rs.RecordCount Number of records currently loaded

by database engine
rs.Name String, SQL-statement for query, readonly
rs.DateCreated, rs.LastUpdated Only for tables

Record set DAO 3.6

SELECT name, zip FROM tblGuest WHERE ID=2;
SELECT tblTown.name AS address, tblGuest.name

FROM tblGuest INNER JOIN tblTown
ON tblGuest.zip = tblTown.zip
WHERE tblGuest.zip = 4000 ORDER BY name;
Or: . . . ORDER BY name, tblGuest.zip DESC;

SELECT stayID, Min(date) AS arrival
FROM tblRoomState WHERE state = 1
GROUP BY stayID HAVING Min(date) = #4-21-02# ;

Null handling:
ORDER BY: Null smaller than anything else.
Sum, Avg, Min, Max, Var, VarP, StDev, StDevP: Look
at non-null values. Null if all are null.
Count: Counts non-null values. Zero if all are null (but
Null for Crosstab).

SELECT name FROM tblGuest WHERE zip
IN (SELECT zip FROM tblTown WHERE name<“H”);

SELECT . . . WHERE zip NOT IN (1200, 1202, 1205);
SELECT 0, “New” FROM tblDummy

UNION SELECT zip, name FROM tblTown;
Concatenates one table (here a single record 0, New)
with another table. Field 1 under field 1, etc.

UPDATE tblGuest Updates records where . . .
SET name = “John Smith”, zip = 4000 WHERE ID = 2;

INSERT INTO tblGuest (name, zip) Adds one record
VALUES (“Ahmet Issom”, 5100);

INSERT INTO tblTemp Adds many records
SELECT * FROM tblGuest WHERE zip=4000;

DELETE FROM tblGuest WHERE ID = 2;

SQL

cbo Combobox lbl Label bas Module
chk Checkbox lst Listbox frm Main form
cmd Button mni Menu item fsub Subform form
ctl Other sub Subform control qry Query
grp Option group tgl Toggle button qxtb Crosstab qry
opt Option button txt Text control tbl Table

OtherControl prefixes

VBA ↔ Access Alt+F11 Select full field F2
Property list Ctrl+J Zoom window Shift+F2
Constant list Ctrl+Sh+J Combo open Alt+Down
Parameter list Ctrl+I Next Form Ctrl+F6
Immediate Ctrl+G Upper/lower section F6
Run F5 Choose menu Alt
Step into F8 Next menu/tab Ctrl+Tab
Step over Shift+F8 Next application Alt+Tab
Break loop Ctrl+Break Update (Shift+) F9
Object browser F2 Open properties Alt+Enter
Close VBA/Appl Alt+F4 Close Form Ctrl+F4
In Form: User mode F5 Design mode Alt+V+Enter

General short-cutsVBA short-cuts

Page 2 - VBA Reference card VBA Reference card - page 3

N
ul

la
llo

w
ed

fo
r x

Converts a value to a string, based on a format string.
Format characters that are not placeholders, are shown
as they are. Backslash+character is shown as the
character alone, e.g. \d is shown as d.
Numeric placeholders
0 Digit, leading and trailing zero okay here
Digit, no leading or trailing zero here
. Decimal point (or regional variant)
e- or e+ Exponent or exponent with plus/minus
% Show number as percent
Format(2.3, “00.00”) = “02.30”
Format(2.36, “#0.0”) = “2.4”
Format(0.3, “##.0#”) = “.3”
Format(32448, “(00)00 00”) = “(03)24 48”
Format(32448, “##.#E+”) = “32.4E+3”
Format(32448, “##.#E-”) = “32.4E3”
Format(0.5, “#0.0%”) = “50.0%”
; Separator between formats for positive,

negative, zero, and null values:
Format(-3, "000;(000);zero;---") = “(003)”
String placeholders
@ Character or space
& Character or nothing
! Cut off from left
Format(“A123”, “@@@@@@”) = “¬¬A123”
Format(“A123”, “&&&&&&”) = “A123”
Format(“A123”, “(@@)-@”) = “(A1)-23”
Format(“A123”, “!(@@)-@”) = “(12)-3”
Date/time placeholders
Example: DT = #2/3/2002 14:07:09# (Sunday)
Format(DT, “yyyy-mm-dd hh:nn:ss”, vbMonday)

= “2002-02-03 14:07:09”
Format(DT, “yy-mmm-d at h:nn am/pm”)

= “02-feb-3 at 2:07 pm”
Format(DT, “dddd t\he y’t\h \da\y of yyyy”)

= “Sunday the 34’th day of 2002”
d Day of month, no leading zero “3”
dd Day of month, two digits “03”
ddd Day of week, short text “Sun”
dddd Day of week, full text “Sunday”
ww Week number. First day of week as 3rd

param, e.g. vbMonday.
m Month, no leading zero “2”

(Interpreted as minutes after h)
mm Month, two digits “02”

(Interpreted as minutes after h)
mmm Month, short text “Feb”
mmmm Month, full text “February”
y Day of year “34”
yy Year, two digits “02”
yyyy Year, four digits “2002”
h Hour, no leading zero “14” or “2”
hh Hour, two digits “14” or “02”
AM/PM Show AM or PM here, hours 12-based
am/pm Show am or pm here, hours 12-based
n Minutes, no leading zero “7”
nn Minutes, two digits “07”
s Seconds, no leading zero “9”
ss Seconds, two digits “09”
Named formats "Currency", "Short Date" . . .

Format function

