
P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

User Interface Design
A Software Engineering Perspective

Soren Lauesen

Harlow, England • London • New York • Boston • San Francisco • Toronto

Sydney • Tokyo • Singapore • Hong Kong • Seoul • Taipei • New Delhi

Cape Town • Madrid • Mexico City • Amsterdam • Munich • Paris • Milan

iii

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

Contents

Preface... ix

Part A Best of the classics

1 Usability...3
1.1 User interface..4

1.2 Usability factors...9

1.3 Usability problems...12

1.4 Basics of usability testing..............................15

1.5 Heuristic evaluation and

user reviews...19

1.6 Usability measurements and

requirements...22
1.6.1 Task time (performance measurement)................22

1.6.2 Choosing the numbers ..25

1.6.3 Problem counts...26

1.6.4 Keystroke counts..29

1.6.5 Opinion poll..32

1.6.6 Score for understanding..34

1.6.7 Guideline adherence...36

1.6.8 Which usability measure

to choose?...38

2 Prototyping and iterative
design...41

2.1 Usability in the

development process......................................42

2.2 Case study: a hotel system..........................46

2.3 The first hotel system prototype................50

2.4 Different kinds of prototypes.......................58
2.4.1 Prototypes of user interfaces................................58

2.4.2 Contents of a mock-up..61

2.4.3 Lots of screens – accelerator

effect...62

2.5 Does usability pay?...64

3 Data presentation.......................67

3.1 Gestalt laws...68

3.2 Screen gestalts..71
3.2.1 Line gestalts?..71

3.2.2 Proximity and closure...71

3.3 Text gestalts...74

3.4 Contrast...80

3.5 Presentation formats..85

3.6 Text form versus analog form......................94
3.6.1 Automatic and controlled activities.......................94

3.6.2 Multi-sensory association......................................96

3.7 Overview of complex data............................99

4 Mental models and interface
design...105

4.1 Hidden data and mental models.............106
4.1.1 Example: page format..106

4.1.2 Example: on-line ordering system......................108

4.2 Models for data, functions

and domain..111

4.3 Dialogue levels and virtual window

method...114

4.4 Data and system functions

in practice...117

4.5 Bad screens – database extreme...........121

4.6 Bad screens – step-by-step

extreme..124

4.7 More on mental models...............................127

Part B Systematic interface
design

5 Analysis, visions and domain
description.................................133

5.1 Visions for the hotel system.......................135
5.1.1 Business goals..135

5.1.2 Large-scale solution...136

5.1.3 Requirements..136

5.2 Data model and data description...........139

5.3 Task descriptions...142
5.3.1 Annotated task list..142

5.3.2 Task description template143

5.3.3 Task & Support approach149

5.4 Work area and user profile..........................152

5.5 Good, bad and vague tasks......................154

5.6 Scenarios and use cases............................161

6 Virtual windows design............167

6.1 Plan the virtual windows..............................168

6.2 Virtual windows, graphical version........176

v i C o n t e n t s

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

6.3 Virtual windows in development.............182

6.4 Checking against task descriptions......187

6.5 CREDO check..190

6.6 Review and understandability test.........198

6.7 Searching..202

6.8 Virtual windows and alternative

designs...208

7 Function design........................217

7.1 Semantic functions and searching........218

7.2 Actions and feedback (use cases).........229

7.3 Undo – to do or not to do...........................231
7.3.1 Undo strategy for the user interface236

7.3.2 How to implement undo......................................239

7.4 From virtual windows to screens............243

7.5 Single-page dialogue.....................................248

7.6 Multi-page dialogue..253

7.7 More about state diagrams........................257

7.8 Function presentation....................................260

7.9 Error messages and inactive

functions..268

8 Prototypes and defect
correction...................................273

8.1 The systematic prototype...........................274

8.2 Programming and testing the system..279

8.3 Defects and their cure...................................284

8.4 Problems, causes and solutions.............290

9 Reflections on user interface
design...293

9.1 Overview of the virtual window

method...294

9.2 Data design versus function design......297
9.2.1 A task-oriented design method..........................298

9.2.2 Object-oriented design..300

9.2.3 Virtual windows and objects...............................302

9.3 History of the virtual window method..305

Part C Supplementary design
issues

10 Web-based course rating309

10.1 Visions for the rating system.....................310
10.1.1 The large-scale solution.......................................312

10.1.2 Requirements..314

10.2 Task descriptions and user profiles.......316

10.3 Data model for course rating....................321

10.4 Virtual windows for course rating...........324

10.5 Function design..335

10.6 Prototype and usability test.......................340

11 Designing an e-mail system...343

11.1 Visions for an e-mail system.....................344
11.1.1 The large-scale solution.......................................345

11.1.2 Requirements..353

11.2 Task descriptions for e-mail.......................355

11.3 Data model for e-mail....................................360

11.4 Virtual windows for e-mail..........................365

11.5 Function design and prototype................372

12 User documentation and
support.......................................381

12.1 Support situations...382

12.2 Types of support...385

12.3 Support plan for the hotel system..........392

12.4 Support card...394

12.5 Reference manual..399
12.5.1 System-related lookup...399

12.5.2 Task-related lookup..403

12.5.3 Structure of reference manual405

12.5.4 Browsing and language.......................................410

13 More on usability testing.........413

13.1 Common misunderstandings....................414

13.2 Planning the test...416

13.3 Finding test users..425

13.4 How many users?..427

13.5 Which test tasks?..431

13.6 Carry out the test...435

13.7 Test report and analysis...............................438

14 Heuristic evaluation..................443

14.1 Variants of heuristic evaluation................444

14.2 Heuristic rules and guidelines...................447

14.3 Cost comparison..452

14.4 Effect comparison (CUE-4).........................454

15 Systems development.............465

15.1 The waterfall model..466

15.2 Iterative development....................................470

15.3 Incremental development............................472

15.4 User involvement...474

15.5 Elicitation and task analysis.......................475
15.5.1 Interviewing ...475

15.5.2 Observation...480

..

C o n t e n t s v i i

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

15.5.3 Task demonstration..481

15.5.4 Document studies..481

15.5.5 Questionnaires..482

15.5.6 Brainstorming and focus groups........................482

15.5.7 Domain workshops..483

15.5.8 Inventing new tasks..483

15.5.9 Covered all tasks?..484

16 Data modelling..........................487

16.1 Entity–relationship model............................488

16.2 Entities and attributes...................................491

16.3 Resolving m:m relationships.....................494

16.4 The relational data model............................499

16.5 From informal sources to E/R model....504

16.6 Data dictionary..507

16.7 Network model: flight routes.....................510

16.8 Example: text processor..............................512

16.9 Hierarchies and trees.....................................515

16.10 Network model: road map..........................517

16.11 Subclasses...520

16.12 Various notations..524

16.13 Ways to implement data models............528

16.14 Normalization...531

16.15 Solutions...538

17 Exercises....................................543

References.................................571

Index...591

..

v i i i C o n t e n t s

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

Preface

When you design the user interface to a computer system, you decide which screens
the system will show, what exactly will be in each screen and how it will look. You
also decide what the user can click on and what happens when he does so, plus all
the other details of the user interface. It is the designer’s responsibility that the
system has adequate usability – it can do what is needed and is easy to use. It is the
programmer’s responsibility that the computer actually behaves as the designer
prescribed.

If you are involved in designing user interfaces, this book is for you. You don’t just
learn about design and why it is important, you actually learn how to do it on a
real-life scale.

Designing the user interface is only a small part of developing a computer system.
Analysing and specifying the requirements to the system, programming the software
and testing and installing the system usually require much more effort, and we will
barely touch on it in this book.

Making the user interface

How do you design the user interface to a computer system? Ask a programmer and
he may say:

The user interface? Oh, it is so boring. We add it when the important parts of the
program have been made.

Ask a specialist in human–computer interaction (HCI) and he might say:

The user interface? Oh, you have to study the users and their tasks. To do this you must
know a lot about psychology, ergonomics and sociology. Designing it? Well, you have to
come up with a prototype of the user interface and review it with the users.
Programming? Oh, that is what the programmers do when the user interface has been
designed.

Is there a communication gap here? Yes, for sure. The truth is that it is easy to make a
user interface – exactly as the programmer says – but it is hard to make a good user
interface – and that is what the HCI specialist tries to do.

There are thousands of books on programming. Common to all those I have seen is
that the user interface is rather unimportant – it is just a matter of input to and
output from the program. Programming is very difficult and there is nothing wrong
with dedicating thousands of books to it. The only problem is that the programmers

..

P r e f a c e i x

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

don’t learn to design the user interface, although typically more than half of a
program deals with the user interface.

There are a few dozen books on HCI. They tell a lot about human psychology, how to
study users and their tasks, how to test a prototype or a finished system for usability
and many other good things. Amazingly, they say very little about the actual design
of real-life user interfaces: how many screens are needed, what should they contain,
how should we present data, how can we make sure that our first prototype is close
to a good solution. To be fair, I have seen a few books that explain about design:
Redmond-Pyle and Moore (1995), and to some extent Cox and Walker (1993) and
Constantine and Lockwood (1999). However, even here most of the screen design
pops out of the air.

Many programmers have looked into the books about HCI. They read and read, but
find little they can use right away. And they don’t get an answer on how to design a
user interface. The books somehow assume that it is a trial and error process, but
programmers don’t trust this. They have learnt that trial and error doesn’t work for
programming. Why should it work for user interface design?

Bridging the two worlds

This book tries to bridge the gap. A crucial part of the book is how to design the user
screens in a systematic way so that they are easy to understand and support the user
efficiently. We call this approach the virtual window method. The virtual windows are
an early graphical realization of the data presentation. Task analysis comes before the
virtual windows and dialogue design after.

I have developed the virtual window method over many years with colleagues and
students, and it has become a routine way to develop a user interface. We don’t claim
that the result is free of usability problems right from the beginning, just as a good
program isn’t free of bugs right from the beginning. But the large-scale structure of
the interface becomes right and the problems can be corrected much better than trial
and error.

The cover picture illustrates this. It was painted by the Danish artist Otto Frello in
1995. Imagine that it is the road to good user interfaces. It is a firm road, but it is not
straight. However, there is support at every corner (notice the lady who appears
repeatedly along the road).

In order to design in a systematic way, we have to draw on the programmer’s world
as well as the HCI specialist’s world, but we pick only what it necessary and adapt it
for our specific purpose. Here are some of the major things we draw on:

� How to measure usability

� Usability testing and heuristic evaluation

� Different kinds of prototypes

..

x P r e f a c e

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

� Data presentation

� Psychological laws for how we perceive screens

� Task analysis and use cases

� Data modelling (programmer’s world)

� State diagrams (programmer’s world)

� Checking the design and keeping track of the problems (programmer’s world)

To get from these classical issues to the systematic design, we add some novelties:

� Mental models for how users understand what they don’t see

� Virtual windows: Presenting data in few screens that cover many tasks efficiently

� Function design of the interface: Adding buttons, menus, etc., to the screens in a
structured and consistent fashion.

Programming the user interface

The book is about design of user interfaces down to the detail. Programming the user
interface is closely related, so we need teaching material on how to do this too. Here
is a pedagogical and even a political problem: which platform to use for the
programming. There are many choices, Microsoft Windows, UNIX, HTML, Swing,
etc. Ideally, we should have teaching material for each of these.

I have chosen to release a free companion to this book: a booklet on user interface
programming with Microsoft Access. The main reason for this choice is that
Microsoft Access is readily available to most students as part of Microsoft Office; the
connection to a real database is easy; you can quite quickly systems that look real,
and you can gradually add the full functionality. Access also exhibits the techniques
found on other platforms, such as GUI objects, embedded SQL and event handling.
My dream is to have additional booklets that cover other platforms.

The Access booklet is free for download from www.booksites.net/lauesen. It uses
examples from this book and shows how to turn them into a functional system.

Design cases covered

The book illustrates most of the design techniques with a system for supporting a
hotel reception. This is sufficiently complex to illustrate what happens in larger
projects. However, it makes some people believe that this is the only kind of system
you can design with the virtual window method. Fortunately, this is not true.

The book shows how to design different kinds of systems too with the same method.
Chapter 10 shows how to design a Web system for course evaluation and

..

P r e f a c e x i

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

management. Chapter 11 shows how to design an advanced e-mail system. In
section 3.7 we show part of a complex planning system designed with the method.
The design exercises in Chapter 17 deal with other kinds of systems, for instance a
Web-based knowledge management system, a photocopier, a system for supporting
small building contractors and an IT project management system.

Uncovered issues

In the book we pay little attention to aesthetics – how to make the screens look pretty
and attractive – or to the entertainment value of the system. These issues are very
important in some systems, but in this book we mainly look at systems that people
use to carry out some tasks, and here aesthetics is not quite as important. And to be
honest, I have not yet figured out how to deal with aesthetics in a systematic way.

The book focuses on systems with a visual interface where a lot of data has to be
shown in some way. As a result, we don’t discuss verbal interfaces (e.g. phone
response systems) or user interfaces for the blind.

We also pay little attention to low-level aspects of the user interface, for instance how
to display a button so that it appears in or out of the surface, how a scroll bar works,
whether to use a mouse or a touch screen. We take these things for granted and
determined by the platform our system has to run on. These issues are important in
some projects, and they are excellently covered by, for instance, Preece et al. (1994,
2002), Cooper (1995) and Dix et al. (1998).

Why doesn’t the author mention object orientation? Doesn’t he know about it? Yes,
he does, very well indeed, but the traditional object-oriented approaches don’t really
help us designing a user interface in a systematic way. However, we can describe the
design results as objects, and this gives an interesting perspective on what the design
produces and how it relates to traditional object-oriented approaches (see
section 9.2.3).

How the book is organized

The book is organized as three parts that may be combined in various ways for
different kinds of courses.

Part A: Best of the classics (Chapters 1–4)
Some classical usability topics: defining and measuring usability; using
prototypes, usability tests and iterative design; data presentation and how
users perceive what they see on the screen.

Part B: Systematic interface design (Chapters 5–9)
How to design the prototype in a systematic way so that it is close to being
right early on. This includes task analysis, designing the virtual windows,
defining the system functions and their graphical representation. Chapter 9

..

x i i P r e f a c e

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

reflects on the virtual window approach and compares it with other design
approaches.

Part C: Supplementary design issues (Chapters 10–16)
Optional topics that may be included depending on the audience. Examples
are systems development in general, data modelling, user documentation and
support, design cases for different kinds of systems.

Throughout parts A and B we present the topics in a learn-and-apply sequence: After
each chapter you can do something that would be useful in a real development
project. You then try it out in a design exercise. Here is a summary:

Chapter 1: Usability. Here you learn to identify the usability problems of an
existing system through a usability test. You also learn how to specify and
measure usability. In an exercise you specify and measure usability for an
existing system, for instance an existing Web site.

Chapter 2: Prototyping and iterative design. You learn the classical design
approach for usability: Make a prototype, test it for usability, revise the design,
test again and so on. In an exercise you design a prototype of a small system
with a few screens, and test it for usability.

Chapter 3: Data presentation. You learn about the many ways to present data
on the screen, and the psychology behind them. You apply the rules on
existing designs, and you try to design non-trivial data presentations.

Chapter 4: Mental models and interface design. You learn to use the
psychological law of object permanence to explain why users often
misunderstand what the system does, and how you can avoid it with a
systematic way of designing the user interface. You also learn about the two
extreme interface architectures: the database oriented and the step-by-step
oriented.

Chapter 5: Analysis, visions and domain description. You learn how to model
user tasks and data in a way suitable for user interface design. You apply it in
a larger design project that continues over the next chapters. (Parts of task
analysis and data modelling are explained in the supplementary part, since
they are well-known topics needed only for some audiences.)

Chapter 6: Virtual windows design. You learn how to design virtual windows: the
large-scale structure of the user interface – how many screens, which data they
show, how they show it, how you make sure that they support user tasks
efficiently and how you check the results. You try all of this in a larger design
project.

Chapter 7: Function design. You learn how to convert the virtual windows into
computer screens, and how to add system functions to the screens based on
the task descriptions and state diagrams. You also learn how to decide

..

P r e f a c e x i i i

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

whether a function is to be shown as a button, a menu, drag-and-drop, etc.
Again you apply it in the large design project.

Chapter 8: Prototypes and defect correction. Based on the previous work
products, it is rather easy to make a prototype – ready for usability testing.
This chapter has a case study of how this worked in a real project, which
problems were found, how they were removed and what happened when the
final system was tested for usability. Your design exercise is to make a
prototype for your design project, test it for usability and suggest ways to
correct the problems.

Chapter 9: Reflections on user interface design. This chapter is theoretical. We
review the virtual window method and compare it with other systematic
design methods, for instance object-oriented design.

Courses

The book is based on material I have developed over many years and used at courses
for many kinds of audiences.

IT beginner’s course. The first semester for computer science and software
engineering students is hard to fill in. Programming is mandatory in the first
semester, and a prerequisite for most other IT courses. So what else can you teach?
An introductory course in general computer technology and a database course are
often the attempt. We have good experience with replacing either of these with user
interface design based on this book. The course has a strong industrial flavour and
students feel they learn to design real systems. And in fact, the course is readily
useful. It is also a bit difficult, but in another way than programming.

Parts A and B of the book are aimed at this audience. Depending on what else they
learn at the same time, we include data modelling from part C and constructing the
user interface (the Access booklet). For some audiences, the full course is more suited
for two semesters, and will then be an introductory systems development course at
the same time.

When we include data modelling, the course replaces a large part of the traditional
database course, and prepares students for an advanced database course. On our
courses we often have students who have already followed a traditional database
course, and to our surprise they follow our data model part enthusiastically. Now we
learn how to use it in practice, they say.

We take the data model part concurrently with the soft parts about data presentation
and mental models (part A). In this way we combine hard and soft topics and keep
everyone on board.

We usually finish the course with a 4-hour written exam. This is not a multiple-
choice or repeat-the-book exam. The students are for instance asked to specify

..

x i v P r e f a c e

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

usability requirements, make a data model and design screens for a real-life case.
They may bring whatever books they like to the exam. Chapter 17 contains sample
exam questions.

IT-convert course. In recent years we have had many students that come from
humanities or social sciences and want to become IT professionals. This book has
worked amazingly well with this audience. The students are mature and learn fast.
They appreciate very much the real-life attitude of the whole thing, and they feel
motivated to enter also the hard technical part of the course (the Access booklet).

Courses for mature IT-students. The book makes excellent courses for software
engineering or information systems students who know about programming and the
technical aspects of design. Parts A and B of the book are suited for such courses. If
the students have followed a traditional HCI course already, we treat part A lightly.

In these courses the data model part need not be included, and the Access booklet
might be replaced by programming the user interface for any other platform the
students might know.

Professional courses. We have used parts A and B of the book for professional
courses taking 2–3 days. The participants are systems developers and expert users
participating in development. Data modelling is not essential here; the professional
developers usually know it already, and the expert users don’t have to learn it when
they cooperate with developers. Actually, we invented the novel parts of the book
through such courses. We observed that some professional design teams produced
excellent user interfaces, while others ended up with a messy interface that users
found hard to use and understand. By comparing their work, we learned the cause of
these differences and used it to improve the systematic design approach.

Course material

Overheads corresponding to all the figures of the book, and solutions to most of the
exercises, are available for teachers. See www.booksites.net/lauesen or e-mail the
author at slauesen@itu.dk.

The Access booklet is free for download from www.booksites.net/lauesen. The
package includes a handy reference card for Access and Visual Basic, plus the hotel
system application in various stages of completeness corresponding to the exercises
in the Access booklet.

The author’s background

At the age of 19, I started to work in the software industry for the Danish computer
manufacturer Regnecentralen. At that time user interfaces were extremely primitive.
We fed data into the system through punched cards or paper tape, and output was
printed reports. When we later began to talk about on-line computing, input/output

..

P r e f a c e x v

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

was through typewriter-like equipment. Renting a computer for an hour cost the
same as paying someone to work for 30 hours; and computers were 5000 times
slower than they are today.

Nobody thought of usability. The customer paid until he had a program that printed
results he could use with some effort. Everything to do with computers was a
specialist’s job.

My first project in 1962 was to develop a program that made the computer play a
game invented by the Danish poet and designer Piet Hein. Neither he nor anybody
else knew how to win the game. I had never programmed before, so I had to learn
that too. And of course I didn’t know that it was difficult to make such a program, so
it took me a couple of weeks to solve the problem. Piet Hein wanted to have people
play the game against the computer at exhibitions, but how could the user interact
with the computer? Our hardware developers found a way to connect a bunch of
buttons and lamps directly to the multiplier register of the CPU, and I made the
program without multiplying anything. We then designed a nice user interface that
people could use immediately. I didn’t realize that this was the only good user
interface I would make until 1973.

In the period until 1973, I developed many kinds of systems, for instance
computation of molecule shapes based on X-ray diffraction, administration of
pension contributions, optimization of tram schedules and rosters. Later I moved to
another department in the company, where we developed compilers and operating
systems. These systems became extremely fast, compact and reliable technical
wonders. It took me many years to realize that we had made these miracles without
understanding that the customers had other interests than speed and reliability. They
also wanted usability – efficient task support – which we didn’t provide and didn’t
understand.

In 1973, I moved to Brown Boveri, now part of ABB (Asea Brown Boveri). We were a
new department and our first project was to develop a new line of process control
systems with colour screens and special-purpose keyboards that could be operated
by users with big, insulating gloves. Our first delivery was power distribution
control for a part of Denmark. We knew how to make reliable, fast and compact code,
but this was the first time I realized that ease of use was also important. If our system
failed technically, 300,000 people wouldn’t have power. But if the user couldn’t figure
out how to operate the system, the consequences might be the same. I had never
been involved in anything as serious before. We made it, and usability became very
good because we were inspired by the way users had controlled the power
before.

In 1974–1975, I took temporary leave from Brown Boveri and worked for ILO in
Ghana, helping with management consultancy in IT issues. This was the most
fascinating year of my life. I learned how different other cultures and value systems
could be, and that our own society had gained much in economic welfare and
security, but lost a lot in other aspects of life quality. I also learned that I didn’t know

..

x v i P r e f a c e

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

anything about management and that such knowledge was important. Returning
home, I took a business diploma as fast as possible.

In 1979–1984, I moved to a new software division established by NCR in
Copenhagen. For some reason I became a manager, but kept being involved in
software development – even on the programming level. I soon got two management
responsibilities: (1) developing experimental technology for the next generation of
products, and (2) assuring that the rest of the division delivered adequate quality in
the present products. My main lesson in these years was that there was a very, very
long way from proving a new technology to having a multinational company accept
it for new products.

Now, where did I learn about usability? Not in industry! In 1984, I became a full
professor at the Copenhagen Business School. They had decided to establish a new
degree program – Business and Software Engineering. I found it an excellent idea
since I had seen so many bright IT people who didn’t understand business; and I had
seen so many excellent managers who didn’t understand technology. There was a
communication gap, and educating young people in both areas at the same time
seemed a great idea. I was willing to take responsibility for the IT side of the new
education.

Working here without the daily pressure of finishing new products gave me time to
wonder why the users and customers of all the technical wonders we had made over
the years didn’t like our systems as much as we did ourselves. I started to study
usability and wondered whether users tried to understand what the computer did, or
whether they just thought of carrying out their tasks, as most researchers assumed.
I ran several experiments and concluded that if the system has a certain complexity,
users form a mental model of how it works. They do so unconsciously, and often
their model doesn’t match with what the system actually does. This is the source
of many usability problems. (Norman, 1988, found similar results in the same
period.)

At that time, user manuals was a big issue, and I used the mental-model insights to
develop ways to write manuals that combined two things at the same time: learning
how to carry out the tasks, and understanding – at a non-technical level – what
happens in the system. The approach was quite successful, and I served as a
consultant for many technical writers and gave courses on writing user
documentation.

Later I became more interested in designing good user interfaces – where manuals
weren’t necessary. During a long cooperation with Morten Borup Harning and
varying master’s students, we developed the approach that is central to this book.

I had expected that I would return to industry after about five years, but found that
the combination of IT and business was fascinating, and that working at a business
school helped me open the doors to a wide range of companies. Gradually I became
a researcher who worked closely with industry.

..

P r e f a c e x v i i

P1: FYX

PE040-FM PE040/Lauesen October 13, 2007 10:52 Char Count= 0

In 1999, I moved to the new IT University established in Copenhagen. Now my role
seemed to be reversed. At the business school, I had been regarded as the technical
guy who didn’t quite understand that business was the most important thing, while
technology had minor importance. Now my computer science colleagues regarded
me as the business guy who thought that business and usability were more
important than technology.

This taught me one more thing: balancing between the extremes is very hard but also
very important. I have tried to strike such a balance in this book.

Acknowledgements

The ideas behind virtual windows (Chapter 6) were developed by Morten Borup
Harning and I, with some input from Carsten Grønning.

I have also learned a lot from cooperation with many of my students, in particular
Susanne Salbo and Ann Thomsen who planned and carried out a hit-rate
comparison of mock-ups against the real system. I want to thank William Wong for
reviewing part of the book and encouraging me to publish it, Jean-Guy Schneider
and Lorraine Johnston for helping me develop terminology in some of the areas,
Klaus Jul Jeppesen for many insights in the user support area, and Flemming
Hedegaard and Jacob Winther Jespersen for trying the entire course material in their
own courses and giving me much valuable feedback.

Finally, my colleagues Peter Carstensen, Jan C. Clausen, Anker Helms Jørgensen and
Rolf Molich have for many years been my excellent sparring partners in the HCI
area, and I am most grateful for the insights I have got from them in many matters.

..

x v i i i P r e f a c e

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

6
..

Virtual windows design

..

Highlights

� Virtual windows: Detailed screens for presenting data and for searching.

No system functions yet.

� Few screens to ease learning and support tasks efficiently.

� Graphical design now to prevent disasters later.

� Check the screens and keep track of the defects.

� Key exercise: Design virtual windows for the design project.

...

Definition

A virtual window is a user-oriented presentation of persistent data. Early during
design, the virtual windows may be on paper. They show data, but have no buttons,
menus or other functions. Later we allocate functions to them, and finally they
become computer screens, Web pages, etc. A complex application will need several
virtual windows.

The basic idea when composing a set of virtual windows is this: Create as few virtual
windows as possible while ensuring that (1) all data is visible somewhere and (2)
important tasks need only a few windows. First we make a plan for what should be
in each window (section 6.1), and next we make a detailed graphical design of the
windows (section 6.2). Finally we check with users that they understand the
windows, and we check against the task descriptions and the data model that
everything is covered (sections 6.4 to 6.6). Usually there is a great deal of iterative
design at this stage.

The way we design the virtual windows will help us balance between the two
extremes: the database-oriented and the step-by-step-oriented user interfaces.

Although we present the design below in a step-by-step fashion, design is not an
automatic procedure where you start in one end and end up with a good result. A
good design always includes some magic points. The step-by-step procedure is good
support for the magic – not a replacement for it.

..

6 . 1 P l a n t h e v i r t u a l w i n d o w s 1 6 7

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

6.2 Virtual windows, graphical version
. .

The virtual windows plan can look quite convincing, and developers may conclude
that they can come up with the graphical presentation when they design the final
screens. When they later do so and try to fill in some realistic data, they realize that
the outline doesn’t work. There may not be sufficient space for realistic data, the user
doesn’t understand what the windows show, or the user doesn’t get the necessary
overview. Consequence: go back and redesign a lot – or ignore usability. For this
reason it is important to make a careful graphical design in connection with the plan.

Design procedure

a) For each virtual window in the plan, make a detailed graphical design. Design
only the data presentation. (Don’t add buttons, menus or other functions. It is too
early to fight against these complexities.)

b) Fill in the windows with realistic data. (They may need more space than you
expect.)

c) Fill in the windows with extreme, but realistic data. (Extreme data must also be
easy to see.)

d) If the windows don’t look right, you may have to change the plan for the
windows.

Figure 6.2 shows the result for the hotel system. It is not the designer’s first version,
but number two or three (sometimes hard to tell how many you have made). To give
an overview of all the virtual windows in one figure, we have omitted some trivial
fields, e.g. phone number, and we have shortened many others.

In the figure we have indicated the tasks that use each window. This is often
convenient during design to check that all tasks are adequately covered and that
some windows have multiple purposes. Let us give a few comments on the design.

Stay window. The Stay window has a top section about the guest and a bottom
section with the rooms he has used and the services he has received. The dotted
line separates the past from the future. Above the dotted line we have the nights he
has stayed and the services he has received. Below the line we have the bookings –
the nights he hasn’t stayed yet.

We have indicated which fields the user can modify with a light border, resembling
what the fields would look like on the final screen. We have also indicated that the
user can choose the pay method with a combo box (drop-down list). Finally, we have
used a scroll bar to indicate that the item list may be much longer.

This virtual window may appear almost as it is in the final computer screens. The
window may also guide what the invoice should look like, making it easy for the
receptionist to compare the two.

..

1 7 6 V i r t u a l w i n d o w s d e s i g n 6

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

Fig 6.2 Virtual windows, graphical version

Sources

a. Reuse old
presentations

b. Standard pre-
sentation forms

c. Know platform

d. Gestalt laws

e. Realistic and
extreme data

f. Study other designs

- their good points

- your bad points

Record breakfast

Book, check-in …

Price change

Breakfast 23/9

In In

Room rest room

11

12

13

Service prices

Breakf. rest.

Breakf. room

. . .

Stay Stay#: 714

Guest:

Address:

Payment:

Item persons

22/9 Room 12, sgl 60$

23/9 Breakf. rest 4$

23/9 Room 11, dbl 80$

24/9 Breakf. room 12$

24/9 Room 11, dbl 80$

Rooms Prices 22/9 23/9 24/9 25/9

11 Double Bath 80 60 B

12 Single Toil 60 O B

13 Double Toil 60 50 B

6

4

Price change

Book, check-in . . .

Breakf. rest.

Breakf. room

Sauna

Breakf. room

O

O B

BB

2

1

1 1

John Simpson

456 Orange Grove

Victoria 3745
Visa

1

2

2

2

1

4

6

3

...

Breakfast. This window shows the breakfast servings for a single day. It has a line for
each room and space for two kinds of servings: breakfasts in the restaurant and
breakfasts served in the room. In practice, there might be some more columns for
other frequent services. The window may appear in almost the same form on the
computer screen, and it may also appear as a paper form filled in by the waiters.

Service prices. This window is a simple list of the different services including their
current price. It will typically appear in two forms on the computer: as a separate
window for changing prices and as a drop-down list when entering or editing
service lines on the Stay window (see Figure 6.2). Conceptually it is the same virtual
window, but it will look a bit different in the two forms.

Rooms. The rooms window uses a matrix form (like a spreadsheet). There is a line
for each room and a column for each date. The letters O and B stand for Occupied
and Booked. There may be a long list of room numbers and a long list of dates
covering the past as well as the future. Scroll bars indicate this.

Try realistic and extreme data
It is important to test the design by filling in the windows with realistic data, as
shown in Figure 6.2. (For space reasons, we have shown address and name fields that
are much too short; also the Rooms window is much too small.) We have also shown
a complex, but slightly unusual situation: a guest checks into a single room and gets

..

6 . 2 V i r t u a l w i n d o w s , g r a p h i c a l v e r s i o n 1 7 7

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

6.3 Virtual windows in development
. .

Work product. A work product is the developer term for an intermediate result
during system development. Figure 6.3 shows four important work products in user
interface design:

a) The data model and the associated data description (data dictionary).

b) The task descriptions (in one of the many forms).

c) The virtual windows.

d) A list of design defects or things to find out.

They document different views of the final system, and they duplicate information to
some extent.

Design sequence. In which sequence should we make these work products? Until
now we have pretended that we first make data models and task descriptions, and
then virtual windows. In many cases this sequence is okay, but some designers do it
differently. They make virtual windows before the data model. This is because they
can better imagine data when they see them as screens. They make the data model
later to get a consistent overview of all the data.

Concurrent design. Personally I develop data model, tasks and virtual windows
concurrently. Each of these work products tells me something about the other ones.
When they are all okay, I feel that the design can move on to the next stage.

Need for early graphical design

In early versions of the technique, we didn’t split virtual window design into a
planning step and a detail step. We observed that some design teams produced
excellent user interfaces, which scored high during usability tests, while other teams
produced bad designs. Furthermore, excellent designs were produced much faster than
bad designs. Why was that?

Gradually we realized that the main difference between good and bad teams was the
amount of detail they put into the virtual windows. Both groups could quite fast
produce the outline version. The bad teams then continued with dialogue design, but
when designing the final screens, everything collapsed. The outline could not
become useful screens; fields could not contain what they were supposed to; it was
impossible to get an overview of data, etc. The teams had to redesign everything,
resulting in a mess.

The good teams took some more effort designing the graphical details of the virtual
windows, filling them with realistic data, etc. As part of that, they often went back to
modify the window plan, grouping data in other ways. These changes were easy to
handle at that time. From then on, things went smoothly. Dialogue functions were

..

1 8 2 V i r t u a l w i n d o w s d e s i g n 6

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

Fig 6.3 Work products to maintain

Breakfast 23/9

In In

Room rest room

11 2

12 1

13 1 1

Servic e prices

Breakf. rest. 4

Breakf. room 6
. . .

Stay Stay#: 714

Guest: John Simpson

Address: 456 Orange Grove

Victoria 3745

Payment: Visa

Item persons

22/9 Room 12, sgl 1 60$

23/9 Breakf. rest 1 4$

23/9 Room 11, dbl 2 80$

24/9 Breakf. room 2 12$

24/9 Room 11, dbl 2 80$

 Rooms Prices 22/9 23/9 24/9 25/9

11 Double Bath 80 60 O B

12 Single Toil 60 O O B B

13 Double Toil 60 50 B B B

Task:
Purpose: Reserve room for a guest.

Task: 1.2 Check-in

Purpose: Give guest a room. Mark it as
occupied. Start account.

Trigger: A guest arrives

Frequen cy: Average, total 0.5 check-ins/room/day
Crit ical: Peak hours, now 20/h/receptionist

Group tour with 50 guests.

Subtasks:

1. Find room

Problem: Guest wants two neighbour rooms

2. Record guest as checked in
3. Deliver key

Variants:

1a. No suitable room
1b. Guest has booked in advance
2a. Guest recorded at booking

2b. Regular guestTask: 1. 3 Checkout
Purpose: Release room, invoice guest.

. . .

Stay

Room
State

Room

Service
Service

Type

date, personCoun t,

state (booked | occu pied | repair)

name,
address1,

address2,
address3,
passpo rt

room ID,
bedCount, type
pr ice1, price2

name, pr ice

date, cou nt

Guest

stayID,
paymethod,
state (book | in | ou)

Design defects

D100. Understanding Breakfast window

 vs. Stay window?

D101. Check credit card or get deposit.

D102. Understanding guest address across

 stays?

D103. Long stays, or with many rooms.

(evergrowing list of defects)

User names

Program names

Discount field

Tasks using it?

Usability test?

Data model Virtual windows

Task descriptions

1.1 Booking

...

added, and the screen design was largely a matter of cutting and pasting parts of the
virtual windows. These interfaces also scored high in usability tests.

For this reason, we have since put much emphasis on a very early graphical design
of the data presentation.

Typical problems

Adding functions too early. We have observed that designers tend to add some buttons
to the virtual windows from the very beginning. This is against the idea of dealing
with only data at this stage, delaying functions to later steps. The designers cannot,
however, resist the temptation to put that Check-in button on the Stay window.

Why is it bad to add buttons at this stage? Because it easily makes you focus on the
windows as function-oriented, for instance one window for data entry, another for
data editing, a third for deletion. The result is too many windows, which makes the
system harder to understand and also more costly to program. Focusing on the data
presentation aspect helps you avoid this.

..

6 . 3 V i r t u a l w i n d o w s i n d e v e l o p m e n t 1 8 3

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

Another reason it is bad to add buttons at this stage is that the proper planning of
buttons requires a good overview of the windows. There may be several choices for
which window to put a button on, and you cannot make a good decision until you
are sure which windows are available. It turns out that you also need to know how
many buttons each window needs, in order to figure out whether there is space for
the buttons at all or whether you need to put the functions in menus. Chapter 7
explains how to deal with all of this.

On the other hand, when you review the virtual windows with users, a few functions
may help the users understand the window. This is particularly true for data entry
and scrolling functions. For instance, we have noticed that users better understand
that a field is for data entry if it is a box or a drop-down list. Users also better
understand that something is a long list if it has a scroll bar. We have used these
tricks in the virtual hotel windows.

Forgetting the virtual windows. We have observed many cases where designers made
excellent virtual windows, only to forget them when designing the final screens. The
physical design switched to being driven by available GUI controls and beliefs that
traditional windows were adequate. The concern for understandability and efficient
task support disappeared, and the final user interface became a disaster.

Two things can help in overcoming this: (1) Make sure that the virtual-window
designers know the GUI platform to be used, in order that they don’t propose
unrealistic designs. (2) Ensure that quality assurance includes tracing from the
virtual windows to the final screens.

Forgetting to update work products. The work products shown in Figure 6.3 give
different views of the final system, and they duplicate information to some extent. As
an example, the stay number field may be mentioned in all these documents.

This duplication of information is in one way a disadvantage because things may
become inconsistent. We may, for instance, change the concept stay number to booking
number, but change it only in some places – to the confusion of other developers. In
other ways the different views are an advantage, because they help us find design
defects. In the forthcoming sections we will see several ways to check things against
each other, revealing serious design defects in the hotel system.

However, we often see that designers forget to keep the design results updated
during the design process. The result is problems later. As an example, we may find
out that the user interface needs a discount field when offering some guests a
discount. We add it to the appropriate virtual window, but forget to put it into the
data model, so the database will not have this field. Further, there should also be a
task or task variant that deals with it, but we forget to update the task descriptions.
What are the results? During programming a lot of time is wasted changing the
database structure to include the discount stuff. And since the task description isn’t
changed, we forgot to test whether the user can figure out how to use the discount
field.

..

1 8 4 V i r t u a l w i n d o w s d e s i g n 6

P1: KTU

PE040-06 PE040/Lauesen October 12, 2007 11:40 Char Count= 0

List of design defects. We also see that designers observe a problem, but later forget
about it. For this reason it is important to maintain a list of design defects (or design
problems). Good developers do this no matter how they design the system. In the
hotel case, we noted that at debriefing after usability tests we should check whether
the user understands how the breakfast window cooperates with the stay window.
We might ask questions such as:

When you have recorded breakfasts with this window, what would you expect that this
Stay window should show?

When you have recorded breakfast directly in the Stay window, what would you expect
that the breakfast window should show?

Here is a summary of the problems we have noted earlier during the hotel system
design.

D1–D35: Problems noted during the first usability test of a hand-drawn mock-up
(see Figure 2.3B).

D100: Do users understand that data in the Breakfast list window automatically
end up in the stay windows – and vice versa? (from section 6.1, Record
services).

D101: Receptionist should check credit card or get deposit before check-in (from
section 5.3.2, Review with expert users).

D102: Do users understand that guest name and address is repeated in all the
guest’s stay windows – while pay method is individual for each stay?
(from section 6.1, Checking against design rules).

D103: How to show long stays or stays with many rooms? (from section 6.2, Try
extreme data).

Some developers use more space to record and describe each defect, also leaving
space for describing possible solutions. They may even use a full paper page per
problem. It may be based on a template where the developers also record time found,
way found, evidence for the problem, seriousness of the problem, possible solutions,
etc. Other developers record the problems in a database, which allows both the
full-page printout, and various summaries and overviews.

User names and program names. Names of data fields, etc., will appear in several
places in the final system, for instance in screens, prints, help texts, and maybe
course material. To avoid confusing users, we should ensure consistency, so it is
important that we early on define the names to be used in the user’s language.

A good place to do it is in the virtual windows. This means that we have to carefully
choose field names and other names, as they will become the standard on the user
interface. (Our example in Figure 6.2 is not good, because we have abbreviated
names in order to give an overview.) We can review the virtual windows with users
and in that way check that the names make sense to them.

..

6 . 3 V i r t u a l w i n d o w s i n d e v e l o p m e n t 1 8 5

P1: KTU

PE040-07 PE040/Lauesen October 13, 2007 9:34 Char Count= 0

7.1 Semantic functions and searching
. .

In order to identify the system functions, we take the tasks one by one and manually
carry them out by means of the virtual windows. During this, we note down which
functions we would need in each virtual window. Some usability specialists call this
a cognitive walk-through of the tasks. Here is the procedure.

Design procedure
a) Place the virtual windows on a desk. Imagine that they are on a huge computer

screen. Virtual windows with many instances (e.g. the stay windows) are put in a
pile so that a search function is needed to find the right one.

b) Look at an important and frequent task. You might place the task description in
the corner of the desk.

c) Look at the first subtask and imagine how you would carry it out. Which virtual
windows would you have to look at, and which fields would you have to fill in?
Which system functions (buttons) would be needed to make the system do
something, for instance search, create items, save data, delete items, print or send
something? You may also need ‘buttons’ that change data in special ways – other
than simple data entry.

The system functions you identify in this way are semantic functions, search
functions and non-trivial data entry functions. Don’t care about navigation functions
that take you from one virtual window to another. The ‘screen’ is so large that it has
space for at least one copy of each virtual window. At this stage you can navigate
between virtual windows simply by pointing at them.

d) When you have identified a ‘button’, give it a name that might be written on the
button and write it down beside the virtual window where it was needed. Often
the button has to do something complex. Write a short description of what it
should do (a mini-spec).

Don’t worry that we call the functions ‘buttons’. Later they may become menu items,
drag-and-drop or real buttons.

e) Look at the next subtask and imagine how you would carry it out. Again you
identify system functions (buttons), but try to reuse the buttons you have defined
already. When you reuse a button, it may happen that it should work a bit
differently than before. Amend the mini-spec to explain about it.

f) When you are through all subtasks and variants, the system should be able to
support the entire task. Review what you have defined. Check to see that you can
carry out the task in other reasonable ways, for instance performing the subtasks
in other sequences. Sometimes you may have to make minor changes to buttons
and mini-specs to achieve this.

g) Now look at the remaining tasks one by one in the same way. Try to reuse the
earlier buttons as far as possible. You will normally experience that tasks need
fewer and fewer new buttons as design progresses.

..

2 1 8 F u n c t i o n d e s i g n 7

P1: KTU

PE040-07 PE040/Lauesen October 13, 2007 9:34 Char Count= 0

h) Review the entire set of functions. Check whether it is possible for the user to
switch between two or more tasks at the same time. Check that standard
functions are provided, such as Undo, Print and Data exchange.

Is it necessary to make some kind of CREDO check to see that all records in the
database can be created, deleted and updated? In principle not, because if we made
the CREDO check for tasks against data model, all the necessary tasks and subtasks
should be there. So if the system can support all the tasks, it can also create, delete
and update what is needed. However, systems development is so complex that
designers easily overlook things. So checking once more might be a good idea.

Booking task

Below we will show how the design procedure worked for the hotel system. We start
with the booking task.

Figure 7.1A shows our desk with some of the virtual windows. At the bottom right
we have placed the task description for the booking task.

Subtask 1, Find rooms. How do we carry out the first subtask? Well, we need the
virtual window Rooms with the search criteria (vwRooms). We fill in the search
criteria for the booking: the type of room the guest wants, and the period of the stay.

Then we somehow activate a button FindRooms, and the system shows a list of the
appropriate rooms. We have now identified the first ‘button’ – a search function. We
write this function besides vwRooms as shown. Most likely it will become a button
or a menu point in that window, but we delay the decision. (Maybe it will be the
button we have already put on the virtual window.) For now it suffices to know that
it is a function associated with this virtual window.

If one of the rooms suits the guest, we select this room. This gives us another
function, ChooseRoom. To illustrate the approach, we have written the subtask
number besides the function to show when we use the function. Both functions were
used for subtask 1.

Subtask 2, Record guest. We continue with the next subtask. It has a variant Regular
guest for guests that already are in our files. Often guests don’t know whether they
are in our files, and the standard hotel procedure is to always check whether they are.
So it is a good idea to use the window vwFindGuest. We enter part of the guest name
and activate a new function FindGuest, which shows a list of the guests that match. If
one of the guests is the right one, we select the guest (SelectLine) and activate
NewStay. Up comes a window for a new stay (vwStay), and the system pre-fills the
guest data. We can now check with the guest that his data is still correct, and edit it as
needed.

If many guests have names that match, how do we know which of them is the right
one? As the virtual search window is designed, we may not have enough data, but if
we somehow show the details for each guest as we point down the list, we can
determine the right person. We will leave this as a note for SelectLine.

..

7 . 1 S e m a n t i c f u n c t i o n s a n d s e a r c h i n g 2 1 9

P1: KTU

PE040-07 PE040/Lauesen October 13, 2007 9:34 Char Count= 0

This was variant 2a. If it is not a guest in our files, we don’t select anything but just
use NewGuest. Up comes an empty stay window where we enter the guest data.
Whether we have a new guest or retrieved a regular guest, we now have the
necessary guest data.

Could we avoid NewGuest and reuse NewStay instead? If we point at a guest, NewStay
should show this guest for the new stay, but if we don’t point at anything, NewStay
should show blank guest data – just what we need. However, the problem is whether
the user can tell the subtle difference between pointing at nothing and pointing at an
incorrect guest. We want to be sure, so we define a separate function for a new
guest.

In order to carry out step 2 or 2a we thus needed four functions on vwFindGuest, as
shown in the figure. For the sake of completeness, we have also indicated that we
enter persistent data in the Stay window (EditData). This is a trivial data entry
function.

Special data entry. Most of the data entry functions are trivial, and we have implicitly
defined them as part of the virtual window design. However, there are a few special
data entry functions in the virtual windows. For instance, the user should be able to
fill some of the fields by choosing from a list rather than typing – using a combo box
or something similar. In vwRooms, this includes the fields Type, FreeFrom and
Departure.

There is a tricky thing with the fields Departure and Nights. Sometimes the
receptionist prefers to specify the departure date, and at other times the number of
nights stayed. And he likes to check the two things against each other. We want the
system to calculate the field he hasn’t specified. To keep track of these details we
write them in a mini-spec, as explained below.

We have added a special data entry function in vwRooms: ResetSearch. It sets the
search criteria to their default value: (any) for most fields and the current date for the
FreeFrom field. This function is, strictly speaking, unnecessary because the user can
set the fields one by one, but it is annoying to do. We have added a similar function
to vwFindGuest.

Subtask 3, RecordBooking. At this stage we have a Stay window with guest data and
we have selected a room. What we need to do is somehow activate a Book function.
It seems natural to activate it through vwStay, so this is where we put the Book
function. The function will store the guest and stay data into the database.

We have a variant of subtask 3. The guest may want more than one room, maybe of
another kind and for another period. We can again handle this through vwRooms
by means of FindRooms and ChooseRoom, as shown in the figure. When we have
selected the room, we use Book once more. This time it may be convenient to have
the Book function on vwRooms, and we have shown it there with a question
mark.

..

2 2 0 F u n c t i o n d e s i g n 7

P1: KTU

PE040-07 PE040/Lauesen October 13, 2007 9:34 Char Count= 0

Fig 7.1 A Booking: semantic functions and search

Room Prices 22/9 23/9 24/9 25/9
11 Double 80 60 O B

12 Single O O B B

13 Double 50 B B B

Rooms
Free from 23/9 Type (any)

Departure 25/9 Room#
Nights 2

Find guest Stay# (any)

Name (any) Room # (any)

Phon e (any)

Date 23-09-2001

Guest Arrival Stay#

John Simpson, 456 Orange Grove 22-09-2001 12, 11 714

Lise Hansen, Dyssegaardsvej 57 23-09-2001 12 753

Yun Chen, Kirchgasse 6 23-09-2001 13, 14 749

Stay Stay#: 714

Guest: John Simpson

Address: 456 Orange Grove
Victoria 3745

Payment: Visa

Item persons

22/9 Room 12, sgl 1 60$
23/9 Breakf. rest 1 4$

23/9 Room 11, dbl 2 80$

24/9 Breakf. room 2 12$

24/9 Room 11, dbl 2 80$

vwRooms:
FindRooms 1, 3a
ChooseRoom1, 3a

Book? 3a
ResetSearch 1

vwStay:

Task: Booking

1. Find rooms

2 . Record guest

2a. Regular guest

3. Record booking

3a. More rooms

4. Print confirmation

 (optional)Mini-spec: NewStay

Create a new stay record. Fill in

guest data from the selected line.

Mini-spec: Data entry

Calculate Nights or Departure.
The subtasks that

use the "button"

Room#

Search F3

Search F3

(EditData) 2

Book 3, 3a

PrintConfirm 4

vw FindGuest:

FindGuest 2, 2a

SelectLine 2a

NewStay 2a

NewGuest 2

ResetSearch 2

60

...

Can we have the Book function in more than one window? Yes, why not. The
Book function requires two things (two parameters or preconditions) : rooms selected
and guest data properly filled out. This suggests that the function could be on either
vwRooms or vwStay, or in both places. Actually, we cannot make the decision now. It
depends on the platform and the navigation functions, which we haven’t looked at yet.

Subtask 4, PrintConfirmation. Finally, we may have to confirm the booking by
printing a confirmation and sending it to the guest. This is easy. We just need a
PrintConfirm function. A convenient place would be at the Stay window, since it is
this stay we confirm.

Task sequence. We have earlier stressed that the user should be allowed to vary the
sequence of subtasks (sections 4.6 and 5.3.2). Above we have only looked at one
particular sequence. Could we choose another sequence? Yes, we could very well do
subtask 2 first, finding or recording the guest. Next we could do subtask 1, finding a
suitable room. The only restriction is that we cannot use Book until we have done
both subtasks 1 and 2. This is not a restriction caused by the user interface, but a rule
in the application area (a business rule).

..

7 . 1 S e m a n t i c f u n c t i o n s a n d s e a r c h i n g 2 2 1

P1: KTU

PE040-10 PE040/Lauesen October 12, 2007 11:56 Char Count= 0

Fig 10.4 D Virtual window, Person (student and/or teacher)

Only present

for students

Only present

for teachers

Only present

during late rating

...

similar to the Course summary). In principle, we don’t need additional virtual
windows for this. The teacher could go through all the students’ rating windows
(made anonymous, of course). However, this would violate the design rule about
few window instances for important tasks, and it also gives a bad overview of data.

After the late rating, the Course summary window shows the numerical ratings in
the same form as the student’s rating window, but with totals in each field. The
average is also shown. (This is very similar to the way course summaries were
shown in the old system.)

After early and late rating, the window shows the student’s remarks as a long list. The
first part of the list shows the good points, the last part the bad points. The teacher
can hide remarks from publication by means of a check box. This is very similar
to the old system. For courses with many students, the list may be very long, but it
is hard to get an overview. To help a bit, I have added a few things in the new system:

..

3 2 8 W e b - b a s e d c o u r s e r a t i n g 1 0

P1: KTU

PE040-10 PE040/Lauesen October 12, 2007 11:56 Char Count= 0

Fig 10.4 E Virtual window, Course summary

Only present
during
Late Rating

...

� The remarks are ordered according to their author. To preserve confidentiality,
each student gets an anonymous number for this course, and the number is
shown besides the remark. This allows the teacher to get an impression of
whether a lot of students made this kind of remark or only a few who repeated it
in various ways. (With the old system, teachers complained about not having this
information). The name behind the number is kept secret, of course, unless the
student wants to be known. In the latter case, the student number is not shown,
but the student name is shown in the remark box. There is no need to store the
anonymous number in the database. The system can generate the number when
it generates the screen picture.

� A three-line section of the window gives an overview of how many students
made good comments and bad comments. This also helps the teacher get a
feeling for how big the problems are.

..

1 0 . 4 V i r t u a l w i n d o w s f o r c o u r s e r a t i n g 3 2 9

