
Uvis: Visualization and Interaction with a
Drag-Drop-Formula Tool

Soren Lauesen, Mohammad A. Kuhail, Kostas Pantazos, Shangjin Xu,
Mads B. Andersen

The IT-University of Copenhagen, Denmark

slauesen@itu.dk, moak@itu.dk, kopa@itu.dk, xushangjin@gmail.com, mban@itu.dk

Abstract. Popular tools for constructing user interfaces use the drag-drop-set-
property principle. The developer drops visual components (boxes, labels, etc.)
on the screen and defines their properties, e.g. position, color and text. How-
ever, data presentation and user interaction are very limited. To exceed this
limit, programming is needed. Many end-user developers are familiar with the
popular tools, but are uncomfortable with programming. Could we improve the
drag-drop-set-property principle so that they can make non-standard data visu-
alization and interaction without programming? This paper presents a tool
(uVis) that takes a long step in this direction. The principle is to allow each
property to be a spreadsheet-like formula that computes position, color, etc. A
formula can combine data from several database tables with data about compo-
nents and dialog data provided by the end-user. Formulas can also handle
events and provide interaction.

Keywords: Data visualization, database, interaction, user interface, end-user
development.

1 Introduction

A user interface consists of general-purpose components (e.g. boxes, labels, curves,
and scales) each with its own property values (position, size, color, etc.) and its own
event handlers.

In order to create a specific user interface, we must somehow put the necessary
components on the screen and define their properties and event handlers. Program-
matic tools require that the developer writes a kind of program that creates the com-
ponents and sets their property values. Drag-drop-set-property tools allow the devel-
oper to manually drag and drop the components and set their properties. Charting
tools contain a program that creates a pattern of components (a predefined
visualization, e.g. a pie chart) and lets the developer specify some of the properties.
Combinations of these principles exist too, of course.

Our focus in this paper is non-standard data visualizations where predefined visu-
alizations cannot support the end-users adequately. Figure 1 shows two examples
from the medical area. The Lifeline screen shows the patient's notes, diagnoses and
medicine on a time scale with multiple zoom areas. Icon shapes and color indicate the

1

Bronchoscope biopsies
and the later lab results

Overview of the patient’s
medical notes, diagnoses
and medication

“Lifeline”

Figure 1. Two screens with custom visualization of medical data

A medorder

kind of note, the height of boxes indicate the medicine dose, etc. You can see at a
glance which medicines the patient gets now, how long the patient has got them, and
how they time-wise relate to diagnoses and notes. The data exist already in the data-
base; we just show them in a different way. As far as we know, no real-life health
record system uses such screens today.

The bronchial screen shows where biopsies have been taken, how they were taken,
and what the lab results tell. Clinicians also use the screen to record the biopsies and
lab results. The diagram of the bronchia is a simple drawing made in the department.

From a theoretical perspective these visualizations are not novel, just variations of
known themes such as Lifelines (Plaisant et. al. [17]) and geographical maps. Yet
they are highly useful in their domain, and at present they can only be made with
programmatic tools.

Our goal is that end-user developers could make these visualizations in coopera-
tion with ordinary end-users. We will use the term local developers or just developers,
to mean these end-user developers. They are often familiar with popular tools such as
MS Access and Excel, and they sometimes make small applications for their own use
or for use in the department. They are rarely comfortable with programming and with
present tools they cannot make data visualizations such as Figure 1.

2

Myers et al. [12] gave an excellent overview of user interface tools in 2000 and
explained why drag-drop-set-property tools (called interface builders and interactive
graphical tools) were much more successful with local developers than program-
based tools. They and other authors [3] report that spreadsheets are the only kind of
"programming" widely accepted by end-users. When we say "programming" in this
paper we do not include spreadsheet-like formulas. We define a "real" program as a
text that generates visual components and sets their properties. It runs in a context that
is different from the user screen itself. It may use loops and invisible objects such as
variables and methods.

Why are drag-drop-set-property tools so popular? Most people give up program-
ming. They cannot see the connection between the program and the visible result, and
they cannot write a program themselves. Norman describes this as the gulf of evalua-
tion and the gulf of execution [13].

What is the situation today? A recent study (Pantazos [15]) showed that local
developers (called savvy users in the paper) still need better tools and more attention
from the information visualization community.

Uvis is a drag-drop-set-property tool that allows local developers to build tailor-
made user interfaces without real programming. Developers put together visual com-
ponents and specify their properties and event handlers with spreadsheet-like formu-
las. A formula corresponds to a spreadsheet formula and uses a similar notation, but it
is able to combine data from databases, visual components and end-user input.

Using uVis we developed the application in Figure 1 in 10 hours. End-users can
use it to see real patient data, enter data about the biopsies, etc. The database existed
already. With a bit of training, local developers in the hospital could have made the
application. Only formulas were needed, no real programming.

2 Related Work

Industry tools such as Microsoft Access, Microsoft Visual Studio, Eclipse and
NetBeans allow developers to construct user screens with drag-and-drop of text
boxes, buttons and other components. For each component the developer sets size,
position, color and other properties to a constant. This approach can quickly generate
a mockup that looks right, but shows only dummy data. In simple cases you can con-
nect a database table to a component, for instance to make a combo box or a data grid
component. However, to make something like the Lifeline screen, "programming
behind" is needed and only professional programmers can do this.

Charting tools such as pie charts and bar charts are provided in Excel, Google
Spreadsheets [7] and as separate packages. These tools don't require programming
skills and are widely used. However, to integrate them with a production application,
the end-user has to copy and paste data from the application to the tool (or a pro-
grammer has to write code that does it). Without programming there is no way to
create visualizations beyond what is predefined. For instance, something like the
Lifeline couldn't be made. Further the end-user has little interaction with the data and
cannot feed data back to the existing application.

3

Data analysis tools such as Tableau [20], Polaris [19], Spotfire [18] and Omni-
scope [14] integrate well with existing data and help users explore the data. They
don't require programming skills. Here too there is no way to create visualizations
beyond what is predefined and something like the Lifeline couldn't be made. Further
there is only predefined interaction with the data and the end-user cannot feed data
back to the existing application.

Graphics libraries such as GDI+ and Java 2D are available for many program-
ming languages. They provide basic components such as line, polygon, and ellipse.
By means of a program you can make them create any visualization, bind to any data
and perform any interaction. However, to accomplish this, you must be a professional
programmer.

Visualization Toolkits allow you to construct traditional and new visualizations
in a programmatic way that is simpler than using graphics libraries, for instance by
means of a domain-specific programming language. Examples are Protovis [1], D3
[2], Prefuse [8], Improvise [22] and Infovis [6]. These toolkits don't use a drag-and-
drop approach, they are not easy to integrate with existing relational data, and you
cannot feed data back to the existing application without programming.

Spreadsheet-based graphical tools allow you to construct graphical user inter-
faces. A component corresponds to a named spreadsheet cell that can be positioned
anywhere on the screen. The properties of the components are specified with formu-
las. Examples are Forms/3 [3], KidSim/Cocoa [5], NoPumpG [11]. Like visualization
toolkits, these tools don't use a drag-and-drop approach, they are not easy to integrate
with existing relational data, and you cannot feed data back to the existing application
without programming. Further, screens with advanced visualizations that require cross
referencing are hard to implement with these tools.

3 Uvis Principles

The uVis development environment is similar to traditional tools where the developer
drags components to the user screen and defines the properties of the components. In
traditional tools, most of the properties can be constants only, and this limits what can
be done without programming.

The basic uVis idea is that any property can have a formula that computes the
value of the property. The challenge is to provide a formula language that is suffi-
ciently strong to generate complex user interfaces based on general-purpose compo-
nents such as boxes and labels. Figure 1 is an example. To achieve this, the formulas
must be able to address data from several sources:
1. External data (e.g. in a database)
2. Property values in the same or other components.
3. Dialog data provided by the end user, e.g. the position of a scroll bar or the con-

tents of a data entry textbox.
It must be possible to combine these data with traditional operators (e.g. +, -, *, <, =)
and traditional functions (e.g. Sin, Format, Choose). This gives us a declarative for-
mula language as powerful as spreadsheet formulas, but able to address many kinds of
objects, not just spreadsheet cells.

4

Operands in a formula must be able to walk from object to object to get data. As an
example, the operand compA.compB.tableC.fieldD will walk to visual component
compA, from there to the related compB, to its related record in tableC and then get
its fieldD. This walk principle is used extensively in uVis.

A spreadsheet has circular references when a formula in a cell refers to cells that
refer back to the cell we started with. This may occur for uVis formulas too when they
address properties in other components. As for spreadsheets, it is detected and re-
ported as an error.

Formulas must be able to do more than computing a value:
4. Generate several instances of a component. A special property Rows can do this.
5. Perform actions, for instance setting a value, refreshing the screen, and opening a

user screen. Event handler properties can do this in response to end-user actions
and timer events.

The screens in Figure 1 use these mechanisms in many places. Here are some exam-
ples.

Generate several instances. The colored icons in the bronchial screen are gener-
ated by a single Glyph component, dragged and dropped by the designer. He gave it a
Rows formula that retrieves all the patient's bronchial data rows from the database and
generates a glyph instance for each of them. As a result, each instance is connected to
a data row.

Refer to external data. For each glyph instance, the Top and Left formulas com-
pute the position by means of fields in the connected row. In the same way, each
glyph instance computes its color and shape from other fields in the row.

Refer to property values and end-user data. The bronchial screen uses a box
component to mark the selected glyph instance. The box must know which glyph to
mark, so the designer added his own property, Selected, to keep track of the selected
glyph. The box's Top formula walks to Selected, then to the selected glyph, gets its
Top value and uses it to compute its own Top. The Left formula does the same.

Perform actions. When the end user clicks a glyph, the marker box must show it.
To achieve this, the designer specified a formula for the glyph's Click property. When
the end user clicks a glyph, the Click formula is executed. It sets the marker's Selected
so that it refers to the glyph that was clicked. Next, it asks uVis to refresh the screen,
i.e. re-compute all formulas and update the components as needed.

3.1 Uvis Development Environment

In this section we present the uVis development environment and give detailed exam-
ples of formulas. Figure 2 shows uVis Studio when the local developer has con-
structed the trivial part of the bronchial screen: the components that occur only once.
He has for instance dropped an icon component in the left part of the screen and has
set its File property to show the bronchial diagram. This is quite similar to how
popular tools work today.

In order to access external data, he needs a data map file that has a connection
string to the database and specifies the available tables and relationships. For now, we
assume that the local IT department has provided it. The developer told uVis Studio to

5

Figure 2. Setting the Rows property to create a bundle of components

A bundle of Glyph
components

Auto-generated formulas to
make a staircase of components

Toolbox

Property grid

use this data map file, and as a result uVis shows the data map as an E/R diagram
(lower right). The developer can detach and enlarge the diagram, expand a box to see
a list of the fields, and double-click a box to see the table with data.

During construction the local developer sees the bronchial screen exactly as it will
look to the end-user. He can also interact with it as the end-user would do. In order to
change formulas, he holds Control and clicks a component. As a result, the property
grid (middle right) shows the formulas and also the result of the formulas for this
component instance. He can edit the formulas and as soon as he types Enter, uVis
updates the user screen accordingly.

Generate several instances. The developer's next task is to make uVis create an icon
for each biopsy. The number of icons is dynamic; it depends on the database contents.

He has dragged a Glyph component from the toolbox and dropped it on the bron-
chial diagram. A glyph can appear as different shapes: circle, triangle, etc. Initially it
appears as a gray hexagon. The property grid shows the properties of the glyph. The
developer has set the name of the component to Sample. Now he sets the Rows prop-
erty in this way:

6

 Rows: Bronchial Where ptID = Param[0]

Bronchial is a table in the database that has a row for each biopsy. It has a ptID field
that identifies the patient. The bronchial screen was opened with the current ptID in
the parameter property, Param. The Param property is a list, and Param[0] is the first
element in the list. The result of the Rows formula is the set of Bronchial rows for the
current patient. As soon as the developer had typed the Rows formula, uVis generated
a glyph component for each row and connected it to the row. Furthermore, uVis set
the Top and Left formulas so that the glyphs appear a staircase of gray icons to visu-
alize how many there are.

If the developer had to express the Rows formula in the usual way as an SQL
statement, it would look like this:

SELECT Bronchial.ptID, Bronchial.y, Bronchial.x, Bronchial.kind, Bronchial.result,
Bronchial.ant_post, Bronchial.splDate, Bronchial.splNumber, Bronchial.remark FROM
Bronchial WHERE [Bronchial.ptID] = 0103500276

The developer could have written SELECT * instead of listing all the fields he needs,
but this would retrieve all fields in the table. In a real-life database with many fields,
this may be very slow.

He would also have to insert the actual patient ID (0103500276) into the SQL
statement in a programmatic way.

Uvis generates the SQL statement automatically based on the Rows formula, col-
lects the necessary fields from all the formulas in the screen, and inserts them as the
SELECT part. Although the Rows formula still has the flavor of an SQL statement
(the Where clause), it is much more compact and simpler to write than the real SQL
statement.

When uVis creates components with a Rows formula, they become a bundle of
component instances. Each component in the bundle has an Index property that is 0
for the first component, 1 for the next, etc.

When uVis has created the components, it evaluates the property formulas and
sets the property values. In our example, uVis Studio automatically defined the for-
mulas for Top and Left so that the icons appeared as a staircase:

 Top: 53 + Index * 7
 Left: 104 + Index *7

In this way the first component got Top = 53 (Index = 0), the next Top = 60, etc.

Refer to external data. The developer's next task is to set the other formulas for the
glyph. Figure 3 shows the result. He has selected one of the glyph instances. He sees
its property formulas in the property grid and also the actual property value. The for-
mulas are the same for all the component instances, but the values vary between in-
stances in the bundle. He has also opened the bronchial table. The selected glyph
corresponds to the first row of the table.

The Left position of the glyph is computed by the formula x-7, where x is a field in
the database. For this specific glyph, the formula gave 106 as the result and uVis put
the glyph 106 pixels from the left edge of the user screen.

The shape of the glyph is computed by its Type property. The formula retrieves the
kind field from the database and chooses the corresponding shape: triangle, hexagon

7

Figure 3. Using database fields to set position, shape and color

Properties can be formulas, e.g.
y from the database - 7
Properties can be formulas, e.g.
Top = y (from the database) - 7

The selected
Sample glyph

or circle. When the developer has typed the formula or changed it, the system updates
the user screen immediately.

During typing, uVis gives auto-complete suggestions (Intellisense).

Save the screens. When the developer closes the bronchial screen or closes uVis
Studio, uVis saves the screen as a vis-file that can be read with simple tools, e.g.
notepad. Figure 4 shows part of the vis-file for the bronchial screen.

3.2 End-user Data and Interaction

We will show an example of how the end-user can interact with the screen. This also
illustrates how a formula can address properties in other components.

The developer has decided that when the end-user clicks a Sample icon, it should
be marked with an orange frame. Further, the details of the sample should be shown
in the text boxes at the top right of the bronchial screen (Figure 3).

8

The key part of this is a box component that serves as a Marker. The developer
has given it these property formulas:

Box: Marker
Selected: Init -1 ' The selected sample. <0 when nothing is selected.
Visible: Selected >= 0
Top: Sample[Selected].Top-3 Default 0
Left: Sample[Selected].Left-3 Default 0
Height: 20
Width: 20
Weight: 3
BorderColor: Orange
BackColor: Transparent

The developer has added his own property, Selected. It is not a built-in property such
as Top and BorderColor, but what we call a designer property. Init -1 means that
Selected initially is -1, but the value can change as a result of end-user actions. When
the end-user selects a Sample glyph, Selected should become the Index of the glyph.

Visible is a built-in property. The formula says that the Marker should be visible
when something is selected (selected >= 0). Initially it will be invisible.

Top says: Walk to the bundle of samples. Take the glyph with the index given by
Selected. Take its Top property value and subtract 3 pixels to make the orange frame
surround the glyph. If this doesn't work, for instance because nothing has been se-
lected, use the default value and make Top = 0. This is an example of addressing a
property in the same component (Selected) and in another component (Sam-
ple[i].Top). Notice that uVis can address specific items in a bundle as if it was an
array.

The remaining properties should now be obvious. The result is that an orange
square shows around the glyph when it is selected.

When a Sample is selected, the screen should also update the text boxes at the top
right. The developer handles it with formulas like this one for the sample-date text
box:

TextBox: splDate
…
Text: Sample[Marker.Selected].splDate Default ""

The Text property specifies what to show in the text box. The formula says: Walk to
the bundle of samples. Also walk to the Marker box and get its Selected value. Use it
as the Index in the bundle to get the selected glyph. Finally walk to the data row con-
nected to the glyph and get its sample date (splDate). If nothing is selected, use an
empty text as the default.

The walk principle. Data references in uVis formulas use the walk principle: The
system walks from object to object to get the result. The Text formula above is an
example of this. The formula walks to a bundle of components, then to another
component to get the index and use it to select a component in the bundle, and finally
to a row connected to the component to get the desired field.

9

Figure 4. Saved vis-file

Dot-operators and name ambiguity.
Understanding a formula such as the
Text formula above requires good
knowledge of what are visual compo-
nents and what are database elements.
To help the developer, uVis can change
the dots in the formula to show what is
what. A dot (.) means database elements
and a bang (!) means visual component
elements. Using these dot-operators,
uVis would show the Text formula like
this:

Sample[Marker ! Selected] . splDate
Default ""

With a bit of training, the developer can
see at a glance that Selected is a compo-
nent property and "splDate" is a database
field. The dot-operators also help re-
solving name ambiguity. Assume that
the database had a field called Top. The
developer cannot change this name, nor
can he change the property name Top.
But he can use bang or dot to tell the
compiler whether he means a component
property or a database field.

Event handler properties. To make the
selection construction run, we need a
way to set Selected. This is done through
the Sample component. It should re-
spond when the end-user clicks it. The
developer has defined an event handler
property for it:

Glyph: Sample
…
Click: Marker ! Selected = Index, Refresh()

When the end-user clicks a Sample glyph, uVis performs the actions (statements) in
the click formula. As a result, Selected will become the index of the clicked glyph.
The statement Refresh() asks uVis to re-compute all formulas and redraw compo-
nents where a property value has changed. As a result the Marker will appear or
move, and the text boxes will show data about the selected sample.

In contrast to ordinary formulas such as Top, an event handler formula cannot be
evaluated at any time. An event handler is evaluated only in response to an end-user
action. In industrial tools, components send a lot of events to each other, for instance
BorderChanged and ValueChanged. Uvis has no such events because all updates are

10

made with Refresh(), which re-computes and redraws as needed. This is the spread-
sheet principle, but it assumes good performance (see section 5).

Event handler statements include setting a value in a property or a database field,
committing a database transaction, opening a form, refreshing the screen, and reque-
rying the database.

Depending on the application, it may be necessary to perform actions beyond the
built-in uVis statements, for instance to send an email or transmit data to/from an
external system. This requires that someone makes a piece of real program, tests it
and exposes it as a method that can be called from an event handler formula. This is
"programming behind", but it is used far less than in the traditional approaches.

3.3 Joins - Walking Among Tables

Above we showed examples of walking between visual components. It also makes
sense to walk between database tables.

The data map in Figure 3 shows tables connected with crow's feet. Each crow's
foot corresponds to a one-to-many relationship between the tables. It makes sense to
walk along these feet. As an example, the Patient table has a one-to-many crow's foot
to the MedOrder table. It symbolizes that we can walk from a patient to many medi-
cine orders. Walking the other way from a MedOrder to Patient, we come to only one
patient.

Let us look at a tough example, the medicine orders at the bottom of the Lifeline
(Figure 1). We have connected the Lifeline screen to a single patient row with this
formula:

Rows: Patient Where ptID = Param[0]

We want to generate a box for each of the patient's medicine orders. We drop a box in
the lower part of the Lifeline screen and give it these properties:

Box: MedOrderBox
Rows: Parent -< MedOrder

The Rows formula means: Start in the patient row connected to the user screen (Par-
ent means the user screen in this case). The -< symbolizes a one-to-many crow's foot.
Now walk along the crow's foot to the MedOrder table. The result is a set of rows,
one for each of the patient's medicine orders. Each row contains fields about the
medicine order (the type of medicine, the start and stop time for the medication, the
amount per dose, the dose, and the number of times per day).

The result is a staircase of medicine orders. We align them to the time scale at the
top of the Lifeline with these formulas:

Left: timeScale ! HPos(startTime)
Right: timeScale ! HPos(stopTime)

The Left formula means: For this medicine order, walk to the time scale component at
the top of the Lifeline. Call its horizontal position property (HPos) and ask it to
translate the startTime of the medication to a pixel position. Use this position as the
Left property. The Right formula works the same way. The result is that each
MedOrderBox is stretched correctly in the time dimension.

11

What about Width? Uvis accepts any two of Left, Width and Height because we
observed that developers often tried to do so.

We want to show the amount of medicine as the height of the boxes. To do this,
we multiply the amount per unit, the dose and the times per day. These fields are
readily available in the medicine order row. However, is this a large or a small dose?
To indicate this, we need access to the MedType table that contains the DDD (normal
daily dose). Fortunately the E/R diagram has a crow's foot from MedOrder to
MedType. We can just continue walking from MedOrder to MedType.

To do this, we change the Rows formula and can then include DDD in the Height
formula:

Box: MedOrderBox
Rows: Parent -< MedOrder >- MedType
Height: (amount * dosage * timesPerDay) / DDD * 8

The Rows formula now gets the MedOrder rows as before and then walks on for each
MedOrder row to the related MedType. It includes the relevant MedType fields in
each of the rows, e.g. DDD.

The last step of the Rows formula is a one-to-many relation, symbolized with >-.
If the developer makes a mistake and types -< instead, or dot or bang, the compiler
will replace it with >- to show what kind of relation it actually is.

In practice, there are often missing data in the tables. As an example, the real
medicine data we work with often lack a reference to MedType. The visualization can
easily deal with this by means of the Default operator explained earlier.

Here too, the notation is very compact. If the developer had to write the SQL
statement for this Rows formula, it would look like this:

SELECT MedOrder.ptID, MedOrder.amount, MedOrder.dosage, MedOrder.timesPerDay,
MedOrder.startTime, MedOrder.stopTime, MedOrder.medID, MedOrder.orderID
MedType.DDD
FROM MedOrder LEFT JOIN MedType ON MedOrder.medID = MedType.medID
WHERE [MedOrder.ptID] =0103500276

4 Development Scenario

In this section we show how a local developer would use uVis to construct the screens
in Figure 1 and deploy them in the department.

Connecting to the database
First the local developer needs a data-map file that gives uVis access to the existing
database or to equivalent system services. Most likely he will use an anonymized test
version of the database. The central IT department would give him the necessary
permissions and help him set up the data-map file.

Next he opens uVis Studio and tells it to select the data-map file. His computer
screen will now look like Figure 2, but the bronchial screen is an empty default
screen.

12

Constructing the screens
The local developer will now drag and drop components on the screen and set their
properties as explained above. He can develop several screens at the same time.

Debugging and Testing the Screens
The local developer has made the basic test of the screens while he constructed them.
Whenever he typed or changed a formula, the system immediately retrieved data from
the database and showed it exactly as the end-user would see it.

Uvis detects errors and highlights them in the formulas and in the error list panel.
Uvis can also show the raw data behind the visual components to help the designer
locate a problem.

However, the local developer should make additional tests of the screens. He
should make usability tests of the screens to ensure that they are understandable to
other end-users. He should test that the screens show abnormal data correctly;
preferably he should have a small test database with abnormal data for this. And he
should test that the queries don't overload the database. Here he needs a large test
database for measuring performance.

We have paid much attention to the test situations. For instance, it is easy to switch
between databases. You make a copy of the data-map file for each database and
modify the database connection string. When you run a test, you simply open the
proper map file. You can run uVis in various test modes, for instance simulate that the
date and time is something that matches the data you test with. You can avoid that
uVis makes real database updates, but only simulates that data has been updated. To
avoid that a database query by mistake takes a very long time and blocks testing, you
can limit database access so that the system never retrieves more than for instance 200
rows from a table.

Deploy the new user interface
After testing, the local developer has to deploy the system so that end-users can use it
for production. He needs the necessary rights to access the production database. Fur-
ther, the end-users need rights to open the map file and access the production data-
base.

He puts the map-file and the vis-files in a folder on the department’s file server.
The end-users can now open the map file in the same way as they would open a Word
file. As a result, uVis will connect to the database and open the start screen that the
local developer made. From there, users can navigate to other uVis screens.

Close integration with existing applications
In the scenario above, end-users opened a map-file to see the existing data through
uVis screens. Another approach is that an existing application asks uVis to open the
map-file and show the uVis screens. This requires a small change to the existing ap-
plication so that it calls a uVis API when the user for instance clicks a certain button
on an existing screen.

Some professional visualization developers have responded to uVis saying that it
might save them 90% of their visualization efforts. To accomplish this, they might use
uVis API's directly in their programs.

13

5 Evaluation and Limitations

We have developed many small applications in an experimental way with uVis and
also developed customizable versions of bar charts, pie slices and other traditional
visualizations (Pantazos [16]). Most of them became surprisingly simple as we
learned to utilize the power of the formula language.

Performance

When the end-user interacts, the event handler formula will usually do something
and then ask uVis to refresh the screen in the same way as a spreadsheet recalculates
all cells. There are various ways to optimize refreshing, for instance only recompute
properties that depend on the item changed. At present we don't try to optimize. We
get adequate performance with a simple algorithm:

Recompute all formulas, requery the database if an SQL statement has changed,
set all component properties to the new computed value (whether it has changed or
not), and update the screen accordingly.

Queries to the database are usually the performance bottleneck. When a component
generates several instances of itself by means of a Rows formula, uVis retrieves all
the rows with a single query. This means that the bundle of bronchial biopsies is re-
trieved with only one query. Bundles can be nested so that we have bundles of bun-
dles. The rule applies here too: Uvis retrieves all the second-level bundles with a
single query.

The table below shows the performance for the Lifeline with the screen shown in
Figure 1 (average of 10 measurements on an ordinary 2GHz PC with 2 GB memory
and a local MS Access database). The total time to open the screen is 0.7 seconds
including 0.4 s to make 8 queries to the database.

Most of this time would be spent also if the screen was produced by a hand-coded
program. The only overhead uVis adds is the time to scan and compile the vis-file and
the time to compute the properties. This amounts to 0.09s, 13% of the total time.

The time to refresh the entire screen is 0.08 s. It is spent on computing the proper-
ties and showing (rendering) the components.

Usability for developers
Ease of learning is an issue when we aim at non-programmers. However, usability is
not only a property of the formula language. Computerized cognitive aids and human
assistance is also very important to help developers get started.

Refresh time

ms ms

Scan the .vis-f ile (5500 chars) 23

Compile 180 formulas 20

Create 146 components 90

Compute properties for 146 components 43 46

SQL queries (8 queries, 140 row s total) 401

Show 146 components 94 32

Total time to open 671 78

Time to open Lifeline, Figure 1

14

For the last year we have run usability tests of the tool including the planned as-
sistance. Based on the results, we gradually improved the tool. As an example, we
observed that test subjects were puzzled when they specified Rows and nothing
seemed to happen (because all the instances appeared on top of each other). As a
result, we changed the development environment so that the instances initially appear
as a staircase. We have improved many other things too, e.g. terminology (Rows or
something else?), auto-completion where the tool suggests what to type, direct inspec-
tion of the database contents (table view) and direct inspection of the property values
(Kuhail [10]).

We have made usability tests with a total of 24 typical local developers (non-pro-
grammers) and 6 developers that had experience with other visualization tools. We
tested with one user at a time. The tests took between 2 and 3 hours.

All subjects except one could make simple visualizations with uVis, but sometimes
had to ask for help because there was a bug in the system. As the visualization com-
plexity increased, fewer could make it within the 2-3 hours. The subjects understood
the concepts and could reason about the formulas. However, the join operators (-< and
>-) were not as intuitive as we had hoped. This was related to the subjects having a
weak understanding of databases in general.

Some subjects said that they would like to experiment more with the tool on their
own. The subjects who had programmed visualizations professionally said that a
mature uVis would have saved 90% of their time.

Details of the evaluation are published in Kuhail [9].

Limitations
Uvis is currently an operational prototype that proves the concept: It is possible to

make such a tool, it can become sufficiently easy to use for the target developers, and
it performs well on the computer. However, many details are missing before local
developers can use it on their own, for instance better documentation and tooltips.

One important limitation is that uVis at present only runs on the Windows Forms
platform. When we started the project early 2009, the Web wasn't suited for such a
tool, but this has changed with HTML 5 and OData.

Another important limitation is that it is harder to get access to raw table data than
we anticipated. Many commercial systems have buried their data behind web-services
and multi-layer architectures, and are unable to give access to data in such a way that
end-user developers can join tables and filter them according to end-user needs. Here
too, OData may help.

6 Conclusion

Uvis allows end-user developers to implement non-standard data visualization and
interaction by means of spreadsheet-like formulas for the component properties.
During development, the tool shows the final screens all the time and allows the de-
veloper to interact with the screens in the same way as the end-user. Without chang-
ing context, the developer can drag and drop components and edit their property for-

15

mulas. There is immediate visual feedback for each change. A formula can access
database tables, visual components and end-user input.

Usability tests indicate that the target developers can learn the basics of the tool in
2-3 hours.

References

1. Bostock, M., Heer, J.: Protovis: A graphical toolkit for visualization. IEEE Trans. Vis. and
Comp. Graphics, 15(6):1121–1128 (2009)

2. Bostock, M., Ogievetsky, V., Heer, J.: D³ Data-Driven Documents, Visualization and Com-
puter Graphics, IEEE Transactions on, vol.17, no.12, pp.2301-2309 (2011)

3. Burnett, M., Atwood, J., Djang, R. W.: Forms/3: A First-Order Visual Language to Explore
the Boundaries of the Spreadsheet Paradigm. In: Journal of Functional Programming, Vol-
ume 11, Issue 02, 155-206 (2001)

4. Brunett, M., Rothermel, G., Cook, C.: An Integrated Software Engineering Approach for
End-User Programmers. In: Springer Netherlands, pages 87-113 (2006).

5. Cypher, A., Smith, D.: KidSim: End User Programming of Simulations. In: CHI’95: Hu-
man Factors in Computing Systems, Denver, CO, May 7-11, 27-34 (1995)

6. Fekete, J.-D.: The InfoVis Toolkit. Proc. IEEE InfoVis, pages 167–174 (2004)
7. Google Visualization API,

http://code.google.com/apis/visualization/documentation/gallery.html
8. Heer,, J., Card, S. K., Landay, J. A.: Prefuse: a toolkit for interactive information visualiza-

tion. Proc. ACM CHI, pages 421–430 (2005)
9. Kuhail, M. A.: Custom formula-based visualizations for Savvy Designers. Ph.D. thesis, IT-

University of Copenhagen (2012).
10. Kuhail, M. A., Lauesen, S., Pantazos, K.: The Inspector: A Cognitive Artefact for Visual

Mapping. In: IVAPP 2013 proceedings (2013)
11. Lewis, C: NoPumpG: Creating Interactive Graphics with Spreadsheet Machinery. In:

Glinert, E. (ed.) Visual Programming Environments: Paradigms and Systems, IEEE CS
Press, Los Alamitos, California, 526-546 (1990)

12. Myers, B., Hudson, S. E., Pausch, R.: Past, present and future of user interface software
tools. ACM Transaction on Computer-Human Interaction, Vol. 7, No. 1, pp. 3-28 (2000).

13. Norman, D.: The psychology of everyday things, Basic Books, New York (1988)
14. Omniscope | Visokio, http://www.visokio.com/omniscope.
15. Pantazos, K., Lauesen, S.: Constructing Visualizations with InfoVis Tools - An Evaluation

from a user Perspective. In: GRAPP/IVAPP 2012: 731-736 (2012)
16. Pantazos, K., Kuhail, M., Lauesen, S., and Xu, S.: Constructing Custom Visualizations with

a Development Environment. In: Proc. of Visualization and Data Analysis (2013)
17. Plaisant, C., Heller, D., Li, J., Shneiderman, B., Mushlin, R., Karat, J.: Visualizing medical

records with lifelines. CHI 98 conference on Human factors in computing systems, CHI
’98, pages 28–29, New York, NY, USA (1998)

18. Spotfire, http://spotfire.tibco.com/
19. Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visualization of

multidimensional databases. Commun. ACM 51, 11, 75-84 (November 2008)
20. Tableau, http://www.tableausoftware.com/
21. Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: ManyEyes: a Site for

Visualization at Internet Scale. Visualization and Computer Graphics, IEEE Transactions
on, vol.13, no.6, pp.1121-1128 (Nov.-Dec. 2007)

22. Weaver, C. E.: Building Highly-Coordinated Visualizations in Improvise. INFOVIS 2004.
IEEE Symposium on Information Visualization (2004)

16

http://code.google.com/apis/visualization/documentation/gallery.html
http://www.visokio.com/omniscope
http://spotfire.tibco.com/

