
Soren Lauesen slauesen@itu.dk 30-09-2013, 16:12

Customizable Data Visualization with uVis
Example: Electronic Health Record

Søren Lauesen, IT-University of Copenhagen, October 2013

slauesen@itu.dk

Contents
1. Health record visualization: The problem .. 2
2. The solution: A drawing tool where properties can be formulas 2
3. Data visualization tools ... 4
4. How the local developer will work with uVis .. 4
5. State of uVis ... 8
6. Competences ... 9
7. References ... 10

 2

1. Health record visualization: The problem
Electronic health records (EHR) are important for improving efficiency and quality in health
care, but currently there are many problems with the computer screens (the user interface):

1. They provide poor overview of patient data for clinicians (physicians and nurses).
2. Each medical specialty has its own needs and they change over time (surgery and psy-

chiatry need different screens although they get data from the same database).
3. It is too costly to let the supplier meet these needs.

It is estimated that clinicians on average waste more than an hour a day just to get overview of
patient data. The poor user interface is also a source of clinical mistakes, even deaths [2].

Figure 1 shows screens from two present health record systems. The lab results are shown as
text only. It is hard to see the essence (result 0) and it is hard to check that it belongs to the
patient we deal with. The medication screen shows all medicine orders for a patient. There are
many details, but it is hard to get real overview, for instance to answer the questions which
medications does the patient get right now and what did he get earlier?

Clinicians would save much time and avoid many mistakes with screens like Figure 2. The
Lifeline screen shows the patient's notes, diagnoses and medicine on a time scale. Icon shapes
and color indicate the kind of note, the height of boxes indicate the medicine dose, etc. You
can see at a glance which medicines the patient gets now, how long the patient has got them,
and how they time-wise relate to diagnoses and notes. The data exist already in the database;
we just show them in a different way. No health record system uses such screens today.

One way to deal with the problem is to ask the system provider to deliver data visualization
screens such as Figure 2 for each medical specialty. However, this is very expensive.

The obvious solution is that local IT staff develop new screens in cooperation with local
users. Surprisingly, this is not possible with present tools [10]. Tools that can show data as in
Figure 2, require programming beyond local staff capabilities [7].

Present tools for non-programmers cannot show data as in Figure 2. Imagine that a local
developer tried to use a drawing tool (e.g. PowerPoint) to show a Lifeline. He would draw
circles, boxes, etc. on the screen and manually define their position, color and other proper-
ties. However, he couldn't make the system extract data from the database and automatically
generate the circles, boxes, etc. and their position and color. Real programming is needed.

2. The solution: A drawing tool where properties can be formulas
Uvis is like a drawing program, but any property can be a formula somewhat similar to a
spreadsheet formula. As an example, the formula for the horizontal position of a diagnosis
combines data from the existing database with data from the time scale to compute the
position. Spreadsheet formulas are within local developer capabilities and are not "real
programming". The data visualizations in Figure 2 were made with simple uVis formulas in a
few hours. With a bit of training, local IT staff in a hospital could have made them. No
programming was needed.

Formulas can also specify how the system must respond when the user clicks or types some-
thing. In this way local IT staff can make real applications that use existing databases.

Uvis is not only for health records. It can be used for any system with a database.

Currently we look for partners that can help bringing the tool into industry.

 3

 4

3. Data visualization tools
Data visualization means showing data as color, position and shape, rather than as text and
decimal numbers. When we perceive data as text and decimal numbers, the brain uses the
language centre and thus blocks many other activities. For instance, it is hard to listen to
speech while making sense of Figure 1. Data visualization such as Figure 2 doesn't block the
language centre.

In general, data visualization enhances cognition by revealing patterns, trends and outliers,
and allows users to make better decisions [1][3][11].

Data visualization has become a large research area in the last decade. Researchers invent new
ways to show data graphically and they test how users perceive the data. The visualization is
in focus and researchers care little about integrating visualizations with intensive production
applications such as medical records.

In principle, the system provider could deliver data visualization. However, this is very
expensive, particularly if each department wants its own screens and they also have to be part
of normal system maintenance. In addition it is hard to get the screens right and easy to use in
the first attempt. It requires experiments with real users, which adds further to the cost.

Amazingly, developing visualizations such as the Lifeline is hard even to professional
programmers. As an example, a small, very competent software house provides visualization
for a broadcast company's planning. Their screen is similar to the diagnosis part of the
Lifeline screen. It had taken them half a year to develop it, and they were surprised to see how
it could have been made in a day with a mature version of uVis.

Some developers question that a new tool is necessary. You can get ready-made packages for
graphical presentation such as pie-charts and bar diagrams. And you can get tools for making
your own data visualization. What is missing? The short answer is that these tools fail in one
or more of these ways:

1. The tool is hard to integrate with daily production applications.
2. It requires too much programming.
3. It provides only predefined visualizations.
4. It provides only predefined interactions with the end-user.

4. How the local developer will work with uVis
Uvis means unified data visualization. Details of uVis are published in [4][5][6] and
compared with other tools.

In this section we show how an IT-interested physician or nurse (a local developer) would use
uVis to construct the screens in Figure 2 and deploy them in the department.

Connecting to the database
First the local developer needs a data-map file that gives uVis access to the existing database.
Most likely he will use an anonymized test version of the database. The central IT department
would give him the necessary permissions and help him set up the data-map file.

 5

The local developer opens the uVis tool and tells it to select the data-map file. His computer
screen will now look like Figure 4. The tool shows an empty user screen that will become for
instance the bronchoscopy screen. In the bottom right panel the tool shows the database tables
and their relationships. The developer can open the tables to explore the actual data. Our
experience is that local developers do this a lot to understand what the data really are.

Constructing the screens
The local developer will now drag components from the toolbox into the user screen in the
same way as with many other tools. He will define properties for the components with the
property grid. As an example, he will drag an icon component into the screen and specify its
FileName property as "bronchia.gif". The "bronchia.gif" file contains a standardized diagram
of the bronchia and the diagram will now appear on the screen. This is similar to existing
industrial tools.

However, the icons that show the biopsies as circles, triangles, etc. are different. The local
developer dragged a Glyph component to the screen and specified its properties as formulas
that made the Glyph component create copies of itself and give them the right shape, color
and screen position according to data in the database. We will explain this in some detail.

Figure 5 shows uVis when the local developer has constructed most of the bronchoscopy
screen. He sees the bronchoscopy screen exactly as it will look to the end-user. He can also
interact with it as the end-user would do. He has selected one of the icons that represent a
sample (e.g. a biopsy). He sees its properties in the property grid. He has also opened the table
of bronchial samples. The selected icon corresponds to the first row of the table.

The property grid shows that the sample icon is a Glyph component. Depending on data, a
Glyph can appear as different shapes: circle, triangle, etc. The Left position of the icon is
computed by the formula x-7, where x comes from the database. For this specific icon, the
formula gave 106 as the result and uVis put the icon 106 pixels from the left border of the
bronchoscopy screen.

The shape of the Glyph is computed by the Type property. The formula retrieves the kind
field from the database and chooses the corresponding shape: triangle, hexagon or circle.
While the developer types the formula, uVis shows what is possible to type right now (called
Autocomplete or Intellisense). When the developer has typed the formula or changed it, the
system updates the user screen immediately.

A formula may refer to formulas in other components, which again may refer to other
formulas. Just as in spreadsheets, circular references may occur. Uvis shows this and other
errors in the error list panel and as colored marks in the formulas.

The developer has specified the connection between the icons and the table rows with this
Glyph property:
 Rows: Form -< Bronchial
It works this way: Form is the bronchial screen. It is already connected to a patient data row
so that it can show the patient name and patient ID at the top of the screen. The -< operator
symbolizes a walk along a crow's foot in the graphical data map from one record to many. In
this case uVis walks from the patient row to all bronchial rows connected to the patient. Then
it generates a Glyph for each bronchial row. As a result, the end-user will see one icon for
each of the patient’s biopsies.

 6

 7

Form -< Bronchial is a novel, compact notation. If the developer had to express it in the usual
way as an SQL statement, it would look like this:

SELECT Bronchial.ptID, Bronchial.y, Bronchial.x, Bronchial.kind, Bronchial.result, Bronchial.ant_post,
Bronchial.splDate, Bronchial.splNumber, Bronchial.remark
FROM Bronchial WHERE [Bronchial.ptID] = 0103500276

Furthermore, he would have to make a program that inserts the actual patient ID (0103500276)
into the SQL statement and sends it to the database.

The -< operators can be combined. There is also a >- operator. It too walks along a crows foot
in the graphical datamap, but from the many-side to the one-side. In the Lifeline screen, you
can see each medicine intake at the hospital (the small colored bars at the bottom of Figure 2).
This is achieved with this formula for the intake bar:
 Rows: Form -< MedOrder -< Intake

When the local developer has constructed a screen, the tool saves it as a file (a .vis file). It is a
simple text file that can be edited with Notepad or in a graphical way by means of the uVis
tool.

Testing the screens
The local developer has made the basic test of the screens while he constructed them.
Whenever he typed or changed a formula, the system immediately retrieved data from the
database and showed it exactly as the end-user would see it.

However, the local developer should make additional tests of the screens. He should discuss
the screens with the local users to ensure that data is shown correctly and he should test that
the screens are understandable. He should test that the screens show abnormal data correctly;
preferably he should have a small test database with abnormal data for this. And he should
test that the queries don't overload the database. Here he needs a large test database for
measuring performance, for instance an anonymized version of the production database.

He might also have local users play with the system. This is easy. He puts the map-file and
the vis-files in a folder on the department’s file server. The local users can now open the map
file in the same way as they would open a Word file. As a result, uVis will connect to the test
database and open the start screen that the local developer made. Then the user interacts with
the system exactly as he would in real use.The user doesn’t see the uVis tool and cannot
change the screens. In our example, the developer would make a start screen where the end-
user can select a patient and then open the patient's lifeline, bronchial screen, etc.

We have paid much attention to the test situations. For instance, it is easy to switch between
databases. You make a copy of the data-map file for each database and modify the database
connection string. When you run a test, you simply open the proper map file. You can run
uVis in various test modes, for instance simulate that the date and time is something that
matches the data you test with. You can avoid that uVis makes real database updates, but only
simulates that data has been updated. To avoid that a database query by mistake takes a very
long time, you can limit database access so that the system never retrieves more than for
instance 200 rows from a table.

Let the clinical staff use the screens
After testing, the local developer has to get the necessary rights to access the production
database. He also sets up a map file for production (it needs to connect to the production

 8

database rather than the test database). Further, the end-users need rights to open the map file
and access the production database.

As an example of daily use, imagine what the clinical staff would do during bronchoscopy.
While the surgeon carries out the bronchoscopy, the nurse opens the map file, selects the
patient and opens the bronchoscopy screen. When the surgeon takes samples, the nurse marks
the spots where the sample is taken. They select a shape to indicate the kind of biopsy and
enter the sample number. The screen stores this in the database according to what the local
developer has specified in the formulas.

When the clinicians later get the lab results, they record them on the bronchoscopy screen in
this way: They select the sample icon and change the color of the icon by clicking one of the
square color buttons. At a certain point, they use the screen to decide how to treat the patient.

When in the future the system receives the lab results in digital form and records them in the
database, the results automatically appear on the bronchoscopy screen as colors.

You can develop screens with uVis for any application with a database that is accessible to
another program. We have used uVis to make visualizations of many kinds of data (e.g. hotel
room assignment, quality indicators for software, and hits on web pages) in many traditional
forms (e.g. bar charts, curves, spirals and pie charts).

Close integration with existing applications
In the scenario above, end-users opened a map-file to see the existing data through uVis
screens. Another approach is that an existing application asks uVis to open the map-file and
show the uVis screens. This requires a small change to the existing application so that it calls
uVis when the user for instance clicks a certain button on an existing screen.

Since uVis can boost the work of professional developers, they might use it themselves in
existing applications.

5. State of uVis
The uVis principle seems easy, yet it has been hard to realize. It was particularly hard to
combine the formula principle with relational database principles in a smooth way. This
object-relational impedance mismatch [8] has been attacked by many researchers with modest
success.

Uvis is quite stable and performs well. It can for instance retrieve 10,000 data rows and show
them as 10,000 glyphs in less than a second. It shows the Lifeline screen in the example in 0.7
seconds, including 0.4 seconds to make 8 queries to the database. (Measured on an ordinary 2
GHz PC with 2 GB memory and a local MS Access database.)

We have tested the ease-of-use with the kind of developers we aim at. They are non-
programmers, but have IT expertise corresponding to some spreadsheet and database
experience. We found that uVis is as difficult as spreadsheets. Most of the non-programmers
learn the basics in 2 to 3 hours, but need more experimentation on their own. We have also
tried uVis with programmers. They learn it faster. Some of them had programmed
visualizations professionally and said that uVis would have saved 90% of their time.

 9

The main weakness of uVis is that it currently is based on Windows Forms. We would like to
develop a web-based version and make it accessible also from iPhones and other mobile
devices.

Currently we look for partners that can help bringing the tool into industry.

6. Competences
Uvis is developed at the IT-University of Copenhagen (ITU). ITU was founded in 1999. It has
around 260 employees, 2000 students, and graduates around 250 students a year. It covers
research and teaching in several areas of IT. Of particular relevance for this project is the
research in software development, CSCW, ERP systems, user interface design, mobile
systems, and large software acquisitions. ITU has a couple of research projects in
collaboration with Microsoft, and others in collaboration with hospitals.

Team members
Soren Lauesen, project manager, full professor, has worked 20 years in the IT industry as a
developer, project manager and department manager. Half of the time has been in multi-
national companies. He has worked 29 years as a professor at the Copenhagen Business
School and ITU. His research has mostly been done in cooperation with industry or public
organizations (including hospitals).

Lauesen is widely recognized for his approach to systematic user interface design, and for his
approach to requirements in public acquisitions. His textbooks in the area sell around 1500
copies a year; he has helped around 30 universities worldwide to teach according to the
books; and he has helped around 30 companies to use the methods. More than 30 people a day
(excluding search robots) visit his web site to download documents such as tutorials, slides
for the books or research publications. See http: //www.itu.dk/people/slauesen/

Soren Lippert is a former heart surgeon who for nearly two decades has worked with
improvement and standardization of EHR systems. He joined the uVis project in 2008. One of
his roles is to be a "local developer" without programming skills, but with good knowledge of
spreadsheets and simple databases.

Mohammad Kuhail, Ph.D student with a British Master's degree in software engineering. He
is a creative and careful developer who invented amazing ways of using uVis for advanced
visualization, boosting system performance, etc.

Kostas Pantazos, Ph.D student with a Swedish Master's degree in software engineering. He is
an experienced and creative developer, and a data-mining expert with experience from a large
Danish bank. He anonymized a large Danish EHR database (300,000 patients) as part of cre-
ating test data for uVis.

 10

7. References
[1] Card, S. K., Mackinlay J. D., Shneiderman, B. (editors). Readings in information

visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[2] Hellebek A, Skjoet P. (2010) Aggregated review of root cause analyses related to
medication. Proceedings in Information Technology in Health Care: Socio-Technical
Approaches.

[3] Keim, D. A., Kohlhammer, J., Ellis, G., Mansmann, F. (editors). Mastering The
Information Age - Solving Problems with Visual Analytics. Eurographics, November
2010.

[4] Kuhail, M. & Lauesen, S.: Customizable Visualizations with Formula-Linked Building
Blocks. In IVAPP 2012 proceedings, February 2012.

[5] Kuhail, M., Pantazos, K., Lauesen, S.: Customizable Time-Oriented Visualizations. In
ISVC 2012 proceedings, July 2012.

[6] Lauesen's web site: http://www.itu.dk/people/slauesen/
The site contains a description of uVis with detailed examples as envisioned in April
2009. At that time the tool was called VisTool.

[7] Myers, B., Hudson, S. E., Pausch, R.: Past, present and future of user interface software
tools. ACM Transaction on Computer-Human Interaction, Vol. 7, No. 1, March 2000,
pp. 3-28.

[8] Object-relational impedance mismatch, Wikipedia. March 2012.
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

[9] Pantazos, K., Lauesen, S., Lippert, S. (2011): De-identifying an EHR database -
Anonymity, Correctness and Readability of the Medical Record. Proceedings of
MIE2011.

[10] Pantazos, K., Lauesen, S. (2012): “Constructing Visualizations with InfoVis Tools - An
Evaluation From A User Perspective”, In Proceedings of the International Conference
on Information Visualization Theory and Applications.

[11] Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B., and Colorado,
K. P. (1998). Lifelines: Using visualization to enhance navigation and analysis of
patient records. In Proceedings of the 1998 American Medical Informatics Association,
Annual Fall Symposium, pages 76–80.

	1. Health record visualization: The problem
	2. The solution: A drawing tool where properties can be formulas
	3. Data visualization tools
	4. How the local developer will work with uVis
	5. State of uVis
	6. Competences
	7. References

