

User Interface Design - Addendum

Window patterns

Soren Lauesen
E-mail: slauesen@itu.dk

Version 2.1: August 2009

This paper contains additional sections for the book User Interface Design by
Soren Lauesen, Addison-Wesley, 2005. These sections show various patterns for
connecting a data model to windows.

Printing instructions
Print on A4 paper, two-sided printing. Most figures are placed on a right-hand
page with the corresponding text on the left-hand page.

Contents
3.8 Window patterns for a single table ... 4
3.9 Window patterns for 1:m relationship .. 6
3.10 Two 1:m relationships with the same parent .. 8
3.11 Two nested 1:m relationships ... 8
3.12 M:m relationship... 10

© Soren Lauesen, 2009
Permission is granted to make paper copies of the file on a non-profit basis as long
as the source is clearly stated.

Preface
I have used my book User Interface Design (and its
precursors) for more than ten semesters. In general,
students perform very well, but their main weakness is
coming up with good virtual windows - windows that
give adequate overview, are easy to understand and ef-
ficient for the user's tasks. The issue is not so much the
fancy graphical data presentations, but the mundane
text-based ones made from forms and tables.

It has taken me a long time to realize that many things
that I find obvious are not obvious to the average stu-
dent. One of them is the relationship between the data
model and the virtual windows. I look at the pattern in
the data model and intuitively imagine various ways to
present it. Based on the user needs, I pick a suitable
presentation. Probably I have a tacit collection of pat-
terns in my mind.

This paper makes these patterns explicit. Some of the
patterns are widely used, for instance the form-subform
pattern, which can show two E/R classes connected
with a relationship. Others are less common, for in-
stance showing a many-to-many relationship as a ma-
trix of data.

The paper is structured as new parts of the book, sec-
tions 3.8 to 3.12. Sections 3.1 to 3.7 of the book deal
with graphical data presentations using curves, colors,
etc. We will barely deal with those here, but focus on
the text-oriented presentations of large amounts of
data, for instance as they are found in a database.

3.8 Window patterns for a single table
How can we present data from a single class of the data
model? In Figure 3.8A we use a class of projects as an
example. We assume that each project has a name, a
longer textual description, a start date, an end date, a
budgeted cost, a current cost accumulated until now,
and an estimated rest cost.

Simple form
At the top right, we see the first presentation - a classi-
cal form view. Each attribute is shown as a label and a
text box. The user may edit the data through the text
boxes or we might present the data without a box so
that the user cannot change it. According to the virtual
window principles, we should as far as possible use the
same windows for display of data and for edit. This en-
sures that the user imagines the virtual windows as the
objects stored inside the computer.

In the example, notice the Estimated total. It is a com-
puted value and the user cannot edit it. Also notice the
large text box for the project description.

The advantage of the form view is that we can show
many attributes and arrange them in many ways. The
disadvantage is that we see only one record at a time. If
we try to show several records in this way at the same
time, lots of precious screen space is wasted because
labels and unused space between fields occur over and
over.

Table view - one record per row
The table view allows us to show many records at the
same time. This view corresponds to the table concept
in a relational database. In principle we have a fixed
number of columns (one per attribute) and a variable
number of rows (one per record).

The advantage is that we get a good overview of sev-
eral records. Very little screen space is "wasted" on la-
bels and spacing.

One disadvantage is that it is harder to provide visual
patterns to help the user. The table is just one big ge-
stalt. Another disadvantage is that we can only show
relatively few attributes. Long attributes such as the
project description are not suited for this data presenta-
tion. Many GUI systems offer ways to overcome the
limited number of attributes: They allow the user to
hide columns, rearrange them, and change the column
width. However, this gives only a modest improvement
of the overview.

Table view - one record per column
The bottom of Figure 3.8A shows an unusual table
view with one record per column. It is an advantage if
we have many attributes and only a few records to
show. This happens in some applications.

It is somewhat harder for the user to compare records
in this way. For instance it is hard to scan the starting
dates to find the first date. With a record per row it is
much easier. On many GUI platforms it is technically
difficult to implement the record-per-column view.
This is for instance the case with MS-Access.

Tab sheets
Figure 3.8B shows a variant of the simple form view.
We have put most of the attributes on tab sheets. This
provides space for 5 to 10 times as many attributes on
the same screen space. (More than 10 tabs make the
window real hard to use.)

The disadvantage is that there is less overview. Often
the user has a hard time guessing the right tab. (One
example is MS-Word's dialog box for setting options.)
The designer has to come up with "logical" ways of
grouping the attributes - at the same time trying to
make all groups roughly the same size to utilize the
space on each tab. Not an easy job.

Matrix presentation
The matrix presentation is quite different from the table
views and gives another kind of overview. We have a
variable number of rows and a variable number of col-
umns. In the first example we have a row for each pro-
ject name and a column for each month in the calendar.
Each project occupies a single cell in the matrix ac-
cording to its name and starting date. The cell shows
the budget for the project, but might show any short at-
tribute. With some effort we might compress a few at-
tributes into the cell. We might for instance color the
budget according to the state of the project.

The main disadvantage is that we can show very few
attributes: one for each axis (in the example name and
startDate) and one or a couple inside the cell. We also
waste a lot of screen space on the many blank cells if
the matrix is sparsely filled. This is the price for the
visual gestalts inside the matrix.

In the second matrix example, we have shown each
project as a block of cells ranging from the start date to
the end date. In this way we have squeezed one more
attribute into the data presentation, the end date.

The hotel system's room screen and the paper lab form
(Figure 3.6A in the book) are examples of matrix pres-
entations.

Notice that these matrix presentations gradually blend
into true graphical presentations such as bubble dia-
grams (Figure 3.5E) and Gantt charts (Figure 3.7C).

4

Fig 3.8A Window patterns for a single table

Project

name, descr,
startDate, endDate,
budget, currentCost, estRest

Project: Museum Current cost: 2,300
Start: xx-xx-xx Estimated rest: 8,500
End: xx-xx-xx Estimated total: 20,850

Budget: 18,000
Description

This project aims at . . .

Project: DXP-release 2 Current cost: 12,350
Start: 22-05-05 Estimated rest: 8,500
End: 30-06-05 Estimated total: 20,850

Budget: 18,000
Description

This project aims at . . .
Simple form
One record, many attributes.
Labels and blanks consume
precious screen space.

Project DXP-rel Museum CPH site . . .
Start 22-05-05 07-07-05 01-08-05
End 30-06-05
Curr cost 12,350
.

Table - one record per column
Suited for a few records and
many, short attributes.

Variable number of columns

Project Start End Curr cost . . .
DXP-rel 22-05-05 30-06-05 12,350
Museum 07-07-05 . . .
CPH site 01-08-05 . . .
.

Table - one record per row
Suited for many records and
a few, short attributes.

Variable number of rows

Project
name, descr,
startDate, endDate,
descr, budget,
currentCost, estRest

Budget May 05 June 05 July 05 . . .
DXP-rel 18,000
Museum 21,000
CPH site 14,000
.

Matrix - one record as a cell block
Value shown: budget
Row heading: name
Column heading: startDate

and endDate

Project: DXP-release 2

Details Description

This project aims at . . .

Tab sheets
Lots of attributes

Start Start Start
Budget May 05 June 05 July 05 . . .
DXP-rel 18,000
Museum 21,000
CPH site 14,000
.

Matrix - one record as a cell
Value shown: budget
Row heading: name
Column heading: startDate

Variable number of
rows and columns

Fig 3.8B More window patterns for a single table

5

6

Graphical presentations
In section 3.5 of the book we didn't discuss how the
graphical presentations related to a data model. Actu-
ally, many of them show data corresponding to a single
class. As an example, the business data in Figure 3.5D
consists of one record per year. Each record holds a
value for customer satisfaction, employee satisfaction,
sales and profit.

A note on scroll bars and search criteria
Often the data takes so much screen space that the
window cannot fit on the screen. Scroll bars come in
handy here, and are often added automatically by the
system. However, don't rely on scroll bars. The begin-
ner may easily overlook data that is "outside the
screen". Plan the windows so that they usually will ap-
pear without scroll bars.

When a table frequently is too long to fit on the screen,
use search criteria to reduce its length. See more in sec-
tion 6.7 of the book.

A note on screen space and paper mockups
Above we have mentioned the precious screen space.
Yes, the screen is small compared to other work areas
we use, such as the office desk, the space in the kitchen
or the well-equipped hobby room.

Yet most novice designers underestimate what the
screen can hold. As a result they come up with a few
small windows that give a poor overview, rather than
one larger window with a good overview. I hate to say
it, but the paper mockups seem to encourage this. I of-
ten suggest to students that they use the paper in land-
scape mode to get a better impression of what the
screen can hold:

A medium-sized screen (1280 * 1024 pixels)
can hold around 60 lines of 150 characters.

3.9 Window patterns for 1:m relationship
Figure 3.9 shows a data model with two classes. We
have a set of departments, and each department may
run a number of projects. The department has a name
and a mission statement (a longer text). The department
is the parent of the relationship.

Form-subform
One way to show this structure is to show each de-
partment as a form - the main form. On this form we
embed a table of projects belonging to the department.
The table is usually called a subform.

We can show many attributes for the department, but
only a modest numbers of attributes for the projects,
due to the limitations of the table structure.

At the top right, we see a variant of this. Instead of
showing each department in its own window, we show
a list of departments and their projects as one long win-
dow. In this case we waste space because we have to
show the labels of the department fields repeatedly
down the form.

Table with detail window
An alternative presentation is to show the departments
as a table. When one of these departments is selected,
the screen shows the projects in this department in a
detail window. It may be as a separate window that can
float around, or as a frame adjoining the department ta-
ble (see Figure 3.5A in the book).

Form with parent data
The presentation forms at the top of Figure 3.9 show
data by department. The bottom of the figure shows the
alternative: data by project.

The first version shows a form with the project attrib-
utes. The form also shows attributes from the parent
(department data). Notice that we might allow the user
to move the project to another department by choosing
the department from a drop-down list, as shown. Al-
lowing the user to type in another department name,
might give him the impression that he could change the
name of the department.

Changing the mission text might cause similar usability
problems. In principle, we might allow the user to edit
the mission text. However, the user cannot see whether
it is department data or project data. Users are normally
not conscious of the data model behind the windows,
but the user might be surprised if the change influenced
what he sees for other projects in the department. To
prevent this problem, we have grayed the mission field
to show that it cannot be changed here.

Table with parent data
The next example is a table view of all the projects.
Each line also shows some data from the parent class,
the department. In the example we show the name of
the parent department and maybe a few more attributes
of the department. Again we should be cautious about
letting the user change department data this way.

It may happen that a department has no projects. In this
case the department would not appear in the table of
projects. Sometimes we want the parent (the depart-
ment) to appear anyway. This is easy: we just show it
as a row without a project. (Technically speaking this
is handled by an outer join of the two tables.)

Department: Dept B

Fig 3.9 Window patterns for 1:m relationship

Project

Department

name, descr,
startDate, endDate,
. . .

name,
mission

Form with subform
(embedded table)

Table - one
department per row

Department
Dept A
Dept B
Dept C
. . . Detail window

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005

The figure also shows a variant where the table con-
tains only project data. When a project is selected, a de-
tail window shows the department attributes. In this

case we are able to signal to the user that this is de-
partment data and allow him to change it.

Data shown
by department

Continuous form
with subforms

Department: Dept A

Department: Dept B

Project Start date
CPH site 01-08-2005
.

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005

Department: Dept A

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005

Project

Department

Data shown
by project

name,
mission

name, descr,
startDate, endDate,
. . .

Form with parent dataParent
Project: DXP-release 2 Department: Dept A
Start: 22-05-05 Mission
End: 30-06-05 Handles . . .

Description
This project aims at . . .

Foreign key
Changed through
drop down list

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005
CPH site 01-08-2005
.

Department: Dept B

Mission: Handles all ...

Detail window

Project Start date Department Mission
DXP rel 22-05-2005 Dept A Handles . . .
Museum 05-07-2005 Dept A Handles . . .
CPH site 01-08-2005 Dept B Responsible f

Dept C Internal servi
Department
without projectsTable with parent data

7

3.10 Two 1:m relationships with the same parent
When we have two relationships with the same parent,
we can use much the same patterns as above. Figure
3.10 shows an example. Each department has a set of
employees as well as a set of projects.

The first pattern shows a department form with two
subforms, one for projects and one for employees. If
space doesn't allow this, it would be obvious to use two
tab sheets as shown in the background.

The two windows at the bottom show the data by pro-
ject and by employee. Notice that in the window with
data by project, we cannot see the employees - and vice
versa. This accurately reflects the data model, because
there is no relationship between projects and employ-
ees in the model. However, such a relationship will
most likely exist in the domain, and we will look at it
in section 3.12.

3.11 Two nested 1:m relationships
Figure 3.11A shows two nested relationships. Each de-
partment has a set of projects and each project has a set
of activities. It is easy to show each level by itself, but
how can we show both levels on the screen?

Nested subforms?
With nested relationships, the logical solution would be
to use nested subforms. Unfortunately, this doesn't
work well in practice. In the top right window, we try
something like it. We show the department as a form
and its projects as a subform. Then we squeeze the pro-
ject activities into a single field as a list of the activity
names. You might consider the list a very rudimentary
subform inside the project subform.

The solution suffices when there are only a few activi-
ties and we just need the activity names. The planning
screen of Figure 3.7A (in the book) successfully uses
this trick to show a list of week intervals because usu-
ally there are only a few intervals. When there are
many, it shows three dots to indicate more. The user
will then have to navigate to the full list.

In Figure 3.11A we show one more activity attribute as
the color of the name. The color indicates the activity
status.

An alternative to the list of activity names, is a detail
window with the activity data. This pattern is shown to
the lower right in the figure. These two solutions are
the closest we can get to nested subforms.

Hierarchies
The first pattern above (with the list field) doesn't gen-
eralize well to more than two levels. Using parentheses
in the list is a way to handle more levels, but it soon
gets a mathematical flavor that would scare most users.

The second pattern (with the detail window) might be
generalized to a few levels by means of several adjoin-
ing detail windows.

Simple hierarchy
A more general solution is to use an indented hierar-
chy. The first pattern shows the departments aligned to
the left, the projects indented a bit and the activities in-
dented two bits. We can easily generalize to several
levels.

Showing the attributes is more difficult. For the activi-
ties we have shown the status. This particular attribute
doesn't need a label, but in general we would need field
labels. Just a few attributes would make the whole
thing very hard to read and waste a lot of screen space.

We might show the lowest level as a table, in that way
showing the field labels only once. But if the higher
levels have different attributes, they need field labels of
their own.

In some cases all levels have the same attributes, for
instance if we have a recursive data model (a tree, see
section 16.9 of the book). Then we can show all attrib-
utes as one table and just indent the data in the left-
hand column. One example is the typical managerial
reports that show costs, etc. broken down by division,
department, etc. Here is an example:

Unit Cost Employees
America 12,345 1,300
 Sales 2,300 230
 West 1,300 120
 East 1,000 110
 Development 10,045 1,070
 Texas dept. 5,045 600
 Washington dept. 5,000 470
Asia 7,123 1,600
 Sales . . .

8

9

Fig 3.10 Two 1:m relationships with same parent

Project Employee

Department

By department

name,
startDate

name,
phone

Department: Dept A

Projects Employees

Name Phone
Paul 1252
Lisa 1249
.

name,
mission Department: Dept A

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005

Employee Phone
Paul 1252
Lisa 1249
.

Or as two tabs on
a tabsheet

By project By employee
Project Start date Department
DXP rel 22-05-2005 Dept A
Museum 05-07-2005 Dept A
CPH site 01-08-2005 Dept B
. . .

Employee Phone Department
Paul 1252 Dept A
Lisa 1249 Dept A
Jun 1300 Dept B
. . .

Fig 3.11A Two nested 1:m relationships

Project

Activity

Department Department: Dept A

Project Start date Activities
DXP rel 22-05-2005 Act 1,

Act 11, Act 12
Act2, Ac

Museum 05-07-2005
.

name,
status

Department Dept A
Project DXP release 2

Activity Act 1: Done
Activity Act 2: Started
Activity Act 3: Planned

Project Museum
Activity Act 11: Done
Activity Act 12: Done
Activity Act 15: Planned

Department Dept B
.

Hierarchy

By department

Comma-separated list

Department: Dept B
Department: Dept A

Project Start date
DXP rel 22-05-2005
Museum 05-07-2005
.

Activity Status
Act 1 Done
Act 2 Started

Status as color

10

Expand-collapse hierarchy
Figure 3.11B shows a variant of the hierarchy. Each
level (except the bottom level) expands to show the
lower level when the user clicks the plus, and collapses
when the user clicks the minus.

This pattern gives an excellent overview and becomes
more and more used. However, showing attributes is
still a problem. Often the hierarchy is combined with a
detail window that shows all records at the selected
level as a table. The well known file browser and many
email systems work this way.

XML browser hierarchy
One way to get around the attribute problem is to con-
sider the attributes the lowest level of the hierarchy.
The right-hand window shows such an example. We

can see all the attributes for project DXP release 2, all
its activities, and all the attributes for the activities.

Due to its generality and the popularity of XML, this
pattern is becoming popular too. Unfortunately, it is
extremely poor from a user point of view. Lots of
screen space is wasted from repeated attribute labels,
the gestalt patterns are poor and there is little overview.

I have seen developers use such an XML browser as
the user interface to a system for managing a large mo-
bile network. The user interface was easy to develop,
and it could deal with all the many kinds of nodes in
the mobile network. But from the user's point of view it
was a disaster.

3.12 M:m relationship
Figure 3.12 shows an m:m relationship. An activity is
staffed by several employees and each employee may
be involved in several activities. This m:m relationship
has been resolved by means of the participant class
into two 1:m relationships. The only attribute of par-
ticipant is the number of hours the employee works on
the activity.

A participant has two parents: an activity and an em-
ployee.

Form-subform pattern
The first pattern to deal with this has a window per ac-
tivity. The window shows all the activity attributes and
a subform with participants.

For each participant we can see not only the hours
worked, but also the participant name and phone.

These two fields are obtained from the employee re-
cord. We have the same problem as for other cases
where parent data is shown: it may cause usability
problems if we allow the user to edit the parent data.

Matrix
The second pattern shows the data as a matrix. Each
activity has its own row in the matrix and each em-
ployee his own column. A cell in the matrix corre-
sponds to a participant record. It shows the number of
hours worked.

Notice that we show two attributes for an activity:
name and status. The first two columns hold these at-
tributes. In the same way we might show more than
one attribute for the employees.

– Dept A
- DXP rel

Act 1: Done
Act 2: Started
Act 3: Planned

- Museum
Act 11: Done
Act 12: Done
Act 15: Planned

+ Dept B
+ Dept C

Expand-collapse hierarchy

– Department: Dept A
mission: Handles . . .

– Project: DXP release 2
startDate: 22-05-05
endDate: 30-6-05
budget: 18,000
currentCost: 12,350

– Activity: Act 1
status: Done

– Activity: Act 2
status: Started

+ Activity: Act 3
+ Project: Museum

+ Department: Dept B
+ Department: Dept C

XML browser hierarchy
One line per attribute

Fig 3.11B More hierarchies

Fig 3.12 M:m relationship

Participant

Employee

Activity Activity: Act 1 Status: Done

name,
phone

name,
status

hours

Participant Hours Phone
Paul 12 1252
Lisa 28 1249
.

Variable number of
rows and columns

Activity Status Paul Lisa Jun . . .
Act 1 Done 12 28
Act 2 Started 6
Act 3 Planned 53 30
Act 11 Done 98
.

Matrix - one participant per cell
Value shown: hours
Row heading: activity name
Column heading: emp. name

11

	3.8 Window patterns for a single table
	3.9 Window patterns for 1:m relationship
	3.10 Two 1:m relationships with the same parent
	3.11 Two nested 1:m relationships
	3.12 M:m relationship

