
Custom Visualization without

Real Programming

Kostas Pantazos

Software and Systems

IT University Of Copenhagen

A thesis submitted for the degree of

Philosophiae Doctor (PhD)

October 2012

mailto:kopa@itu.dk
http://www.itu.dk
http://www.itu.dk

To my parents.

Abstract

Information Visualization tools have simplified visualization development.

Some tools help simple users construct standard visualizations; others help

programmers develop custom visualizations. This thesis contributes to the

field of Information Visualization and End-User Development. The first

contribution of the thesis is a taxonomy for Information Visualization de-

velopment tools. Existing taxonomies for Information Visualization are

helpful, but none of them can properly categorize visualization tools from

a user development perspective. The categorization of 20 Information Vi-

sualization tools proves the applicability of this taxonomy, and the result

showed that there are no Drag-and-Drop tools that allow end-user develop-

ers as well as programmers to create custom visualizations. The results can

be used by the End-User Development and the Information Visualization

community to identify future avenues of research.

The second contribution is a new visualization development approach, the

Drag-Drop-Set-View-Interact approach provided by the visualization tool

uVis. In order to construct custom visualizations with uVis, end-user de-

velopers and programmers drag and drop controls, set formulas, view im-

mediate results, and interact as end-users without switching workspace.

This approach was possible by extending the uVis formula language with

a development environment – the uVis Studio. As existing work in In-

formation Visualization has overlooked end-user developers, and End-User

Development has not explored visualization development, this thesis pro-

vides a starting point for End-User Development of Information Visual-

ization. The results of this thesis show that with a modest amount of

training, end-user developers can construct custom visualizations with the

Drag-Drop-Set-View-Interact approach. Related work in Information Vi-

sualization regarding tools for custom visualizations has mainly focused

on supporting programmers with language tools. This thesis showed that

programmers can construct custom visualizations faster with Drag-Drop-

Set-View-Interact. Additional proof is provided through the development

of two custom visualizations by an experienced user of uVis.

Acknowledgements

The last three years have been an unforgettable experience. Some days

were good and productive, others were stressful and long. However, writing

these acknowledgments makes you feel good. First, you are happy to write

the last part of your thesis. Second, you go back in time to recall great

memories.

First and foremost, I would like to thank my supervisor, Soren Lauesen. He

is a devoted professor advising, encouraging, inspiring all the time. Having

meetings with Soren has always been a pleasure, as these discussions brought

back smiles lost in piles of papers and lines of code. I am grateful and lucky

to work with and learn from him.

Second, I would like to thank the other members of the uVis project: Mo-

hammad A. Kuhail, Soren Lippert, and Shangjin Xu. It has been a pleasure

and great experience working together.

My colleagues in the Software and Systems Department made this long

journey more enjoyable. I have enjoyed every moment of our discussion,

collaboration and happy hours at the scrollbar. I would also like to thank

Prof. Ben Shneiderman, Dr. Catherine Plaisant and the members of the

Human-Computer Interaction Lab at the University of Maryland for the

great experience.

Many thanks to MyClinic, Symmetric Consulting, Venereal Clinic and all

the usability study participants. Also, many thanks to Mads B. Andresen

and Nikolaj Setness for their contribution to the uVis project.

Words cannot express the gratitude I owe Arisa and my family. Arisa has

been encouraging, inspiring, advising, and supporting me all the time, and

I would not be the person I am today without my family’s support.

Contents

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Research Problems . 1

1.2 Solution . 3

1.3 The uVis Project . 4

1.4 Research Approach . 5

1.5 Contributions . 6

1.6 Publications . 7

1.7 Thesis Overview . 8

2 Background and Related Work 10

2.1 Information Visualization . 10

2.2 End-User Development . 13

2.3 Existing Visualization Development Tools 17

2.3.1 A Review of Existing InfoVis Taxonomies 17

2.3.2 Visualization Tool Taxonomy . 19

2.3.3 Analysis Approach . 22

2.3.4 Tools and Toolkits . 23

2.3.5 Results . 42

3 Solution 45

3.1 uVis Formula Language . 45

3.1.1 uVis Files . 46

v

CONTENTS

3.1.2 Controls . 46

3.1.3 Properties . 47

3.1.4 Formulas . 47

3.1.5 Visualizations . 49

3.1.6 Interaction . 51

3.1.7 Special uVis Concepts . 52

3.2 uVis Studio . 54

3.2.1 Panels . 57

3.2.2 Development Approach . 67

3.2.3 Cognitive Supports . 68

3.2.4 Performance . 70

4 The Approach in Practice 72

4.1 The Process Completion Diagram . 72

4.2 Visualizing the Evolution of Technologies 79

5 Usability Evaluation 82

5.1 Usability Factors . 82

5.2 Measurement Techniques for Usability 83

6 Usability Study with Programmers 87

6.1 Procedure and Tasks . 87

6.2 Results . 91

6.3 Summary . 104

7 Usability Study with End-User Developers 111

7.1 Procedure and Tasks . 111

7.2 Results . 114

7.3 Summary . 126

8 Usability Study with Clinicians 132

8.1 Information Visualization in Healthcare 132

8.2 Usability Study . 135

8.2.1 Procedure and Tasks . 135

8.2.2 Results . 138

vi

CONTENTS

8.2.3 Summary . 141

9 Discussion 146

9.1 Visualization Tool Taxonomy . 147

9.2 uVis . 148

9.3 Usability Studies . 148

10 Conclusions and Future Work 154

Appendix A A Custom Visualization with uVis Formulas 158

Appendix B Evaluation with Programmers - Documentation 163

Appendix C Evaluation with End-User Developers - Documentation 180

Appendix D Evaluation with Clinicians - Documentation 187

References 198

vii

List of Figures

2.1 The evolution of user-centered design by Aigner et al.[2]. 13

2.2 A scatter plot (top) and its graphical specifications (bottom) created

with APT. Source: [60]. 24

2.3 SAGE’s input and the result. Source: [87]. 25

2.4 A visualization in SageBook (top), and SageBrush where visualizations

are specified (bottom). Source: [25]. 26

2.5 Visualizing financial information with DEVise in a step-by-step approach:

select a schema, select a data stream, define mapping, and define visual

links and cursors. The final output is shown on the right side, together

with the pop-up window that shows details-on-demand. Source: [59]. . 27

2.6 A pie chart created with Processing. Source: [80]. 28

2.7 GeoVISTA Studio: the Main window shows the visual objects and sys-

tem options, the Design window (top) contains visual objects represented

by icons and connected by lines, the Graphical User Interface (right)

shows the visualization specified in the Design window (left), and the

Property Editor (represented by the adapter wizard) used to customize

a visual object. Source: [100]. 29

2.8 A parallel coordinated visualization with InfoVis Toolkit. Source: [28]. 30

2.9 A scatter plot created with Piccolo. Source: [9]. 31

2.10 A multi-view coordination visualization in Improvise and the Controls

editor. Source: [112]) . 32

2.11 An animated radial layout created with Prefuse. Source: [36]. 33

2.12 The Job Voyager visualization created with Flare. Source: [30]. 34

viii

LIST OF FIGURES

2.13 An arc diagram created with Protovis in ProtoViewer. ProtoViewer

consists of three parts: Data (left), Design (middle) and Code Editor

(right). Source: [4]. 35

2.14 A calendar view created with D3. Source: http://mbostock.github.com. 36

2.15 A bar chart created with MS Excel. Source: [64]. 37

2.16 A bubble chart created with Tableau. Source: [99]. 38

2.17 Several visualizations of the same dataset created with Spotfire. Source:

[97]. 39

2.18 Several visualizations of the same dataset created with Omniscope. Source:

[71]. 39

2.19 The Designer (left) and the Previewer (right) in Tom Sawyer Presenta-

tion. Source: [103]. 40

2.20 A treemap in Code-Playground of Google chart Tools. Source: [32]. . . 41

2.21 A map visualization in Many-Eyes. Source: http://www-958.ibm.com/. 42

3.1 a. Vis-file, b. Vism-file . 46

3.2 Visualizations created with uVis: a. Simple Pie Chart, b. Custom Pie

Chart, c. Spiral Graph, d. SparkClouds, e. CircleViews, f. TreeMap, g.

TileMaps. 50

3.3 uVis Studio v.1: Toolbox, 2. Explorer, 3. Design Panel, 4. Property

Grid, 5. E/R Model, 6. Error List, 7. Modes, and 8. Auto-Completion.

Notice that the selected control is highlighted in dark-blue, and prop-

erties are shown in the Property Grid. In this case, the developer is

specifying the Rows. The developer types the fields after the group by,

but the Auto-Completion does not suggest tblIntake because it is not

used. 55

3.4 uVis Studio v.2: 1. Toolbox, 2. Explorer, 3. Design Panel, 4. Property

Grid, 5. E/R Model, 6. Error List, 7. Modes, 8. DataView , 9. Control-

Data Hierarchy, 10. Auto-Completion, 11. Formula suggestions. The

selected control is highlighted in light blue color in the Design Panel

and Control-Data Hierarchy, as the selected property in the Property

Grid. 56

ix

LIST OF FIGURES

3.5 The Auto-Completion in action showing suggestions of : 1. table names,

2. relationship names, 3. SQL keywords, 4. field names, 5. control

names, 6. control Properties, 7. event properties, and 8. functions and

control properties. 60

3.6 The first version of the E/R Model (left). The improved version of the

E/R Model (right). 61

3.7 The Formula Suggestions in action showing suggestions of: 1. table

names, 2. field names, 3. relationship names when the Rows property of

the parent control is not specified, and 4. relationship names when the

Rows property of the parent control is specified. 63

3.8 1. A developer attempts to map the field amount to the Top property.

2. A developer tries to map the rows of tblIntake to Top. 63

3.9 The developer selected the error message in the Error List (left) and the

wrong formula is highlighted in the Property Grid (right). 64

3.10 1. The Interact-Mode is set to designer mode and the developer has

selected the barIntake control (top). 2. The Interact-Mode is set to

end-user mode and the developer interacts with the timescale and tests

the tool-tip. 65

3.11 The developer uses the Data to: enable the WYBIWYG (1) or disable

it (2). 65

3.12 1. The DataView. 2. The Control-Data Hierarchy. 66

4.1 The evolution of the Process Completion Diagram (PCD). The final

version visualizes the blood-test process from the medical domain. . . . 73

4.2 Three controls were dragged and dropped. The selected control and

property are colored in light blue. 74

4.3 Creating the plot using two labels and two lines. 75

4.4 Two rectangles and a triangle to visualize the in-time, the late and the

not-completed tests. 76

4.5 Shapes are bound to data and Height and Width are mapped to number

of tests and duration. 77

4.6 “Interact with the Design Panel” end-user is enabled. The other panels

are disabled. 78

x

LIST OF FIGURES

4.7 The final version of PCD. 78

4.8 1. The paper-based visualization that provides an overview of the process

and details for each step of the process. 2. The Multi-Step Process

Visualization (MSProVis) combines three views in a single presentation,

allowing managers to explore process, steps, and actors’ tests rapidly. . 80

4.9 1. The original drawing visualizes 382 technologies. 2. The custom

visualization created with uVis formulas and the Studio. 81

6.1 The bar chart and the E/R data model. 89

6.2 The LifeLines and the E/R data model. 90

6.3 Initial version of MSProVis. 90

6.4 Participant 1: Problem counts by type (left). Subjective ratings (right). 93

6.5 Participant 2: Problem counts by type (left). Subjective ratings (right). 95

6.6 Participant 3: Problem counts by type (left). Subjective ratings (right). 97

6.7 Participant 4: Problem counts by type (left). Subjective ratings (right). 99

6.8 Participant 5: Problem counts by type (left). Subjective ratings (right). 101

6.9 Participant 6: Problem counts by type (left). Subjective ratings (right). 103

6.10 Participants’ rating for Task 1 and 2 (top). Minimum, Maximum and

Average rating for Task 1 and 2 (bottom). 108

7.1 The bar-chart and the E/R data model. 112

7.2 The PCD, the simplified PCD used in this study, and the E/R Data

Model. 113

7.3 Participant 1: Problem counts by type (left). Subjective ratings (right). 115

7.4 Participant 2: Problem counts by type (left). Subjective ratings (right). 116

7.5 Participant 3: Problem counts by type (left). Subjective ratings (right). 118

7.6 Participant 4: Problem counts by type (left). Subjective ratings (right). 119

7.7 Participant 5: Problem counts by type (left). Subjective ratings (right). 121

7.8 Participant 6: Problem counts by type (left). Subjective ratings (right). 122

7.9 Participant 7: Problem counts by type (left). Subjective ratings (right). 124

7.10 Participant 8: Problem counts by type (left). Subjective ratings (right). 126

7.11 Participants’ rating for task 1 and 2 (top). Minimum, Maximum and

Average rating for task 1 (bottom-left) and task 2 (bottom-right) . . . 129

xi

LIST OF FIGURES

8.1 Three different EHR systems from the Copenhagen region showing: 1.

the patient’s medicines. 2. the drug records for a patient. 3. the lab-test

results for a patient. 133

8.2 1. Current presentation at the clinic, 2. A simple presentation patient

lab-test results, 3. Presenting lab-test results on a time-line. 135

8.3 The LifeLines and the E/R data model. 136

8.4 The PCD, the simplified PCD used in this study, and the E/R Data

Model. 138

8.5 Clinician 1 and 2: Problem counts by type (top). Subjective ratings

(bottom). 140

A.1 (a) LifeLines visualization created with uVis. (b) The E/R model. (c)

The formulas for each control, which are stored in a Vis file. 159

xii

List of Tables

2.1 A taxonomy of visualization tools. 20

2.2 20 InfoVis tools mapped according to the taxonomy. Tools from industry

are in bold. Boxes in yellow indicate the problems addressed in this

research. Boxes in gray represent future research directions. 43

3.1 Performance measures. The first column shows the time spent when

uVis Studio starts, but no visualization is opened. The other columns

shows how the Studio performs when a visualization has: one control,

83 controls, 5,226 controls, and 50,000 controls. 70

6.1 Usability problems encountered in this study. They are grouped by root

problem, and classified by type. For each problem I show who encoun-

tered it and potential solutions. 106

7.1 Usability problems recorded in this study. They are grouped by root

problem and classified by type. For each problem I show who encoun-

tered it. 128

8.1 Usability problems encountered in this study. They are grouped by root

problem, and classified by type. For each problem I show who encoun-

tered it. 143

xiii

Chapter 1

Introduction

1.1 Research Problems

Information Visualization (InfoVis) is an important topic in many domains: clinicians

want a complete picture of patient data; project managers need to obtain an overview

and identify the bottlenecks in a project; database analysts look for visualizations that

can locate trends in large databases. Traditionally, visualization development is collabo-

ration between domain experts and professional programmers. Both parties spend time

and resources to iteratively design a good visualization. Usually, there are communica-

tion problems between users and programmers; users have the domain knowledge but

no programming skills, while programmers do not have the domain expertise. Conse-

quently, the process may require time and resources. From a management perspective,

this collaboration can become very expensive.

The ideal solution to this problem would be to allow domain users to construct vi-

sualizations. As a result, the cost will be significantly reduced, and better visualization

will be developed as users know their own demands better. However, this solution is

difficult because few domain users have the required IT skills.

In the last decade, a new research discipline has emerged, called End-User Devel-

opment (EUD). The main goal of this discipline is to empower end-user developers to

create, modify and extend software artifacts, and as a result gain more control over

their applications [56]. This thesis focuses on end-user development of visualizations.

In the thesis, I distinguish three kinds of users:

1

1.1 Research Problems

• Simple users have basic IT skills and can operate IT systems to accomplish basic

tasks, but not programming skills.

• End-user developers are not programmers, but users who “may have little or no

formal training or experience in programming” [72]. These users “have experience

performing relatively sophisticated data organization and manipulation, using

a combination of manual processing and limited amounts of programming or

scripting” [37].

• Programmers have excellent developing skills and are experienced in software

development and databases. They usually work in IT companies that provide

domains with IT applications. Constructing custom visualizations is time con-

suming, but not difficult for programmers.

Rather than investigating InfoVis in itself, this work investigates visualization de-

velopment tools from a user perspective, and more precisely for end-user developers

and programmers.

Several InfoVis tools have been developed to help users with different IT skills

develop visualizations – representations of abstract data that “has no inherent mapping

to space” [20]. Some of them support users with predefined visualizations, and others

with primitive visual objects that can be combined into visualizations. In order to

compare visualization development tools and to what extent the visual mappings are

predefined, I classify visualizations in two types:

• Standard visualizations: predefined visualization templates that combine, cus-

tomize, or extend the templates in limited ways. For example, a bar chart in MS

Excel uses a predefined bar chart template where only a few visual attributes of

the chart (e.g. bar height) are assigned to data.

• Custom visualizations: combine visual objects into a complex visualization or

use predefined visualization templates that can be combined, customized and

extended in many ways. For example, a LifeLines visualization [79] is constructed

by combining bars, triangles, labels, etc. Another example is a bar chart created

with Prefuse. Users of Prefuse can assign all visual attributes of the bar chart to

data attributes.

2

1.2 Solution

Commercial tools [64, 97, 99] allow simple users to create standard visualizations. Other

tools [9, 13, 14, 28, 36], especially from research, focus more on supporting programmers

with libraries to develop custom visualizations. As shown in a recent study [73], more

tools are needed to help end-user developers (called savvy users [37, 73] in the InfoVis

field) develop custom visualizations. Therefore, the main research question is:

Can end-user developers construct custom visualizations?

In addition to the main problem, this thesis also addresses the problem programmers

face in visualization development. Programmers construct custom visualizations in a

programmatic way. They write code in code editors and run the program to view data

and test interactions. Consequently, this process affects their performance. Therefore,

this research also addresses this sub-question:

Can programmers construct custom visualizations faster?

1.2 Solution

To allow end-user developers create custom visualizations, we developed uVis. uVis

combines a simplified programming mechanism (the uVis formula language) with a de-

velopment environment that provides aids to enhance cognitive abilities (uVis Studio).

The uVis formula language resembles a spreadsheet language. Each control (visual

object) attribute has a formula. uVis Studio (or simply the Studio) is the development

environment of uVis. Users of uVis drag-and-drop controls, set control properties using

uVis formulas, view immediate results in the Studio, and interact with the visualization

as an end-user without switching workspace. This development approach is called

Drag-Drop-Set-View-Interact and differs from approaches of existing visualization tools,

because they do not use a drag-and-drop approach.

The goal is to make a general-purpose visualization tool that supports construc-

tion of many types of visualization (e.g. time-oriented, tree, etc.) through property

formulas. This means that visualizations such as LifeLines [79], Fisheye menus [8],

SparkClouds [55], etc., can be constructed by defining formulas for the properties of

controls. As an example, in uVis, the Bederson’s Fisheye menu [8] can be constructed

using a label for each menu item. The label’s Top, Left and FontSize properties are

formulas that compute distorted positions and sizes.

3

1.3 The uVis Project

uVis supports a wide range of visualizations. However, with current version some

custom visualizations may not be possible to implement. As an example, in cases of

animation uVis falls short. Therefore, I would like to remind the readers that uVis is

a general-purpose visualization tool that proves the idea, but still needs more features

and controls.

1.3 The uVis Project

The research presented in this thesis is part of the uVis project started early 2008 in the

Software and Systems Department of the IT University of Copenhagen. Prof. Soren

Lauesen defined the goal and the scope of the project, the requirements and invented

uVis, as described in [53]. uVis was inspired by MS Access, which was popular and

nicely combined user interface and database. However, it was not powerful enough

for custom visualizations. The idea was to allow properties to be powerful formulas

and in that way develop user interfaces and visualizations without real programming.

The design of the solution and the implementation is the joint intellectual work of

Mohammad Amin Kuhail, Soren Lauesen, Kostas Pantazos, and Shangjin Xu (in al-

phabetical sequence). At the beginning, the project focused on developing the uVis

formula language and made a proof of concept that user interfaces and visualizations

can be created with property formulas written in a text editor. The second step of the

project was to develop uVis Studio, the development environment of uVis, and evaluate

the uVis formula language and uVis Studio with end-user developers and programmers.

The contributions of the second step are described in this thesis.

Developing such a tool is a challenging task, as many engineering requirements

should be considered. The requirements of uVis were defined by Soren Lauesen [52]

and include many perspectives: usability, performance, security, simulated time, test-

ing issues, etc. However, the theme of this thesis is not to elaborate on all perspectives.

Rather, the main perspective is usability, aiming at answering the aforementioned re-

search questions.

4

1.4 Research Approach

1.4 Research Approach

The research presented in this thesis does neither investigate existing visualizations,

nor introduce novel ones. Rather, it focuses on the development process of visualiza-

tion applications. The research presented in this thesis can be divided in three parts

conducted in parallel. They are described in this section.

Review of Existing Visualization Development Tools

The purpose of the review was to identify existing related work on InfoVis develop-

ment tools. 20 InfoVis tools (13 from research and seven from industry) were selected

and investigated on how they support users despite their IT skills. As part of this, I

developed a visualization tool taxonomy presented in Chapter 2 in detail.

Development of uVis Studio

Once we proved that it was possible to implement the formula language, I had to

develop the development environment, which would make uVis easily accessible to end-

user developers as well as programmers. The first version of the Studio was usability

tested with programmers who have developed visualizations and user interfaces with

other tools. Their feedback helped us to identify difficult concepts of the uVis formula

language, usability problems with the Studio, and suggestions for improvement. The

results of this usability study are presented in Chapter 6. The second version of uVis

Studio introduced new panels, new features and several improvements. This version

was evaluated with end-user developers. Results are reported in Chapter 7 and 8.

Usability Studies

I conducted three usability studies. The first study was conducted with six program-

mers using the first version of uVis Studio, and aimed at answering the research ques-

tion: “Can programmers construct custom visualization faster?”. I decided to ask for

programmers who are experienced in developing InfoVis and Human-Computer Inter-

action applications because they could compare the development approach applied in

uVis with what they had used so far. Also, they had been using development environ-

ments and should be able compare the features of the Studio versus what they had used

before. Using the second version of uVis Studio, I conducted the second study with

5

1.5 Contributions

eight end-user developers and the third with two clinicians who are end-user developers.

These two studies aimed at answering the research question: “Can end-user developers

create custom visualizations?”. The purpose of the studies was also to identify usability

problems in order to improve uVis.

1.5 Contributions

The research contribution of the uVis project is the visualization tool (uVis) that uses

spreadsheet-like formulas (uVis formula language) and has a development environment

(uVis Studio). The contributions of my thesis are:

• A visualization tool taxonomy for InfoVis: Existing taxonomies for InfoVis are

useful in categorizing visualization techniques, identifying suitable visualizations

for different data types, structuring the development of InfoVis, etc., but none of

them can properly categorize visualization tools from a development perspective.

The categorization of 20 InfoVis tools proves the applicability of this taxonomy,

and the result showed that there are no Drag-and-Drop tools to create custom

visualizations for end-user developers as well as programmers.

• A new Drag-and-Drop development approach with uVis, called Drag-Drop-Set-

View-Interact : In order to construct custom visualizations, users of uVis drag

and drop controls, set formulas, view immediate results, and interact as end-

users without switching workspace.

Existing work in InfoVis has overlooked end-user developers. At the same time,

the EUD literature has not investigated the involvement of end-user developers

in visualization development. This work contributes to InfoVis and EUD with a

new approach, which allows end-user developers to construct custom visualiza-

tions. The results of usability studies with end-user developers showed that with

a modest amount of training they can learn and use uVis to construct custom

visualizations.

Related work in InfoVis regarding development tools for custom visualizations

mainly supports programmers with language tools. Direct manipulation, imme-

diate feedback, switching workspace are some of the factors that can affect their

performance in visualization development. This work also contributes with a new

6

1.6 Publications

development approach, which boosts programmers’ performance. The results of a

usability study with programmers who have programmed visualizations and user

interfaces with other tools, indicated that uVis allows programmers develop cus-

tom visualizations faster than other tools. In addition, two custom visualizations

were developed in a few hours with this approach by an experienced user of uVis.

During the PhD study, I made two more contributions:

• De-identifying an Electronic Health Record (EHR) Database - Anonymity, Cor-

rectness and Readability of the Medical Record.

Getting access to real data is difficult in every domain, but in healthcare it be-

comes more complicated due to patient confidentiality. As we needed real data

to create visualizations and test the tool, I collaborated with a Danish EHR ven-

dor and developed an algorithm to de-identify a full EHR database with 437,164

patients [74]. The de-identified database (323,122 patients) is adequate for sup-

porting research, development and training. This is the first published study on

de-identifying Danish health care records.

• Exposing Delays in Multi-Step Processes by Retrospective Analysis.

In 2011, I visited the Human-Computer Interaction Lab at the University of

Maryland to evaluate uVis with programmers. In collaboration with Prof. Ben

Shneiderman, Dr. Catherine Plaisant and Sureyya Tarkan I developed a visual-

ization called the Process Completion Diagram (PCD) that aggregates medical

event-logs into in-time, late and not-completed tests, and visualizes those using

shapes, colors and positions [75]. The interactive Multi-Step Process Visual-

ization (MSProVis) combines a number of PCDs to expose delays in multi-step

processes, and support the comparisons between steps or between actors execut-

ing those steps. MSProVis was constructed with uVis. The formula language

and the integrated development environment allowed us to rapidly create several

visualization prototypes and led us to MSProVis.

1.6 Publications

I am the main author of the following publications:

7

1.7 Thesis Overview

• Pantazos, K., Kuhail, M., Lauesen, S., and Xu, S. uVis Studio: An Integrated

Development Environment for Visualization, In Proc. of Visualization and

Data Analysis, (2013).

• Pantazos, K. and Lauesen, S. Constructing Visualizations with InfoVis

Tools - An Evaluation from a User Perspective, In Proc. of GRAPP/IVAPP

2012, (2012).

• Pantazos, K. Engaging Clinicians in the Visualization Design Process Is

It Possible?, In Proc. Workshop on Visual Analytics in Healthcare (VAHC) in

conjunction with IEEE VisWeek, (2011).

• Pantazos, K., Lauesen, S., and Lippert, S. De-identifying an EHR Database-

Anonymity, Correctness and Readability of the Medical Record. In

Studies In Health Technology And Informatics, (2011).

• Pantazos, K., Shollo, A., Staron, M., Meding, W., Presenting Software Met-

rics Indicators - A Case Study, In Proc. of the 20th International Conference

on Software Product and Process Measurement (MENSURA), (2010)

1.7 Thesis Overview

Chapter 2 - Background and Related Work: This chapter introduces the reader to

the End-User Development and InfoVis field. Next, the chapter presents visualization

development tools used to categorize 20 InfoVis tools. The results of this study shows

the current state-of-the-art regarding InfoVis development tools and identifies existing

problems.

Chapter 3 - Solution: This chapter describes the proposed solution. At the

beginning, the uVis formula language is presented introducing the principles and ex-

plaining how formulas set properties to bind controls to data, map fields to properties

and refer to control properties. Next, the chapter describes the uVis Studio. Two

versions were developed applying iterative development. The differences between these

versions are explained as the Studio is described. After presenting uVis Studio, the de-

velopment approach and cognitive supports of uVis Studio are presented. The chapter

concludes with performance measures.

8

1.7 Thesis Overview

Chapter 4 - The Approach in Practice: This chapter presents uVis in practice

using two real scenarios. The first describes the Process Completion Diagram and

illustrates step by step how a custom visualization can be constructed applying the

Drag-Drop-Set-View-Interact approach with uVis Studio. The second scenario shows

another custom visualization that visualizes the evolution of technologies.

Chapter 5 - Usability Evaluation: This chapter presents usability as an evalu-

ation method selected in this thesis. It describes the factors of usability and how they

are measured. The chapter concludes with the approach applied in the usability studies

presented in this thesis.

Chapter 6 - Usability Study with Programmers: This chapter reports on a

study conducted with six programmers. Next, it presents the tasks, procedures and

results from the study with programmers. At the end, this chapter reports on usability

problems, subjective ratings, and a summary of the results.

Chapter 7 - Usability Study with End-User Developers: This chapter re-

ports on a study conducted with eight end-user developers. After describing the tasks,

procedures and results, the chapter concludes with the usability problems, subjective

ratings, and a summary of the results.

Chapter 8 - Usability Study with Clinicians: This chapter presents a usability

study with two clinicians, who are end-user developers. Initially, the need for better

presentations of clinical data is depicted through three electronic healthcare record

systems from the Copenhagen region. Next, the procedures, tasks and results are

described. This chapter concludes with a list of usability problems, subjective ratings,

and a summary of the results.

Chapter 9 - Discussion: This chapter discusses the results and the limitations

of the research presented in this thesis.

Chapter 10 - Conclusions and Future Work: This chapter presents concluding

remarks and discusses future work.

9

Chapter 2

Background and Related Work

This chapter presents the background and related work focusing on: Information Visu-

alization and End-User Development. First, it presents the Information Visualization

field and then introduces the reader to End-User Development. The chapter concludes

with a review of existing visualization development tools.

2.1 Information Visualization

Information Visualization (InfoVis) is graphical presentation of abstract data; data

that “has no inherent mapping to space” [20]. As an example from the medical area,

abstract data are information stored in the database regarding a patient (e.g. name,

age, treatment date, dose, intake, etc.)

InfoVis attempts to reduce the time and the mental effort users need to analyze

large datasets [20, 96]. The InfoVis field has enabled development of visualization

systems that enhance human cognitive processes by visually presenting abstract data

[20]. Although, the InfoVis field emerged during the 1980’s with the availability of

computers, InfoVis evidence can be tracked long before. Two well-known examples

are Minard’s map and Florence Nightingale’s diagram. The map of Minard (a civil

engineer) was drawn in 1869 to represent the marching of Napoleon’s army towards

Moscow and their retreat [105]. Florence Nightingale’s diagram designed in 1858 shows

the death rates in the hospital of Scutari, and how the rates reduce by the changes

introduced by nurse Florence Nightingale [96]. Both diagrams allow viewers to get

a clear picture of the situation, and derive results without any detailed explanation.

10

2.1 Information Visualization

This corresponds to the primary task of InfoVis: “allow information to be derived from

data” [96].

Several InfoVis applications have been developed to visualize time-oriented data.

LifeLines [79] is an interactive visualization that presents an overview of a patients

medical record. This visualization was the inspiration for LifeLines 2 [111], but it

visualizes a collection of medical records, where users can explore the event-logs for

temporal patterns. LifeFlow [116] provides an overview of event sequences by sum-

marizing all possible sequences and visualizing the temporal space of events within

sequences. Aigner et al. [3] provide an overview of 101 visualizations techniques for

time-oriented data. Among them are Arc Diagrams, Circle View, Circos, Flow Map,

Perspective Wall, TimeTree, etc.

As the work presented in this thesis focuses on how users develop visualizations, I

will not discuss further the work in visualization types (e.g. time-oriented, network,

tree, etc.) or interaction techniques (e.g. such as filtering, zooming, focus+context

etc.). The related work builds upon what a user can achieve with existing development

tools from InfoVis field. As an example, a popular visualization tool from research is

Prefuse [36]. This toolkit can support construction of a wide range of visualizations,

from standard to custom visualization. I will not investigate the possible visualizations,

but who is able to develop visualizations and how they do it with Prefuse. Before I

surveyed the InfoVis development tools (section 2.3), I elaborate on the importance of

engaging users in visualization development reflecting on existing work, followed by an

introduction to the End-User Development field.

Users in Visualization Development

Considering the variety of data and user tasks, it is obvious that new visualizations are

needed. However, developing new visualizations is not an easy task. Several InfoVis

toolkits and tools [9, 14, 28, 30, 36, 64, 71, 97, 99] have been developed to improve vi-

sualization development and provide better presentation of data. Providing good data

visualization is challenging as visualization creators should have a good understanding

of the data, and then properly design representations that allow users to accomplish

tasks effectively and efficiently. This is usually a problem according to Thomas and

Cook [102], who say that: “Most visualization software is developed with incomplete

11

2.1 Information Visualization

information about the data and tasks. New methods are needed for constructing visu-

ally based systems that simplify the development process and result in better targeted

applications.”

To facilitate the visualization development process and ensure that visualizations

provide complete information about the data and tasks, several InfoVis applications

(e.g. [79, 81, 84, 92]) have been developed applying the user-centered method, where

users participated during the entire development process. Norman[70] and Nielsen[68]

describe user-centered design as the early and continuous involvement of end-users

in the design and development process. Considerable work has been conducted by

Slocum et al. [92], Robinson et al. [81], Roth et al. [84], and Koh et al. [49] to define

the activities applied in the user-centered model for the design and implementation

of InfoVis tools. For example, Robinson et al. [81] describe a six-stage user-center

design process (work domain analysis, conceptual development, prototyping, interaction

and usability studies, implementation, and debugging) where users are involved and

provide input in each stage. Using this model [81], Roth et al. [84] present a modified

user-centered design approach, which starts with prototyping, followed by interaction

and usability studies, work domain analysis, conceptual development, implementation

and ends with debugging. Although, the user-centered model helps producing better

visualizations, still it is challenging to bridge the gap of knowledge between end-users

and programmers. This gap can influence communication and create challenges such as:

programmers should understand end-user needs, end-users should gain some knowledge

regarding InfoVis, end-users should be devoted and actively participate in the process,

etc. In their study Koh et al. [49] experienced similar challenges where simple users

where more interested in the tool than on questions about their tasks and data. Also,

when they tried the tool they found it limited compared to the prototypes defined

during the process. The authors [49] suggested that an iterative approach may address

these issues.

Although a user-centered method is a successful approach, researchers envisage ap-

proaches to facilitate visualization development and assure that visualizations provide

complete information about the data and tasks. Aigner et al. [2] discuss how to sup-

port user-centered visual analysis that consists of three factors: the visualization, the

analysis, and the user. Figure 2.1 illustrates how they view the past, the present of

user-centered visual analysis, and suggest that future research should focus on these

12

2.2 End-User Development

Figure 2.1: The evolution of user-centered design by Aigner et al.[2].

three factors and lead to the convergence of user-centered visual analysis. Their vision

matches the universal usability challenge defined by Plaisant [78]. According to Plaisant

[78] visualization tools should be accessible to diverse users that do not have the same

background, technical knowledge, or personal abilities. Heer et al. [37] seek ways of

introducing new audiences in InfoVis. They say that designing visualizations is not an

easy task for users, but “we have to provide them tools that make it easy to create

and deploy visualizations of their datasets” [37]. Pantazos and Lauesen [73] investi-

gated how 13 InfoVis tools help users construct visualizations. The study concludes

that present tools mainly help simple users construct visualizations using predefined

templates and allow programmers to create custom visualizations. End-user develop-

ers (savvy users) are not well supported and need different visualization tools to create

custom visualizations [73].

2.2 End-User Development

The End-User Development (EUD) field is a new research discipline that has emerged

from research in Human-Computer Interaction, Cognitive Science, Requirements En-

gineering, Software Engineering, CSCW, Artificial Intelligence, Information Systems,

and the Psychology of Programming [47]. As a relatively young discipline, the field is

not mature when it comes to terminology, approaches and subject areas [47]. However,

Lieberman et al. [56] define EUD as “a set of methods, techniques, and tools that allow

users of software systems, who are acting as non-professional software developers, at

some point to create, modify or extend a software artifact”. End-user developers are

not professional programmers, but users who “may have little or no formal training or

experience in programming” [72]. The main goal of EUD is to empower these users

to create, modify and extend software artifacts, and as a result gain more control over

13

2.2 End-User Development

their applications. In old days there were a few end-user developers, but due to the

increased use of computers, the number of these end-user developers is increasing. In

1995, Boehm et al. [12] estimated that by 2005, there would be 55 million end-user de-

velopers in the United States. In 2005, Scaffidi et al. [88] used and improved Boehm’s

method to estimate that in 2012 there will be 90 million end-user developers. They

predicted that 55 million will be users of spreadsheets or databases. Some end-user

developers are: system administrators, interaction designers, teachers, accountants,

health care workers, managers, etc.

EUD takes a broader perspective and is not limited to programming when it comes

to adjust application to users’ needs [57]. Lieberman et al. [56] defines two types of

end-user activities:

1. Program creation and modification: Activities that allow end-users to create or

modify software artifacts. In this case, the application is called adaptable as it

allows unanticipated changes.

2. Parameterization or customization: allow end-users to parameterize or customize

their applications using the available presentations or interactive mechanisms. In

this case, the application is called adaptive as it can be tailored to end-users needs

in predefined ways.

In order to support program creation and modification, the system should be flex-

ible and expressive enough (e.g. set parameters, compose objects, etc.) [56]. Simple

changes are not difficult, but things become more complicated as programming is in-

volved. MacLean et al. [61] suggested a “gentle slope” to reduce the level of complexity

and support changes on different levels. However, in cases of extensive changes, a pro-

gramming language must be used [61].

EUD also focuses on parameterization or customization. This means customizing,

configuring and tailoring the application, but not direct changes in the source code [48].

Customizing, configuring and tailoring are performed beyond the stage of creating a new

application, and take place after the application is implemented within its environment

of use. Investigating customization, configuration and tailorable systems is beyond the

scope of this work.

14

2.2 End-User Development

Development Techniques

As there is no EUD taxonomy that categorizes development techniques for end-user

developers, several techniques from the psychology of programming are inherited by

EUD researchers. Some of the main techniques are [57]: Scripting Language, Visual

Programming, Spreadsheet and Programming by Example. As this thesis relates to

Spreadsheet and Visual Programming, I elaborate more on these two development tech-

niques. However, the purpose is not to discuss related work on Spreadsheet or Visual

Programming tools, because this thesis only inherits the principles from these fields.

For example, the uVis formula language resembles Spreadsheet formulas. Similarly,

direct manipulation and immediate feedback, features of uVis Studio, are important

factors that resemble Visual Programming.

1. Visual Programming: Employs diagrammatic representations to create appli-

cations through visual components that can be manipulated or to modify existing

ones [17, 18, 93]. As they are perceived to be more natural, visual language re-

searchers claim that end-user developers can benefit from it. Whitley’s review

[114] showed that visual languages can provide better support for some tasks (e.g.

data flow tracking), but it seems that they do not take away the burden for EUD.

Pygmalion, “a two-dimensional, visual programming system implemented on an

interactive computer with graphics display” [93], is one of the first visual pro-

gramming tools. Users of Pygmalion interact with visual entities (icons) in an

interactive editor (the display screen). With Pygmalion, programming consists

of creating a sequence of display frames, the last of which contains the desired

information. Forms/3 [16] is another example of a visual programming tool. To

create a program, a Forms/3 programmer applies direct manipulation to place

cells on forms and specify a formula for each cell. Another tool is Prograph [26].

Prograph targets professional programmers and graphically shows “the main con-

cepts of object oriented programming, classes, attributes and methods and how a

method’s representation defines the semantics of its dataflow, data driven execu-

tion” [26]. Prograph can model parallelism, sequencing, iteration and conditional

constructs. Another tool is Cocoa [94], which allows “programmers” (children)

create games by defining rules. Rules are represented by graphical preconditions

15

2.2 End-User Development

and graphical postconditions. AgentSheets [57] is a simulation-authoring envi-

ronment where end-users construct highly parallel and interactive simulations

using autonomous agents to replace numbers and strings of spreadsheet. Similar

to Cocoa, it supports development of simulation games, but on a web platform.

LabView is developed by National Instruments, Inc. and is one of the most pop-

ular visual programming tools. It allows users to connect (through drawn wires)

different function nodes with a block diagram. The result is a virtual instru-

ment that has a front panel. Labview supports structured programming where

users can develop their own functionalities. This application proved the superi-

ority of visual to textual programming in the instrument field (C was used as the

alternative) [7].

Direct manipulation is an important feature in visual programming. Considerable

work [27] has been done on systems that support direct manipulation. According

to Shneiderman [89] “direct manipulation systems offer the satisfying experience

of operating on visible objects”. As an example, Forms/3 [19] supports program-

ming of graphical objects through direct manipulation of objects instead of spec-

ifying formulas. Hundhausen et al. [40] investigated whether direct manipulation

interfaces can lower the barriers to programming. Their results showed that “the

direct manipulation interface promoted significantly better initial programming

outcomes, positive transfer to the textual interface, and significant differences in

programming processes” [40]. Further, the authors state that direct manipulation

interfaces can introduce non-programmers to traditional textual programming.

Therefore, direct manipulation interfaces should help end-user developers as well.

2. Spreadsheets: Initially developed as a domain-specific tool for accountants,

which has become the most popular tool for end-user developers. The success

can be explained by the fact that spreadsheets use formulas, which are specified

in a free sequence, to process and analyze data. Kelleher and Pausch [46] present

a survey that evaluated programming environments and languages for end-user

developers (novice programmers). Their results showed that simplifying the me-

chanics of programming is a way to engage end-user developers in development

[46]. Spreadsheets does this and it can also explain its popularity among users.

16

2.3 Existing Visualization Development Tools

In addition, the widespread use in industry through commercial tools and the

research [16, 19, 44] has a positive impact on EUD.

These approaches have proven to be successful with a specific group of users [57],

but in many cases, these tools are insufficient and programming is needed. EUD does

not favor any development technique. Rather, according to Reppening and Ioannidou

[57], EUD seeks tools that match the challenges posed by a development process to

users’ skills.

This thesis does not aim at providing a visual programming or a spreadsheet solu-

tion, but rather builds upon the successful principles of them such as formulas, direct

manipulation, immediate feedback, etc. As the EUD community has not investigated

EUD of custom visualizations, the purpose of this thesis is to develop a tool that em-

powers them to create and modify custom visualizations.

2.3 Existing Visualization Development Tools

To get an overview of existing work on visualization development, I surveyed InfoVis

development tools. I investigated how existing tools help users with different IT skills

construct visualizations. As no previous taxonomy from InfoVis and EUD can properly

address this question, a new visualizations tool taxonomy was developed. First, I

present the visualizations tool taxonomy and explain how it differs from other existing

taxonomies. Second, I describe how I selected 20 InfoVis visualization tool, and provide

a brief summary of each tool. Finally, I conclude the chapter with the categorization

of 20 InfoVis tools, which highlights existing problems in EUD of InfoVis.

2.3.1 A Review of Existing InfoVis Taxonomies

The InfoVis community has developed several taxonomies and frameworks. Shneider-

man [90] presented a task by data type taxonomy for InfoVis. This taxonomy classifies

visualization data types (1D Linear, 2D Map, multidimensional, temporal, tree and

network) and identifies the tasks (overview, zoom, filter, details-on-demand, relate,

history and extract) that have to be supported. However, it does not provide insight

on how users construct visualizations using visualization tools.

Chi and Riedl [24] developed a framework that uses operators and interactions in

visualization systems. This framework allows programmers to explore and evaluate

17

2.3 Existing Visualization Development Tools

visualization operators, to identify operators that can be reused and to extend the

systems using them. Also, this framework assists end-users to understand how to use

a tool and analyze their tasks.

Chi [23] proposed taxonomy of visualization techniques that used the data state

reference model. The taxonomy provides an overview of existing visualization tech-

niques and shows that many techniques use similar operating steps. It also allows

programmers to realize how InfoVis techniques are used more generally.

Amar and Stasko [5] presented a knowledge task-based framework that can be

used for design and evaluation of InfoVis. Their framework addresses the analytic

gap in visualizations and attempts to assist complex tasks (e.g. decision-making and

learning). They identified two analytic gaps in present InfoVis tools: Rational Gap

(“representing the gap between perceiving a relationship and expressing confidence in

the correctness and utility of that relationship”) and Worldview Gap (“representing

the gap between what is shown to a user and what actually needs to be shown to draw

a representational conclusion for making a decision”) [5]. Further, they defined tasks

for each gap that can be used in systematic design and heuristic evaluation of InfoVis

systems to reduce the gaps. The purpose of the framework is not to analyze how users

construct visualizations.

A high level taxonomy was presented by Tory and Moller [104]. This taxonomy

categorizes visualization algorithms, and does not focus on data. The classification

uses design models. Design models are assumptions on how algorithms present the

data. These design models are categorized using their discretion or continuousness and

attributes (e.g. time, color) used by the designer of the algorithm. This taxonomy sup-

ports users when they choose visualization techniques that satisfy their requirements,

but does not analyze how users construct them.

Pfitzner et al.[76] took a broader perspective and presented a framework that con-

siders data, task, skill, context, the input and output hardware, the software tools,

and the user interactions and human perceptual abilities. More explicitly, it addresses

five factors: (1) data type and data relationships, (2) task type, (3) interactivity type,

(4) user skill, and (5) context of the InfoVis use. The purpose of this framework is to

structure the development of InfoVis and reduce the gulf of execution and evaluation

users face when they try to solve a problem using a tool.

18

2.3 Existing Visualization Development Tools

Lee et al. [54] describe task taxonomy for graph visualization. They defined a list

of tasks (e.g. filter, sort, cluster, etc.) useful for programmers (designers) and users

(evaluators). Programmers use these tasks to improve their tools, and evaluators utilize

them to compare visualization tools.

Heer et al. [37] investigated how people can be engaged in InfoVis. Their study

does not present a formal taxonomy of users, but they aim at an understanding of user

skills, goals and data.

A recent taxonomy of interactive dynamics for visual analysis was presented by Heer

and Shneiderman [38]. The authors have defined three categories, and four tasks in

each: (1) data and view specification: visualize, filter, sort, and derive; (2) view manip-

ulation: select, navigate, coordinate, and organize; (3) analysis process and provenance:

record, annotate, share, and guide. This taxonomy aims at successful dialogues, and

support users when they evaluate and create visual analysis tools, but it provides little

insight on how users construct visualizations.

2.3.2 Visualization Tool Taxonomy

Although the existing taxonomies and frameworks are helpful in categorizing visualiza-

tion techniques, identifying suitable visualizations for different data types, structuring

the development of InfoVis, etc., none of them can properly categorize visualization

tools from a user perspective and address these questions:

• What IT skills should users have to construct visualizations?

• What types of tool are available for visualization development?

• What types of visualization can users with various IT skills construct with these

tools?

The proposed taxonomy aims at answering the aforementioned questions. The

visualization tool taxonomy consists of three high-level categories: user skills, tool

types and visualization types. Each category is divided into subcategories. Table 2.1

illustrates the taxonomy, and below I describe the categories and the subcategories.

1. Tool types

19

2.3 Existing Visualization Development Tools

Category Subcategory

Tool Types

• Language Tool
• Wizard Tool
• Drag-and-Drop Tool

User Skills

• Simple User
• End-User Developer
• Programmer

Visualization Types

• Standard Visualization
• Custom Visualization

Table 2.1: A taxonomy of visualization tools.

As there are no visualization tool taxonomies defined in InfoVis or EUD, I

searched for taxonomies from other fields, and more specifically in the Human-

Computer Interaction field. Myers et al. [66] presented a study on how tools

support users when they construct user interfaces. The authors have catego-

rized the ways of constructing user interfaces in seven categories: windows man-

agers, event languages, interactive graphical tools, component systems, scripting

languages, hypertext and object-oriented programming languages. Inspired by

Myers et al. classification and considering that some are almost the same ap-

proach, I decided to categorize the tools in three groups: language tools (include

event languages, scripting languages, hypertext and object-oriented programming

languages), wizard tools (correspond to the windows managers and component

system), and drag-and-drop tools (correspond to the interactive graphical tools).

As this category classifies InfoVis tools, I decided to utilize the reference infor-

mation visualization model described in [20, 24]. The reference model defines

the process in three sub-processes: Data Transformation, Visual Mapping, and

View Transformations. Card et al.[20] say: “The core of the reference model is

the mapping of data table to visual structures”. Therefore, this categorization

focuses on how tools support visual mappings. This is how I define each category.

• Language Tools: users use event, scripting, functional, or programming lan-

guages to construct visualizations. The language is used to specify the visual

objects and map data to visual objects. Prefuse [36], Protovis [13], D3 [14]

are some of the tools of this category.

20

2.3 Existing Visualization Development Tools

• Wizard Tools: users construct visualizations by inputting data in one or

more windows. Users interact in a step-by-step approach with windows to

create visual object and bind them to data. A popular visualization tool is

MS Excel [64].

• Drag-and-Drop Tools: users interact with an interface and apply a drag-

and-drop approach to construct visualizations. Objects are visually created

by drag and drop actions, and the visual mapping is realized through di-

rect visual manipulation or concise specifications. Some of these tools are:

Spotfire [97], Tableau [99] and Omiscope [71].

2. User Skills

Heer et al. [37] classified users based on their skills in three categories: novice,

savvy and expert users. I use this categorization to classify users and their ability

to construct visualizations. These terms may be ambiguous when ones considers

the domain knowledge users have. For example in the medical area, some doctors

may have no IT skills, but they have excellent domain knowledge and are experts

of the domain. In addition, savvy users and end-user developers are the same

group of people, but know with different names in InfoVis and EUD. With respect

to the classification by Heer et al. [37], I decided to use the terms simple user,

end-user developer and programmer.

(a) Simple Users have basic IT skills and can operate IT systems to accom-

plish basic tasks, but not programming. [37]. Some of them are: project

managers, salespersons, nurses, doctors, etc.

(b) End-User Developers are not programmers, but users who “may have little

or no formal training or experience in programming” [72]. These users “have

experience performing relatively sophisticated data organization and manip-

ulation, using a combination of manual processing and limited amounts of

programming or scripting” [37]. Some of them are: doctors specialized in

medical informatics, data analysts experienced with MS Access, researchers

outside the computer science field, but fond of IT, etc.

(c) Programmers have excellent developing skills and are experienced in software

development and databases. They usually work in IT companies that provide

21

2.3 Existing Visualization Development Tools

domains with IT applications. Constructing custom visualizations is time

consuming, but not difficult for programmers. Some of them are: software

engineers, researchers in computer science, etc.

3. Visualization Types

This category considers a high-level distinction of visualization types investigat-

ing the boundaries of existing tools to support users construct visualizations

other than the predefined ones. The purpose of this categorization is not to

explicitly investigate if a tool supports specific visualizations such as hierarchal,

time-oriented, etc. Also, it does provide insights on interaction techniques (e.g.

zooming, focus+context, etc.) Considering to what extent the visual mappings

of a visualization are predefined, I define two visualization types.

• Standard visualizations: predefined visualization templates that combine,

customize, or extend the templates in limited ways. For example, a bar

chart in MS Excel uses a predefined bar chart template where only a few

visual attributes of the chart (e.g. bar height) are assigned to data.

• Custom visualizations: combine visual objects into a complex visualization

or use predefined visualization templates that can be combined, customized

and extended in many ways. For example, a LifeLines visualization [79]

is constructed by combining bars, triangles, labels, etc. Another example

is a bar chart created with Prefuse. Users of Prefuse can assign all visual

attributes of the bar chart to data attributes.

This taxonomy aims at providing an overview of development tools in InfoVis. Pro-

grammers can identify useful approaches and get inspired by existing work; researchers

can use it to identify and pursue new research paths; newcomers in the InfoVis field

can use it as a reference point to identify suitable tools based on their IT skills.

2.3.3 Analysis Approach

I used two popular sources, the ACM Portal and the IEEE website, to find InfoVis

tools and toolkits. I searched for related work by combining these keywords: “informa-

tion visualization”, “tool”, “toolkits”, “graphical user interface”. Initially, I ranked the

22

2.3 Existing Visualization Development Tools

results based on the total number of citations, and then I selected only the most promis-

ing ones by reading the abstracts. Next, I read all the papers and selected the most

appropriate tools and toolkits. They are: APT [60], SAGE [87], SageBook [25], DEVise

[22, 58, 59], GeoVISTA Studio [100], The InfoVis Toolkit [28], Piccolo [9], Improvise

[112], Prefuse [36], Protovis and ProtoViewer [4, 13], and Data-Driven Documents (D3)

[14]. During the process of reviewing the existing literature, I identified two more tools

from research that were relevant to my investigation and decided to include them in

my analysis, because of their popularity and approach. They are: Processing [80] and

Flare [30]. In total, I selected 13 tools from the research area.

As I was reviewing the existing literature, I also found several industry tools that I

decided to use. In addition, I searched the web for consumer InfoVis tools. At the end

I selected seven popular tools: Spotfire [97], Tableau [99], Omniscope [71], MS Excel

[64], Google Chart Tools [32], Tom Sawyer Presentations [103] and Many Eyes [108].

I chose only 20 tools and toolkits and I believe that the selected tools are a good

sample that represents the wide-range of InfoVis tools and toolkits from research and

industry. I did not included in my analysis tools that are similar to the selected ones.

Some of them are: ComVis [63], Dave [110], PRISMA [31], Jazz [10], Visage [85], and

Polaris [98].

The assessment of the tools from academia is based on the published papers, while

the commercial tools were assessed using information from their web pages and using

the trial or full versions available from their websites. Categorizing the tools in distinct

categories it is not without challenges. Many tools span more than one category. When

I was in doubt about a tool I discussed it with other members of the project and decided

based on our judgment.

2.3.4 Tools and Toolkits

In this section I use the aforementioned taxonomy to categorize the selected tools. First,

I present InfoVis tools and toolkits from research, and second, I describe the ones from

industry. Note that the purpose of this categorization is not to analyze and compare

implementation details, but to investigate the way users construct visualizations.

23

2.3 Existing Visualization Development Tools

Figure 2.2: A scatter plot (top) and its graphical specifications (bottom) created with

APT. Source: [60].

APT

APT (A Presentation Tool) [60] is one of the earliest tools that automatically creates

effective graphical presentation of relational data. Presentations are generated in a

linear model where data are extracted, synthesized and then the tool handles the ren-

dering process to create the final output. Programmers use predefined templates (e.g.

bar charts, scatter plots or connected graphs) and write their graphical specifications

(sentences of a graphical language that has exact syntax and semantics), and the tool

creates the graphical presentation. Figure 2.2 shows an example. Programmers, and

probably end-user developers, would be able to specify graphical designs, but still they

cannot create graphical presentations other than the supported ones. The visual map-

ping is defined through APT specifications and automatically handled by the tool.

User Types: End-user developers and programmers.

Tool Types: Language tool.

Visualization Types: Standard visualizations.

24

2.3 Existing Visualization Development Tools

Figure 2.3: SAGE’s input and the result. Source: [87].

SAGE

Early 1990’s, Roth and Mattis [87] presented SAGE, “an intelligent system which as-

sumes presentation responsibilities for other systems by automatically creating graph-

ical displays which presents the results they generate” [87]. This tool uses graphical

techniques to express the application data characteristics and fulfill the presentation

needs. Users query the database, and the result is used by SAGE. Based on the data,

SAGE automatically defines the visual mappings and generates the visualization. After

a presentation is generated, users can adjust the visual mappings of the auto-generated

visualization by setting layout constraints for the data. Figure 2.3 shows an example of

layout constraints and SAGE response. SAGE can be used by programmers and prob-

ably end-user developers, but SAGE provides limited support for constructing custom

visualizations.

User Types: End-user developers and programmers.

Tool Types: Language Tool.

Visualization Types: Standard visualizations.

SageBook

SageBook [25] allows users to sketch, search and customize visualizations. The user cre-

ates a sketch using SageBrush [86], and SageBook searches for suitable data-graphics in

SageBook’s library. The results (one or more data-graphics) are shown in the SageBook

25

2.3 Existing Visualization Development Tools

Figure 2.4: A visualization in SageBook (top), and SageBrush where visualizations are

specified (bottom). Source: [25].

browser. This tool is accessible by all types of users. They can select a data-graphic

and modify it in SageBrush (Figure 2.4), but the visual objects are not bound to data.

Further, SageBook limits users to construct visualizations that match the data-graphic

library.

User Types: Simple users, end-user developers and programmers.

Tool Types: Drag-and-drop Tool.

Visualization Types: Standard Visualizations.

DEVise

DEVise [22, 58, 59] allows users to create visualizations by creating, modifying or

connecting visual objects (components). DEVise maps the data to visual objects and

displays them in a view. At the end, the view uses the data and visual filters to draw the

result in a window. DEVise users use a step-by-step approach to create visualizations:

select an input, choose a file type for the input file, select an existing mapping or

define a new mapping using tcl language expressions [113], select a view to display the

26

2.3 Existing Visualization Development Tools

Figure 2.5: Visualizing financial information with DEVise in a step-by-step approach:

select a schema, select a data stream, define mapping, and define visual links and cursors.

The final output is shown on the right side, together with the pop-up window that shows

details-on-demand. Source: [59].

data, select initial values for the visual filter, and finally select a window to display

the view. Further, users can adjust visualizations. Figure 2.5 presents an example. In

DEVise, users can create visualizations by combining and linking visual objects using

the predefined visual mappings, but it is questionable if simple users can create new

mappings. They have to use the tlc language, which may introduce some challenges

even for end-user developers. The authors says that DEVise is a powerful exploration

framework, “but to appreciate this power fully, one must work with the system or at

least look at several applications in some details” [58].

User Types: Simple users (only standard visualizations), end-user developers and programmers.

Tool Types: Wizard Tool.

Visualization Types: Standard and custom visualizations.

Processing

Processing (Figure 2.6) was developed initially “to teach fundamentals of computer

programming within a visual context” to newcomers, but it has grown into a more

complete tool for constructing images, animations and interactions [80]. Processing

has a development environment similar to a regular one. Programmers specify the

27

2.3 Existing Visualization Development Tools

Figure 2.6: A pie chart created with Processing. Source: [80].

visual mappings by writing code in the code editor. They view the visualization in a

new window after having executed the code. To create a visualization, users have to

know another programming language, Processing. As a result, this tool is used only by

programmers, or non-programmers who pursue a programmer carrier.

User Types: Programmers.

Tool Types: Language tool.

Visualization Types: Standard and custom visualizations.

GeoVISTA Studio

GeoVISTA Studio (Figure 2.7) is a development environment designed to support geo-

scientific data analysis and visualizations [100]. It is built in Java and uses JavaBeans

technology. A visualization in GeoVISTA Studio is composed by connecting visual

objects (implemented as Java beans components). GeoVISTA Studio consists of three

windows: the Main window shows the menus and JavaBeans visual object palette; the

Design window where visual objects are placed and connected; the Graphical User In-

terface (GUI) window shows “live” the output of the used beans. Programmers can

28

2.3 Existing Visualization Development Tools

Figure 2.7: GeoVISTA Studio: the Main window shows the visual objects and system

options, the Design window (top) contains visual objects represented by icons and con-

nected by lines, the Graphical User Interface (right) shows the visualization specified in

the Design window (left), and the Property Editor (represented by the adapter wizard)

used to customize a visual object. Source: [100].

use the Property Editor to customize the appearance and behavior of a visual object.

The application programmers (programmers and probably end-user developers) are the

main users of the Studio, and they follow the following steps to construct an applica-

tion: list the requirements, select the appropriate visual objects from the palette menu

(new visual objects can be developed outside of the Studio and imported), place visual

objects in the Design, link the visual objects to meet the requirements, customize a

visual object using the Property Editor, and test the design in the GUI.

User Types: End-user developers and programmers.

Tool Types: Wizard Tool.

Visualization Types: Standard and custom visualizations.

The InfoVis Toolkit

The InfoVis Toolkit [28] is a Java based visualization toolkit that uses several interactive

components to construct visualizations. This toolkit assists programmers in construct-

ing standard and custom visualizations. They are specified programmatically. Figure

2.8 shows an example. It allows programmers to extend the toolkit with new compo-

29

2.3 Existing Visualization Development Tools

Figure 2.8: A parallel coordinated visualization with InfoVis Toolkit. Source: [28].

nents and to integrate visualization techniques into interactive applications. However,

creating visualizations requires experienced programmers. Consequently, this toolkit is

not appropriate for simple users and end-user developers. The InfoVis toolkit does not

have a specialized development environment, but it can be integrated in a development

environment such as Eclipse. This integration does not support features such as drag-

and-drop, immediate feedback, and so forth.

User Types: Programmers.

Tool Types: Language Tool.

Visualization Types: Standard and custom visualizations.

Piccolo

Piccolo [9] is developed in Java and C#. This toolkit is mainly used for developing

graphical applications with rich user interfaces. Piccolo supports the development of

visualizations indirectly, as it does not support visualization techniques [36]. Neverthe-

less, novel visualizations such as LifeFlow [116] are based on this toolkit. Programmers

can create visualizations in Java or C# and use visualization functionality and com-

ponents, such as zooming, animation and range slider. Figure 2.9 shows an example.

This toolkit can be used only by programmers, and the fact that it does not support

30

2.3 Existing Visualization Development Tools

Figure 2.9: A scatter plot created with Piccolo. Source: [9].

visualization techniques directly, makes it challenging even for them. Similar to the

InfoVis toolkit, Piccolo does not have a specialized development environment either.

User Types: Programmers.

Tool Types: Language tool.

Visualization Types: Standard and custom visualizations.

Improvise

Improvise [112] is a visualization toolkit for creating multi-view coordination visualiza-

tions for relational data. It is written in Java. Visualizations are created by specifying

expressions for simple shared-object coordination mechanism. Shared-objects in Im-

provise, which are responsible for visual mapping, are graphical attributes such as

color, font, etc. Improvise has a specialized development environment where users ap-

ply a step-by-step approach interacting with four editors and creating views by adding

frames, controls, defining variables and attaching data using the lexicon work area (a

central repository where information related to the data and database are saved). Users

of Improvise can construct standard and custom visualizations based on the predefined

controls. Programmers can create visualizations by specifying expressions for simple

shared-object coordination mechanism. Although I believe that Improvise can be used

31

2.3 Existing Visualization Development Tools

Figure 2.10: A multi-view coordination visualization in Improvise and the Controls

editor. Source: [112])

by end-user developers, this has not been empirically evaluated. Further, this tool is

specialized for coordinated visualizations that use predefined controls. Although it is a

powerful tool, it is not obvious from [112] if Improvise can be extended and adapted to

other than coordinated visualizations. Figure 2.10 shows a screen shot of Improvise.

User Types: End-user developers and programmers.

Tool Types: Wizard tool.

Visualization Types: Standard and custom visualizations.

Prefuse

Prefuse [36] is another toolkit developed in Java. Visualizations in Prefuse are written

in Java, and programmers construct them using a set of fine-grained building blocks

and specifying operators that define the layout and behavior of these blocks. Figure

2.11 shows an example. The purpose of this tool is to facilitate users’ work who are

skilled Java programmers. They can develop standard and custom visualizations pro-

grammatically. This toolkit can be integrated in development environments as the

InfoVis toolkit does, but the integrated development environment provides them with

limited cognitive support as visualizations are defined in the code editor.

32

2.3 Existing Visualization Development Tools

Figure 2.11: An animated radial layout created with Prefuse. Source: [36].

User Types: Programmers

Tool Types: Language Tool

Visualization Types: Standard and custom visualizations

Flare

This visualization toolkit [30] is a successor of Prefuse [36], but is written in Action-

Script. Flare supports programmers with a number of standard and custom visualiza-

tions. To construct visualizations, programmers specify in ActionScript the properties

of the visual objects and sequential commands. Figure 2.12 shows an example. Pro-

grammers can also define new operators and visual objects, but advanced programming

knowledge is required. Flare can be integrated in Adobe Flex IDE and it does not come

with a specialized IDE.

User Types: Programmers.

Tool Types: Language tool.

Visualization Types: Standard and custom visualizations

33

2.3 Existing Visualization Development Tools

Figure 2.12: The Job Voyager visualization created with Flare. Source: [30].

Protovis and ProtoViewer

Protovis [13] is implemented in JavaScript and helps programmers construct visual-

izations using a domain specific language. They can combine primitive visual objects,

called marks, bind them to data, and specify visual properties. Programmers can create

simple and custom visualizations by specifying Protovis specifications. The authors of

Protovis have compared the specifications for a simple pie chart in Protovis, Processing

and Flare, showing that the visualization in Protovis is specified in fewer lines of code

[13]. This shows the simplicity of Protovis language, which has a potential of engaging

end-user developers in visualization development. Although I believe that Protovis can

be used by end-user developers, there is no empirical evidence that proves it.

ProtoViewer [4] extends Protovis with a development environment. The screen

(Figure 2.13) is divided in three parts: Data, Design and Code. Programmers choose

a dataset, select a visualization template and automatically the code is shown in the

Code editor. They execute the code to view the results in the Design. Programmers can

either use predefined visualization templates, and the code is automatically shown in the

Code editor, or start from scratch and write Protovis specifications to specify controls.

Constructing custom visualizations by end-user developers in Protovis becomes even

34

2.3 Existing Visualization Development Tools

Figure 2.13: An arc diagram created with Protovis in ProtoViewer. ProtoViewer consists

of three parts: Data (left), Design (middle) and Code Editor (right). Source: [4].

more realistic by means of its development environment – ProtoViewer. However,

neither Protovis nor ProtoViewer has been evaluated with end-user developers.

User Types: End-user developers and programmers.

Tool Types: Language / Wizard tool.

Visualization Types: Standard and custom visualizations.

Data-Driven Documents: D3

Data-Driven Documents (D3) [14] is a successor of Protovis [13]. Visualizations are

constructed using SVG, HTML 5 and CSS. In D3 the data transformation, the imme-

diate evaluation and the browser’s native representation are handled in more effective

and transparent way than Protovis, which uses more succinct specification for static

presentations [14]. However, these improvements introduce an overhead for users: the

knowledge of SVG, HTML 5 and CSS. D3 is a web-based library and can be integrated

in existing development environments. Still, users have to use the code editor to create

visualizations. This toolkit is suitable for programmers only. Figure 2.14 shows an

example of D3.

User Types: Programmers.

35

2.3 Existing Visualization Development Tools

Figure 2.14: A calendar view created with D3. Source: http://mbostock.github.com.

Tool Types: Language tool.

Visualization Types: Standard and custom visualizations

MS Excel

MS Excel [64] is a spreadsheet program that allows users to analyze and visualize data.

With simple steps, all kind of users can construct visualizations based on predefined

templates (e.g. bar chart, pie chart, etc.) They select a visualization template (e.g. bar-

chart) and specify spreadsheet formulas or use standard widgets to map the data to the

visual object in the worksheet area. Figure 2.15 presents an example. In MS Excel, the

visual mapping is limited and users can set only predefined visual properties. Custom

visualizations cannot be constructed by simple users or end-user developers. Program-

mers can program custom visualizations in Macros (Visual Basic scripts), which can

be integrated into MS Excel.

User Types: Simple users, end-user developers and programmers

Tool Types: Wizard tool

Visualization Types: Standard visualizations

Tableau

Tableau [99] is a commercial visualization tool, a successor of Polaris [98] developed at

Stanford University. Tableau allows users to construct visualizations by dragging and

dropping fields onto axis shelves (vertical and horizontal areas) and using visual speci-

36

2.3 Existing Visualization Development Tools

Figure 2.15: A bar chart created with MS Excel. Source: [64].

fications (Figure 2.16). This tool can be classified as the drag-and-drop tool due to its

drag-and-drop features, but it can be considered as a wizard tool as well. Tableau uses

VizQL [35], an algebraic specification language, to create views based on predefined

templates and bind data to them. Further, it has a powerful interactive development

environment where users can interact, filter, sort data and create interactive dash-

boards. The main users of this tool are simple users. Tableau is a “black box” system.

Programmers do not have access to the kernel of the system and it is not possible to

extend it. Therefore, constructing visualizations other than the supported ones is not

possible.

User Types: Simple users, end-user developers and programmers.

Tool Types: Drag-and-drop / Wizard tool.

Visualization Types: Standard visualizations

Spotfire

Spotfire [97] is another commercial tool for data visualizations. It supports users,

regardless of their IT skills, with a number of visualization techniques. Users, regardless

their IT skills interact with the development environment and construct visualizations

37

2.3 Existing Visualization Development Tools

Figure 2.16: A bubble chart created with Tableau. Source: [99].

based on predefined ones. Once they select the data and choose a visualization template,

the tool automatically generates the visualization. Users can sort, filter and re-arrange

data by simply dragging and dropping fields in the design area. Users can also create

dashboards, by combining different visualizations (e.g. bar chart, scatter plot, etc) in a

single screen (2.17). As in Tableau, users can not create custom visualizations except

for the standard ones.

User Types: Simple users, end-user developers and programmers

Tool Types: Drag-and-drop / Wizard tool

Visualization Types: Standard visualizations

Omniscope

Omniscope [71], shown in Figure 2.18, is in the same category as Tableau and Spotfire,

and shares similar features such as interactive dashboard, drag and drop features, etc.

Although it can be used by all types of users, the main scope of this tool is to sup-

port simple users in constructing standard visualizations, as Spotfire and Tableau do.

Visualizations are constructed based on predefined templates. Custom visualizations

cannot be constructed with this tool. Programmers can not extend the system with

new controls or functionalities, as it is a “black box” system.

User Types: Simple users, end-user developers and programmers

38

2.3 Existing Visualization Development Tools

Figure 2.17: Several visualizations of the same dataset created with Spotfire. Source:

[97].

Figure 2.18: Several visualizations of the same dataset created with Omniscope. Source:

[71].

39

2.3 Existing Visualization Development Tools

Figure 2.19: The Designer (left) and the Previewer (right) in Tom Sawyer Presentation.

Source: [103].

Tool Types: Drag-and-drop / Wizard tool

Visualization Types: Standard visualizations

Tom Sawyer Perspectives

Tom Sawyer Perspectives is a software development kit that supports the construction

of “enterprise-class data visualization and social network analysis applications” [103].

It has a development environment where users use the Designer to specify schema,

data sources, bindings, and filters. They use the Designer to specify rules for the

visual representation of the data, to add context menus and to define custom toolbars,

tool-tips, and graphical viewing and editing behaviors. The results are presented on the

Previewer. Although this tool supports quick development of visualization applications,

constructing custom visualizations is not feasible because users are limited to using

visualization models supported by the tool. As Tableau, Spotfire and Omniscope,

extending this tool is not possible. Figure 2.19 presents a screen shot of the Tom

Sawyer Perspectives.

User Types: Simple users, end-user developers and programmers

Tool Types: Drag-and-drop / Wizard tool

Visualization Types: Standard visualizations

40

2.3 Existing Visualization Development Tools

Figure 2.20: A treemap in Code-Playground of Google chart Tools. Source: [32].

Google Chart Tools

Google Chart Tools [32] is a library written in JavaScript that provides several prede-

fined simple (line chart, scatter chart, etc.) and advanced chart types (Image multi-

color bar chart, Motion Chart Time Formats, etc.) Visualizations can be constructed

by programmers in the web-based development environment named Code Playground,

illustrated in Figure 2.20. In addition, Google Chart Tools has another environment

named Live Chart Playground, to test charts already created in the Code Playground.

In Live Chart Playground, programmers can change some parameters and see how the

visualization changes. These two environments increase the likelihood of attracting

and engaging end-user developers to create visualization in JavaScript. However, pro-

grammers and end-user developers are limited to predefined templates and functions,

because the kernel of the library is not available.

User Types: End-user developers and programmers.

Tool Types: Wizard / Language tool.

Visualization Types: Standard visualizations

Many Eyes

Many Eyes [108], developed at IBM Research Center, is a web-based visualization plat-

form mainly for simple users. In Many Eyes, visualizations are implemented in Java

41

2.3 Existing Visualization Development Tools

Figure 2.21: A map visualization in Many-Eyes. Source: http://www-958.ibm.com/.

Applets. Users construct visualizations in three steps: upload a dataset; choose a visu-

alization template; customize and publish the visualization. Many Eyes automatically

generates and shows the visualization on the screen. Custom visualizations are not

supported. Figure 2.21 presents a screen shot of Many-Eyes.

User Types: Simple users, end-user developers and programmers

Tool Types: Wizard tool

Visualization Types: Standard visualizations

2.3.5 Results

Table 2.2 provides an overview of the results. The table shows that there is a tendency

for researchers to focus on helping programmers to construct custom visualizations.

In contrast, industry targets their products to simple users and helps them create

standard visualizations. Although both communities can benefit from the engagement

of end-user developers in constructing custom visualizations, end-user developers are

neglected and not supported as simple users and programmers are. Further, the results

show that only DEVise, GeoVISTA Studio, Improvise and Protovis/ProtoViewer may

help end-user developers construct custom visualizations. However, to the best of my

knowledge there is no empirical evidence that proves it. Surprisingly, InfoVis tools

and toolkits are usually evaluated through case studies where impressive visualizations

have been developed, and not through usability studies or experiments with potential

42

2.3 Existing Visualization Development Tools

La
ng
ua

ge
 T
oo

ls
W
iz
ar
d
To

ol
s

D
ra
g‐
an

d‐
dr
op

 T
oo

ls
La
ng
ua

ge
 T
oo

ls
W
iz
ar
d
To

ol
s

D
ra
g‐
an

d‐
dr
op

 T
oo

ls

Si
m
pl
e
U
se
rs

DE
Vi
se
, M

S
Ex
ce
l ,
 T
ab

le
au

,
Sp
ot
fir
e,
 O
m
ni
sc
op

e
To

m
 S
aw

ye
r P

er
sp
ec
tiv

es
,

M
an

y
Ey
es

Sa
ge
Bo

ok
, T
ab

le
au

,
Sp
ot
fir
e,
 O
m
ni
sc
op

e,

To
m
 S
aw

ye
r

Pe
rs
pe

ct
iv
es

En
d‐
U
se
r

D
ev
el
op

er
s

AP
T,
 S
AG

E,
 P
ro
to
vi
s,

G
oo

gl
e
Ch

ar
t T

oo
ls

DE
Vi
se
, P
ro
to
Vi
ew

er
,

Im
pr
ov
ise

, G
eo

VI
ST
A
St
ud

io
,

M
S
Ex
ce
l,
Ta
bl
ea
u

Sp
ot
fir
e,
 O
m
ni
sc
op

e
To

m
 S
aw

ye
r P

er
sp
ec
tiv

es
G
oo

gl
e
Ch

ar
t T

oo
ls
,

M
an

y
Ey
es

Sa
ge
Bo

ok
,
Ta
bl
ea
u,

Sp
ot
fir
e,
 O
m
ni
sc
op

e,

To
m
 S
aw

ye
r

Pe
rs
pe

ct
iv
es

Pr
ot
ov
is

Pr
ot
oV

ie
w
er
, I
m
pr
ov
ise

,
DE

Vi
se
, G

eo
VI
ST
A
St
ud

io

Pr
og
ra
m
m
er
s

AP
T,
 S
AG

E,
 P
ro
to
vi
s,

Pr
ef
us
e,
 P
ic
co
lo
,

Pr
oc
ce
sin

g,
 F
la
re
, D

3,

Th
e
In
fo
Vi
s T

oo
lk
it,

G
oo

gl
e
Ch

ar
t T

oo
ls

DE
Vi
se
, P
ro
to
Vi
ew

er
,

Im
pr
ov
ise

, G
eo

VI
ST
A
St
ud

io
,

M
S
Ex
ce
l,
Ta
bl
ea
u,
 S
po

tf
ire

,
O
m
ni
sc
op

e,
 T
om

 S
aw

ye
r

Pe
rs
pe

ct
iv
es

G
oo

gl
e
Ch

ar
t T

oo
ls
,

M
an

y
Ey
es

Sa
ge
Bo

ok
, T
ab

le
au

,
Sp
ot
fir
e,
 O
m
ni
sc
op

e,

To
m
 S
aw

ye
r

Pe
rs
pe

ct
iv
es

Pr
ot
ov
is,
 P
re
fu
se
,

Pi
cc
ol
o,
 P
ro
cc
es
in
g,

Fl
ar
e,
 D
3,
 T
he

 In
fo
Vi
s

To
ol
ki
t

Pr
ot
oV

ie
w
er
, I
m
pr
ov
ise

,
DE

Vi
se
, G

eo
VI
ST
A
St
ud

io

St
an

da
rd
 V
is
ua

liz
at
io
ns

Co
ns
tr
uc
tin

g
Vi
su
al
iz
at
io
ns

Cu
st
om

 V
is
ua

liz
at
io
ns

T
a
b

le
2
.2

:
20

In
fo

V
is

to
ol

s
m

ap
p

ed
a
cc

o
rd

in
g

to
th

e
ta

x
o
n

o
m

y.
T

o
o
ls

fr
o
m

in
d

u
st

ry
a
re

in
b

o
ld

.
B

ox
es

in
ye

ll
ow

in
d

ic
at

e
th

e
p

ro
b

le
m

s
ad

d
re

ss
ed

in
th

is
re

se
a
rc

h
.

B
ox

es
in

g
ra

y
re

p
re

se
n
t

fu
tu

re
re

se
a
rc

h
d

ir
ec

ti
o
n
s.

43

2.3 Existing Visualization Development Tools

users. This indicates that the InfoVis community has to focus more on evaluation of

the development tools with real users.

The results also show that simple users are supported with interactive development

environments where they can use a step-by-step and/or drag-and-drop approach. These

environments aim at handling the gulf of execution (How do I do something?) and

evaluation (What happened?) identified by Norman [70] by allowing simple users to

easily map data to visual objects in standard visualizations and obtain immediate

feedback. The visual mapping of custom visualizations is mainly handled through

code, with the exception of Improvise, GeoVISTA Studio and DEVise, which use a

step-by-step approach.

Mapping InfoVis development tools according to this taxonomy gives research di-

rections that the InfoVis community should investigate. First, end-user developers need

more tools to create custom visualizations. Second, there is a need for drag-and-drop

tools that allow users to create custom visualizations. Creating tools for users with

different IT skills may address the universal usability challenge [78] and facilitate the

process of introducing new audiences to InfoVis.

The research presented in this thesis focuses on EUD of visualizations and addresses

the problem: there are no Drag-and-Drop tools that allow users to create custom visu-

alizations independently of their IT skills . More specifically, this work targets end-user

developers as well as programmers. The following chapter describes the proposed solu-

tion that uses techniques proven successful in other areas, e.g. formulas, drag-and-drop,

etc.

44

Chapter 3

Solution

This chapter describes a drag-and-drop approach for visualization development. The

proposed solution (uVis) consists of:

• The uVis formula language: supports visualization development by combining

visual objects where each property can be a formula. uVis formulas are similar to

spreadsheet formulas and can address relational data, other visual objects, and

dialog data.

• The uVis Studio: a development environment for uVis that consists of several

coordinated panels and features that help end-user developers and programmers

create visualizations with a Drag-Drop-Set-View-Interact approach.

This chapter consists of two sections. The first section describes the uVis formula

language and the second presents uVis Studio. In this chapter, for simplicity, instead of

using the terms end-user developers and/or programmers I refer to them as developers.

3.1 uVis Formula Language

The scope of this section is not to present the uVis formula language in detail, but to

provide knowledge needed to understand how uVis formulas are used to create visu-

alizations and to follow the remaining chapters. A detailed explanations of the uVis

formula language can be found in [53].

45

3.1 uVis Formula Language

Figure 3.1: a. Vis-file, b. Vism-file .

3.1.1 uVis Files

A visualization created with uVis has two kinds of files:

• A visualization file (Vis-file) contains the formulas needed to generate a Win-

dows form with data visualizations and simple controls. A Vis-file will normally

be generated and edited through uVis Studio, but might also be created and

edited outside uVis Studio. Figure 3.1.a shows an example of a Vis-file opened

in notepad. A visualization might use several forms. In this case several Vis-files

are used.

• A mapping file (Vism-file) contains information about the database. It lists the

available tables and relationships in the database. A Vism-file is created by a

database expert, or a uVis user who is able to specify the database connection

and table relationships. Figure 3.1.b shows an excerpt of a Vism-file. Line 5

and 6 specify a one-to-many relationship between two tables: tblPatient and

tblMedorder. The Vism-file also specifies the start-up form and initial develop-

ment modes.

3.1.2 Controls

Developers construct visualizations by placing visual objects on forms and specifying

uVis formulas for their properties. For instance, a bar-chart is created by binding a box

control to data so that the box repeats itself and sets the heights according to data.

Other visualizations are composed from several controls. To visually map controls to

data and compose the visualization, developers specify uVis formulas for the control

properties. uVis provides simple controls (e.g. label, textbox, triangle, box, etc.) but

46

3.1 uVis Formula Language

also advanced ones (e.g. a TimeScale control that can show several periods of time

with different zoom and align other controls accordingly).

3.1.3 Properties

Properties define the appearance and behavior of a control. A property has a formula

that computes the value of the property, or defines it as a constant. Controls have

three kinds of properties.

uVis properties: All controls have common properties such as Top, Left, Width

and Height, and individual properties such as Text, Radius and Angle. A special

property is Rows. Its formula computes a list of rows from a table or joined tables.

uVis generates a control for each row.

Designer Properties: A developer may define a new property, a designer property.

He may for instance write a complex formula in it. Other properties can refer to it.

When the designer property has no formula it can contain a value and serve as a

variable. In this case they have the same role as the dialog or session data in other

programming languages.

Event Properties: Event properties do not have a formula but one or more state-

ments that are performed when the event happens. As an example, the click event

handler for a button may contain Refresh(), a uVis function that calls uVis to check

for changed data and update all controls accordingly. The formula may also contain

assignment statements, which can set designer properties and change database fields.

3.1.4 Formulas

The formula is the most important concept in uVis. To build a visualization you need

controls, but formulas are the ones responsible for “gluing” these controls, defining

their appearance and specifying their behavior. Formulas can refer to controls, control

properties, tables and table fields in the database. In a Vis-file, a control consists of a

block of formulas specified as plain text.

The uVis formula language combines several popular principles from programming

languages, spreadsheets, relational databases and graphical user interfaces. For in-

stance, it inherits the principle of referring to objects using the dot (.) operator as

programming languages do. uVis uses almost the same algorithm that spreadsheets

47

3.1 uVis Formula Language

use to calculate the formulas in the right sequence. However, controls (cells in spread-

sheets) do not exist initially, but are created by formulas at run-time. This requires a

more sophisticated algorithm. Formulas encapsulate complex logic such as SQL queries.

As other tools, uVis has the usual math and string functions.

Access to control properties

A formula can refer to a control property. This is done with the bang operator (!),

which addresses visual control elements. In case the formula refers to a property of the

same control, the name of the property can be used without any prefix.

Width: controlA ! Height (Refer to a property of another control.)

Width: Height (Refer to a property of the same control.)

In principle, uVis could use a dot operator instead of the bang (!) or other operators

described below. However, early in the project we noticed that these operators increased

readability of the formulas. In addition, the operators resolve name ambiguities, for

example between the Height property and a table field called Height.

Binding controls to data

uVis formulas can bind controls to rows of a table or joined tables. uVis controls have

a special property called Rows. Rows specify how to compute a list of rows. uVis will

generate an instance of the control for each row. An example is:

Rows: tableA (tableA is a table in the database.)

In this case, uVis compiles all formulas, collects information about the fields used,

generates an SQL statement using the collected fields, executes it, retrieves the rows

from tableA, and generates an instance of the control for each row. Each instance is

bound to the corresponding row.

Rows formulas can join several tables, and the result is used to generate controls. To

support this, uVis has join operators for one-to-many and many-to-one relationships:

-< (left) join many, =< inner join many, >- (left) join one, and >= inner join one.

uVis does not have join operators for one-to-one and many-to-many relationships. The

one-to-one relationship can be replaced either by one-to-many or many-to-one. Many-

to-many is not supported directly by databases, so uVis has no operator for it. A

many-to-many relationship is normalized by introducing an extra table that has many-

to-one relationships with the other two tables.

48

3.1 uVis Formula Language

The join operators resemble the notation used in an Entity Relationship diagram.

These operators denote the relationship cardinality using the Information Engineering

cardinality style [62]. The join operators are used in the Rows property of a control, for

instance:

Rows: tableA -< tableB

tableA and tableB exist in the database and have a one-to-many relationship.

The database expert has defined this relationship and for simplicity given it the name

tableB (Figure 3.1.b shows an example). The result of the formulas is: all tableB rows

that relate to tableA. Fields from tableA are added to each row.

With this Rows property, the dot operator can access fields of the tables. For

example, a formula defines the height of a control according to a field.

Height: tableA.fieldA (fieldA exists in this joined tables)

Formulas can also access properties and fields in the list of controls generated by

Rows. Two examples are:

Width: controlA[5]!Height (Refer to Height of the fifth control instance.)

Height: controlA[5].FieldA (Refer to FieldA mapped to the fifth control instance.)

A Rows formula can have an SQL tail with Where, Order By and other SQL parts

in any sequence. Examples are:

Rows: tableA -< tableB order by tableA.FieldA (rows ordered by FieldA)

Rows: tableA -< tableB group by tableA.FieldA (rows grouped by FieldA)

Rows: tableA -< tableB where tableA.FieldA = 1 (rows filtered by FieldA)

Finding a control based on data

Sometimes there is a need to “walk” from a row to a control bound to it. This is done

with the control join operator (-=). It can for instance be is used to align control

instances. A real example is described in Appendix A.

3.1.5 Visualizations

uVis supports development of a wide range of visualizations. As proof of concept,

several visualizations have been developed. Figure 3.2 shows some visualizations created

with uVis formulas. Appendix A explains in detail how a custom visualization is created

with uVis. In theory, uVis formulas could support all types of visualizations, such

as time-oriented, hierarchal, geographical, animations, etc. However, at the current

49

3.1 uVis Formula Language

Figure 3.2: Visualizations created with uVis: a. Simple Pie Chart, b. Custom Pie

Chart, c. Spiral Graph, d. SparkClouds, e. CircleViews, f. TreeMap, g. TileMaps.

stage, it is not possible to construct animations and geographical visualizations. In

order to create these types, some additional visual object types are required. As an

example, geographical visualizations can be constructed by introducing a geographical

map object.

A great deal of research has been conducted in layout algorithms that automatically

arrange visual objects to create novel presentations. TreeMap [11, 42] and Tag Cloud

[41, 45, 65] are two popular layout algorithms. These two layout algorithms calculate

the position and size of the visual objects. The Tag Cloud can easily be defined by uVis

formulas. Figure 3.2.d shows a SparkClouds [55], a custom visualization that integrates

SparkLines [106] in a Tag Cloud visualization. This visualization is created with uVis

formulas.

However, in other cases (e.g. TreeMap), it is not possible to create the visualiza-

tion with simple formulas. Such a visualization can be provided by a special Layout

property. A developer creates a TreeMap visualization (Figure 3.2.f) using a box with

these properties:

Box: treeMapBox

Rows: tableA

50

3.1 uVis Formula Language

Layout: TreeMap()

Weight: tableA.FieldA

uVis creates a list of rows and for each row it creates a control instance. When cre-

ating a control instance, uVis checks if the Layout property is set and calls TreeMap.

TreeMap() calculates and sets values of Width, Height, Top and Left according to the

TreeMap algorithm. The Width, Height, Top and Left are read-only for any control

having a Layout property.

3.1.6 Interaction

Interaction is and important aspect of visualizations. Without interactivity users would

not be able to explore data. uVis supports interaction (e.g. details-on-demand, fil-

tering) by means of event properties. The formula for an event property is a list of

statements to be executed when the event occurs. As an example, to implement details-

on-demand, the developer uses two box controls: Box1 and BoxDetails. The developer

defines an event handler property for the Click event in Box1. The event handler tog-

gles the Visible property of BoxDetails. These are the formulas:

Box: Box1

Click: BoxDetails!Visible = Not BoxDetails!Visible, Refresh()

...

Box: BoxDetails

Rows: ...

Visible: Init false

Text: Me.Comments

...

When the end-user clicks Box1, uVis performs the actions (statements) in the click

formula. As a result, the Visible property of BoxDetails is toggled. The statement

Refresh() asks uVis to recompute all formulas and redraw controls where a property

value has changed. As a result the BoxDetails will appear.

The uVis formula language is not mature enough to support complex interaction

such as semantic zooming and focus+context. As an example, the TimeScale con-

trol supports zooming, but this feature is implemented inside the TimeScale control.

Implementing this with formulas is difficult even for experienced uVis users.

51

3.1 uVis Formula Language

3.1.7 Special uVis Concepts

Before I present uVis Studio, I describe some concepts used in the uVis formula lan-

guage.

• Bundle: The Rows property creates a list of rows and creates a control for each

row. These controls are called a bundle. As an example, the Rows formula is set

to tableA, which has 23 rows. uVis evaluates the formula and creates a bundle

of controls.

Box: Box1

Rows: tableA

...

In this case the bundle has 23 controls because there are 23 rows in tableA.

• Index: A control has an index inside the bundle. The first control has index

zero, the second one, and so forth. As an example, Left is set to this formula.

Box: Box1

Left: Index * 20

...

uVis evaluates the Left formula for each control. As a result, the first control

has Left 0, the second 20, the third 40, and so forth.

• Parent: This property creates a control instance for each instance of another

control (the parent). Assume a developer wants to add a label (Label1) that

appears next to each Box1. Instead of specifying the Rows property of the label,

the developers makes Parent refer to Box1. As a result one label (Label1) will

be generated for each Box1.

Label: Label1

Parent: Box1

...

The Parent can also be combined with join operators to define the Rows property

of a control.

Label: Label2

Parent: Box1

Rows: Parent -< tableB

52

3.1 uVis Formula Language

In this case, uVis evaluates the Rows formula for each Parent control (Box1) and

creates a bundle of controls for the parent. The bundle is created according to

the tableB rows reachable from the parent’s row.

• Canvas: By default, a control is attached to the form and scrolls with it. How-

ever, the form may contain canvas controls. If the control has a Canvas property,

it is attached to the Canvas control and scrolls with it. Assume a box control

Box1 is attached to a canvas control Panel1. The Canvas property of Box1 is set

to Panel1, as follows:

Box: Box1

Canvas: Panel1

...

• Me: Refers to the current control and data row bound to this control. Me is

optional unless there is an ambiguous case that uVis cannot resolve. Me can also

be used to refer to a specific control in the current bundle.

Box: Box1

Height: Me.FieldA

Left: Me[2]!Width (Go to the third control in my bundle)

...

• Init: Makes a property value changeable at run-time.

Textbox: txbID

Text: Init abc

...

In this example, the initial values is abc. An end-user can type something in the

textbox and in this way change the value of Text. uVis uses the new value when

evaluating formulas.

• Conditional statements: uVis supports conditional expressions in C# style.

For example, the back color of a bar in the bar chart can depend on Value.

Box: Box1

BackColor: Value<10?"Green":"Red"

...

53

3.2 uVis Studio

3.2 uVis Studio

uVis Studio (or simply the Studio) is the development environment of uVis. uVis

Studio consists of 9 panels (Figure 3.4): the ToolBox, the Explorer, the Property Grid,

the Modes, the Error List, the E/R Model, the Design Panel, the Control-Data Hierarchy

and the DataView. All panels can be arranged by developers; they can resize, dock,

hide, and open them as separate windows.

uVis Studio is written in C#, with a user interface in Windows Presentation Foun-

dation (WPF). Two versions of uVis Studio were developed. Figure 3.3 shows the first

version. Figure 3.4 shows the second version. The differences between the first and the

second version (described later in this section) include two new panels (Control-Data

Hierarchy and DataView), a new feature (Formula Suggestions), and several improve-

ments (e.g. user-interface design, icons, Modes presentation, etc.) .

In the first version (Figure 3.3), the Design Panel shows a custom visualization

inspired by LifeLines [79]. This visualization shows the medicine orders (white boxes

aligned to the timescale) and intakes (colored bars inside the white boxes) for patient

Lise B. Hansen. End-users interact with the timescale to zoom in and out. Further

they select another patient by changing the value in the text box.

In the second version (Figure 3.4), the Design Panel shows a custom visualization

of the evolution of technologies since 1985. The yellow column and row shows the total

number of technologies per category and year respectively. The big black bars show the

total number of technologies. Each box uses color-coding to show if there have been

publications or not. The small bar inside a box illustrates the number of technologies

per year. The first column aggregates the number of technologies for the years’ range

defined in the two text boxes. End-users can change their values and the visualization

updates.

To create these visualizations, developers drag and drop controls from the Toolbox

into the Design Panel, set formulas for control properties in the Property Grid, view

immediate results in the Design Panel after the properties have changed, and interact

as end-users (using Modes) to see how the visualization behaves.

The rest of this chapter describes the panels and features of uVis Studio, and in

some cases it refers back to Figure 3.3 and 3.4. Next, the development approach and

54

3.2 uVis Studio

F
ig

u
re

3
.3

:
u

V
is

S
tu

d
io

v
.1

:
T

o
ol

b
ox

,
2
.

E
x
p

lo
re

r,
3
.

D
es

ig
n

P
a
n

el
,

4
.

P
ro

p
er

ty
G

ri
d

,
5
.

E
/
R

M
o
d

el
,

6
.

E
rr

o
r

L
is

t,
7
.

M
o
d

es
,

an
d

8.
A

u
to

-C
om

p
le

ti
on

.
N

ot
ic

e
th

a
t

th
e

se
le

ct
ed

co
n
tr

o
l

is
h

ig
h

li
g
h
te

d
in

d
a
rk

-b
lu

e,
a
n

d
p

ro
p

er
ti

es
a
re

sh
ow

n

in
th

e
P

ro
pe

rt
y

G
ri

d
.

In
th

is
ca

se
,

th
e

d
ev

el
o
p

er
is

sp
ec

if
y
in

g
th

e
R
o
w
s
.

T
h

e
d

ev
el

o
p

er
ty

p
es

th
e

fi
el

d
s

a
ft

er
th

e
gr

o
u

p

by
,

b
u

t
th

e
A

u
to

-C
o
m

p
le

ti
o
n

d
o
es

n
ot

su
g
g
es

t
t
b
l
I
n
t
a
k
e

b
ec

a
u

se
it

is
n

o
t

u
se

d
.

55

3.2 uVis Studio

F
ig

u
re

3
.4

:
u

V
is

S
tu

d
io

v
.2

:
1.

T
o
ol

b
ox

,
2
.

E
x
p

lo
re

r,
3
.

D
es

ig
n

P
a
n

el
,

4
.

P
ro

p
er

ty
G

ri
d

,
5
.

E
/
R

M
o
d

el
,

6
.

E
rr

o
r

L
is

t,
7.

M
o
d

es
,

8.
D

at
aV

ie
w

,
9.

C
on

tr
o
l-

D
a
ta

H
ie

ra
rc

h
y,

1
0
.

A
u

to
-C

o
m

p
le

ti
o
n

,
1
1
.

F
o
rm

u
la

su
g
g
es

ti
o
n

s.
T

h
e

se
le

ct
ed

co
n
tr

ol
is

h
ig

h
li

gh
te

d
in

li
gh

t
b

lu
e

co
lo

r
in

th
e

D
es

ig
n

P
a
n

el
a
n

d
C

o
n

tr
o
l-

D
a
ta

H
ie

ra
rc

h
y,

a
s

th
e

se
le

ct
ed

p
ro

p
er

ty
in

th
e

P
ro

pe
rt

y
G

ri
d
.

56

3.2 uVis Studio

the cognitive supports of uVis Studio are presented. The chapter concludes with some

performance measures.

3.2.1 Panels

uVis Studio has nine panels to support the Drag-Drop-Set-View-Interact development

approach. The design of uVis Studio was inspired by existing integrated development

environments such as Visual Studio and Eclipse. Novel features of the Studio were

elicited in the requirements document [52]. As an example, one of the requirements

was that the user of the Studio should continuously obtain immediate feedback during

development.

The Toolbox

The Toolbox (Figure 3.4.1) contains the control types that uVis supports, such as label,

button, triangle, timescale, etc. A developer drags and drops a control into the Design

Panel and the Studio sets the default property values. The developer may also select

a control and draw it as a rectangle in the Design Panel. Icons for each control were

added in the second version (Figure 3.4.1) to help developers distinguish them.

The Explorer

A developer creates and opens uVis folders with the Explorer. This panel (Figure

3.4.2) shows Vis-files and Vism-files. There are two icons on the top of this panel.

The developer clicks on the right icon and uses a wizard to locate the folder where the

Vism-file is stored. The Vism-file is written in advance by a database expert who can

specify the database connection and table relationships. The developer clicks on the

Vism-file and the visualization opens in the Design Panel.

The Design Panel

Visualizations are shown in the Design Panel (Figure 3.4.3). A developer drags and

drops controls from Toolbox, moves and resizes them. However, it is not possible to move

a control when it has a formula for the position (Left or Top). If the Left property

of a control is bound to a table field, the developer can only change the position by

changing the formula in the Property Grid.

57

3.2 uVis Studio

When the developer drops a control or moves a control into a Canvas control, the

Parent and Canvas property are automatically set to the Canvas control. However,

the developer can change them manually in the Property Grid. When the developer

adds a new control, the control formulas with default values are automatically set.

In the first version (Figure 3.3.3) the Design Panel was coordinated with the Prop-

erty Grid. Whenever the developer selected a control, it became highlighted in dark

blue and the corresponding formulas were shown in the Property Grid. The second

version (Figure 3.4.3) uses a light blue color for the selected control because the dark

blue is less readable. When a control is selected in the Design Panel, the control is also

selected in the Control-Data Hierarchy and the DataView shows its row data.

Feature: What-You-Bind-Is-What-You-Get

The Design Panel is a “live” one. It supports direct manipulation and provides con-

tinuous feedback during development. When the developer has changed a formula,

the Design Panel updates immediately. The developer does not need to execute the

program to view controls bound to data. I call this feature What-You-Bind-Is-What-

You-Get. For example, a developer specifies the Rows in the Property Grid to bind a

label to the rows of tableA. This table has 23 rows. uVis creates 23 labels automatically,

and the Design Panel shows them. As another example, the developer maps a field of

a table to the Text property of a label and the field values are immediately shown in

all of them.

The Property Grid

The Property Grid (Figure 3.3.4) shows the properties for the selected control. By

default, it shows the properties of the form control. A row in the Property Grid consists

of the property-name and the formula. Properties can be sorted alphabetically or shown

in groups to help the developer find them faster. A change in the Property Grid is

immediately reflected in the Design Panel. Also, a change in the Design Panel (e.g.

moving a control) automatically updates the Property Grid. A developer can add and

remove properties by clicking on the + and - button respectively.

58

3.2 uVis Studio

Feature: Auto-Completion

Writing formulas can be challenging, as developers must remember the syntax, and it is

common to misspell words. To help them, the Property Grid has an Auto-Completion

feature that suggests what can follow. The suggestions can be available variables and

functions of the formula language, but also suggestions for tables, table fields and

relationships in the database.

Let us assume that a developer starts typing. The Property Grid sends to uVis

what has been typed and receives information about what can follow. The Auto-

Completion uses this information to create a list of suggestions. Suggestions are grouped

in categories (e.g. property, table, field, etc.), sorted based on the typed letter(s), and

are shown in a pop-up window. Color-coded icons are used for items of the same

category to help distinguish the suggestions.

Figure 3.5 shows eight examples. Let us describe some of them. In the first example,

the developer is typing a formula for the Rows property (light blue). The developer

typed “tbl” and suggestions that start with these letters are shown. In this case, the

Auto-Completion shows four table names (see the E/R Model in Figure 3.3). In the

fourth example, the developer has typed the table name and pressed a dot. The Auto-

Completion shows only the fields of this table. In the seventh example, the developer

added a new property and started typing. A list with control property names, including

the existing designer properties, is shown.

In the second version (Figure 3.4.10), I improved the algorithm to show more precise

information, and solved bugs found during the first usability study. Descriptive tool-

tips were added for each item in the Auto-Completion. In addition to the color-coding

that denotes the category, I added the category name (in light gray). In this way,

developers can directly see suggestions and their category.

The E/R Model

uVis uses the Vism file to extract table, field and relationship names from the database.

The E/R Model uses this information and visually presents it as an Entity Relation-

ship diagram (E/R) [21]. An entity represents a table in the database and shows the

fields and field types. The connectors represent the relationships using the Information

Engineering cardinality style [62]. Other cardinality styles are developed by Chen [21],

59

3.2 uVis Studio

Figure 3.5: The Auto-Completion in action showing suggestions of : 1. table names,

2. relationship names, 3. SQL keywords, 4. field names, 5. control names, 6. control

Properties, 7. event properties, and 8. functions and control properties.

60

3.2 uVis Studio

Figure 3.6: The first version of the E/R Model (left). The improved version of the E/R

Model (right).

Bachman [6], etc. Choosing the right cardinality is challenging, and the decision can be

debatable. From our personal experience with teaching E/R models, the Information

Engineering cardinality style is the easiest to learn.

Developers can re-arrange the entities with the mouse. As the database may contain

many tables, developers can expand or collapse table fields and detach the E/R Model

panel from the Studio to enlarge it and get a better overview.

Figure 3.6 shows the two versions of the E/R model. In the second version, the

E/R Model is more interactive, useful and readable. First, the developer selects a table

or a field and views the data in the DataView. Second, I renamed the field types

of the database to more comprehensible terms for end-user developers. For example,

VarWChar was replaced by Text. Finally, I changed the layout using more bright colors

to avoid readability issues caused by the contrast.

Feature: Formula Suggestions

In the second version, the E/R Model has a new feature called Formula Suggestions.

This feature aims at helping users specify easier data mapping formulas. A developer

selects a property in the Property Grid, then right-clicks a table name, field name or

relationship line to see formula suggestions in a pop-up window. There are two choices

61

3.2 uVis Studio

for one suggestion. The developer can choose Add to append a suggested formula to the

selected property, or Replace to replace the formula of the selected property with the

suggested formula. As a result, the formula updates, and changes immediately reflect

in the Design Panel.

Figure 3.7.11 shows Formula Suggestions in action. Below I describe a simple

examples:

• A developer wants to set the Text of a label (bound to tblPatient rows) to:

"Patient Name: " & tblPatient.Name

(1) Selects the Text property from the Property Grid.

(2) Types “Patient Name:”.

(3) Right-clicks over ptName field from tblPatient in the E/R Model panel. For-

mula Suggestions (pop-up window) is open.

(4) Selects from the Formula Suggestions “Add: tblPatient.ptName”. The For-

mula Suggestions automatically inserts the “&” operator before tblPatient.ptName.

The algorithm used in the Formula Suggestions provides suggestions that follow the

formula syntax, and automatically adds the correct operator in front of the suggestion.

It also considers the Rows and the Parent of a control. For example, a developer tries

to use a field from a table that is not included in the Rows property. The Formula

Suggestions shows a message notifying the developer that this cannot be performed

(Figure 3.8.1). The algorithm also checks the type of the formula versus the type of the

property. For example, the developer selects the Top property and attempts to bind it

to a table or a relationship. Again, no suggestions are shown, but a message says that

a table or relationship is only used with the Rows property (Figure 3.8.2).

The Error List

The Error List shows a list of errors whenever a formula is wrong. Figure 3.9 shows

an example when a developer misspelled the word “left”. The user double clicks on the

error, and the wrong formula in the Property Grid is colored in red. Once the formula

is corrected, the error list updates. In spite of the errors, the visualization is running

all the time.

62

3.2 uVis Studio

Figure 3.7: The Formula Suggestions in action showing suggestions of: 1. table names,

2. field names, 3. relationship names when the Rows property of the parent control is

not specified, and 4. relationship names when the Rows property of the parent control is

specified.

Figure 3.8: 1. A developer attempts to map the field amount to the Top property. 2. A

developer tries to map the rows of tblIntake to Top.

63

3.2 uVis Studio

Figure 3.9: The developer selected the error message in the Error List (left) and the

wrong formula is highlighted in the Property Grid (right).

In the second version, the content of the error messages improved as changes in the

kernel were made. Also, the format of the message changed slightly. I removed some

details that might be confusing for developers (e.g. the position and the line number).

The Modes

In the first version, the Modes used check boxes (Figure 3.3.7). In the second version

(Figure 3.4.7), I re-designed the layout of the Modes, as they were not intuitive in

the first usability study. The new presentation uses sliders, color-coding for the se-

lected mode, and has descriptive text and tool-tips. In addition, the Modes panel is

positioned over the Design Panel. These changes attempt to improve understandabil-

ity and visibility of the Modes. This panel shows the Interact-Mode and Data-Mode

(Figure 3.4.7).

• Interact-Mode: It enables interaction with the Design Panel as an end-user.

Enabling the Interact-Mode through a slider might be considered as the Run

button in traditional development environments. However in these environments,

the developer has to wait for the result, which is shown in a different workspace. In

Figure 3.10.1, the Interact-Mode is disabled, while in Figure 3.10.2 the developer

moved the slider to enable it. In this way, the developer interacts with the

timescale as an end-user.

• Data-Mode: It disables the WYBIWYG feature of the Design Panel. In Figure

3.11.1 the Design Panel shows controls bound to data. In Figure 3.11.2 the

developer moved the slider to disable the WYBIWYG and the Design Panel

shows only one instance. In this case, the screen is similar to the Design Panel

in Visual Studio or Eclipse.

64

3.2 uVis Studio

Figure 3.10: 1. The Interact-Mode is set to designer mode and the developer has

selected the barIntake control (top). 2. The Interact-Mode is set to end-user mode and

the developer interacts with the timescale and tests the tool-tip.

Figure 3.11: The developer uses the Data to: enable the WYBIWYG (1) or disable it

(2).

65

3.2 uVis Studio

Figure 3.12: 1. The DataView. 2. The Control-Data Hierarchy.

The DataView

The DataView (Figure 3.4.8) was developed in the second version of the Studio and

shows data from the database. This panel is coordinated with the E/R Model. A

developer clicks a table in the E/R Model and the rows are shown. The developer

may also click a field, and the column is brought to focus and highlighted. Next,

the developer may order rows according to it; useful when exploring data. When the

developer clicks a control that is bound to data, then the DataView shows the row-data.

An example is presented in Figure 3.12.

The Control-Data Hierarchy

This panel (Figure 3.4.9) shows the control and data hierarchy of controls in the form.

It was developed in the second version of uVis Studio in an attempt to improve un-

derstandability of the Canvas and Parent concept. The panel displays the control

hierarchy as a tree. Each control is represented by a node and child nodes denote

the nested controls. The data hierarchy is represented by the tree as well, but ad-

ditional plain text is used to explain the data source. For example in Figure 3.12

the panMedOrder control resides inside the panPatient control. The plain text shows

which table is used, but for information such as where and group by the developer has

to check the exact formulas in the Property Grid.

When there are many controls, it is important to distinguish controls bound to

data from others. Therefore, the text style is bold if the control or its Parent control

is bound to data. An example is presented in Figure 3.12.

Developers can expand/collapse controls and detach the panel and view it sepa-

rately. Finally, interactions with the panel reflect in the Design Panel, the Property

Grid and the DataView.

66

3.2 uVis Studio

3.2.2 Development Approach

In uVis Studio, visualizations are constructed with the Drag-Drop-Set-View-Interact

approach. Developers drag and drop controls, set control properties using formulas,

immediately view how controls are bound to data, and interact with the visualization as

end-users without switching workspace. Below, I describe the approach and elaborate

on how the Studio attempts to reduce the gulf of execution (how do I do it?) and

evaluation (what happened?).

• Developers drag and drop controls. In uVis Studio, developers need minimal

mental effort to create a control because drag-and-drop is a straight forward

action. It is obviously easier than writing code.

• For each control, developers set control properties through the Property Grid.

The Auto-Completion helps them with suggestions to write the correct formula.

Also, developers view the data model in the E/R model, and bind controls to

data and map fields to properties using the Formula Suggestions.

• Developers immediately view results in the Design Panel, and if needed adjust

control properties again. They do not switch workspace to view what happened

after changing a property. Developers view the mapping of the data to controls in

the Design Panel, observe the properties in the Property Grid, and see the bound

data in the DataView. To further improve the visual feedback, controls bound

to data overlap partly because the Studio automatically set the Left property

to a formula. Developers obtain continuous feedback and realize what happened,

reflect on the formulas and understand how the mapping was done.

• Developers interact with the visualization as end-users without switching workspace.

The Design Panel shows the visualization “live”, and developers can enable the

Interact-Mode to interact as end-users. In this way, developers realize what hap-

pened as they interact.

Tanimoto [101] defined a taxonomy of development environments using the feedback

to developers, known as the “liveness” taxonomy. This taxonomy has four levels of

liveness:

1. Informative: Environments where developers can create, but not run a program.

67

3.2 uVis Studio

2. Informative and significant : Environment where developers can create programs,

and explicitly submit programs to execute.

3. Informative, significant and responsive: Environment where developers create

programs, and any change causes computations without any explicit submission

for execution.

4. Informative, significant, responsive and live: Environment where a program is

“continually active, or potentially so” [101], and developers can edit programs at

run-time; there is no need to stop or restart to view the changes.

Language tools such as Prefuse, Piccolo, InfoVis Toolkit, Flare, etc. can be in-

tegrated in development environments such as Eclipse. However, the development

approach is language-based, where users of these tools write code. At the end, they

execute the code to view the result. In wizard tools such as Improvise and Devise,

users specify step by step a visualization using several windows. At the end, they are

able to view the results. According to the “liveness” taxonomy, these tools fall in the

second level – informative and significant.

uVis Studio falls somewhere between level three and four. The uVis Studio shows

the “live” version of the visualization and developers can create and edit visualizations

without explicitly asking for a compilation. Changes in the Property Grid are reflected

immediately to the visualization when developers press ENTER or change focus.

3.2.3 Cognitive Supports

As Norman [70] says, “the real power come from devising external aids that enhance

cognitive abilities.” uVis Studio resembles a traditional development environment, but

it supports improved external aids – several coordinated panels and novel features.

Coordinated Panels

In uVis Studio, the coordinated panels aim at facilitating development by allowing de-

velopers to view different information simultaneously through different panels. Several

panels are coordinated and changes in one reflect on others. The Design Panel is coor-

dinated with the Property Grid, the Data-View, the Control-Data Hierarchy, and the

Error List. The DataView is also coordinated with the E/R Model. As an example, a

68

3.2 uVis Studio

developer can view the data bound to a control from the DataView, the formulas used

for this control in the Property Grid, and where the control is positioned in the Design

Panel and Control-Data Hierarchy.

Novel Features

uVis Studio has several novel features to enhance the development process: What-You-

Bind-Is-What-You-Get (WYBIWYG), Interact-Mode, Auto-Completion and Formula

Suggestions.

1. What-You-Bind-Is-What-You-Get (WYBIWYG): whenever a formula is

changed the visualization is updated showing real data corresponding to the “live”

version. This feature of the Design Panel allows developers to get immediate feed-

back and view controls bound to data without running the application. WYBI-

WYG enhances the visual mappings, and improves efficiency and correctness dur-

ing development. Also, it may lead to discovery of novel presentations because of

the immediate feedback on the screen.

2. Interact-Mode: changes the way the developer interacts with the Design Panel.

This feature allows the developer to interact with the visualization in the Design

Panel as an end-user or as a designer without switching workspace. As a result,

it removes the step where the developer runs the program and waits for the result

to show in a different workspace.

3. Auto-Completion: as the developer types a formula, a pop-up window in the

Property Grid suggests what can follow. This feature of the Property Grid helps

developers recognize rather than remember the syntax of the formula language,

and write them correctly. Unlike the auto-completion in traditional IDEs, uVis

provides suggestions for tables, table fields and relationships in the database.

4. Formula Suggestion: after selecting a property control in the Property Grid,

the developer clicks on a table or a table field in the E/R Model and a pop-up

window suggests what can be used to set the property. This feature of the E/R

Model helps developers bind controls to data and map fields to properties.

69

3.2 uVis Studio

Time in milliseconds

Open

uVis Studio

Visualization

with

1 control

Visualization

with

83 controls

Visualization

with

5.226 controls

Visualization

with

50.000 controls

Load E/R model 1 25 25 26 26

Load Property Grid 3 48 65 191 1093

Load Design Panel 3 121 242 898 7867

Load Control Hierarchy 1 5 12 16 16

Load Explorer 10 5 4 20 7

Load DataView 1 130 126 126 138

Load Toolbox 185 0 0 0 0

Load Modes 4 0 0 0 0

Load Error List 1 0 0 0 0

Add a control in Design Panel N/A 109 213 827 7352

Delete a control in Design Panel N/A 28 74 547 7547

Auto-Completion response-time on key pressed N/A 18 55 131 240

Switch to Interaction Mode using Modes N/A 6 6 8 8

Enable WYBIWYG using Modes N/A 12 101 543 5198

Disable WYBIWYG using Modes N/A 12 101 104 120

Table 3.1: Performance measures. The first column shows the time spent when uVis

Studio starts, but no visualization is opened. The other columns shows how the Studio

performs when a visualization has: one control, 83 controls, 5,226 controls, and 50,000

controls.

3.2.4 Performance

To evaluate uVis Studio performance from a user perspective, I measured the time uVis

Studio takes to load visualizations with various number of controls, add and delete a

control, switch modes, and the response time of Auto-Completion. I used an MS Access

database that had 4 tables. I used a ThinkPad W510 with a 1.73 GHz Intel Core i7

processor and 4 GB RAM. I executed the same tests five times and show the averages.

Table 3.1 shows how uVis Studio performs when a visualization has: one control, 83

controls, 5,226 controls, and 50,000 controls. The time is measured in milliseconds. As

shown in the table, uVis Studio spends more time to load the Design Panel compared to

other panels. As the number of controls increases, the overall performance of the Studio

is affected especially. This is caused by the uVis kernel which queries the database, and

computes and renders controls. Adding and deleting a control is as fast as refreshing the

screen. The response-time of Auto-Completion and Interact-Mode is neglectable from

a user perspective. When the WYBIWYG is enabled or disabled, there is a difference

in performance because the screen is refreshed. This difference relates to the number

of controls in Design Panel.

70

3.2 uVis Studio

The figures show that the Studio itself responds immediately from a user perspec-

tive, but the kernel takes time to open a form and refresh the screen. The kernel uses

roughly 0.16 ms/control to compute and render a control. Additional performance

measures can be found at [107].

71

Chapter 4

The Approach in Practice

This chapter shows how an experienced user of uVis develops custom visualizations.

The chapter proves that it is possible to create custom visualizations without real

programming using the Drag-Drop-Set-View-Interact approach. However, it does not

prove that real end-user developer s and programmers can do it. This will be subject

of Chapter 6, 7 and 8.

4.1 The Process Completion Diagram

In 2011, I visited the Human-Computer Interaction Lab at the University of Maryland

to evaluate the usability of uVis with programmers. During my stay, I met Sureyya

Tarkan, a PhD student at the lab. Using a drawing tool, Sureyya had designed a novel

representation, called the Process Completion Diagram (PCD) that aggregates event-

logs of medical data into in-time, late and not-completed tests, and visualizes these

using shapes, colors and positions. Although she has advanced programming skills,

Sureyya had no time to implement a running prototype as it would have taken her

approximately two weeks to develop. I was introduced to her work and we started

collaborating. The goal of this collaboration was to create a running prototype based

on her initial design. Sureyya provided me with a printed version of the visualization,

but there were no available data. I created a sample dataset and developed the initial

version of the visualization in five hours using the first version of uVis Studio. After I

implemented the first version, in collaboration with Sureyya, Prof. Ben Shneiderman

72

4.1 The Process Completion Diagram

Figure 4.1: The evolution of the Process Completion Diagram (PCD). The final version

visualizes the blood-test process from the medical domain.

and Dr. Catherine Plaisant, I iteratively improved the design of the initial version.

Figure 4.1 shows the evolution of the PCD from the paper-based to the final version.

Figure 4.1 shows an example from the medical domain, and illustrates how 355 blood

tests are presented using the PCD. It uses a green rectangle, an orange rectangle and

a red triangle to represent the number of in-time, late, and not-completed tests. The

PCD uses different shapes to help distinguish the completed from the not-completed

tests. These three shapes are placed in a time series plot, where the X-axis shows the

test duration and the Y-axis shows the number of tests. Figure 4.1 shows that there are

85 in-time, 186 late, and 84 not-completed blood tests. Classifying tests into in-time

and late is realized using a threshold of lateness. Thresholds are defined by process

managers.

The PCD also shows the minimum, average, and maximum duration for the in-time

and late groups of tests. The in-time durations range from 25 to 141 minutes and the

late durations range from 141 to 243 minutes. The PCD also presents a large amount

of detailed information such as the threshold value, the standard deviation around each

average (a small horizontal mark at the bottom of each rectangle), and the percentages

73

4.1 The Process Completion Diagram

Figure 4.2: Three controls were dragged and dropped. The selected control and property

are colored in light blue.

for in-time, late, and not-completed tests. At the top of the PCD there is a textual list

of the absolute numbers of total completed, which is made up of the in-time and late

tests. The textual list also presents the number of not-completed tests. Small colored

shapes are placed close to each label, to link the texts with the shapes in the plot.

End-users interact with the track-bar to compare performances of different months,

and clicks on shapes to see details on demand.

4.1.1 Constructing the PCD

To construct this visualization, I use a database with one table (tblEvent) that contains

blood-test data. First, I created the Vism-file outside the Studio, then I create a Vis-

file with the Studio. I double-click on the Vism-file and an empty screen is shown in

the Design Panel.

I drag and drop a panel control, which will contain all the other controls, then add

two labels inside it. A selected control is highlighted in light blue color in the Design

Panel and the Control-Data Hierarchy, and its properties are shown in the Property

Grid. I select a property to write a formula. Figure 4.2 shows a screen shot.

I drag and drop four more controls to construct the plot: two lines and two labels.

74

4.1 The Process Completion Diagram

Figure 4.3: Creating the plot using two labels and two lines.

I rename the controls to meaningful names and “glue” them by means of formulas. For

example, the position of lblAxisXTitle is set using these formulas:

Label: lblAxisXTitle

Left: lineAxisX!Right (Refer to the Right of the lineAxisX)

Top: lineAxisX!Top-Height

Likewise, I set the Left and the Top property of lblAxisX, lblAxisY and lblaxisYTitle.

The Auto-Completion feature helps me write the correct formulas by providing sugges-

tions. Figure 4.3 shows part of a screen shot.

Next, I drag and drop two boxes and one triangle. I change the BackColor property

to light green, orange and red for the in-time box (boxOntime), the late box (boxLate)

and the not-completed triangle (triNotCompleted) respectively. Next, I set the Top

and the Left property so that triNotCompleted and boxLate are placed at the right-

top corner of boxLate and boxOntime. Figure 4.4 shows the formulas for boxLate.

In the PCD, the size of the shapes is calculated by aggregating lab-test results from

tblEvent, and grouping them in: in-time, late and not-completed. The height of the

shapes corresponds to the number of tests in the table, and the width of the rectangles

represents the test duration. As the not-completed tests do not have a duration time,

the triangle’s width does not represent duration. In this case I set it to 40 pixels. I bind

controls with the Rows property, and the Auto-Completion and Formula Suggestions

helps me. For example, this is the formula for the boxLate:

75

4.1 The Process Completion Diagram

Figure 4.4: Two rectangles and a triangle to visualize the in-time, the late and the

not-completed tests.

Rows: tblEvent where MonthId = 1 and duration > 100

and isProcessCompleted = 1 group by ProcessId

This formula means: select and group the tests that were completed, had duration

greater than 100 (corresponds to the threshold of lateness) and were performed in

the January. To get the number of tests, the minimum duration and the maximum

duration, I add four new properties for each shape and specify their names and formulas

as follows:

MyCount: count(ProcessId)

MyMaxDuration: max(duration)

MyMinDuration: min(duration)

TotalNumber: lblAxisTitle!Text (contains the total number of tests for January)

This causes uVis to use a bit of math to set the Width and the Height property

of each control, for instance Figure 4.5 shows a screen shot. Note that the DataView

shows the data bound to this control. In the Hierarchy the text of this control becomes

bold to show that it is bound to data, and the additional text tells which table is being

used.

Next, I drag and drop a track bar (TrackBarMonth) and a label (lblMonthName). I

set the Minimum, Maximum and Value of TrackBarMonth to 1, 12, and Init 1 respec-

tively. Setting the Value to Init 1 allows end-users to change it at run-time as they

76

4.1 The Process Completion Diagram

Figure 4.5: Shapes are bound to data and Height and Width are mapped to number of

tests and duration.

interact with TrackBarMonth. I want to refer to the Value of TrackBarMonth. There-

fore, I go to the Rows property of each control that uses the MonthId field in the where

clause, and replace MonthId = 1 with MonthId = TrackBarMonth!Value. Next, I set

the ValueChanged property to this:

ValueChanged: Requery() (Requery() is a uVis function)

This means that every time an end-user interacts with TrackBarMonth, the PCD shows

the data of the selected month. After implementing the interaction I enable the Interact-

Mode to interact as an end-user. In this mode all panels are disabled, except for the

Design Panel and the Modes. Figure 4.6 shows part of a screen shot.

The final version (Figure 4.7) was iteratively created and uses seven types of con-

trols: the panel, the box, the triangle, the label, the line and the track-bar. Above, I

summarized the steps that I followed to create it. However, it is not mandatory to fol-

low this sequence. For example, an end-user developer or a programmer may drag and

drop a box to visualize the in-time tests, bind that to data, and copy and paste it (and

its formulas) to create another box. Next, the end-user developer or the programmer

adjusts the formulas so it represents the late tests.

77

4.1 The Process Completion Diagram

Figure 4.6: “Interact with the Design Panel” end-user is enabled. The other panels are

disabled.

Figure 4.7: The final version of PCD.

78

4.2 Visualizing the Evolution of Technologies

The Multi-Step Process Visualization

I used the PCD visualization to create the Multi-Step Process Visualization (MSPro-

Vis). MSProVis is an interactive visualization composed of three main views: Process

Overview, Steps in Details, and Actors in Details. It allows managers to review and

compare series of PCDs at different levels of detail, allowing comparisons between steps

or between actors executing those steps. This visual approach aims to facilitate retro-

spective analysis of the multi-step process.

The Process Overview and Steps in Details are the most interactive parts. In the

Process Overview, the managers can interact with the slider and view historical data for

different months. Automatically, the Steps in Details and Actors in Details views show

steps and actors’ tests for the selected month. MSProVis calculates initial predefined

thresholds of lateness, and allows managers to adjust those thresholds interactively in

Steps in Details. Threshold changes are also reflected in the Process Overview and Ac-

tors in Details view. Managers can view details-on-demand inside tool-tips by clicking

on shapes. Figure 4.8.1 shows the initial version designed by Sureyya, and Figure 4.8.2

presents the final version of MSProVis constructed with uVis. The initial version of

MSProVis (Figure 4.8.1) was developed in approximately five hours. The final version

(Figure 4.8.2) was iteratively developed, but an experienced uVis user should be able

to rapidly construct it.

4.2 Visualizing the Evolution of Technologies

In 2012, Paolo Tell, a PhD student at the IT University of Copenhagen, had con-

ducted a systematic mapping study investigating the evolution of technologies from

1985. Although, his research focuses on global software engineering and is not related

to information visualization, Paolo drew a custom visualization to present the results

in a journal paper. During the revision of the paper Paolo had to change the drawing

because of the data, and in a meeting we had, he expressed the frustration of having

a drawing rather than a interactive visualization. As he already knew my research,

Paolo asked if I could do something similar using the Studio. We started discussing his

visualization and what the data were. After the meeting, I got a printed version of the

visualization and the dataset.

79

4.2 Visualizing the Evolution of Technologies

Figure 4.8: 1. The paper-based visualization that provides an overview of the process and

details for each step of the process. 2. The Multi-Step Process Visualization (MSProVis)

combines three views in a single presentation, allowing managers to explore process, steps,

and actors’ tests rapidly.

80

4.2 Visualizing the Evolution of Technologies

Figure 4.9: 1. The original drawing visualizes 382 technologies. 2. The custom visual-

ization created with uVis formulas and the Studio.

In this visualization, the boxes in the yellow column and row show the total number

of technologies for each category and year respectively. Using color-coding, the white

boxes show year without publications. The gray boxes denote years with publication.

Inside these boxes there are some small bars. The width of these bars illustrates the

number of technologies. The first column aggregates the number of technologies for the

years’ range defined in the two text boxes. End-users can change these values and the

visualization is updated. The big black bars show the total number of each technology.

As an experienced uVis user, I developed this visualization in five hours. In these five

hours, I had to understand the visualization, the data, and create the solution.

81

Chapter 5

Usability Evaluation

Conducting usability studies is a popular technique to evaluate a tool with users. I

conducted usability studies to evaluate the uVis formula language and the Studio, and

answer the research questions:

1. Can end-user developers construct custom visualizations?

2. Can programmers construct custom visualization faster?

The collected information will help us to improve uVis, so that it becomes more mature.

Also, the results of the evaluation will serve as a starting point in investigating end-

user development of information visualization. The rest of this chapter explains what

usability consists of, how it can be measured, and the approach used in this thesis.

5.1 Usability Factors

Usability comprises many factors. I used the six factors defined by Lauesen [51]:

• Fit for use: “The system can support the tasks that the user has in real life.”

• Ease of learning: “How easy is the system to learn for various groups of users”

• Task efficiency: “How efficient is it for the frequent user?”

• Ease of remembering: “How easy is it to remember for the occasional user?”

• Subjective satisfaction: “How satisfied is the user with the system?”

82

5.2 Measurement Techniques for Usability

• Understandability: “How easy is it to understand what the system does?”

I primarily measure the ease of learning, subjective satisfaction and understandabil-

ity. Fit for use, task efficiency and ease of remembering were not addressed explicitly

because they are hard to measure during development.

5.2 Measurement Techniques for Usability

Lauesen [51] defines six measurement techniques for usability: task time, problem

counts, keystroke counts, opinion poll, score for understanding and guidelines. From

the six measurement techniques, I used:

1. Problems counts: This measure is best for measuring ease of learning (but pro-

vides good indications for the other usability factors too) by observing users as

they use the system in a think aloud manner. I used Lauesen’s classification [51]

to classify usability problems identified in the studies:

(a) Bug: The system fails to perform correctly.

(b) Missing Functionality: The system cannot support the user’s task.

(c) Task Failure: The user cannot complete the task on his own or he erro-

neously believes that it is completed.

(d) Cumbersome: The user complains that the system is cumbersome.

(e) Medium Problem: The user finds the solution after lengthy attempts.

(f) Minor Problem: The user finds the solution after a few short attempts.

2. Opinion Poll : This technique measures user satisfaction by answering 5-point

Likert scale questions.

3. Score for understanding : This technique measures understandability by asking

questions about how the user believes the system works.

Problem counts and score for understanding are suitable during development. Opin-

ion polls are less suitable, yet the best to measure subjective satisfaction [51]. The other

measurement techniques (task time, keystroke counts and guidelines) require experience

users and a more finished system.

83

5.2 Measurement Techniques for Usability

Problem Counts

Problem counts can be measured in many ways, including: cognitive walkthrough,

heuristic evaluation, and thinking-aloud study.

• Cognitive walkthrough: is the procedure of evaluating a user interface by

walking through the user tasks to identify the necessary functions [51]. According

to Hertzum and Jacobsen [39], this method is appropriate before testing with

users is possible. Also, the authors state that this method should be conducted

with group of evaluators and can provide additional feedback to user testing when

evaluators face problems in recruiting participants [39].

• Heuristic Evaluation: is an approach where usability specialists identify us-

ability problems with a list of heuristic guidelines [51]. Any computer professional

should be able to perform a heuristic evaluation, but “evaluator’s skills and ex-

pertise has a large bearing on the result” [39]. The involvement of usability

specialists can positively affects the effectiveness of this method [67].

• Thinking-aloud study: is a popular method where users are asked to carry

out a task using a system in a think-aloud manner[51]; thinking-aloud and ob-

servations on how a user performs, are used by the evaluator to identify usability

problems. According to Hertzum and Jacobsen [39] there is no clear definition of

this method, either for the procedure. A general practice is to have a facilitator

(who administer the sessions) and an evaluator (records a list of usability prob-

lems), but the usability test can be perform from one who plays the same role

[39]. This method can be used during development and the number of users is

always questionable. Involving the right number of participants is always difficult

to achieve. According to Nielsen and Landauer [69] and Virzini [109] the number

of new usability problems decreases after the fifth study.

I decided to use the think-aloud study because it provides better feedback to de-

velopers and the system was not sufficiently mature and stable to consider other ap-

proaches. Also, the think-aloud approach is considered to be the most important ap-

proach to evaluate user interfaces [68]. During this approach, many suggestions for

improvement may come up [91]. A limitation of the approach is that the measured

time may increase because of verbalization [91]. However, in the usability studies I did

84

5.2 Measurement Techniques for Usability

not plan to measure the time of small task steps (e.g. drag and drop a control, change

the left position). Rather, I planned that each task should be accomplished in a certain

time. The reason that I did not measure time of small steps, was because it requires

users who are experienced with the tool. Measuring it would not provide any valuable

information as all of them were new to the uVis formula language and the Studio. Also,

the tool was a functional prototype, and the results may differ from a finished system.

I conducted all the usability studies, kept notes during the sessions as I was ob-

serving the participant and listening to his/her comments. As it was not possible to

have a facilitator who knew uVis in the study, I decided to use a recording tools in

order to avoid missing information. Whenever, participants were not able to proceed

by themselves, I assisted them and recorded the usability problem as a task failure.

When the system failed, I recorded it as a bug. Minor and medium problems were

identified based on my observations. I recorded as cumbersome all those cases where

the user complained verbally.

The goal of these studies was to evaluate the uVis formula language and the Studio

in order to answer the research questions. I asked participants create a visualization

rather than adjust an existing one, because this would provide more feedback about the

tool. This means, that participants had to accomplish a difficult task as they had to

learn the formula language, how the Studio works, and understand how visualizations

are created with the tool. The first task was to create a simple visualization with

guidelines. In the second task participants were asked to create a custom visualization.

The procedure and documentation are discussed in detail at the beginning of Chapter

6, 7 and 8.

Opinion Polls and Score for Understanding

To measure opinion polls and score for understanding, I used questionnaires and inter-

views. According to Nielsen [68], questionnaires and interviews are not direct usability

evaluation methods because they provide users’ opinions rather than observable facts.

In order to provide additional data on subjective satisfactory, I asked users to

answer a questionnaire after each task. I used a five point Likert scale and asked

questions about the uVis formula language and uVis Studio. The questionnaire was

inspired by the questionnaire for user interaction satisfaction (QUIS) developed by

Shneiderman [91]. Only in the first study did I conduct a semi structured interview.

85

5.2 Measurement Techniques for Usability

A semi-structured interview has predefined questions, but it provides the flexibility of

changing the focus of questions during the interview [82]. Robson [82] says that “biases

are difficult to rule out”. To obtain unbiased data from interviews, the conductor has

to be an experienced interviewer. Although the bias effect is present, interviews have

a potential to provide useful information [82].

86

Chapter 6

Usability Study with

Programmers

This chapter presents a usability study with six programmers. Although, all of them

indicated that they are programmers, none of them are professional programmers who

practice programming on a daily basis. This means that they probably do not have

the skills of a professional programmer, but certainly, they are not end-user developers.

Five of them have developed information visualization applications and one of them user

interfaces. In addition, all of them have used an integrated development environment

at some point in time.

I chose these subjects because they would be able to compare the development

approach and the features of the Studio with what they had used before. In addition,

they could compare the uVis formula language integrated in the uVis Studio with other

development tools. Their feedback helped us identify usability problems, and provide

suggestions for improvement.

6.1 Procedure and Tasks

No participant had prior knowledge of the uVis formulas or the Studio. Each usability

test was conducted in three hours on average and consisted of four main parts: intro-

duction to uVis, construct a bar chart, construct the LifeLines, and a semi-structured

interview. I conducted the study, kept notes, and recorded the sessions. During the

sessions, I assisted the participant whenever there were misinterpretations, confusions

87

6.1 Procedure and Tasks

or malfunctions of the system and recorded them as usability problems. Each problem

was classified using the problem classification [51]. For instance, in cases that the sys-

tem failed to perform correctly, I classified this problem as a bug. In other cases where

participants could not complete a step on their own, I recorded this as a task failure.

The documentation used in this study is presented in Appendix B.

Part 1: Introduction to uVis

This part took 30 minutes on average, where the participant was introduced to uVis.

I had predefined a structure of the concepts I was going to explain, and used that as a

guide to present the tool to the participant. I explained how visualizations are created

in uVis, what the uVis formulas are, how to refer to control properties, tables and fields,

etc. Also, I showed the participant the reference card for the uVis formula language.

At the end, I opened the Studio and described it.

Part 2: Construct a Bar Chart

After introducing the tool theoretically, I practically showed to the participant how

to create a bar chart using a simple MS Access database with three tables (Figure

6.1). While, I was creating it I explained what I was doing. After my presentation,

the participant was asked to replicate what I did, and carry out the same task in a

think-aloud manner. I also provided the participant with a reference card that showed

the bar chart and the formulas of each control. Note that I used this simple bar chart to

allow the participant to understand the uVis formulas more easily and become familiar

with the Studio. Once the participant finished constructing the bar chart, I asked some

questions on a 5-point Likert scale.

This session lasted 45 minutes on average. The purpose of this part was to allow

the participant to create the bar chart using the uVis formula language and the Studio.

Part 3: Construct a LifeLines

I showed the participant an already implemented version of the LifeLines that used

data from a MS Access database with 4 tables (Figure 6.2). I explained some advanced

concepts (e.g. the control-join operator “-=” that aligns controls vertically, and the

88

6.1 Procedure and Tasks

Figure 6.1: The bar chart and the E/R data model.

HPos function of the timescale that aligns controls horizontally, init and Refresh()).

Then, the participant was asked to create the LifeLines, and think-aloud during the

process. I provided the participant with the uVis reference card, a reference card where

the visualization was showed without any formulas, and some hints in the second page.

The hint page showed how to write a complex Rows formula with a Group By, how to

align controls vertically and horizontally, how to convert a String to Integer type,

and how to use the Refresh() function. At the end, the participant was asked to

reply to the same questions as in part 2. This part of the study lasted one hour and

30 minutes on average and aimed at evaluating the uVis formulas and the Studio. In

addition to part 2, the participant used the Interact-Mode to interact as an end-user

with the visualization.

Part 4: Semi-Structured Interview

A 15 minutes semi-structured interview followed, where the participant was asked about

the uVis formulas, the Studio, how different this approach is from what the participant

has used so far, and if the participant believes that end-user developers can use the Stu-

dio to construct visualizations. Also, an early prototype of the MSProVis visualization

(Figure 6.3) was shown, and the participant was asked to estimate the development

time using the Studio and other tools. I applied a semi-structured interview in order

to obtain better insights and identify how the uVis approach could be improved.

89

6.1 Procedure and Tasks

Figure 6.2: The LifeLines and the E/R data model.

Figure 6.3: Initial version of MSProVis.

90

6.2 Results

6.2 Results

In this section I present the results of this study. For each participant I describe his/her

background, report the number of observed problems categorized by type, subjective

ratings, and participant’s comments about the tool and their answers from the semi-

structured interview. I conclude this chapter with a summary of the results.

Participant 1

Male; 30 years old; working as a PhD student in Computer Science from

2008; has been coding from 1999; has a very good knowledge of E/R

databases; has a good knowledge of MS Excel spreadsheet formulas; has

been working for the last two years with visualizations; has coded visual-

izations from scratch using Python, and has used Prefuse, and D3.

Problem Counts

In this usability test, the participant faced several problems. Two of them were task

failures. The first problem relates to the Parent concept of the uVis formula language

and the second was specifying a complex formula for the Rows property that used a

Group By. There was no problem when the participant wrote a simple formula for

Rows. In total, I observed 19 problems and Figure 6.4 shows the number of problems

of each type. Below, I elaborate on these problems, and at the end of the chapter I

present a summary of the problems observed in the usability study. For simplicity I

will not elaborate in detail for the other participants, as I do here.

• Create a bar chart: The Parent and Canvas properties caused confusion, as the

user assumed they were the same (Problem: Task Failure). Further, specifying

the Rows property was hard, as the Left-Join operator (-<) was not intuitive

to the user (Problem: Medium). However, the participant reflected and used

the E/R model to solve it. The Studio used a top-down approach to position

controls on the form (Problem: Minor). The user was more used to the bottom-up

approach, and found the top-down approach cumbersome. While he was creating

the visualization, he would have liked to see more details in the form (Problem:

Missing Functionality). For example, showing a label over a bar that indicates

91

6.2 Results

the bar was bound to data (tblMedOrder). One of the limitations in the Studio

is that users are not allowed to change the control’s position when the position

is set to a formula (Problem: Missing Functionality). The user understood the

reason, but suggested that the user should decide about that. In some cases the

Auto-Completion did not perform as expected (Problem: Bug). It should not be

removed when the typed word matched the suggestion (Problem: Minor). The

Error-List window was not helpful, as the user found the errors confusing and

would have liked to have more details (Problem: Missing Functionality), or a way

to debug (Problem: Missing Functionality).

• Create a LifeLines: After several attempts, the participant specified the correct

formulas for the Rows (Problem: Medium). The difficulties were caused by the

Parent concept, and the Join-Left operator (-<) . He was not able to specify a

complex formula that joined 3 tables and used a Group By (Problem: Task Fail-

ure). As several controls were used to construct this visualization, the user would

have preferred having a control hierarchy window (Problem: Missing Functional-

ity) instead of the combo-box in the Property Grid (Problem: Minor). The error

messages were not helpful to him as they were difficult to understand (Problem:

Cumbersome). Once the system failed to respond, and we had to close and open

the visualization (Problem: Bug). The user found the Modes useful, but as he

commented later he would have liked to see it over the Design Panel (Problem:

Minor). Also, better and more explicit names for the modes would have made

them more understandable (Problem: Minor). At the end, he suggested that

viewing the real data is important (Problem: Missing Functionality). Descriptive

tool-tips could have helped him understand the Studio and its features better

(Problem: Missing Functionality).

Questionnaires

The subjective ratings are presented in Figure 6.4. Looking at them, one may interpret

them as follow: The uVis formula language provides good data binding, but the opera-

tors and the Parent concept are not intuitive enough. Further, the ratings indicate that

the participant liked the immediate feedback of the Design Panel, the Auto-Completion

and the E/R Model. In contrast, Modes and Error List were not appreciated.

92

6.2 Results

Figure 6.4: Participant 1: Problem counts by type (left). Subjective ratings (right).

Debriefing

After the second task, I asked the participant some questions regarding uVis, the

approach and the MSProVis. From his comments, the participant liked the Studio,

and how he could interact, bind, and view the controls in the Design Panel. Auto-

Completion was helpful, but in some cases failed to suggest correctly. He had used

Prefuse [36] and D3 [14], but he had always transformed the data into a single table.

The participant found it interesting and believes that it is important to allow users to

access tables in a relational database. He added that accessing relational data may be

challenging when it comes to join data from different tables, because of the knowledge

the user should have about E/R databases. The participant said that viewing the E/R

model facilitated his work, but he would have liked to see the real data as well. uVis

operators and keywords such as Parent and Canvas, frustrated him and it took some

effort to understand the concepts clearly.

Regarding the development process in comparison with other tools the participant

has used, he said: “It is a different way of thinking, and may restrict the development

as the visualization is bound to relational data. But, it is cool as well.” Also he said

that “The Studio helps me see and keep the general goal. When I am programming, I

go too deep in detail, and after a couple of hours I loose what I started with.”

At the end, I showed him the initial early version of MSProVis (Figure 6.3), and

asked how much time it would take him to implement it in the Studio versus using

other tools he knows. The participant looked at MSProVis, checked the E/R Model,

and estimated that using other toolkits would take approximately 3 weeks, and from

scratch around 5 weeks. Using the Studio he reported: “Assuming that I have all what

93

6.2 Results

I need, like controls, proper errors, and a stable Studio, I think I would be able to do it

in 6 hours. Also, I need to have some domain knowledge, meaning I should know what

I am visualizing.”

Participant 2

Male; 23 years old; master student in Human Computer Interaction for the

last 6 months; coding for the last 5 years; started using E/R databases

some years ago, but does not have a strong background as he does not

write his own SQLs; has barely used spreadsheet formulas in MS Excel; has

not worked with visualizations, but has done work related to the Human

Computer Interaction (HCI) field; has never coded a visualization.

Problem Counts

16 problems were identified with this participant and Figure 6.5 presents the number

of problems of each type. Two task failures were identified. The first relates again

to the complex formula for Rows that uses a Group By. The second one relates to

binding a control to data that are not from the Rows. The participant thought that

the binding was realized, but it was not. No medium problems were observed with this

participant. Six minor problems relate to the operators of the formula language and

the Studio. Four problems were recorded as missing functionalities (e.g. inherit Parent

control properties and set a Group By automatically). One problem was a bug, as the

system failed to delete a control. Three were cumbersome as the participant verbally

commented on those, e.g. difficult to understand the error messages and the use of the

control-join.

Questionnaires

The subjective ratings are shown in Figure 6.5. They indicate that the participant

liked uVis Studio in general. The Design Panel, E/R Model and Error List seems to

be useful panels. In contrast, uVis operators were hard and rated lower than others.

94

6.2 Results

Figure 6.5: Participant 2: Problem counts by type (left). Subjective ratings (right).

Debriefing

The participant thinks that constructing visualizations using the uVis formulas is feasi-

ble, but prior proper training and useful documentation is required. Also, he said that

“I would have liked simpler examples for explaining the Rows.” As he has been working

with ActionScript, where Parent means Canvas, the participant found it difficult to

understand the differences, saying: “The Parent is not intuitive.” The operators were

not easy to understand, but he said: “Using the operators in 2-3 more cases, it would

be ok for me.”

The participant liked the features of the Studio. His comments on the Studio were:

“I have never seen a Design Panel that provides immediate feedback, that’s good.

Auto-Completion is good as well, but in some cases failed. I like the Interact-Mode,

you don’t need to run and compile, but a better way of showing the Modes is needed.”

The participant thinks that the Studio helps him construct better visualizations, but

more controls are needed where users have more control over them. For example, he

wanted to have rounded corners in a control. Also he suggested that a more attractive

design for the Studio should be considered.

Finally, I showed him the initial version of MSProVis, and asked if he would be

able to construct it with the Studio and his tools, and estimate the time for both. The

participant reflected and replied: “If I have a stable version of the Studio, I have used

the operators a couple of times, I know the data, and know what to visualize, it would

take me about an hour. I cannot estimate how much it would take to build it from

scratch without using a toolkit; I do not know what toolkits exist. But, again I have

never constructed visualizations, so it is hard to give precise estimates.”

95

6.2 Results

Participant 3

Male; 31 years old; working as a PhD student in Computer Science for

the last 7 years; has been coding for the last 12 years; started using E/R

databases since 2009, but does not use it very often; started using spread-

sheet formulas in MS Excel 8 years ago, but does not use them very often;

took only a class on visualization, and has participated in several usabil-

ity studies regarding visualizations; coded a TreeMap for his class using

Piccolo.

Problem Counts

12 problems were identified with this participant and Figure 6.6 presents the number

of problems of each type. Three task failures were identified; the same task failure

problems encountered by participant 1 and 2. No medium problems were observed

with this participant. I observed two minor problems. The first relates to the names

of Modes and the second to the Name property in Property Grid. Three problems were

recorded as missing functionalities (e.g. missing the Data-View panel to see the real

data from the database). Three problems were bugs. In one of them, uVis failed

to re-compute the properties properly. I observed one cumbersome problem as the

participant verbally commented on the difficulty to understand the error messages.

Questionnaires

The subjective ratings are presented in Figure 6.6. They indicate that Auto-Completion

and Design Panel were the most appreciated part of the tool. uVis formulas were not

easy to use. Error List and E/R Model were not helpful.

Debriefing

uVis Studio supported only top-down approach to position controls, and the participant

asked for the Bottom property. When I told him that currently the tool does not

support it he said “I do HTML, so Top is fine.” The participant added a new property

and the Auto-Completion helped him find the Font property rapidly. Also, the Auto-

Completion assisted him to write a formula for the Rows property that used the join

operator. His comment was: “I like this, because it shows me only what I can use.”

96

6.2 Results

Figure 6.6: Participant 3: Problem counts by type (left). Subjective ratings (right).

Looking at the Design Panel, which provided him immediate feedback, he said: “Aha,

this is nice.”

The participant looked at the visualization, and dragged and dropped all controls

he needed. He renamed and positioned them referring to other control properties.

Next, he looked at the E/R model and thought aloud: “Now, I have to figure out

the Rows.” After completing the task the participant said: “I am still having problems

understanding the Rows, but the layout is OK. This may be because of my background.

I do a lot of HTML, but not SQL.”

The participant found the Studio similar to other IDEs, and believed that it helps

him construct faster visualizations because: “I can see the results when I am creating

it.” The Auto-Completion was helpful, especially when he specified the Rows. However,

in a few cases he did not get any suggestions, and suggested that such minor issues

should be corrected. The participant found the WYBIWYG feature of the Design Panel

useful and, as the other participants, he did not disable it. Regarding the Modes, the

participant said: “The Interact-Mode is helpful. The only problem that I have with

the Modes is that I have to figure them out. The naming is not clear.”

The participant compared uVis with Piccolo saying that “I find it very convenient

to directly map from data to the visualization. Piccolo does not have a similar concept,

but it is also a more general toolkit.” He found the tool pretty powerful, as he could

create a subset of the LifeLines in a short time. Furthermore, the participant believes

that “uVis fills comfortably the space in the middle between MS Excel, where you

can create fast simple visualizations, and the other toolkits used for more complex

visualizations. I have noticed from my colleagues, who create visualizations, that first

97

6.2 Results

they come up with the idea what the visualization should look like, and then look for

tools to implement. So, I am curious how this tool will enable that.” According to the

participant, this tool can be used by end-user developers who know SQL and can write

a HTML page.

Regarding the development of the initial version of MSProVis, he said: “I cannot

estimate how much time it would take to develop the visualization from scratch, as I

have never done it. But, using a toolkit it would take me some weeks. While in uVis,

assuming that it is stable, I think I can do it in less than a week. The only problem is

that if something goes wrong, I have to know how to debug or read the errors.”

Participant 4

Female; 22 years old; graduated student in Computer Science; has been

coding for the last 4 years; took a class in E/R databases in Spring 2011;

has basic knowledge of MS Excel spreadsheet, but has not done something

complicated; introduced to visualization area in summer 2011; coded a vi-

sualization using ActionScript in Flex, and has used Prefuse.

Problem Counts

14 problems were identified with this participant and Figure 6.7 presents the number

of problems of each type. I observed one task failure when the participant was not

able to specify a complex formula that used a Group By. No medium problems were

observed with this participant. I observed five minor problems. All of them relate to the

Studio (e.g. resize a control). Three problems of them were missing functionalities. For

example, she would have liked to see the hierarchy of the controls. One problem was a

bug as uVis Studio failed to set Parent and Canvas property automatically. I observed

two cumbersome problem as the participant verbally commented on the difficulty to

understand the error messages and keeping track of parent-child relationship.

Questionnaires

The subjective ratings are presented in Figure 6.7. From these ratings, one can see that

the participant better liked the Design Panel, Auto-completion than E/R model and

Error-List. uVis operators, data binding and Modes were also appreciated, but not to

the same degree.

98

6.2 Results

Figure 6.7: Participant 4: Problem counts by type (left). Subjective ratings (right).

Debriefing

At the end of task 1 the participant said: “I think I got how it works. But, I cannot

keep track of the controls, and especially the Parent. I could not keep the hierarchy

straight for this simple demo, and I definitely could not remember which module used

what data source on top of all that. The interface automatically changes these things

for you, which is great, but when I started to rename components, everything went

out the window. Other than that, it was cool to see the thing I was building as I was

writing the formulas.”

At the end of task 2, she said: “I never turned the data binding off, so I only imagine

that the Data-Mode off would be helpful if you were making templates. Debugging

in general seems pretty difficult, since there are so many references to this or that

component. Again, showing, rather than making the user remember, the parent-child

relationships would help a lot. Also, not being able to move the boxes after I specified

one formula for, say, “left”, was a little clumsy.”

The participant liked the Studio and its feature. She said: “I all the time used the

Design Panel, and it makes a difference with the immediate feedback.” She appreciated

the Interact-Mode, but the naming and the position of the window confused her. Her

comment was: “Modes make sense, but I would position the window over the Design

Panel.”

She thinks that the uVis can assist users in developing visualizations faster, but it

depends also on the type of visualization. The participant had developed a visualization

that use some animations, and said: “For richer static visualizations this tool would

99

6.2 Results

be better, but if you need a dynamic animation, I don’t think so. I don’t know how to

make animations.”

The participant compared the development process she applied when she created

her visualization with JavaScript with the one in the Studio. She could see similarities

and reported that “I incrementally created the visualization adding JavaScript code,

the more code I added the closer I got. The same applies for the Studio. I iteratively

drag and drop controls and set formulas. But, with this tool I do not need to run the

program.”

The participant believes this tool can be used by end-user developers to construct

visualizations, saying: “I think that it would be ok for end-user developers since Auto-

Completion tells you what you could use.”

Finally, I asked her if she could create the initial version of MSProVis using the

Studio. Her comment was: “Yes, I think it will be significantly more difficult than the

previous two as the debugging part is hard.” Also, keeping track of the Parent and the

Rows was not easy for her, commenting that “If I could easily trace back to the Parent

and the Rows, it might have helped me.” Assuming that the Studio is stable, and has

the required functionalities, she could construct the visualization in approximately two

hours, and one hour to make sure that everything worked fine. Finally, she added: “If

I use a toolkit, it will take longer, because you are typing code, and you do not get

immediate feedback. It is easier to debug, but still would be longer, but I am not sure

how much.”

Participant 5

Male; 26 years old; working as a PhD student in Computer Science from

2007, has used E/R databases since 2004; has used spreadsheet formulas

for the last 9 years; has been researching the visualization field since 2008;

first uses Spotfire to construct a visualization, and if it is not possible he

would code it.

Problem Counts

10 problems were identified with this participant and Figure 6.8 presents the number

of problems of each type. I observed one task failure. The participant was not able to

specify a complex formula that used a Group By. One medium problem was observed

100

6.2 Results

Figure 6.8: Participant 5: Problem counts by type (left). Subjective ratings (right).

with this participant. After several attempts, the participant specified the correct

formulas for the Rows. I observed four minor problems that relate to uVis operators

and the Studio (e.g. names of Modes). One problem was missing functionality, which

relate to missing details in the Design Panel. Two problems were bugs. The first was

caused by the uVis kernel, which did not align controls properly. The second relates

to Auto-Completion, which failed to provide suggestions. I observed one cumbersome

problem as the participant verbally commented on the difficulty to understand the error

messages.

Questionnaires

The subjective ratings are presented in Figure 6.8. The participant seems to like the

Studio panels better than the formula concepts and operators. The Design Panel and

Auto-Completion were appreciated more than others.

Debriefing

The participant compared uVis with Spotfire [97] saying that you can create similar

visualization, like the LifeLines, but it will not look as good as in uVis. Also, he added

that in Spotfire you are limited to implement and test interaction technologies and

create custom visualizations.

The Studio reminds him of visual GUI software, and appreciated the WYBIWYG

feature. He said: “It is cool. You don’t have to compile it, or do anything. It makes

the development easier.” However, he added that the feedback could have been better

when it comes to how many controls are generated, hidden, and what is not working.

101

6.2 Results

Once, when he was specifying the formulas for the bar, he removed the value in the

Width property. Automatically, uVis set the width to the default value, but this was

not shown in the property-grid. This confused the participant saying: “Why does it not

tell me that the value is set to default?” The participant also liked the Interact-Mode

and commented: “The Interact-Mode was helpful as well, and I would like a keyboard

shortcut for that.”

The participant thinks the Studio helps in constructing visualizations faster, but not

sure what the limitations in this tool are. His comment was: “definitely it’s better than

writing code, but there may be visualizations that might not be possible to implement,

for example animations.” Regarding the end-user developers, his opinion was that the

Studio can support end-user developers construct visualizations, but it needs better

errors and warnings for the hidden instances. He stated: “Showing errors better and

adding warnings that there are hidden instances, would make it easier.”

Regarding the development of the initial version of MSProVis, the participant said:

“If everything works as it should, I would create it in one hour.” The participant has

good knowledge of Spotfire, and commented: “Spotfire is my de-facto tool. For the

people in the lab I am the expert.” He would create something similar using bar charts

and stack-chart, as the following quote illustrates: “It would be three bar charts, and

another view using the stack chart. But, it would not be the same.” Looking at the

E/R model of the visualization, he commented: “to create a visualization using several

tables in Spotfire, would not be easy. You can setup linking with tables but it becomes

too complicated, and it is not like a relational database. It would not be as flexible as

with the Studio.” Finally, he estimated that coding this visualization, would take him

at least two weeks.

Participant 6

Male, 24 years old; PhD student in Computer Science for the last one and

a half years; has been coding since 2006; started using E/R databases 1

year ago; has been using spreadsheet formulas in MS Excel; worked with

visualization for 3 months while he took a class for his studies; created a

visualization for his class project using JavaScript and D3 [14].

102

6.2 Results

Figure 6.9: Participant 6: Problem counts by type (left). Subjective ratings (right).

Problem Counts

12 problems were identified with this participant and Figure 6.9 presents the number

of problems of each type. Three task failures were identified; the same task failure

problems encountered by participant 3. One medium problem was observed with this

participant, which relates to specifying a Rows formula. I observed two minor problems.

The first relates to the names of Modes and the second to the top-down approach

of uVis Studio. One problem was recorded as missing functionality. The participant

asked for a debugging feature. I observed a bug when Auto-Completion failed to provide

suggestions. Four cumbersome problems were recorder and they were: refer to a control,

the control-join operator, error messages content, and keeping track of Parent.

Questionnaires

The subjective ratings are presented in Figure 6.9. From these ratings, one can see that

the participant found difficult ot bind control to data. uVis formula concepts were less

appreciated than uVis Studio.

Debriefing

The participant has been using Eclipse, but he prefers the Design Panel in uVis Studio.

His comment was: “It is nice to see what I am making.” Regarding the Interact-Mode,

he said that in more complicated cases it would be helpful, but in these small tasks, he

could not really appreciate the feature. He added: “The E/R model helped me a lot

in specifying the Rows, but still I have to think. It is difficult to handle databases for

everyone, especially the joins.”

103

6.3 Summary

The Studio can help him make visualizations faster, but for standard ones such as a

bar chart, he would use MS Excel. The participant commented on the D3 tool saying:

“D3 is more for something from scratch, it is different from uVis.”

He believed that end-user developers can use uVis, and he thinks that the syntax is

just a matter of time. Further, he commented: “the challenging part is the database.

So, I think they should know some SQL.”

I asked the participant if he would be able to create the initial version of MSProVis

with uVis Studio. His comment was: “considering that I know what I am visualizing,

and I have the tool working, I think so, but I cannot estimate. Using other tools? I

don’t know if there are any tools that would help me, but for sure I would search the

web first.”

6.3 Summary

In this study, six programmers, who are not professionals, were asked to use uVis and

create a bar chart and a simplified LifeLines. The results of this study shows that

programmers can use uVis Studio and create faster custom visualizations with the

Drag-Drop-Set-View-Interact approach. From my observations and their comments

uVis Studio support better the development of custom visualizations than other tools

because they interact with visual object and not code, and view immediate results as

they progress.

Participants looked at the initial version of MSProVis and except for participant 6,

they estimated the time it would had taken them to construct the visualization with

the Studio versus other tools. Using other tools, they would have spent 2-3 weeks on

average. While, using a mature version of uVis Studio, their estimations varied from

one hour to less than a week. Although this has to be proven, it still indicates the

perceived power of uVis formulas and the Studio. As some of them also said, some

custom visualizations may not be possible to implement with the current version.

Below, I summarize the usability problems and the subjective ratings from the

questionnaires. I conclude with a summary of my observations on the uVis formula

language and uVis Studio.

104

6.3 Summary

Usability Problems

The participants constructed the visualizations and I assisted them whenever they were

not able to complete a step or the system failed. Whenever I had to interfere, I recorded

it as a usability problem and classified it. This version of uVis Studio corresponded to a

functional prototype that failed several times. Although I followed the same procedure

with each participant, some usability problems might have been caused by variations

in my presentation.

I group the usability problems in two categories: those caused by the uVis Formula

Language and those caused by uVis Studio. Table 6.1 shows a summary of the problems

identified in this usability study. 38 different usability problems were identified. Some

problems (e.g. specify a formula that used a Group By for the Rows property) were

encountered by all participants, other problems (13 in total) by one (e.g. resize a con-

trol). Several problems were caused by uVis kernel bugs. For example, after specifying

the control-join operator the kernel did not compile the formulas correctly and no error

messages were shown in the Error List panel. As a result the participants had to close

and re-open the visualization. Another bug was related with the algorithm that the

Auto-Completion used. Some of the suggestions for improvement, which I implemented

in the second version of the Studio are:

• A new feature that allows users to set properties from the E/R Model.

• A new panel that shows the control and data hierarchy.

• A new panel that shows the row-data from the tables. Also, it shows the data

bound to a control, once the user selects a control.

• Improved user interface.

• Improved presentation and algorithm of the Auto-Completion.

• Improved interaction with the Design Panel.

• Improved presentation of the E/R Model.

• Improved error messages in the Error-List.

• Improved presentation of the Modes.

105

6.3 Summary

Table 6.1: Usability problems encountered in this study. They are grouped by root

problem, and classified by type. For each problem I show who encountered it and potential

solutions.

106

6.3 Summary

• Icons for controls in the Toolbox.

• Descriptive tool-tips in the Studio.

Some problems need more investigation to identify a good solution and implement it.

Questionnaires

After each task, participants were asked to fill a questionnaire. Figure 6.10 show the

ratings for task 1 and 2, and the minimum, maximum and average ratings of each

task. Note that in the first questionnaire they were not asked about the Interact-

Mode, because they did not use the feature. Although the sample is small, the average

values confirm my observations and their comments during the usability study and the

interview. The ratings shows that features of the Studio (WYBIWYG, Interact-Mode

and Auto-Completion) were useful to all of them. The uVis formula language was rated

lower as some of them had difficulties understanding it.

uVis Formula Language

Participants could easily specify simple formulas that bind controls to data and map

properties to table fields. In complicated cases, they were more skeptical on how to

specify a formula that uses the special uVis operator (-<). Some of them solved the con-

fusion by referring to the E/R Model and using Auto-Completion. This study showed

that in order to use uVis Studio, users need to have some database knowledge, and

understand SQL concepts such as: joining tables, Group By, etc. All of them appre-

ciated the simplicity of the control-join operator. One of them looked at the operator

and managed to figure out the algorithm. The others were more skeptical and I had to

explain the operator.

Parent refers to another control so that the formulas can use its data row. Canvas

means that the control is attached to the Canvas control and scrolls with it. These were

not easily understood by the participants. Two of the participants suggested that a new

panel that presents the Parent and Canvas hierarchy could improve understandability.

This window would help them distinguish which controls were bound to what data,

and which control contained what controls. Furthermore, improving the functionalities

that automatically sets the Parent and Canvas property may reduce the confusion.

107

6.3 Summary

F
ig

u
re

6
.1

0
:

P
ar

ti
ci

p
an

ts
’

ra
ti

n
g

fo
r

T
a
sk

1
a
n

d
2

(t
o
p

).
M

in
im

u
m

,
M

a
x
im

u
m

a
n

d
A

ve
ra

g
e

ra
ti

n
g

fo
r

T
a
sk

1
a
n

d
2

(b
ot

to
m

).

108

6.3 Summary

Referring to control properties was easier. They could rapidly write the formulas

using the bang and dot operator. One of them used the dot operator all the time,

while another used only the bang. In both cases, uVis compiled the formulas correctly,

but the participant had not clearly understood the difference. Making uVis correct the

formula to bang or dot, might help.

uVis Studio - Features

What-You-Bind-Is-What-You-Get: All participants found the WYBIWYG fea-

ture of the Design Panel useful. They could drag-drop controls, bind them to data and

get immediate feedback on the screen. From the observations and their comments, I can

say that all participants were looking at the Design Panel while they changed formulas.

Further, they had the possibility to turn this feature off but none of them did. This

confirms that they found it useful. Some of the participants asked for more detailed

information in the Design Panel (e.g. warning the user in case of hidden controls) and

being able to move controls after they had specified a formula for their position.

Auto-Completion: From the observations and the participant’s comments, the

Auto-Completion assisted them in most of the cases. They appreciated the fact that it

was showing what can follow, and this ensured them that they were writing the correct

formula. The Auto-Completion reduced the cognitive effort participants had to remem-

ber the syntax. However, in some cases the Auto-Completion failed (e.g. no suggestions

after a control function). Further, one participant suggested that introducing tool-tips

on mouse over, could provide them a better explanation of the suggestions.

The Interact-Mode: Participants liked the Interact-Mode feature, although it was

only used in the second task because of the simplicity of task 1. They were confused as

the names (InteractionView and DataView at that time) were misleading. The names

in the Modes should explicitly describe the states. One of them suggested using a slider

rather than a checkbox, to improve understandability. Two of them suggested placing

the Modes over the Design Panel to improve visibility.

uVis Studio - Coordinated Panels

The panels allowed them to view information from different perspectives. Changes in

the Property Grid were immediately reflected in the Design Panel, and viewing the E/R

Model helped them specify the formulas. They could identify the relationships, and

109

6.3 Summary

the Auto-Completion confirmed their assumptions. Two participants suggested that

viewing the data in the database, would ensure them that the visualization showed the

correct data. The Error List panel was less helpful than the other panels, because all

participants found some of the errors hard to understand, and asked for better error

messages. However, they appreciated the fact that they could select an error and see the

wrong formula colored in red. In this usability study, the Toolbox contained a number

of controls that allowed them to carry out the tasks. However, they commented that

they might need more controls. Also, one participant suggested that small icons in the

Toolbox would have helped her in locating the controls faster.

110

Chapter 7

Usability Study with End-User

Developers

This chapter presents a usability study with eight end-user developers. No participant

had prior knowledge of the uVis formulas or the Studio. The second version of uVis

Studio was used in this study. The purpose of this usability study was to investigate if

end-user developers can construct custom visualizations with the Drag-Drop-set-View-

Interact approach. In addition, it aimed at identifying usability problems and providing

suggestions for further improvement.

7.1 Procedure and Tasks

Each usability test was conducted in three hours and consisted of two tasks: construct

a bar-chart following a video and construct the PCD. I conducted the study, kept

notes, and used a recording tool for the sessions. The study was conducted at the IT

University of Copenhagen, using a laptop connected to an external monitor. To avoid

effects that might have been introduced through variations of the oral presentation, I

decided to explain the uVis formula language and the Studio through a video. I used

the same problem classification as in Chapter 6. I assisted the participant whenever

there were misinterpretations, confusions or malfunctions of the system. Whenever I

assisted them, I recorded it as a usability problem. The documentation used in this

study is presented in Appendix C.

111

7.1 Procedure and Tasks

Figure 7.1: The bar-chart and the E/R data model.

Task 1: Construct a Bar-Chart

This task lasted no more than one and a half hours. In the first 20 minutes, I asked

some background questions, briefly explained the participant the uVis formula language

through the reference card, and showed the uVis Studio on paper.

Next, the participant followed a video (played on the laptop screen) and replicated

the steps in the uVis Studio (opened in the monitor). The video showed step-by-step

how to create the bar-chart shown in Figure 7.1. The video was 10 minutes long. It had

no audio, but several call-outs to explain how to use the uVis formula and the Studio.

More explicitly the call-outs explained: how to bind control to data, how to refer to

properties, how to map a field to a property, where to view data, properties and the

hierarchy, where to find the error messages, etc. The participant was informed from

the beginning that he was allowed to stop the video, play it backwards and forwards.

I encouraged the participant to carry out the task in a think-aloud manner. At

the end of this task, I asked the participant 20 questions regarding the uVis Formula,

the uVis Studio and the uVis approach. 19 of them were questions on a 5-point Likert

scale. Two of them were optional because the questions were related to the visualization

development model, and the participant might not have the required knowledge to

answer. The last question was about suggestions for improvement.

The goal of this task was to introduce the uVis formula language and the Studio

with a video, identify usability problems and gather feedback.

112

7.1 Procedure and Tasks

Figure 7.2: The PCD, the simplified PCD used in this study, and the E/R Data Model.

Task 2: Construct the Process Completion Diagram

I presented the Process Completion Diagram (PCD) using a scenario from the medical

domain and explained how the event-log data are visualized. The participant was asked

to create a simplified PCD. The simplified PCD (Figure 7.2) did not show the horizontal

and vertical lines in the X-axis and the Y-axis, the average and the standard deviation.

However, the steps involved in constructing the simplified PCD are representative ones

(e.g. drag and drop control, refer to a property, bind a control to data, map a field

to a property, view immediate feedback, check errors, try as an end-user, etc.) The

participant would have been able to enrich it with the missing details, but I decided to

use this version due to time constraints. The entire usability test was limited to three

hours. The participant was asked to create the PCD thinking aloud.

The uVis formula language reference card, a reference card where the visualization

was showed without any formulas, and some hints in a second page were given to the

participant. The hint page showed them how to write a complex Rows formula with

a Group By, how to use SQL aggregates (Count(), Max(), Min), how to convert a

String type to Integer type, and described the Requery() function. In addition, I

gave the participant another reference card with the Studio shortcuts. The participant

had one hour and 30 minutes to finish this task. At the end, the participant answered

the same questionnaire as in task 1.

113

7.2 Results

7.2 Results

This section presents the results of this study. For each participant I describe his/her

background, report the number of problems categorized by type, subjective ratings,

and summarize participants comments about the tool. I conclude this chapter with a

summary of the results.

Participant 1

Male; 25 years old; holds a bachelor’s degree in Economics and works as a

project economist; has never developed a program by himself, but is able

to read and edit Visual Basic code (last time was four months ago); has

a good knowledge of E/R databases because in his previous work he was

a database analyst, but as he said he is not an expert; has never used a

development environment; used MS Excel spreadsheets a week ago; has

never programmed a visualization, but has created standard visualizations

with MS Excel.

Problem Counts

The first task was performed in 40 minutes and the second in one hour and 5 minutes.

Figure 7.3 presents the number of problems of each type. In total, 11 problems were

identified with this participant. Two of them were task failures: specifying a Rows

formula that used a Group By and not noticing errors in Error List. No minor and

medium problems were observed with this participant. Five bugs were observed (e.g.

the Rows formula was not evaluated correctly). Two missing functionality were related

with uVis Studio. The first relates to more drag-and-drop actions. The second has to

do with moving a control when a formula is set for Left or Top. Two were cumbersome

problems as the participant verbally commented on those: better error messages and

specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.3. These figures indicate that the

participant found difficult the uVis formula language and appreciated better the Stu-

dio. Auto-Completion, interacting with the Design Panel, Error List and testing the

114

7.2 Results

Problem Type No.
Task Failure 2
Minor 0
Medium 0
Cumbersome 2
Bug 5
Missing Functionality 2

Question Task 1 Task 2
How easy was it to use uVis formulas? 3 2
How easy was it to understand uVis properties: Rows, Parent and Canvas. 3 4
How easy was it to use uVis operators (., !, - 4 3
How easy was it to connect controls with data? 2 4
How easy was it to use uVis Studio? 3 4
How useful was the Auto-Completion in the property grid? 4 5
How useful was it to preview the live version of the visualization in the Design Panel? 3 2
How useful was it to interact with the Design Panel? 3 5
How useful was it to have the Interact-Mode? 3 4
How easy was it to use test the application as an end-user? 5 5
How useful was it to see the E/R model? 3 2
How useful was it to set formulas from the E/R model? 2 2
How useful was it to see the Error List window? 5 4
Were the errors understandable in the Error List? 4 5
How useful was it to see the real row-data in the window Data View? 4 3
How useful was it to see the controls in the window Control and Data Hierarchy? 4 4
How much the formula language does facilitate visualization development?* 3 4
How much the development environment does facilitate visualization development?* 3 5
Do you think you could use uVis in your domain and create visualizations? 3 4

Figure 7.3: Participant 1: Problem counts by type (left). Subjective ratings (right).

application as an end-user are some of the most rated aspects of uVis. While, other

features were found not less useful (e.g. E/R Model, setting the formulas from E/R

Model, DataView, uVis operators).

Debriefing

At the end of the study he commented: “It will be really easy to create visualizations

with this tool, but users need some IT and database knowledge. It makes sense why

you asked for end-user developers. The formula language seems very dynamic. I would

be able to use it more effectively but I need some practice. This is an easy way to show

data, and MS Excel has some limitations. I had also difficulties with Excel although

they try to make it very user-friendly.”

Participant 2

Female; 26 years old; graduated student in Communication and Informatics;

currently enrolled in the master’s programme “Innovative Communication

Technologies and Entrepreneurship” at the Aalborg University; has never

programmed; worked once with E/R databases during her bachelor’s stud-

ies, six years ago; has used Eclipse 2-3 times, and last time was a month

ago; has used MS Excel spreadsheets, but not extensively; has never pro-

grammed a visualization or created a visualization.

115

7.2 Results

Problem Type No.
Task Failure 11
Minor 2
Medium 2
Cumbersome 2
Bug 5
Missing Functionality 4

Question Task 1 Task 2
How easy was it to use uVis formulas? 5 4
How easy was it to understand uVis properties: Rows, Parent and Canvas. 4 4
How easy was it to use uVis operators (., !, - 2 4
How easy was it to connect controls with data? 5 4
How easy was it to use uVis Studio? 4 4
How useful was the Auto-Completion in the property grid? 4 5
How useful was it to preview the live version of the visualization in the Design Panel? 4 4
How useful was it to interact with the Design Panel? 4 4
How useful was it to have the Interact-Mode? 4 5
How easy was it to use test the application as an end-user? 4 5
How useful was it to see the E/R model? 5 4
How useful was it to set formulas from the E/R model? 5 4
How useful was it to see the Error List window? 5 5
Were the errors understandable in the Error List? 5 4
How useful was it to see the real row-data in the window Data View? 4 5
How useful was it to see the controls in the window Control and Data Hierarchy? 4 5
How much the formula language does facilitate visualization development?* 4 4
How much the development environment does facilitate visualization development?* 4 4
Do you think you could use uVis in your domain and create visualizations? 5 4

Figure 7.4: Participant 2: Problem counts by type (left). Subjective ratings (right).

Problem Counts

The participant finished the first task in 50 minutes. The second task was performed in

one hour and 20 minutes. She faced several problems with data binding and referring to

control properties. My conclusion is that the participant had IT skills that correspond

to a simple user and not end-user developer.

Figure 7.4 presents the number of problems of each type. In total, 26 problems

were identified with this participant. 11 problems were task failure; they relate to data

binding, Parent concept and not noticing the errors in the Error List. Two minor

and two medium problems were observed and they relate to uVis formulas. Five bugs

were observed (e.g. the Rows formula was not evaluated correctly). Four were missing

functionality problems related with uVis formulas (e.g. using an SQL aggregate in Rows)

and the Studio (e.g. moving a control when a formula is set for Left or Top). Two

were cumbersome problems as the participant verbally commented on those: better

error messages and specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.4. One can notice that the ratings

show a high level of appreciation, but they do not match participant’s experience as I

continuously helped her. This is also reflected in the below debriefing.

116

7.2 Results

Debriefing

At the end of the usability test, the participant said: “I think I need more practice and

database knowledge. The formulas were not easy to write, but I think the Studio helps

you, especially the Design Panel.”

Participant 3

Female; 32 years old; holds a master’s degree in Communication and Infor-

matics; currently is a PhD student at the Roskilde University investigating

healthcare and IT; has programmed only during some courses in 2005; used

E/R databases during her studies, and briefly in 2010 when she was working

as business developer in a Danish bank; has used Dreamweaver to create

a website in 2005; has good knowledge of MS Excel spreadsheets and used

it 2 days ago; has never programmed a visualization but she has used MS

Excel to create standard ones.

Problem Counts

The participant completed the first task in 45 minutes. The second task lasted one hour

and 10 minutes. Figure 7.5 presents the number of problems of each type. In total, 15

problems were identified with this participant. Three of them were task failures. One

of them relates to distinguishing the selected control by means of color. Two minor

problems were recorded and they relate to the uVis formulas language. No medium

problems were observed. Five problems were bugs (e.g. the uVis kernel failed to

compute Bottom). Three were missing functionality problems: show always the control

in the Design Panel, move a control when control position is set to formula, and move

only one control instance. Two were cumbersome problems as the participant verbally

commented on those: better error messages and specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.5. From the ratings, it seems that the

participant found difficult to understand the error messages and not helpful the Error

List. Connecting to data using uVis operators, Design Panel, Auto-Completion and

Data-View were appreciated more than others (e.g. DataView).

117

7.2 Results

Problem Type No.
Task Failure 3
Minor 2
Medium 0
Cumbersome 2
Bug 5
Missing Functionality 3

Question Task 1 Task 2
How easy was it to use uVis formulas? 5 4
How easy was it to understand uVis properties: Rows, Parent and Canvas. 5 5
How easy was it to use uVis operators (., !, - 4 4
How easy was it to connect controls with data? 5 5
How easy was it to use uVis Studio? 4 4
How useful was the Auto-Completion in the property grid? 4 4
How useful was it to preview the live version of the visualization in the Design Panel? 5 5
How useful was it to interact with the Design Panel? 4 5
How useful was it to have the Interact-Mode? 4 5
How easy was it to use test the application as an end-user? 4 4
How useful was it to see the E/R model? 5 5
How useful was it to set formulas from the E/R model? 4 4
How useful was it to see the Error List window? 2 3
Were the errors understandable in the Error List? 4 1
How useful was it to see the real row-data in the window Data View? 5 5
How useful was it to see the controls in the window Control and Data Hierarchy? 5 4
How much the formula language does facilitate visualization development?* 4 4
How much the development environment does facilitate visualization development?* 4 4
Do you think you could use uVis in your domain and create visualizations? 5 4

Figure 7.5: Participant 3: Problem counts by type (left). Subjective ratings (right).

Debriefing

At the end of the usability test, the participant said: “ It was a long time since I worked

with databases. I had to do many things at the same time: recover my knowledge, figure

out the panels and how to use the tool, focus on the video and relate the video to what

I know. To find the right balance of the formula language is probably a delicate matter,

but using the software for the first time was a bit too technical. If I had some more

practice, things would have been better. With the second task it got a bit easier. It

was fun but also challenging.”

Participant 4

Female; 28 years old; holds a master’s degree in Software Engineering and

Management; working as a researcher in a Danish bank; has developed an

MS Access program in 2005, and has edited code during her studies before

2008; has an understanding of E/R databases but has not used a database

since 2008; used Visual Studio but not extensively during her studies; used

MS Excel spreadsheets in 2009; has never programmed a visualization, but

has created standard visualizations with MS Excel.

118

7.2 Results

Problem Type No.
Task Failure 3
Minor 2
Medium 0
Cumbersome 2
Bug 6
Missing Functionality 6

Question Task 1 Task 2
How easy was it to use uVis formulas? 4 3
How easy was it to understand uVis properties: Rows, Parent and Canvas. 4 3
How easy was it to use uVis operators (., !, - 5 5
How easy was it to connect controls with data? 5 3
How easy was it to use uVis Studio? 4 4
How useful was the Auto-Completion in the property grid? 5 5
How useful was it to preview the live version of the visualization in the Design Panel? 5 5
How useful was it to interact with the Design Panel? 5 5
How useful was it to have the Interact-Mode? 5 5
How easy was it to use test the application as an end-user? 5 5
How useful was it to see the E/R model? 5 5
How useful was it to set formulas from the E/R model? 5 5
How useful was it to see the Error List window? 5 4
Were the errors understandable in the Error List? 5 5
How useful was it to see the real row-data in the window Data View? 4 5
How useful was it to see the controls in the window Control and Data Hierarchy? 5 5
How much the formula language does facilitate visualization development?* 4 5
How much the development environment does facilitate visualization development?* 5 5
Do you think you could use uVis in your domain and create visualizations? 5 5

Figure 7.6: Participant 4: Problem counts by type (left). Subjective ratings (right).

Problem Counts

The participant completed the first task in 40 minutes. The second task lasted one

hour and 5 minutes. Figure 7.6 presents the number of problems of each type. In

total, 19 problems were identified with this participant. Three problems were task

failures: using a Group By, not noticing the errors in Error List, and specifying a SQL

aggregate. Two minor problems were recorded and they relate to the uVis Studio. No

medium problems were observed. Six problems were bugs. One of the six bugs was

caused by Property Grid. The formula was not updated properly and the participant

had to confirm a change by pressing Enter. Six were missing functionality problems.

The participant would have preferred to set properties from the Control-Data Hierarchy

panel, move controls after setting the position of a control, etc. Two were cumbersome

problems as the participant verbally commented on those: better error messages and

specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.6. The ratings indicate that the par-

ticipant found the Studio better than the formula language. The Design Panel, Auto-

Completion, E/R Model and Control-Data Hierarchy were appreciated more than uVis

operators.

119

7.2 Results

Debriefing

At the end of task 1 the participant commented: “It reminds me of Gemini, a tool

I used in the bank in 2008. I was basically using the toolbox and property grid, but

there were no E/R Model and DataView. This made my work difficult.” After finishing

the second task she added: “the system is easy to use, but you need some practice.

Constructing visualizations is difficult, because you should know the domain data,

have a good knowledge of databases as well. I liked the panels, the drag and drop, and

viewing the changes in the Design Panel. At some point, when I set a wrong formula

for the Rows, the box disappeared, it should always be there. The Auto-Completion

feature was a bit slow in some cases.”

Participant 5

Female; 24 years old; holds a bachelor’s degree in Information Technology;

currently is enrolled in the master’s programme “Game Design” at the IT

University of Copenhagen; has programmed only during some courses, and

she did more editing than programming six months ago; used the SQL server

three years ago during a bachelor course; has used Visual Studio, last time

three years ago; has not used MS Excel spreadsheets since 2009, and at that

time did simple and basic things; has never programmed a visualization but

used SPSS to create standard one.

Problem Counts

The participant finished the first task in 45 minutes. The second task lasted one hour

and 10 minutes. Figure 7.7 presents the number of problems of each type. In total,

21 problems were identified with this participant. Eight of them were task failure:

mapping a field to a property, specifying interactions with refresh(), using a SQL

aggregate, not noticing the error messages, etc. Three minor problems were recorded

and one relates to uVis operators and two to the Studio. One medium problems was

observed, which relates to aligning controls using Index. Five problems were bugs. One

of the them was caused by the uVis kernel, which failed to compute Rows correctly.

Two were missing functionality problems and they relate to the Studio. Two were

120

7.2 Results

Problem Type No.
Task Failure 8
Minor 3
Medium 1
Cumbersome 2
Bug 5
Missing Functionality 2

Question Task 1 Task 2
How easy was it to use uVis formulas? 4 3
How easy was it to understand uVis properties: Rows, Parent and Canvas. 5 4
How easy was it to use uVis operators (., !, - 4 5
How easy was it to connect controls with data? 4 4
How easy was it to use uVis Studio? 5 3
How useful was the Auto-Completion in the property grid? 4 4
How useful was it to preview the live version of the visualization in the Design Panel? 5 5
How useful was it to interact with the Design Panel? 4 5
How useful was it to have the Interact-Mode? 4 5
How easy was it to use test the application as an end-user? 5 5
How useful was it to see the E/R model? 5 5
How useful was it to set formulas from the E/R model? 4 4
How useful was it to see the Error List window? 4 4
Were the errors understandable in the Error List? 3 3
How useful was it to see the real row-data in the window Data View? 5 4
How useful was it to see the controls in the window Control and Data Hierarchy? 4 5
How much the formula language does facilitate visualization development?* 3 5
How much the development environment does facilitate visualization development?* 5 5
Do you think you could use uVis in your domain and create visualizations? 5 5

Figure 7.7: Participant 5: Problem counts by type (left). Subjective ratings (right).

cumbersome problems. The participant verbally commented on those. They are: better

error messages and specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.7. Overall, the ease of use for uVis

formula language and the Studio were rated the same. Most of the features and panels

of the Studio were rated higher.

Debriefing

At the end she added: “It looks like a program that is nice to use. The suggestions

helped me a lot, but Group By is difficult. I need some more practice with the formulas,

but I like that you can see what you are doing. Also, there are the errors which I did

not notice several time, but they are pretty easy to see what the problem is.”

Participant 6

Male; 28 years old; PhD student at Copenhagen Business School, investi-

gating the management of social business; graduated student in Information

Technology; programmed during his studies, and last time was five years

ago; used E/R databases for six month in 2007; has used Eclipse and Net-

Beans five years ago; used MS Excel spreadsheets last week; has never

121

7.2 Results

Problem Type No.
Task Failure 5
Minor 2
Medium 0
Cumbersome 2
Bug 5
Missing Functionality 3

Question Task 1 Task 2
How easy was it to use uVis formulas? 4 3
How easy was it to understand uVis properties: Rows, Parent and Canvas. 3 4
How easy was it to use uVis operators (., !, - 2 4
How easy was it to connect controls with data? 3 3
How easy was it to use uVis Studio? 4 4
How useful was the Auto-Completion in the property grid? 4 4
How useful was it to preview the live version of the visualization in the Design Panel? 4 4
How useful was it to interact with the Design Panel? 4 4
How useful was it to have the Interact-Mode? 3 4
How easy was it to use test the application as an end-user? 3 4
How useful was it to see the E/R model? 3 5
How useful was it to set formulas from the E/R model? 4 5
How useful was it to see the Error List window? 4 3
Were the errors understandable in the Error List? 2 4
How useful was it to see the real row-data in the window Data View? 2 4
How useful was it to see the controls in the window Control and Data Hierarchy? 4 4
How much the formula language does facilitate visualization development?* 2 3
How much the development environment does facilitate visualization development?* 3 3
Do you think you could use uVis in your domain and create visualizations? 4 4

Figure 7.8: Participant 6: Problem counts by type (left). Subjective ratings (right).

programmed a visualization, but has created standard visualizations with

MS Excel.

Problem Counts

The participant finished the first task in 40 minutes and the second task in one hour

and 10 minutes. Figure 7.8 presents the number of problems of each type. In total, 17

problems were identified with this participant. Five task failures were observed. They

relate to data binding, not noticing error messages and confusing the Text property

with the Name property. Two minor problems were recorded and they relate to the

Studio. No medium problems were observed with this participant. Five problems

were bugs. One of the them was caused by the Property Grid, which failed to correctly

update the name of a designer property. Three were missing functionality problems and

they relate to the Studio. Two were cumbersome problems. The participant verbally

commented on those. They are: better error messages and specifying Top instead of

Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.8. The E/R Model was the highest

rated by this participant, in contrast to connecting control with data and Error List.

122

7.2 Results

Debriefing

At end the participant commented: ”Binding control to data is not easy, especially

when you have to use a Group By. I would have preferred a switch rather than a slider.

The errors should be more visible and should catch my attention. Error prompts should

be as pop-ups as I never noticed them. It is a nice tool for a researcher, who does not

have a strong technical background, to use and create their desktop dashboard such as

Social Media Control Panels.”

Participant 7

Male; 36 years old; graduated student in telecommunication; last time

created a web page using Joomla two years ago; experimented with E/R

databases for some months in 2010; used Visual Studio two years ago; is

experienced with MS Excel spreadsheets; has never programmed a visual-

ization, but has created standard visualizations with MS Excel.

Problem Counts

The participant performed the first task in 50 minutes. The second was performed in

one hour and 10 minutes. Figure 7.9 presents the number of problems of each type.

In total, 14 problems were identified with this participant. Three task failures were

observed. The first two relate to data binding. The third was caused by Error List

because he did not noticed the errors. Two minor problems were recorded. In the first

he tried to refer to a property using the control name, and the second was caused by

the double quotes. No medium problems were observed with this participant. Five

problems were bugs. One of the them was caused by the Auto-Completion feature,

which failed to provide suggestions. Two were missing functionality problems and

they relate to the Studio. Two were cumbersome problems. The participant verbally

commented on those. They are: better error messages and specifying Top instead of

Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.9. The rating can be interpreted as

follow: the participant found uVis formula language difficult to use, and some parts of

123

7.2 Results

Problem Type No.
Task Failure 3
Minor 2
Medium 0
Cumbersome 2
Bug 5
Missing Functionality 2

Question Task 1 Task 2
How easy was it to use uVis formulas? 3 3
How easy was it to understand uVis properties: Rows, Parent and Canvas. 3 2
How easy was it to use uVis operators (., !, - 2 3
How easy was it to connect controls with data? 4 3
How easy was it to use uVis Studio? 4 3
How useful was the Auto-Completion in the property grid? 5 5
How useful was it to preview the live version of the visualization in the Design Panel? 4 5
How useful was it to interact with the Design Panel? 3 4
How useful was it to have the Interact-Mode? 4 4
How easy was it to use test the application as an end-user? 5 5
How useful was it to see the E/R model? 4 4
How useful was it to set formulas from the E/R model? 3 3
How useful was it to see the Error List window? 5 3
Were the errors understandable in the Error List? 4 4
How useful was it to see the real row-data in the window Data View? 5 5
How useful was it to see the controls in the window Control and Data Hierarchy? 5 4
How much the formula language does facilitate visualization development?* N/A 4
How much the development environment does facilitate visualization development?* 3 3
Do you think you could use uVis in your domain and create visualizations? 5 5

Figure 7.9: Participant 7: Problem counts by type (left). Subjective ratings (right).

the Studio were highly rated (e.g. Auto-Completion, Design Panel, DataView) unlike

others (e.g. E/R Model and Error List).

Debriefing

During the second task, the participant said “I have used Group By many years ago,

but I am not sure if I remember it. Could you explain it?” I gave him an example and

told him how Group By works. This clarified his concerns and helped him write the

correct formulas. At the end he commented: “It is a good thing that it is at run-time,

you do not need to do anything.”

Participant 8

Male; 33 years old; currently studying Information Management at Copen-

hagen Business School, and before has worked as a consultant in marketing;

programmed last time when he was 16 years old; I explained briefly what

an E/R database is because he had never used an E/R databases; no prior

experience with a development environment; used MS Excel spreadsheets

when he was a consultant, but has not practiced it since 2007; has never

programmed a visualization, but has created standard visualizations with

MS Excel and Google Spreadsheets.

124

7.2 Results

Problem Counts

The participant performed the first task in one hour and the second in one hour and

20 minutes. The participant had many difficulties, especially with database concepts.

During the first task I had to teach him some database concepts. Although I observed

from the first task that the participant did not have the required IT skills, I asked

him to carry out the second task as well. I wanted to see how much he could do.

Therefore, from the beginning I told him “Try to do what you can, then I will help

you.” The participant dragged and dropped all controls. He placed them and changed

some properties so they looked similar to what I asked him to do. Then, he said “I’m

not sure how to bind controls to data, that’s why I started with the visual part.”

Together, we wrote the formulas for data binding.

Figure 7.10 presents the number of problems of each type. 20 problems were iden-

tified with this participant. 9 problems were task failure; they relate to data binding,

Parent concept and not noticing the errors in the Error List. No minor problems

were observed with this participant. One medium problem was recorded and had to do

with the use of index. Four bugs were observed (e.g. the Rows formula was not eval-

uated correctly). Four were missing functionality problems related with uVis formulas

(e.g. using an SQL aggregate in Rows, using a switch similar to iPhone for Modes) and

the Studio (e.g. moving a control when a formula is set for Left or Top). Two were

cumbersome problems as the participant verbally commented on those: better error

messages and specifying Top instead of Bottom.

Questionnaires

The subjective ratings are presented in Figure 7.10. These subjective ratings indicate

that the participant liked Auto-Completion, Design Panel, E/R Model and Interact-

Mode. Parent/Canvas concepts, binding control to data and Error List were less

appreciated. However, these ratings does not match his performance because he was

continuously helped to complete the tasks.

Debriefing

At the end he commented: “I think there is a lot of potential for creating visualizations

of this kind in this way. The interface and manipulation during the process is extremely

125

7.3 Summary

Problem Type No.
Task Failure 9
Minor 0
Medium 1
Cumbersome 2
Bug 4
Missing Functionality 4

Question Task 1 Task 2
How easy was it to use uVis formulas? 5 4
How easy was it to understand uVis properties: Rows, Parent and Canvas. 4 3
How easy was it to use uVis operators (., !, - 4 5
How easy was it to connect controls with data? 5 3
How easy was it to use uVis Studio? 4 4
How useful was the Auto-Completion in the property grid? 5 5
How useful was it to preview the live version of the visualization in the Design Panel? 5 5
How useful was it to interact with the Design Panel? 5 4
How useful was it to have the Interact-Mode? 5 5
How easy was it to use test the application as an end-user? 5 5
How useful was it to see the E/R model? 5 5
How useful was it to set formulas from the E/R model? 5 4
How useful was it to see the Error List window? 5 3
Were the errors understandable in the Error List? 4 4
How useful was it to see the real row-data in the window Data View? 3 4
How useful was it to see the controls in the window Control and Data Hierarchy? 5 4
How much the formula language does facilitate visualization development?* 5 5
How much the development environment does facilitate visualization development?* 5 5
Do you think you could use uVis in your domain and create visualizations? 5 5

Figure 7.10: Participant 8: Problem counts by type (left). Subjective ratings (right).

well thought out. I managed to get through it as a total novice, therefore if I were to

wish for any improvements it would be to have more drag and drop functionality. Also,

I liked how the errors are highlighted, and the suggestions. The second task is excellent;

it is a more complex task and clearly shows the utility of this tool.”

7.3 Summary

With proper training and knowledge most of them can probably create custom visual-

izations with Drag-Drop-Set-View-Interact approach in uVis. In spite of the improved

tool, end-user developers faced several problems, particularly with data binding. Based

on observations on the task failures I can say that they did not perform better than

the programmers.

In task 1, participants were asked to create a bar chart following the video. Two

participants (participant 2 and 8) could not understand how the controls were bound

to data, and how to refer to control properties. From my observations, I conclude that

their IT skills correspond more to a simple user than to an end-user developer. The

other participants were better able to understand what the video was showing.

In task 2, participants did not use a video or watch the one used in task 1. During

this task, two participants (2 and 8) had many difficulties in completing the task. I

continuously assisted them to complete the task. With advanced training they might

learn how to create visualizations with uVis. On the other hand, the other participants

126

7.3 Summary

performed better. However, none of them were able to finish all the tasks on their own.

I helped them the first time to write a complex formula; the formula that used Group

By and where. After the first time, they could reuse the formulas and adjust them

properly.

I noticed that the video presentation helped users create the bar chart, but in several

cases they were replicating without reasoning. This was reflected in the second task

where they had difficulties specifying a Group By. On the other hand, they had to look

at two screens, and this was cumbersome as they had to keep track of the video, play it

back and forward. Identifying the correct training approach seems to be more difficult

than I expected at the beginning, and some of the usability problems might have been

caused by the selected approach.

Usability Problems

In this study, I identified 43 different usability problems: 12 task failure, two cum-

bersome, two medium, six minor, nine bugs, and 12 missing functionalities. I group

the usability problems in two categories: those caused by the uVis Formula Language

and those caused by uVis Studio. Table 7.1 presents the problems classified and the

participant who encountered the problem. From this table, one can notice that binding

controls to data is the most difficult part for end-user developers. In addition, the

number of bugs and missing functionalities reflect on the maturity and stability of the

tool. As shown in Table 7.1, 13 problems were unique, and the rest occurred with more

than one participant.

Questionnaires

Figure 7.11 presents the subjective ratings of each participant and summarizes their

ratings of each task where the minimum, the maximum and the average value are

shown. These subjective ratings provide useful insights to identify what should be

improved. Also, they hint at the advantages and disadvantages of this approach. For

example, Auto-Completion, Design Panel, Control-Data Hierarchy, Modes were highly

rated, in comparison to the uVis formula language and the Error List panel.

127

7.3 Summary

Table 7.1: Usability problems recorded in this study. They are grouped by root problem

and classified by type. For each problem I show who encountered it.

128

7.3 Summary

F
ig

u
re

7
.1

1
:

P
ar

ti
ci

p
an

ts
’

ra
ti

n
g

fo
r

ta
sk

1
a
n

d
2

(t
o
p

).
M

in
im

u
m

,
M

a
x
im

u
m

a
n

d
A

ve
ra

g
e

ra
ti

n
g

fo
r

ta
sk

1
(b

o
tt

o
m

-

le
ft

)
an

d
ta

sk
2

(b
ot

to
m

-r
ig

h
t)

129

7.3 Summary

uVis Formula Language

Binding a control to the rows of a table was understandable, but it was more challenging

in the complex case where they had to use a Group By. Six of them had difficulties

the first time because they could not recall how Group By worked. During the study

most of them reasoned correctly, but they were not sure how to express it using the

formulas. After the first time they could proceed on their own. Providing them with

more examples, simple tutorials or video might improve their performance. Two of

them had not the required knowledge and I had to assist them all the time.

Participants found this less complex than the data binding. Apart from the last

participant, the others could easily refer to properties. Initially, some of them had

difficulties remembering the syntax. With the help of Auto-Completion and by means

of practicing, I observed that they became better.

uVis has several new keywords and operators. Some of them were familiar and

quickly understood, others made them skeptical and confused. For example, some par-

ticipants could not distinguish the difference between the dot and bang operator. The

Parent keyword was not intuitive to some of them, and in several cases I had to explain

the concept. Most of them could guess the left-join operator (-<), but in combination

with the Parent keyword it made the formula non-intuitive. The uVis formula lan-

guage uses these operators to provide simple formulas, but this has disadvantages as

well. I noticed that they got better at the end of the study, and I believe that with

more examples and practice, language barriers can be overcome.

uVis Studio - Features

WYBIWYG: Participants found the Design Panel useful. Interacting with visual

objects was easy and their comments indicate that the WYBIWYG feature continuously

helped them understand the formulas. They got immediate feedback and could reflect

on the formulas. For example, it helped them observe how a change in the Rows property

affected the visualization. In addition, viewing the result of a mathematical equation

immediately helped them find out the correct equation. However, the participants

suggested several features to improve the Design Panel, such as adding lines when a

control is moved.

130

7.3 Summary

Auto-Completion: The Auto-Completion assisted them with correct suggestions.

In a few cases when they misspelled a word and there were no suggestions, they stopped

and checked what they had typed. In other cases, the feature was not suggesting all

possibilities and this bug made some of them skeptical and wondered why there are no

suggestions. Both cases shows that participants were not simply using the feature to

avoid misspellings, but also to confirm that what they were typing followed the syntax.

Formula Suggestions: Participants found this feature helpful. They could easily

bind controls to data and map fields to properties. However, some of them would have

liked to automatically specify a Group By as well.

Interact-Mode: Participants found the Interact-Mode useful. They liked that

they could test the visualization without switching context. In the second task, one of

them dragged and dropped the track-bar and implemented the interaction. After that,

he was continuously testing how the interaction changed the visualization. While the

Data-Mode, which disables the WYBIWYG feature, was only used to test it. Although

to most of them the sliders were understandable, some of them suggested using a switch

as in iPhones.

uVis Studio - Coordinated Panels

uVis Studio provides several coordinated panels. Changes in the Property Grid were

immediately reflected on the Design Panel, the Control-Data Hierarchy, the Error List

and DataView. This allowed them to view the changes from different perspectives and

better understand the formula language and the visual mapping. Although the error

messages were not visible most of the time, participants liked that the Error List was

coordinated with the Property Grid. They all appreciated that wrong formulas were

colored in red. Supporting them with the E/R Model and DataView was also helpful.

Several times before they wrote a formula, they consulted the E/R Model and viewed

the data in the DataView. After setting a formula, they were able to view the data

bound to the control. I observed several strategies of using these panels. Some of

the participants used mainly Control-Data Hierarchy to navigate through controls and

view their properties in the Property Grid. Others were using the Design Panel.

131

Chapter 8

Usability Study with Clinicians

This chapter presents a usability study with two clinicians. Before, I report on the

study, I discuss InfoVis in healthcare and the importance of empowering clinicians in

visualization development.

8.1 Information Visualization in Healthcare

Healthcare systems create and use a large amount of data and it is a challenge to

present these data. According to Smith “doctors in developed countries seem to be

overwhelmed by the information provided for them. The amount of information is

enormous and disorganized, and it is hard to find the answers to questions that arise in

consultations.” [95]. Based on their experience and knowledge, clinicians need easy and

intuitive presentations that fulfill their needs [43, 77]. Researchers have created efficient

visualizations such as LifeLines [79], Knave II [33], TimeLine [15], CareVis [1], LifeLines

2 [111], LifeFlow [116], etc. Roque et al. [83] compared 6 InfoVis systems (LifeLines

[79], LifeLines 2 [111], KNAVE II [33], CLEF Visual Navigator [34], TimeLine [15],

and AsbruView [50]). These tools allow clinicians to get an overview of the Electronic

Health Record (EHR). Their results showed that these tools were not always designed

with user feedback, and evaluations were not conducted in real clinical environments.

They conclude that a closer collaboration with medical professionals would result in

better systems.

Most EHR systems use mainly text and tabular presentation, and there is a need

for visualizations where clinicians can get better overview. Figure 8.1 shows three EHR

132

8.1 Information Visualization in Healthcare

Figure 8.1: Three different EHR systems from the Copenhagen region showing: 1. the

patient’s medicines. 2. the drug records for a patient. 3. the lab-test results for a patient.

133

8.1 Information Visualization in Healthcare

systems used in the Copenhagen region. In a department of Bispebjerg Hospital, the

EHR system uses a tabular presentation to show medical orders (Figure 8.1.1). From

this screen it is not easy to identify what medicines the patient is taking at the current

time. Another EHR system supports clinics and hospitals with tabular presentations

(Figure 8.1.2). In the Venereal Clinic of Bispebjerg Hospital, clinicians use the VistA

EHR system to record patient’s venereal diseases, also referred to as sexually transmit-

ted infections. Lab-test results are presented using a text-based presentation (Figure

8.1.3). For each patient in the clinic, clinicians have to read a long text to see a simple

result. When clinicians have to view several results, the complexity amplifies.

In the early phase of this research, I collaborated with clinicians of the Venereal

Clinic, and in one of our meetings they said that it is difficult to distinguish if a lab-test

result was negative or positive. In addition, the sensitiveness of this lab-test requires

additional mental effort and they were afraid they missed some results when there were

many of them.

In the plain text (Figure 8.2.1), clinicians identified the three most important vari-

ables (date, result and test name). These values were used to create a simple visualiza-

tion (Figure 8.2.2) with uVis Studio. Further, Figure 8.2.3 shows how these data can

be presented using a timeline. They found these ideas great, and asked if they could

have something similar in their EHR system. Unfortunately, due to time, resource and

database constraints, visualizations were not integrated into their system. This scenario

confirms the need for better presentations and the importance of involving clinicians in

the visualization process. It is difficult to visualize important variables from electronic

health records without medical expertise.

This research aims at minimizing the collaboration with clinicians but empower the

clinicians, whose IT skills correspond to end-user developers, with a tool that allows

them to create effective visualizations.

At Bispebjerg hospital in Copenhagen, another department uses an MS Access

system developed by one of the clinicians. Another clinician has been working as a

surgeon for the last 30 years, and IT is his hobby. He has worked with IT for the last 20

years, and uses MS Excel, MS Access and Visual Basic. He developed an EHR system,

which was used for a couple of years in his department. These two examples prove that

in the healthcare environment there are clinicians with IT skills that correspond to end-

user developers. They have the clinical domain knowledge and with the proper tool

134

8.2 Usability Study

Figure 8.2: 1. Current presentation at the clinic, 2. A simple presentation patient

lab-test results, 3. Presenting lab-test results on a time-line.

they might construct effective visualizations. Further, it will increase the possibility of

developing novel visualizations for clinical data. Last but not least, clinicians without

IT experience can collaborate with IT clinicians to create and adjust visualizations in

the department or hospital.

8.2 Usability Study

I present a usability study with two clinicians who were asked to construct visualizations

with the Drag-Drop-Set-View-Interact approach. As clinicians are hard to recruit for

a usability study and have very low availability, I conducted only two usability tests.

The first test was conducted in four hours and the second in two hours.

This study investigated if clinicians, who have IT skills at the level of an end-user

developer, can construct custom visualizations using the uVis formula language and

the Studio. In addition, the study focused on identifying potential usability issues and

providing suggestions for further improvement.

8.2.1 Procedure and Tasks

This study was planned to run in four hours and consisted of three parts: introduction,

construct the LifeLines, and construct the Process Completion Diagram.

The first usability test was conducted in two sessions of two hours, four days apart.

In the first session the clinician performed task 1 and 2. In the second session, the

clinician finished task 3. In this usability test, the Studio did not have the Formula

135

8.2 Usability Study

Figure 8.3: The LifeLines and the E/R data model.

Suggestions feature, because at that time it was under development. Due to clinician’s

availability, I had to run the study without this feature.

The second usability test was conducted in one session, lasted only two hours, and

the clinician performed only the first two parts.

I conducted the study, kept notes, and recorded the sessions. During the sessions, I

helped the clinician whenever there was a misinterpretation, confusion or malfunction

of the system. These cases were recorded as usability problems. The documentation

used in this study can be found at Appendix D.

Task 1: Introduction to uVis

This task lasted 30 minutes, where I described the uVis formula language and the

Studio. I explained how visualizations are created, what the uVis formulas are, how to

refer to control properties, to data, etc. I gave the clinician a list of tasks describing

what he was supposed to do. I did not use the video because the time was limited, and

the tasks were similar to the ones described in the video. I showed him the reference

card for the uVis formula language. At the end of this part, I asked the clinician

questions regarding the uVis Formula, the uVis Studio and the uVis approach. I used

the same questionnaire as in Chapter 7.

136

8.2 Usability Study

Task 2: Construct the LifeLines

This task was also performed with a programmer (described in Chapter 6), but the

first version of the Studio was used.

I showed the clinician an already implemented version of the LifeLines that used

data from a MS Access database with 4 tables (Figure 8.3). I explained some advanced

concepts (i.e. the control-join operator “-=” that aligns controls vertically, and the

HPos function of the timescale that aligns controls horizontally). Then, I asked the

clinician to create the LifeLines and think-aloud during the process. I provided the

clinician with the uVis reference card, a reference card where the visualization was

showed without any formulas, and some hints in a second page. The hint page showed

him how to write the complex Rows formula with a Group By, how to align vertically

and horizontally, how to convert a String type to Integer type, and described the

Refresh() function. At the end, the clinician was asked to reply to the questionnaire

again as in task 1. This task was planned to last one and a half hours.

Task 3: Construct the Process Completion Diagram

This was conducted four days after the first session, but only with the first clinician.

This task was performed with an end-user developer, as described in Chapter 7.

I showed him an already implemented version of the Process Completion Diagram

(PCD) that used a MS Access database with two tables (Figure 8.3). I explained how

the event-log data are visualized. The clinician was asked to create a simplified PCD.

The simplified PCD (Figure 8.4) did not show the horizontal and vertical lines in the

X-axis and Y-axis, the average and the standard deviation. However, the steps involved

in constructing the simplified PCD are representative ones (e. g. drag and drop control,

refer to a property, bind a control to data, map a field to a property, get immediate

feedback, check errors, try as end-user, etc.) The clinician would have been able to

enrich it with the missing details, but time did not allow. The clinician was asked to

create the PCD thinking aloud.

The uVis reference card, a reference card where the visualization was showed with-

out any formulas, and some hints in the second page were given to the clinician. The

hint page showed them how to write the complex Rows formula with a Group By,

how to use SQL aggregates (Count(), Max(), Min), how to convert a String type to

137

8.2 Usability Study

Figure 8.4: The PCD, the simplified PCD used in this study, and the E/R Data Model.

Integer type, and described the Requery() function. In addition, I gave the clinician

a reference card with the Studio shortcuts. At the end, the clinician was asked to reply

again to the same questions. This task was planned to last two hours.

The rest of this chapter presents the clinicians’ background, the results from the

study, the usability problems and the subjective ratings from the questionnaires.

8.2.2 Results

This section presents the results of the study. For each participant I describe his

background, report the number of problems categorized by type, subjective ratings,

and summarize participant’s comments about the tool. I conclude this chapter with a

summary of the results.

Clinician 1

Male; 64 years old; MD Surgeon and part-time PhD Student at the IT-

University of Copenhagen; started working in Health Informatics in 1986;

programmed for two months in 1978; used E/R databases in the period

1994-1995, and during the last month; has never used a development envi-

ronment; regularly used MS Excel formulas since 1996; has designed visu-

alizations using pencil and paper, but has never programmed one.

Problem Counts

The clinician is a member of the uVis project. He started practicing the uVis formula

language a month before, only around one day a week. He had been using a simple

138

8.2 Usability Study

text-editor to write formulas and had never used the Studio.

The first task lasted 15 minutes, the second one and half hours, and the third

task two hours. Figure 8.5 presents the number of problems of each type. In total,

30 problems were identified in this usability test. Eight of them were task failures:

specifying a Rows formula that used a Group By and not noticing errors in Error

List, etc. Four minor problems were recorded (e.g. using double quotes). Six medium

problems were observed with this participant. They relate to data binding, aligning

controls, and uVis operators. Four problems were bugs. One of the them was caused by

the Auto-Completion feature, which failed to provide suggestions after a parenthesis.

Five were missing functionality problems and they relate to uVis formulas (e.g. using

an SQL aggregate in Rows) and the Studio (e.g. more shortcuts and color pallet). Three

were cumbersome problems. The participant verbally commented on those. They are:

better error messages, specifying Top instead of Bottom, and confirming a change with

ENTER.

Questionnaires

The subjective ratings are presented in Figure 8.5. They indicate that the partici-

pant found less useful DataView. The Design Panel, Modes, E/R model and Auto-

Completion and Error-List were rated higher.

Debriefing

At the end of the second task, he added: “the bang is confusing but I have to learn it;

also, the uVis operators and the double quotes. This has to do with training as well. I

have no suggestions how to improve the learning. I think having a feature on the E/R

for mapping fields to properties would be helpful. A great thing of the Studio is the

Design Panel placed in the center, where you can see the results as you work; also, the

Auto-Completion tells you what you can write, this is great.”

At the end of task 3, he commented: “I think I could have done this even if you

were not here, but it would have taken me more time. I was not thinking the right

way at some parts, but I would have gone back and do it properly. And, it’s a good

technique to refer to properties.”

139

8.2 Usability Study

Clinician 1

Clinician 2

Problem Type No.

Problem Type No.

Task Failure 8

Task Failure 10

Medium 6

Medium 4

Minor 4

Minor 0

Cumbersome 3

Cumbersome 1

Bug 4

Bug 3

Missing Functionality 5

Missing Functionality 5

Question
Clinician 1 Clinician 2

Task 1 Task 2 Task 3 Task 1 Task 2

How easy was it to use uVis formulas? 4 4 4 3 2

How easy was it to understand uVis properties: Rows, Parent and Canvas? 4 3 4 4 2

How easy was it to use uVis operators (. , ! , -<)? 4 3 4 4 2

How easy was it to connect controls with data? 5 4 4 4 4

How easy was it to use uVis Studio? 4 3 3 2 2

How useful was the Auto-Completion in the property grid? 4 4 4 5 4

How useful was it to preview the live version of the visualization in the Design Panel? 5 5 5 4 4

How useful was it to interact with the Design Panel? 4 3 3 3 3

How useful was it to have the modes? 5 5 5 3 4

How easy was it to use test the application as an end-user? 5 5 5 4 5

How useful was it to see the E/R model? 4 4 4 5 5

How useful was it to set formulas from the E/R model? N/A N/A N/A 4 4

How useful was it to see the Error List window? 5 5 5 4 5

How useful was it to see the real row-data in the window Data View? 2 2 2 5 4

How useful was it to see the controls in the window Control and Data Hierarchy? 4 4 4 4 3

How much the formula language does facilitate visualization development?* 4 4 4 4 5

How much the development environment does facilitate visualization development?* 4 5 5 4 5

Do you think you could use uVis in your domain and create visualizations? 4 5 5 4 5

Figure 8.5: Clinician 1 and 2: Problem counts by type (top). Subjective ratings (bot-

tom).

Clinician 2

Male; MD Senior Surgeon; 57 years old; started using IT in 1985, and has

used Visual Basic, JavaScript, and PHP; does not program often lately, last

time was 1 month ago when he experimented with HTML 5; Has a good

knowledge of E/R databases, and mostly uses MS Access and MySQL; used

a database a week ago; borrowed Visual Studio from a friend, but never used

it; barely uses MS Excel as he thinks it is too primitive; has created simple

visualizations to show statistics using Google Spreadsheet and MS Excel.

Problem Counts

The clinician had no prior experience with the uVis formula language or the uVis

Studio. This study was conducted in two hours because of his availability.

The first task was performed in 20 minutes and the second in one hour and one and

half hours. Figure 8.5 presents the number of problems of each type. 23 problems were

identified with this participant. 10 of them were task failures. Similar to the end-user

developers, presented in Chapter 7, the clinician faced problems with data binding and

140

8.2 Usability Study

errors were not noticeable to him. No minor problems was recorded with this clinician.

Four medium problems were observed. They relate to aligning controls, uVis operators,

and using the Name property instead of Text. Three problems were bugs. One of the

them was caused by Property Grid, which failed to update the formula in after the

focus was lost. Five were missing functionality problems. One relates to uVis formulas

(e.g. using an SQL aggregate in Rows). The other four has to do with the Studio (e.g.

map field to properties from DataView and hide panels in end-user mode). One was a

cumbersome problems and it relates to better error messages.

Questionnaires

The subjective ratings are presented in Figure 6.4. These figures indicate that the

clinician found difficult the uVis formula language (e.g. the Parent concept and the

uVis operators) and appreciated better the Studio. The E/R model, Auto-Completion

and DataView were rated higher than the Control-Data Hierarchy and Modes.

Debriefing

At the end of task 1, the clinician said: “I use databases because in MS Excel you

cannot use SQL to access the database. This is another way, but I can understand it.

Also, I can understand the properties as I have used them in Visual Basic.”

After the second task, he commented: “It is extremely important that we get some

tools like this. But, I hope it would be for non-programmers as well. At present, users

need to have some programming skills. I would prefer something that does not require

any skills at all. I think there are a few clinicians who can use tools like this. But, it

has to be more user-friendly.” He also said: “the database concepts make it challenging

as most of clinicians are used to Spreadsheets and do not use databases. That’s why

some assistance from the IT department is required.”

8.2.3 Summary

Assuming that clinicians obtain proper training and have IT skills at the level of an

end-user developer, it is possible to engage them in development and allow them to

construct custom visualizations. More practice, proper documentation and a more

mature tool are needed to overcome the learning curve and improve their performance.

141

8.2 Usability Study

Both clinicians believed that uVis is a useful tool and it is possible to use it in their

environments.

Usability Problems

Table 8.1 presents the problems and the clinician who encountered the problem. I

group them in two categories: those caused by the uVis formula language and those

caused by uVis Studio.

36 usability problems were identified in this study. 10 of them were task failures,

but only seven were encountered by both. The other three were medium problems for

the first clinician. This can be explained because the first clinician had some experience

with the uVis formula language. Both clinicians asked for more drag and drop features.

18 problems were unique, where eight of them were missing functionalities. Clinicians

encountered a few bugs as well. Most of them were caused by the Studio, which did

not handle an exception properly.

Questionnaires

Figure 8.5 presents the subjective ratings of each clinician. They provide hints of

the advantages and disadvantages of the uVis formula language and the Studio. For

example, both clinicians liked the Design Panel, Auto-Completion and Interact-Mode.

DataView was not useful for the first clinician. uVis operators were difficult to use for

the second clinician.

uVis formula language

Clinicians had difficulties to bind controls to data. Both of them were unable to write

the complex formula that joins three tables and uses a Group By. This was difficult

even for programmers, as shown in Chapter 6. However, from their comments I noticed

that they knew what should be shown, but were not sure how to express it with a

formula. The Group By increased the level of complexity, and both clinician asked for

a simple way to specify a Group By. In other cases, they were able to proceed on their

own.

Clinicians easily referred to control properties. At the beginning of the study they

were skeptical regarding the syntax, but as they progressed, referring to control prop-

erties became more intuitive.

142

8.2 Usability Study

Area Problem Type Description Clinician
Bug Kernel failed to evaluate the Rows formula correctly 1,2

Medium Specifying the Requery() function 2

Medium Referring to a property 1

Medium Concatenating two words 1

Medium The Dot and Bang difference 1,2

Medium Aligning overlapping controls using Index 1,2
Medium* ,

Task Failure** Using the ‐= operator 1*, 2**

Medium* ,

Task Failure**
Using Hpos() to align controls 1*, 2**

Task Failure** Aligning overlapping controls using Index 1*, 2**

Minor Double quotes in text 1

Minor Using convertion function (Cstr()) 1

Missing Functionality Using the SQL aggregate in the Rows property 1,2

Missing Functionality Asked for SQL Aggregates without specifying group by 1
Medium* ,

Task Failure**
Binding a control to a table 1*,2**

Task Failure Binding a control to data using group by 1,2

Task Failure Binding the rows of a table to a property 1,2

Task Failure Understanding Parent concept 1,2
Task Failure Map a field to a property without specifying the Rows property 1,2

Task Failure Specifying a SQL Aggregate 1,2

Bug Studio did not handle correctly an error 1

Bug Auto ‐ Completion failed to correctly suggest the after a parenthesis 1,2

Bug The formula was not updated correctly when the focus was lost 1,2

Cumbersome Move a control when the position is set to a formula 1

Cumbersome Better error messages 1,2

Cumbersome Using Enter to confirm in some cases 1

Medium Using the Name property instead of the Text property 2

Minor Specifying the Top property instead of Bottom 1

Minor Using colors by name 1

Missing Functionality More drag and drop features 2

Missing Functionality Map fields to properties from DataView 2

Missing Functionality Hide panels in End‐User mode 2

Missing Functionality Automatically generate Group by in the Formula Suggestions 2

Missing Functionality Copying and pasting some of the properties 1

Missing Functionality More shortcuts in the Studio 1

Missing Functionality Color pallet in the Property Grid 1

Task Failure Error messages not visible in the Error List 1,2

u
V

is
 S

tu
d

io
u

V
is

 F
or

m
u

la
 L

an
g

u
ag

e

Table 8.1: Usability problems encountered in this study. They are grouped by root

problem, and classified by type. For each problem I show who encountered it.

143

8.2 Usability Study

Using uVis keywords and operators was challenging for these participants as well.

Although the first clinician had some prior knowledge of formulas, I observed that in

several cases he was confused by the bang and dot operator. The Parent keyword

was obscure to both of them. In one case, the first clinician ignored the Parent, and

joined two tables using tableA -<tableB and a where clause. This shows that he had

not understood the Parent concept correctly. On the other hand, he was able to bind

the controls properly. They could guess what the join-left (-<) denoted using the E/R

model, but using it in practice was difficult. They understood better as they used them

a couple of times.

uVis Studio - Features

WYBIWYG: Clinicians found the Design Panel and the WYBIWYG feature useful.

I had already shown them how to disable the feature, but they did not. Getting

immediate feedback helped them reflect on formulas and adjust them properly.

Auto-Completion: This feature was appreciated and used all the time. At some

point the first clinician commented “I noticed that Auto-completion is not suggesting

anything. This is because I have to set the Rows property.” This case shows that the

clinician was using it not only to avoid misspelling, but also to reflect on what he was

doing.

Formula Suggestions: The first clinician explicitly asked for such a feature. The

second appreciated the fact that it showed formula suggestions, notified him when a

visual mapping was not possible, and allowed him to easily set control properties. He

used the feature to set the complex formula that used a Group By. I noticed that

viewing the E/R model and looking at the suggestion helped his reasoning. However,

there was no suggestion about joining three tables in a single step. Therefore, he had

to use the first suggestion and join two tables, then add the third table. Also, he asked

for suggestions about Group By clauses as well.

Interact-Mode: They liked the Interact-Mode and the fact that they did not have

to switch workspace to test interactions. One of them suggested that the panels in

end-user’s mode should be hidden. On the other hand, the Data-Mode that disables

the WYBIWYG feature was never used.

144

8.2 Usability Study

uVis Studio - Coordinated Panels

I observed that several times they got information from different panels to confirm what

was visualized in the Design Panel. In other cases, it was enough to just look at the

Design Panel. This allowed them to view the changes from different perspectives and

understand the uVis formula language and the visual mapping more easily. I noticed

that the first clinician used the Control-Data Hierarchy extensively, unlike the second

clinician. The second clinician liked the DataView and used it in combination with the

E/R model. The first clinician consulted the E/R model, but the DataView was used

less. Clinicians could barely notice the error messages in the Error List, and I had to

remind them several times to check the Error List. However, they found useful how

they could navigate from an error message in the Error List to the wrong formulas in

the Property Grid.

145

Chapter 9

Discussion

In this thesis, I introduce uVis that is based on the Drag-Drop-Set-View-Interact ap-

proach. uVis is a visualization tool that allows end-user developers as well as pro-

grammers to construct a wide range of custom visualizations. However, some custom

visualizations may not be supported by uVis, because it needs more features and con-

trols. As an example, animations cannot be created with uVis for the time being.

The purpose of this thesis was not to investigate and evaluate whether uVis supports

all kinds of custom visualizations. Rather, the purpose of this thesis was to investigate

and answer the research questions: “Can end-user developers construct custom visual-

izations?”, and “Can programmers construct custom visualizations faster?”. In order

to answer these questions, I conducted three usability studies with programmers and

end-user developers. The usability studies with end-user developers showed that they

can construct custom visualizations with a modest amount of training. The usability

study with programmers showed that they can create custom visualizations faster with

the Drag-Drop-Set-View-Interact approach in uVis.

The collected information will also assist in improving uVis, so that it is easier to

learn. In addition, the results of the evaluation serve as a starting point in investigat-

ing end-user development of visualizations. To the best of my knowledge there is no

previous study that has investigated end-user development of visualizations.

During this research I developed a visualization tool taxonomy. It provides a high-

level classification of InfoVis development tools investigating how users, despite their

IT skills, develop visualizations. It consists of three dimensions: user skills (simple

users, end-user developers and programmers), visualization types (standard and cus-

146

9.1 Visualization Tool Taxonomy

tom visualizations) and tool types (language, wizard and drag-and-drop tools). The

categorization of 20 InfoVis tools proves the applicability of this taxonomy, and the

results show that users need tools to create custom visualizations with a drag-and-drop

approach. The result of this categorization also shows that InfoVis and EUD have to

focus more on how to engage simple users and end-user developers in development of

custom visualizations. To the best of my knowledge, none of the selected tools were

empirically evaluated with potential users.

The remaining part of this chapter reflects and discusses the limitations of the work

presented in this thesis. I start my discussion with the visualization tool taxonomy, the

uVis and conclude with the usability studies.

9.1 Visualization Tool Taxonomy

The tool visualization taxonomy presented in this thesis was used to categorize 20 tools

and prove taxonomy’s applicability. I selected only 20 tools instead of all existing Info-

Vis tools, due to time constraints. Furthermore, the selected ones are representatives

and many of them have contributed significantly in the InfoVis field.

To identify InfoVis tools I searched two popular sources IEEE and ACM portal up

to 2012. InfoVis tools published in other sources such as Springer, Elsevier, Sage, etc.,

were not included.

Categorizing the tools in distinct categories it is not without challenges. Many

tools span more than one category. The decision was based on the published papers,

personal experience with the tools and in few cases where it was not clear I discussed

with my colleagues and decided accordingly. However, neither my colleagues nor I

have the knowledge that authors of these tools have, which would have facilitated the

categorization process, might have avoided issues such as classifying a tool in more than

one dimension, and possible miss-classifications.

Users of this taxonomy should be aware that it does not investigate visualization

techniques. This was out of the scope of the taxonomy, as previous work (see Chi [23])

has presented a taxonomy of visualization techniques using the data state reference

model.

147

9.2 uVis

9.2 uVis

uVis has several open issues. One issue is the variety of the supported custom visual-

izations. Although, uVis can support a wide range of visualizations (e.g. time-oriented,

hierarchal, etc.), there are some that are not possible to be implemented. An example

is animation. Furthermore, uVis supports development of existing custom visualization

easily. However, this does not mean that users of uVis can invent custom visualizations.

This work only focuses on constructing the visualization once the idea is present. An-

other open issue is related to interaction techniques. More work has to be done on the

uVis formula language part in order to increase the number of interaction techniques.

As an example, implementing focus+context is currently not possible with uVis formu-

las. Other open issues are the number of controls and visualization layout algorithms,

platform dependency, etc.

uVis Studio is the development environment for the uVis formula language. uVis

Studio makes the Drag-Drop-Set-View-Interact approach possible. There are practical

issues that affect the implementation of uVis Studio, but they are outside the research

scope of this thesis. Among these are more panels, features, and functionalities that

users expect in modern tools. However, the current implementation of uVis Studio

has several coordinated panels and introduces new features such as WYBIWYG. Fur-

thermore, design choices can be debatable, but the decisions were made based on my

previous experience with other tools, and the requirements [52] set from the beginning.

As mentioned earlier, the purpose of this thesis was not to investigate whether uVis

supports development of all custom visualizations. Rather, it proves the Drag-Drop-

Set-View-Interact approach can allow end-users to construct a wide range of custom

visualizations, and at the same time helps programmers construct them faster than

with other tools.

9.3 Usability Studies

To address the research questions, I conducted three usability studies. The studies

have limitations in terms of generalizability, reliability and validity. Generalizability

is concerned with whether the findings identified from this studies are applicable in

other cases [82]. Reliability poses the question “will another evaluator obtain the same

results if the test is repeated?”, and validity refers to the results related to the usability

148

9.3 Usability Studies

problems the evaluator tested [68]. In this respect, I elaborate on several factors they

may have affected generalizability, reliability and validity.

Evaluation Practices

In this thesis I used usability evaluation. Ideally, I would have liked to run a controlled

experiment evaluation [78] where participants used uVis and existing tools to create

custom visualizations. As a result, I would have been able to compare the Drag-Drop-

Set-View-Interact approach of uVis against other tools. However, this was not feasible

because I do not have the knowledge of other tools needed to train participants and

evaluate the tools in the same way. Therefore, the study would have been biased.

Ideally, another organization would run this study, but this was out of our control.

Another type of evaluation is case studies in real environments [78]. This type of

evaluation requires a good collaboration with a company. At this time-frame, I did not

had any collaborators that were willing to implement uVis and allow me conduct case

studies.

Most of the existing tools have been evaluated through the functionality supported

and theoretical frameworks. For example, one tool is Improvise [112]. According to

the author’s publications [112] and his PhD thesis, there are no evaluation with users.

Rather, the author presents the proof of concept through various visualizations. An-

other example is Protovis [13] that was extended with a development environment

called ProtoViewer [4]. Neither Protovis nor Protoviewer has been evaluated with po-

tential users. To the best of my knowledge, there are no available data from empirical

evaluations of other tools that can be used and compared with the studies of uVis.

Formative and Summative Evaluation

In the thesis I report the results from a formative evaluation. This evaluation provides

useful information during development, but is different from the summative evaluation.

The summative evaluation is useful when the product is released to ensure that usability

is adequate and maybe competitive [68].

In the first formative evaluation, participants assessed the uVis formula language

and uVis Studio. Although, I improved the tool in the second iteration, still the assess-

ment of the first usability study with programmers could not provide useful insights for

end-user developers. As a result, the findings of the first usability study do not assure

149

9.3 Usability Studies

that the new version is appropriate for end-user developers. As an example, none of

the programmers had a problem noticing an error, while all end-user developers had.

This happened because they have different IT skills. Therefore, conducting a formative

evaluation with end-user developers was more appropriate. In addition, ideally, I would

have liked to conduct a summative evaluation as well, where the overall quality of the

tool is assessed and would have provided more reliable data. However, this was not

feasible in this time frame because the tool was not mature and stable enough. The

number of bugs and missing functionality recorded during the usability studies indicate

the uVis status as well. Therefore, a formative investigation was more appropriate at

this stage.

A Functional Prototype

In these studies, I used a functional prototype. uVis Studio was iteratively developed,

and the second version considerably changed from the first in terms of stability and

supported functionalities. The fact that uVis was a functional prototype means that

the results of the studies may change as uVis turns into a working system in a real

environment.

Participants and Procedures

With valuable input form Prof. Soren Lauesen, Prof. Ben Shneiderman and Dr.

Catherine Plaisant, I created a plan for each test, and decided to ask for specific target

users.

In all three studies, I asked participants to create visualizations from scratch, rather

than adjusting predefined ones. The first and the second study lasted three hours. The

third study was conducted in four and two hours, due to clinicians availability. I used

several techniques to obtain valid data: verbalization and observations during the study,

which lead to usability problems, a questionnaire after each task and in the first study

I conducted a semi-structured interview.

In the first study, I was explaining the principles of uVis. This may have affected

the study, because of the variations in explanation. As a result, I decided to use a

video in the second study. While in the third, due to time limitations, using a video

was not possible. Therefore, I defined and used a list of tasks to introduce the tool

to the clinicians. Identifying the correct training approach seems to be more difficult

150

9.3 Usability Studies

than I expected at the beginning, and some of the usability problems might have been

caused by the selected approach. For example, one of the participants complained that

the video went too fast. Also, they had to keep track of the video, and in some cases

they had to go back and forth.

The first study involved programmers from the HCIL at the Maryland University.

They have experience in programming InfoVis and user interfaces. In the second study,

when I recruited the participants I explicitly asked for specific IT skills. However, as

the study showed, two of them did not meet the requirements, although they indicated

so initially. For the last study, I was able to recruit two clinicians with the required

IT skills. Unfortunately, it was not possible to recruit others as clinicians have limited

availability.

The number of participants in the first and second study was fairly low. The

third study was restricted to two participants, because recruiting clinicians is very

hard. In the first usability study with programmers, I recorded 38 usability problems:

three task failures, four bugs, five cumbersome, one medium, 15 minor and 10 missing

functionalities. 13 problems were recorded only with one of the participants. Three

problems were task failures, but only one was recorded with all participants. In the

second study with end-user developers, I recorded 43 usability problems: 12 task failure,

two cumbersome, two medium, six minor, nine bugs, and 12 missing functionalities.

Three task failures were related with the uVis Studio and eight with the uVis formula

language. Two task failures were identified only with the participants who had IT

skills of a simple user. In the third study with two clinicians, I recorded 36 usability

problems. 10 of them were task failures, but only seven were encountered by both.

Nine were missing functionalities and four were bugs. 18 problems were unique, where

eight of them were missing functionalities. The second clinician faced four task failures

that were medium problems for the first clinician. Probably, this occurred because the

first clinician had some knowledge on the uVis formula language. From these figures, I

expect more usability problems with additional participants.

Direct comparison between programmers and end-user developers is not possible.

However, some usability problems where present in each case despite their IT skills.

Some examples are: all participants were not able to write a formula that used a

Group By ; binding a control to data not from the Rows property was a problem for two

programmers and seven end-user developers; the Parent concept was a problem for

151

9.3 Usability Studies

three programmers and five end-user developers; some of programmers and end-user

developers asked for more drag-and-drop functionalities.

After each task, participants answered a questionnaire. The subjective ratings

indicate what participants found useful and difficult. As an example, WYBIWYG

of the Design Panel, E/R Model and Interact-Mode were rated higher by end-user

developers than uVis operators, Parent concept, and Error List. However, as the

number of participants is fairly low, it was not possible to make any statistical analysis

when it comes to the questionnaire ratings.

Task Selection

Selecting appropriate tasks to use in a usability study is a difficult process. Nielsen

says that task should be “as representative as possible to the uses to which the system

will eventually be put in the field” [68]. In these studies, I decided to ask participants

to create rather than modify an existing visualization. This decision was made because

the system is meant to be primarily used for creating visualizations. Also, the cre-

ation process involves modification, as the Drag-Drop-View-Interact approach builds

on incremental actions (drag and drop controls, set formulas, refine them till the ex-

pected result is achieved). This approach highlighted different usability problems with

the formula language and the Studio. However, using another set of tasks might have

highlighted other usability problems. Wilson presents two cases where the wrong set

of tasks caused problems in the final product [115]. To address the issue of selecting

wrong tasks, I discussed with my colleagues and decided to use the selected tasks.

Evaluator Effect

According to Hertzum and Jacobsen [39], the evaluator effect relates to “differences in

evaluators’ problem detection and severity ratings.” The authors [39] state that “the

question is not whether the evaluator effect exists, but why it exists and how it can

be handled”. The evaluator effect also exists in my usability studies because usability

evaluation is related with how the evaluator interprets the results [39]. In their study

[39], the results showed that the evaluator effect between two evaluators can scale

between 5% to 65%. These figures definitely pose the question how valid the data are.

This is not related to the specific choice of usability evaluation method, but is related

to the number of evaluators involved. Introducing more evaluator can reduce it, but

152

9.3 Usability Studies

not avoid it completely [39]. Ideally, I would have liked to involve more evaluators in

my studies, but this was not possible due to limited resources, budget and the required

expertise in uVis. On the other hand, the judgments of evaluators on the severity

of a usability problem is questionable, as “complete agreement among evaluators is

unattainable” [39].

Questionnaires and Interviews

In the usability study with programmers, I asked questions regarding uVis, the ap-

proach, and to estimate the development time of an initial version of MSProVis using

the Studio and other tools. In addition, all participants in these studies answered to

some 5-point Likert scale questions. Overall, the results of the interviews and ques-

tionnaires showed a high level appreciation of participants towards uVis. It should be

noted that these results might have been biased by the conductor. This means that

the participants might have overrated uVis due to my presence. According to Robson,

this is difficult to avoid [82]. Therefore, the readers should interpret the result with

caution.

153

Chapter 10

Conclusions and Future Work

Constructing visualizations is an important task in many domains: healthcare, finan-

cial, logistics, academia, etc. Previous research in InfoVis has focused on helping pro-

grammers construct custom visualizations with powerful toolkits, and allowing simple

users to create standard visualizations. End-user developers (also known as savvy

users) are overlooked. EUD investigates how to empower end-users developers to cre-

ate, modify and extend software artifacts and gain control over their applications. Nei-

ther the InfoVis nor EUD literature has investigated whether end-user developers can

construct custom visualizations. This thesis addresses the following research questions:

“Can end-user developers construct custom visualizations?” and “Can programmers

construct custom visualizations faster?”

In order to answer the above questions, I conducted a literature review and carried

out usability studies with end-user developers and programmers. I reviewed existing lit-

erature to obtain an overview of existing InfoVis tools and how they support end-users

developers and programmers. As part of this review, I developed a visualization tool

taxonomy. This taxonomy, inspired by existing taxonomies, consists of three dimen-

sions: user skills, tool types and visualization types. The results of this review showed

that there are no Drag-and-Drop tools to create custom visualizations for end-user

developers as well as programmers.

In response, I presented uVis that is based on the Drag-Drop-Set-View-Interact ap-

proach. Extending the uVis formula language with a development environment (uVis

Studio) made this approach feasible. Instead of writing code and running the appli-

cation to view the results, end-users and programmers drag and drop controls in the

154

Design Panel, set uVis formulas for their properties in the Property Grid, view imme-

diate visual results in the Design Panel, and use Interact-Mode to interact as end-users

with the visualization without switching workspace.

Initially, I made a proof of concept that this approach can be used in practice by

an experienced user of uVis. Two custom visualizations were developed within a few

hours. Further, I conducted a usability study with six programmers who were asked

to create a standard and a custom visualization within three hours. Next, I conducted

a usability study with eight end-user developers and one with two clinicians, who are

end-user developers. These studies aimed at answering the research questions. The

results of the usability studies have been presented in Chapter 6, 8 and 7. This was

followed by a discussion of the results and limitations of this work in Chapter 9.

This thesis showed that end-user developers can construct custom visualizations

using the Drag-Drop-Set-View-Interact with a modest amount of training. At the same

time, programmers can construct custom visualizations faster with the Drag-Drop-Set-

View-Interact in uVis. Additional proof is provided through the development of two

custom visualizations by an experienced user of uVis.

EUD and InfoVis communities should consider this research as a starting point for

end-user development of visualization. Based on the results of this work, I present some

recommendations for researchers and tool developers.

1. As visualizations are all about data, visualization tools should have a WYBIWYG

feature. This feature makes the visual mappings more transparent.

2. The development environment should allow developers to test end-user interaction

without switching workspace. Switching the context from development to run-

time is perceived as a barrier.

3. Auto-Completion is known for its usefulness, but introducing database related

suggestions is a big improvement.

4. Drag and drop functionality is very important to all users, independent of their

IT skills.

5. Usability test visualization development tools with users.

155

6. Constructing custom visualizations with simple visual objects allows high cus-

tomization, but requires additional mental effort from end-user developers. Pro-

viding off-the-shelf controls that can be combined with simple ones should help

end-user developers create custom visualization faster.

Future Work

During this research I have faced many limitations and came upon many ideas that

were not possible to research within the time frame, but can be interesting for the

future. Some of them are very technical and domain specific while others are broader.

I present some of them below.

Improve uVis

During the studies, I observed several navigation patterns through the panels. However,

identifying which panels were used mostly, navigation patterns and trends need further

research. Conducting studies with eye-tracking devices can address these questions

better. Future work will concentrate on investigating and identifying appropriate and

relevant panels to visualization development. Several design choices were inspired by

existing tools, personal experiences, and user feedback. Furthermore, choosing the right

colors, fonts, and icons is a delicate matter and requires more investigation to obtain

the right balance.

The Parent and Canvas were confusing to programmers as well as end-user devel-

opers. Adjusting the formula language so that the Parent is automatically handled by

the kernel, and visible on-demand might help them. Yet, this needs more investigation.

Future work will also focus on error handling. A better way of showing error mes-

sages to end-user developers is needed. A potential solution is using pop-up windows,

but this may affect user satisfaction as pop-up windows may become annoying. Also,

the content of the error messages will be revised.

Finally, future work will focus on enriching uVis with more controls, built-in func-

tions and layout algorithms, and addressing the usability problems.

156

Integrating uVis in Working Environments

This thesis investigated if end-user developers can create custom visualizations. Future

work includes integrating uVis in working environments. This will allow us to conduct

a summative evaluation with real users and tasks. As a result the overall quality of

the tool will be assessed. This integration can investigate how end-user developers

can tailor visualizations constructed with uVis. In addition, requirements perspective

not addressed in this thesis, such as scalability, interoperability, security, etc., can

be evaluated. uVis aims also at extending existing applications with visualizations.

Future work should investigate different limitations (e.g. accessing data from an existing

database, communicating with existing infrastructure) and identify proper solution.

Platform Independence

The current version of uVis uses the .NET Framework. uVis should be developed

for other platforms. The project is currently focusing on how to migrate to the web

and mobile platforms. This research aims at investigating how visualizations can be

created in tablets and touch screen surfaces applying the Drag-Drop-Set-View-Interact

approach. At the same time, this research will focus also on other challenging issues

such as space efficiency, performance issues, touch-screen limitations, etc.

One Environment - Several Toolkits

Previous research has focused on encapsulating several Java based toolkits in a meta-

toolkit called Obvious [29]. Future researchers can apply the same approach, and

investigate how different toolkits can be integrated in a development environment.

This can facilitate visualization development and allow users to choose a toolkit that

takes advantage of the patterns as well as features implemented in each of them.

Simple Users in Development of Custom Visualizations

The InfoVis community has done considerable work to provide visualizations in different

domains. Also, extensive work is conducted to improve user satisfaction. However, more

work has to be done in order to introduce new audiences in development of custom

visualizations. Future research should concentrate on developing new approaches and

tools that allow simple users to construct custom visualization.

157

Appendix A

A Custom Visualization with

uVis Formulas

Figure A.1.a presents a custom visualization, inspired by the LifeLines [79], constructed

with uVis formulas. It shows the medicine orders and medicine intakes for a patient.

Figure A.1 shows also all the controls and their formulas, and the E/R model. In this

data model, a patient may have many medicine orders; a medicine order may have

several intakes and relates to one medicine type. End-users can search for different

patients by changing the patient id in the textbox control and view the medicine orders

and intakes. To create this visualization we use 11 controls: one form, three labels,

two panels, one timescale, one button, one textbox and one bar. In the following

subsections, I focus on the most important concepts, and explain how to bind controls

to data, map fields to properties, align controls, and implement interaction.

Bind controls to data

Using rows from one table

This visualization shows medical data for a single patient. The Rows of panPatient

(Figure A.1.c.6) is this:

Rows: tblPatient where tblPatient.ptId = cint(txtPatient!text)

Notice that a formula refers to a control property using the bang operator(!). Because

ptId in tblPatient is of type Integer, we use the function cint(), which converts a

String to an Integer. The text property in txtPatient (Figure A.1.c.2) is initially 2

(Init 2). As mentioned earlier, Init allows end-users to change a value at run-time.

158

Figure A.1: (a) LifeLines visualization created with uVis. (b) The E/R model. (c) The

formulas for each control, which are stored in a Vis file.

159

This formula is evaluated by uVis and translated into this SQL query:

Select ptId where ptId=2;

As a result, this control is bound to the data row with patient id equals to two.

Using rows from more than one table

To visualize the medicine orders of a patient, the join operator (-<) is used. The

panMedOrder control is bound to data by means of these formulas for the Rows and

Parent properties:

Panel: panMedOrder

Parent: panPatient

Rows: Parent -<tblMedOrder

...

The Parent formula means: make a bundle of controls for each parent control. The

Rows formula means: from the parent row, walk to the related rows of tblMedOrder,

and for each row create a control.

uVis compiles all the formulas, collects fields used (startTime and endTime used

to map the Left and Width property). Then, generates and executes the SQL query,

which corresponds to:

SELECT startTime, endTime

FROM tblPatient LEFT JOIN tblMedOrder

ON tblPatient.ptID = tblMedOrder.ptID

WHERE tblPatient.ptID = 2;

This complex SQL query, a common scenario in data access, highlights the power and

simplicity of uVis. Similar SQL queries may be difficult to write and understand even

by programmers, let alone end-user developers.

In this case, we could have specified the Rows property without using the Parent

keyword, but the formula would have had a where clause:

Bar: panMedOrder

Rows: tblPatient -<tblMedOrder

where tblPatient.ptId= cint(txtPatient!Text)

...

In the same way, the Rows property of barIntake is specified.

160

Map fields to properties

The formula language can map a field to a property, and also use the field’s value in a

conditional statement: For example, the back color of barIntake is defined as follows:

Bar: barIntake

BackColor: tblIntake.amount = 1 ? "lightgreen" : "red"

...

Align controls

To align controls horizontally, formulas use the predefined function of the TimeScale,

HPos(). The HPos() function translates a point in time into the corresponding pixel

position. The Left formula of panMedOrder uses this function to get the pixel position

corresponding to the date-time field startTime. The Width formula uses the endTime

field to calculate the width in pixels.

Panel: panMedOrder

Left: timeScalePatient!HPos(startime)

Width: timeScalePatient!HPos(endtime) - Left

...

The formula language has a control-join (-=) operator that “walks” from a table row

to a control bound to the same row. In this case, this operator defines the top of

panMedOrder controls:

Panel: panMedOrder

Top: Me >- tblMedType -= lblMedTypeName!Top (or Me -= lblMedTypeName!Top)

...

This means: from my medicine order row, walk to the related tblMedType row; from

it walk to the lblMedTypeName bound to the same row; then use its top. In this case,

the >-tblMedType can be omitted because uVis can find the path on its own.

Implement interactions

When an end-user interacts with a control, an event is triggered. To implement a

simple search function, the Text property of txtPatient and the Click property of

btnPatient are specified as follows:

161

Textbox: txtPatient

Text: Init 2

...

Button: btnPatient

Click: Refresh()

...

Let us assume that an end-user changes the text value from 2 to 3, and clicks the

button. The click event is triggered and Refresh() is called. This function asks uVis

to recompute the formulas and check if the SQL has changed. If so it re-queries the

database, and updates the form.

162

Appendix B

Evaluation with Programmers -

Documentation

This appendix presents the documentation used during the first study. At the end it

gives an example of a usability log for one participant.

Introduction to uVis

I explained the uVis principles and syntax to the participant referring to:

Controls

• .Net Controls

• uVis Controls

Properties

• uVis Properties

• Designer Property

• Event Properties

• Special property - Rows

• Special property - Parent

• Special property - Canvas

163

Formula Language

• Dot operator (.)

• Bang Operator (!)

• Join Operators (-<or >-)

• Control Join Operator (-=)

• Me

• Init

• Index

• Parent

• System

• SQL Keywords

• If-Statement

• String Type

• Date Type

164

Task 1

Create a simple bar chart as shown.

Scanned version of the original.

165

Task 2

You will have to create a simple version of the LifeLines, as shown.

Scanned version of the original.

166

Hint Page

Scanned version of the original.

167

Semi-structured Interview

Scanned version of the original.

168

Questionnaire

After each task the programmer replied to the questionnaire through Google Docs.

Questions used in this usability study.

169

uVis Reference Card

Scanned version of the original.

Scanned version of the original.

170

B.1 Usability Log

B.1 Usability Log

This is the present the usability log for the first participant. The other logs were

recorded in the same way.

171

B.1 Usability Log

S
ca

n
n

ed
ve

rs
io

n
o
f

th
e

u
sa

b
il

it
y

lo
g
.

P
a
g
e

1
a
n

d
2
.

172

B.1 Usability Log

S
ca

n
n

ed
ve

rs
io

n
o
f

th
e

u
sa

b
il

it
y

lo
g
.

P
a
g
e

3
a
n

d
4
.

173

B.1 Usability Log

S
ca

n
n

ed
ve

rs
io

n
o
f

th
e

u
sa

b
il

it
y

lo
g
.

P
a
g
e

5
a
n

d
6
.

174

B.1 Usability Log

S
ca

n
n

ed
ve

rs
io

n
o
f

th
e

u
sa

b
il

it
y

lo
g
.

P
a
g
e

7
a
n

d
8
.

175

B.1 Usability Log

S
ca

n
n

ed
ve

rs
io

n
o
f

th
e

u
sa

b
il

it
y

lo
g
.

P
a
g
e

9
a
n

d
1
0
.

176

B.2 Test Report

B.2 Test Report

This is the present the test report usability for the first participant. The other test

reports were prescribed in the same way.

Background - Participant 1

Male; 30 years old; working as a PhD student in Computer Science from

2008; has been coding from 1999; has a very good knowledge of E/R

databases; has a good knowledge of MS Excel spreadsheet formulas; has

been working for the last two years with visualizations; has coded visual-

izations from scratch using Python, and has used Prefuse, and D3.

Task 1: Results

The Parent and Canvas properties caused some confusion, as the user assumed they

were the same (Problem: Cumbersome). Further, specifying the Rows property was not

easy to understand, as the Left-Join operator (-<) was not very intuitive to the user

(Problem: Medium). On the other hand, he really liked the simplicity of the formulas

where he could refer to properties and data-fields easily. In one case, he could change

the back-color by simply referring to a data field and using the simplified version of

the IF-Else statement, and view the result immediately. In his experience with other

tools, sometimes he found himself wasting too much time trying to implement simple

things by means of digging into the code.

The Studio used a top-down (specifying the Top property) approach for placing

controls on the form (Problem: Minor). The user was more used to the bottom-up

approach, and found the top-down approach a bit cumbersome. Also, while he was

creating the visualization, he would have liked to see more details in the form (Problem:

Missing Functionality). For example, adding a label that indicates the bar was bound

to table tblMedOrder. One of the limitations in the Studio is that users are not allowed

to change the control’s position when the position is set to a formula (Problem: Missing

Functionality). The user understood the reason, but suggested that the user should

decide about that.

The user really appreciated the WYBIWYG feature of the Design Panel and kept

the DataView Mode active. Also, the Auto-Completion was useful, but the user prefers

177

B.2 Test Report

that the suggestion should not be removed when the typed word match the suggestion

(Problem: Minor). Further, in some cases the Auto-Completion did not perform as

expected (Problem: Bug). It was obvious that he found the E/R model useful as he

referred to it while he was setting the Rows, and mapping properties to table fields. The

Error-List window was not very helpful, as the user found the errors a bit confusing

and would have liked to have more details (Problem: Cumbersome), or a way to debug

(Problem: Missing Functionality). However, he appreciated that by double-clicking on

the error, the wrong formula was colored in red in the property-grid.

Task 2: Results

The user faced some difficulties specifying the correct formulas for the Rows (Problem:

Medium). The difficulties were caused by the Parent concept (Problem: Cumbersome),

and the Join-Left operator (-<) (Problem: Medium). I noticed that the user had

difficulties specifying a complex formula that joined 3 tables and used a group by

(Problem: Task Failure).

The E/R Model, and the Auto-Completion assisted him in specifying the correct

formulas. From my observation the Auto-Completion worked not only to suggest, but

also to ensure the user that he was writing the correct formula.

As several controls were used to construct this visualization, the user would have

preferred having a control hierarchy window (Problem: Missing Functionality) instead

of the combo-box in the Property Grid (Problem: Minor).

The user was not able to understand the Control-Join (-=) operator initially, but

after thinking-aloud and assuming how that would have been implemented, he man-

aged to figure out the algorithm. He liked the idea, and found it useful. The error

messages were not very helpful to him as the they were difficult to understand (Prob-

lem: Cumbersome). Once the system failed to respond, and we had to close and open

the visualization (Problem: Bug).

The user unchecked the DataView mode to test the mode. This action caused some

problems in the following steps. He bound controls to data, but did not get any imme-

diate feedback in the Design Panel. The user succeeded in implementing the interaction

in the TimeScale control, and test it by dis-activating the InteractionMode. The user

found the Modes confusing because he would have liked to see it over the Design Panel

(Problem: Minor). Also, better and more explicit names for the modes would have

178

B.2 Test Report

made them more understandable (Problem: Minor). At the end, he suggested that

descriptive tool-tips could have helped him in understanding better the Studio and its

features (Problem: Missing Functionality).

Semi-Structured Interview

The user liked the Studio, and how he could interact, bind, and view the controls in

the Design Panel. Auto-completion was helpful, but in some case failed. He has been

using the frameworks defined in Prefuse and D3, but always he had to pre-process the

data into a single table. He found it very interesting and believes that it is important

to allow users to access tables in relational databases directly. However, accessing

relational data may be challenging when it comes to join data from different tables.

The problem is related with SQL, and the knowledge the user has on E/R databases.

He said that viewing the E/R model facilitated his work, but he would have liked to

see the real data as well. uVis operators and keywords such as Parent and Canvas,

frustrated him and it took some effort to understand clearly the concepts.

Regarding the development process, in comparison to other tools the user has used,

he said: ”It is a different way of thinking, and may restrict it as the visualization is

bound to data. But, it is cool as well”. Also he said that ”The Studio helps me see

and keep the general goal. When I am programming, I go to deep in details, and after

a couple of hours I loose what I started at.”

At the end, I showed him an early version of MSProVis, and asked how much time

would take to him to implement it in the Studio versus using other tools he knows.

The user looked at MSProVis, checked the E/R Model, and estimated that using other

toolkits would take approximately 3 weeks, and from scratch around 5 weeks. Using

the Studio he reported: ”Assuming that I have all what I need, like controls, proper

errors, and a stable Studio, I think I would be able to do it in 6 hours. Also, I have to

have some domain knowledge, meaning I should know what I am visualizing”.

179

Appendix C

Evaluation with End-User

Developers - Documentation

This appendix presents the documentation used during the second study.

Task 1

Scanned version of the original.

180

Task 2: Create the Process Completion Diagram

You will have to create the Process Completion Diagram, as shown:

Scanned version of the original.

181

Hint Page

Scanned version of the original.

182

Structured Interview

Scanned version of the original.

183

Questionnaire

After each task the end-user developers replied to the questionnaire through Google

Docs.

Questions used in this study.

184

uVis Studio and Reference Card

Scanned version of the original

Scanned version of the original.

185

uVis Studio Shortcuts

Scanned version of the original.

186

Appendix D

Evaluation with Clinicians -

Documentation

This appendix presents the documentation used during the second study. At the end

it presents a detailed usability log for one participant.

187

Task 1 - Introduction to uVis

You will create a simple bar chart with the uVis formulas and the Studio. You should

follow the steps described below.

Scanned version of the original.

188

Scanned version of the original.

189

Task 2: Create the Process Completion Diagram

You will have to create the Process Completion Diagram, as shown:

Scanned version of the original.

190

Scanned version of the original.

191

Task 3 - Create the LifeLines

You will have to create the LifeLines, as shown.

Scanned version of the original.

192

Scanned version of the original.

193

Structured Interview

Scanned version of the original.

194

Questionnaire

After each task the clinician replied to the questionnaire through Google Docs.

Questions used in this study.

195

uVis Studio and Reference Card

Scanned version of the original

Scanned version of the original.

196

uVis Studio Shortcuts

Scanned version of the original.

197

References

[1] Aigner, W., and Miksch, S. Carevis: Integrated visualization of computerized protocols

and temporal patient data. Artif. Intell. Med. 37, 3 (2006), 203–218. 132

[2] Aigner, W., Miksch, S., Müller, W., Schumann, H., and Tominski, C. Visual methods for

analyzing time-oriented data, Jan. 2008. viii, 12, 13

[3] Aigner, W., Miksch, S., Schumann, H., and Tominski, C. Visualization of Time-Oriented

Data, 1st ed. Springer Publishing Company, Incorporated, 2011. 11

[4] Akasaka, R. Protoviewer: a web-based visual design environment for protovis. In ACM

SIGGRAPH 2011 Posters, SIGGRAPH ’11, ACM (2011), 85:1–85:1. ix, 23, 34, 35, 149

[5] Amar, R., and Stasko, J. A knowledge task-based framework for design and evaluation

of information visualizations. In Proceedings of the IEEE Symposium on Information

Visualization, INFOVIS ’04, IEEE Computer Society (Washington, DC, USA, 2004),

143–150. 18

[6] Bachman, C. W. Data structure diagrams. DataBase (1969), 4–10. 61

[7] Baroth, E., and Hartsough, C. Visual object-oriented programming. Manning Publica-

tions Co., Greenwich, CT, USA, 1995, ch. Visual programming in the real world, 21–42.

16

[8] Bederson, B. B. Fisheye menus. In Proceedings of the 13th annual ACM symposium on

User interface software and technology, UIST ’00, ACM (New York, NY, USA, 2000),

217–225. 3

[9] Bederson, B. B., J., G., and J., M. Toolkit design for interactive structured graphics.

IEEE Trans. Softw. Eng. 30 (2004), 535–546. viii, 3, 11, 23, 30, 31

[10] Bederson, B. B., Meyer, J., and Good, L. Jazz: an extensible zoomable user interface

graphics toolkit in java. In Proceedings of the 13th annual ACM symposium on User

interface software and technology, UIST ’00, ACM (New York, NY, USA, 2000), 171–180.

23

198

REFERENCES

[11] Bederson, B. B., Shneiderman, B., and Wattenberg, M. Ordered and quantum treemaps:

Making effective use of 2d space to display hierarchies. ACM Trans. Graph. 21, 4 (2002),

833–854. 50

[12] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R. Cost

models for future software life cycle processes: Cocomo 2.0. In Annals Of Software

Engineering (1995), 57–94. 14

[13] Bostock, M., and Heer, J. Protovis: A graphical toolkit for visualization. Visualization

and Computer Graphics, IEEE Transactions on 15, 6 (nov.-dec. 2009), 1121 –1128. 3,

20, 23, 34, 35, 149

[14] Bostock, M., Ogievetsky, V., and Heer, J. D3 data-driven documents. IEEE Transactions

on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2301–2309. 3, 11, 20, 23,

35, 93, 102

[15] Bui, A., Aberle, D., and Kangarloo, H. Timeline: Visualizing integrated patient records.

Information Technology in Biomedicine, IEEE Transactions on 11, 4 (july 2007), 462

–473. 132

[16] Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried, H., and Yang,

S. Forms/3: A first-order visual language to explore the boundaries of the spreadsheet

paradigm. J. Funct. Program. 11 (2001), 155–206. 15, 17

[17] Burnett, M. M. Visual programming. Encyclopedia of Electrical and Electronics Engi-

neering (1999). 15

[18] Burnett, M. M., and Baker, M. J. A classification system for visual programming lan-

guages. Tech. rep., Corvallis, OR, USA, 1993. 15

[19] Burnett, M. M., and Gottfried, H. J. Graphical definitions: expanding spreadsheet lan-

guages through direct manipulation and gestures. ACM Trans. Comput.-Hum. Interact.

5, 1 (1998), 1–33. 16, 17

[20] Card, S. K., Mackinlay, J. D., and Shneiderman, B., Eds. Readings in information

visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1999. 2, 10, 20

[21] Chen, P. P.-S. The entityrelationship modeltoward a unified view of data. ACM Trans.

Database Syst. 1, 1 (1976), 9–36. 59

[22] Cheng, M., Livny, M., and Ramakrishnan, R. Visual analysis of stream data. In Pro-

ceedings of SPIE / The International Society for Optical Engineering, vol. 2410 (1995),

108–119. 23, 26

199

REFERENCES

[23] Chi, E. H. A taxonomy of visualization techniques using the data state reference model.

In Proceedings of the IEEE Symposium on Information Vizualization 2000, INFOVIS ’00,

IEEE Computer Society (Washington, DC, USA, 2000), 69–. 18, 147

[24] Chi, E. H.-h., and Riedl, J. An operator interaction framework for visualization systems.

In Proceedings of the 1998 IEEE Symposium on Information Visualization, INFOVIS ’98,

IEEE Computer Society (Washington, DC, USA, 1998), 63–70. 17, 20

[25] Chuah, M. C., Roth, S. F., and Kerpedjiev, S. Intelligent multimedia information re-

trieval. MIT Press, 1997, ch. Sketching, searching, and customizing visualizations: a

content-based approach to design retrieval, 83–111. viii, 23, 25, 26

[26] Cox, P., Giles, F., and Pietrzykowski, T. Prograph: a step towards liberating program-

ming from textual conditioning. In Visual Languages, 1989., IEEE Workshop on (oct

1989), 150 –156. 15

[27] Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. A.,

and Turransky, A., Eds. Watch what I do: programming by demonstration. MIT Press,

Cambridge, MA, USA, 1993. 16

[28] Fekete, J.-D. The infovis toolkit. In Proceedings of the IEEE Symposium on Information

Vizualization 2004 (2004), 167 –174. viii, 3, 11, 23, 29, 30

[29] Fekete, J.-D., Hemery, P.-L., Baudel, T., and Wood, J. Obvious: A meta-toolkit to

encapsulate information visualization toolkits — one toolkit to bind them all. In Visual

Analytics Science and Technology (VAST), 2011 IEEE Conference on (oct. 2011), 91

–100. 157

[30] Flare. http://flare.prefuse.org/. Accessed August, 2011. viii, 11, 23, 33, 34

[31] Godinho, P. I. A., Meiguins, B. S., Meiguins, A. S. G., Casseb do Carmo, R. M.,

de Brito Garcia, M., Almeida, L. H., and Lourenco, R. Prisma - a multidimensional

information visualization tool using multiple coordinated views. In Proceedings of the

11th International Conference Information Visualization, IV ’07, IEEE Computer Soci-

ety (2007), 23–32. 23

[32] Google. http://code.google.com/apis/chart/. Accessed October, 2011. ix, 23, 41

[33] Goren-Bar, D., Shahar, Y., Galperin-Aizenberg, M., Boaz, D., and Tahan, G. Knave ii:

the definition and implementation of an intelligent tool for visualization and exploration

of time-oriented clinical data. In Proceedings of the working conference on Advanced visual

interfaces, AVI ’04, ACM (2004), 171–174. 132

[34] Hallett, C. Multi-modal presentation of medical histories. In Proceedings of the 13th

international conference on Intelligent user interfaces, IUI ’08, ACM (2008), 80–89. 132

200

http://flare.prefuse.org/
http://code.google.com/apis/chart/

REFERENCES

[35] Hanrahan, P. Vizql: a language for query, analysis and visualization. In Proceedings of

the 2006 ACM SIGMOD international conference on Management of data, SIGMOD ’06,

ACM (2006), 721–721. 37

[36] Heer, J., Card, S. K., and Landay, J. A. prefuse: a toolkit for interactive information

visualization. In Proceedings of the SIGCHI conference on Human factors in computing

systems, CHI ’05, ACM (2005), 421–430. viii, 3, 11, 20, 23, 30, 32, 33, 93

[37] Heer, J., Ham, F., Carpendale, S., Weaver, C., and Isenberg, P. Creation and collabora-

tion: Engaging new audiences for information visualization. In Information Visualization,

A. Kerren, J. Stasko, J.-D. Fekete, and C. North, Eds., vol. 4950 of Lecture Notes in Com-

puter Science. Springer Berlin Heidelberg, 2008, 92–133. 2, 3, 13, 19, 21

[38] Heer, J., and Shneiderman, B. Interactive dynamics for visual analysis. Commun. ACM

55, 4 (Apr. 2012), 45–54. 19

[39] Hertzum, M., and Jacobsen, N. E. The evaluator effect: A chilling fact about usability

evaluation methods. Int. J. Hum. Comput. Interaction 13, 4 (2001), 421–443. 84, 152,

153

[40] Hundhausen, C. D., Farley, S. F., and Brown, J. L. Can direct manipulation lower the

barriers to computer programming and promote transfer of training?: An experimental

study. ACM Trans. Comput.-Hum. Interact. 16, 3 (2009), 13:1–13:40. 16

[41] Jaffe, A., Naaman, M., Tassa, T., and Davis, M. Generating summaries and visualiza-

tion for large collections of geo-referenced photographs. In Proceedings of the 8th ACM

international workshop on Multimedia information retrieval, MIR ’06, ACM (New York,

NY, USA, 2006), 89–98. 50

[42] Johnson, B., and Shneiderman, B. Tree-maps: a space-filling approach to the visual-

ization of hierarchical information structures. In Proceedings of IEEE Conference on

Visualization (1991), 284 –291. 50

[43] Johnson, C. M., Johnson, T. R., and Zhang, J. A user-centered framework for redesigning

health care interfaces. J. of Biomedical Informatics 38, 1 (2005), 75–87. 132

[44] Jones, S. P., Blackwell, A., and Burnett, M. A user-centred approach to functions in

excel. SIGPLAN Not. 38, 9 (Aug. 2003), 165–176. 17

[45] Kaser, O., and Lemire, D. Tag-cloud drawing: Algorithms for cloud visualization.

vol. abs/cs/0703109 (2007). 50

[46] Kelleher, C., and Pausch, R. Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Comput. Surv.

37, 2 (June 2005), 83–137. 16

201

REFERENCES

[47] Klann, M., Patern, F., and Wulf, V. Future perspectives in end-user development. In

End User Development, H. Lieberman, F. Patern, and V. Wulf, Eds., vol. 9 of Human-

Computer Interaction Series. Springer Netherlands, 2006, 475–486. 13

[48] Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,

C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G., Shaw, M.,

and Wiedenbeck, S. The state of the art in end-user software engineering. ACM Comput.

Surv. 43, 3 (Apr. 2011), 21:1–21:44. 14

[49] Koh, L. C., Slingsby, A., Dykes, J., and Kam, T. S. Developing and applying a user-

centered model for the design and implementation of information visualization tools. 2011

15th International Conference on Information Visualisation (2011), 90–95. 12

[50] Kosara, R., and Miksch, S. Metaphors of movement: a visualization and user interface

for time-oriented, skeletal plans. Artif. Intell. Med. 22, 2 (May 2001), 111–131. 132

[51] Lauesen, S. User Interface Design: A Software Engineering Perspective. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2005. 82, 83, 84, 88

[52] Lauesen, S. Requirements of uVis. Avaliable on demand, 2009. 4, 57, 148

[53] Lauesen, S. Vistool for unified data visualization. IT University Of Copenhagen, www.

itu.dk/people/slauesen/S-EHR/UnifiedDataVisualization.pdf, 2009. 4, 45

[54] Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and Henry, N. Task taxonomy for graph

visualization. In Proceedings of the 2006 AVI workshop on BEyond time and errors: novel

evaluation methods for information visualization, BELIV ’06, ACM (2006), 1–5. 19

[55] Lee, B., Riche, N. H., Karlson, A. K., and Carpendale, S. Sparkclouds: Visualizing trends

in tag clouds. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010),

1182–1189. 3, 50

[56] Lieberman, H., Patern, F., Klann, M., and Wulf, V. End-user development: An emerging

paradigm. In End User Development, H. Lieberman, F. Patern, and V. Wulf, Eds., vol. 9

of Human-Computer Interaction Series. Springer Netherlands, 2006, 1–8. 1, 13, 14

[57] Lieberman, H., Paternò, F., and Wulf, V. End User Development (Human-Computer

Interaction Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 14, 15,

16, 17

[58] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D., Lawande, S., Myl-

lymaki, J., and Wenger, K. Devise: integrated querying and visual exploration of large

datasets. In Proceedings of the 1997 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’97, ACM (1997), 301–312. 23, 26, 27

202

www.itu.dk/people/slauesen/S-EHR/UnifiedDataVisualization.pdf
www.itu.dk/people/slauesen/S-EHR/UnifiedDataVisualization.pdf

REFERENCES

[59] Livny, M., Ramakrishnan, R., and Myllymaki, J. Visual exploration of large data sets.

In Proceedings of SPIE / The International Society for Optical Engineering (1996). viii,

23, 26, 27

[60] Mackinlay, J. Automating the design of graphical presentations of relational information.

ACM Trans. Graph. 5, 2 (Apr. 1986), 110–141. viii, 23, 24

[61] MacLean, A., Carter, K., Lövstrand, L., and Moran, T. User-tailorable systems: pressing

the issues with buttons. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’90, ACM (New York, NY, USA, 1990), 175–182. 14

[62] Martin, J. Information Engineering: Planning and Analysis. Prentice-Hall, Inc., Engle-

wood Cliffs, NJ, USA, 1990. 49, 59

[63] Matkovic, K., Freiler, W., Gracanin, D., and Hauser, H. Comvis: A coordinated multiple

views system for prototyping new visualization technology. In Proceedings of the 2008

12th International Conference Information Visualisation, IV ’08, IEEE Computer Society

(2008), 215–220. 23

[64] Microsoft Excel. http://office.microsoft.com/en-us/excel/. Accessed August,

2011. ix, 3, 11, 21, 23, 36, 37

[65] Milgram, S., and Jodelet, D. Psychological maps of paris. Environmental psychology

(1976), 104–124. 50

[66] Myers, B., Hudson, S. E., and Pausch, R. Past, present, and future of user interface

software tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (Mar. 2000), 3–28. 20

[67] Nielsen, J. Finding usability problems through heuristic evaluation. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’92, ACM (New

York, NY, USA, 1992), 373–380. 84

[68] Nielsen, J. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1993. 12, 84, 85, 149, 152

[69] Nielsen, J., and Landauer, T. K. A mathematical model of the finding of usability

problems. In Proceedings of the INTERACT ’93 and CHI ’93 conference on Human

factors in computing systems, CHI ’93, ACM (1993), 206–213. 84

[70] Norman, D. A. The Design of Everyday Things. Doubleday Business, 1990. 12, 44, 68

[71] Omniscope. http://www.visokio.com/. Accessed August, 2011. ix, 11, 21, 23, 38, 39

[72] Pane, J., and Myers, B. More natural programming languages and environments. In

End User Development, H. Lieberman, F. Patern, and V. Wulf, Eds., vol. 9 of Human-

Computer Interaction Series. Springer Netherlands, 2006, 31–50. 2, 13, 21

203

http://office.microsoft.com/en-us/excel/
http://www.visokio.com/

REFERENCES

[73] Pantazos, K., and Lauesen, S. Constructing visualizations with infovis tools - an evalua-

tion from a user perspective. In GRAPP/IVAPP, P. Richard, M. Kraus, R. S. Laramee,

and J. Braz, Eds., SciTePress (2012), 731–736. 3, 13

[74] Pantazos, K., Lauesen, S., and Lippert, S. De-identifying an ehr database - anonymity,

correctness and readability of the medical record. Studies In Health Technology And

Informatics 169 (2011), 862–866. 7

[75] Pantazos, K., Tarkan, S., Plaisant, C., and Shneiderman, B. Promoting timely completion

of multi-step processes - a visual approach to retrospective analysis. Tech. Rep. HCIL-

2012-27, University Of Maryland, Human Computer Interaction Lab, 2012. 7

[76] Pfitzner, D., Hobbs, V., and Powers, D. A unified taxonomic framework for information

visualization. In Proceedings of the Asia-Pacific symposium on Information visualisation

- Volume 24, APVis ’03, Australian Computer Society, Inc. (Darlinghurst, Australia,

Australia, 2003), 57–66. 18

[77] Pieczkiewicz, D. S., Finkelstein, S. M., and Hertz, M. I. Design and evaluation of a web-

based interactive visualization system for lung transplant home monitoring data. AMIA

Annual Symposium proceedings AMIA Symposium AMIA Symposium 2007 , 598–602. 132

[78] Plaisant, C. The challenge of information visualization evaluation. In Proceedings of the

working conference on Advanced visual interfaces, AVI ’04, ACM (2004), 109–116. 13,

44, 149

[79] Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B., and Colorado,

K. P. Lifelines: Using visualization to enhance navigation and analysis of patient records.

In In Proceedings of the 1998 American Medical Informatic Association Annual Fall Sym-

posium (1998), 76–80. 2, 3, 11, 12, 22, 54, 132, 158

[80] Processing. http://www.processing.com/. Accessed August, 2011. viii, 23, 27, 28

[81] Robinson, A. C., Chen, J., Lengerich, E. J., Meyer, H. G., and MacEachren, A. M. Com-

bining usability techniques to design geovisualization tools for epidemiology. Cartography

and Geographic Information Science 32, 4 (2005), 243–255. 12

[82] Robson, C. Real World Research - A Resource for Social Scientists and Practitioner-

Researchers, second ed. Blackwell Publishing, Malden, 2002. 86, 148, 153

[83] Roque, F. S., Slaughter, L., and Tkatšenko, A. A comparison of several key information

visualization systems for secondary use of electronic health record content. In Proceedings

of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health

Documents, Louhi ’10, Association for Computational Linguistics (Stroudsburg, PA, USA,

2010), 76–83. 132

204

http://www.processing.com/

REFERENCES

[84] Roth, R. E., Ross, K. S., Finch, B. G., Luo, W., and MacEachren, A. M. A user-centered

approach for designing and developing spatiotemporal crime analysis tools. geovistap-

suedu, Norman 1988 (2009). 12

[85] Roth, S. F., Chuah, M. C., Kerpedjiev, S., Kolojejchick, J. A., and Lucas, P. Toward

an information visualization workspace: combining multiple means of expression. Hum.-

Comput. Interact. 12, 1 (Mar. 1997), 131–185. 23

[86] Roth, S. F., Kolojejchick, J., Mattis, J., and Chuah, M. C. Sagetools: an intelligent

environment for sketching, browsing, and customizing data-graphics. In Conference com-

panion on Human factors in computing systems, CHI ’95, ACM (1995), 409–410. 25

[87] Roth, S. F., and Mattis, J. Automating the presentation of information, 1991. viii, 23,

25

[88] Scaffidi, C., Shaw, M., and Myers, B. Estimating the numbers of end users and end

user programmers. In Visual Languages and Human-Centric Computing, 2005 IEEE

Symposium on (2005), 207 – 214. 14

[89] Shneiderman, B. Direct manipulation: A step beyond programming languages. Computer

16, 8 (1983), 57–69. 16

[90] Shneiderman, B. The eyes have it: A task by data type taxonomy for information

visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, VL

’96, IEEE Computer Society (Washington, DC, USA, 1996), 336–. 17

[91] Shneiderman, B., and Plaisant, C. Designing the User Interface: Strategies for Effective

Human-Computer Interaction, 5. ed. Pearson Addison-Wesley, Upper Saddle River, NJ,

2009. 84, 85

[92] Slocum, T. A., Cliburn, D. C., Feddema, J. J., and Miller, J. R. Evaluating the Usability

of a Tool for Visualizing the Uncertainty of the Future Global Water Balance. Cartography

and Geographic Information Science (Oct. 2003), 299–317. 12

[93] Smith, D. C. Pygmalion: a creative programming environment. PhD thesis, Stanford,

CA, USA, 1975. AAI7525608. 15

[94] Smith, D. C., Cypher, A., and Spohrer, J. Kidsim: programming agents without a

programming language. Commun. ACM 37, 7 (July 1994), 54–67. 15

[95] Smith, R. What clinical information do doctors need? BMJ British Medical Journal 313,

7064 (1996), 1062–1068. 132

[96] Spence, R. Information Visualization: Design for Interaction (2nd Edition). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2007. 10, 11

205

REFERENCES

[97] Spotfire. http://spotfire.tibco.com/. Accessed August, 2011. ix, 3, 11, 21, 23, 37,

39, 101

[98] Stolte, C., and Hanrahan, P. Polaris: a system for query, analysis and visualization

of multi-dimensional relational databases. In Information Visualization, 2000. InfoVis

2000. IEEE Symposium on (2000), 5 –14. 23, 36

[99] Tableau. http://www.tableausoftware.com/. Accessed August, 2011. ix, 3, 11, 21, 23,

36, 38

[100] Takatsuka, M., and Gahegan, M. Geovista studio: a codeless visual programming envi-

ronment for geoscientific data analysis and visualization. Comput. Geosci. 28, 10 (Dec.

2002), 1131–1144. viii, 23, 28, 29

[101] Tanimoto, S. L. Viva: A visual language for image processing. J. Vis. Lang. Comput. 1,

2 (June 1990), 127–139. 67, 68

[102] Thomas, J. J., and Cook, K. A. A visual analytics agenda. IEEE Comput. Graph. Appl.

26, 1 (2006), 10–13. 11

[103] Tom Sawyer Perspectives. http://www.tomsawyer.com/products/perspectives/

index.php. Accessed August, 2011. ix, 23, 40

[104] Tory, M., and Moller, T. Rethinking visualization: A high-level taxonomy. In Proceedings

of the IEEE Symposium on Information Visualization, INFOVIS ’04, IEEE Computer

Society (Washington, DC, USA, 2004), 151–158. 18

[105] Tufte, E. R. The visual display of quantitative information. Graphics Press, 1986. 10

[106] Tufte, E. R. Beautiful Evidence. Graphis Pr, 2006. 50

[107] uVis. Performance details. https://dl.dropbox.com/u/5614860/Performance.xls, 2009.

71

[108] Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., and McKeon, M. Manyeyes: a site

for visualization at internet scale. IEEE Transactions on Visualization and Computer

Graphics 13 (2007), 1121–1128. 23, 41

[109] Virzi, R. A. Refining the test phase of usability evaluation: how many subjects is enough?

Hum. Factors 34, 4 (1992), 457–468. 84

[110] Vrachnos, E., and Jimoyiannis, A. Dave: A dynamic algorithm visualization environment

for novice learners. In Proceedings of the 2008 Eighth IEEE International Conference on

Advanced Learning Technologies, ICALT ’08, IEEE Computer Society (Washington, DC,

USA, 2008), 319–323. 23

206

http://spotfire.tibco.com/
http://www.tableausoftware.com/
http://www.tomsawyer.com/products/perspectives/index.php
http://www.tomsawyer.com/products/perspectives/index.php

REFERENCES

[111] Wang, T. D., Plaisant, C., Quinn, A. J., Stanchak, R., Murphy, S., and Shneiderman,

B. Aligning temporal data by sentinel events: discovering patterns in electronic health

records. In Proceedings of the twenty-sixth annual SIGCHI conference on Human factors

in computing systems, CHI ’08, ACM (2008), 457–466. 11, 132

[112] Weaver, C. Building highly-coordinated visualizations in improvise. In Proceedings of the

IEEE Symposium on Information Visualization, IEEE Computer Society (2004), 159–166.

viii, 23, 31, 32, 149

[113] Welch, B. B. Practical programming in Tcl and Tk (2nd ed.). Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1997. 26

[114] Whitley, K. Visual programming languages and the empirical evidence for and against.

Journal of Visual Languages & Computing 8, 1 (1997), 109 – 142. 15

[115] Wilson, C. Taking usability practitioners to task. Interactions 14, 1 (Jan. 2007), 48–49.

152

[116] Wongsuphasawat, K., Guerra Gómez, J. A., Plaisant, C., Wang, T. D., Taieb-Maimon,

M., and Shneiderman, B. Lifeflow: visualizing an overview of event sequences. In Pro-

ceedings of the 2011 annual conference on Human factors in computing systems, CHI ’11,

ACM (2011), 1747–1756. 11, 30, 132

207

	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Problems
	1.2 Solution
	1.3 The uVis Project
	1.4 Research Approach
	1.5 Contributions
	1.6 Publications
	1.7 Thesis Overview

	2 Background and Related Work
	2.1 Information Visualization
	2.2 End-User Development
	2.3 Existing Visualization Development Tools
	2.3.1 A Review of Existing InfoVis Taxonomies
	2.3.2 Visualization Tool Taxonomy
	2.3.3 Analysis Approach
	2.3.4 Tools and Toolkits
	2.3.5 Results

	3 Solution
	3.1 uVis Formula Language
	3.1.1 uVis Files
	3.1.2 Controls
	3.1.3 Properties
	3.1.4 Formulas
	3.1.5 Visualizations
	3.1.6 Interaction
	3.1.7 Special uVis Concepts

	3.2 uVis Studio
	3.2.1 Panels
	3.2.2 Development Approach
	3.2.3 Cognitive Supports
	3.2.4 Performance

	4 The Approach in Practice
	4.1 The Process Completion Diagram
	4.1.1 Constructing the PCD

	4.2 Visualizing the Evolution of Technologies

	5 Usability Evaluation
	5.1 Usability Factors
	5.2 Measurement Techniques for Usability

	6 Usability Study with Programmers
	6.1 Procedure and Tasks
	6.2 Results
	6.3 Summary

	7 Usability Study with End-User Developers
	7.1 Procedure and Tasks
	7.2 Results
	7.3 Summary

	8 Usability Study with Clinicians
	8.1 Information Visualization in Healthcare
	8.2 Usability Study
	8.2.1 Procedure and Tasks
	8.2.2 Results
	8.2.3 Summary

	9 Discussion
	9.1 Visualization Tool Taxonomy
	9.2 uVis
	9.3 Usability Studies

	10 Conclusions and Future Work
	Appendix A A Custom Visualization with uVis Formulas
	Appendix B Evaluation with Programmers - Documentation
	B.1 Usability Log
	B.2 Test Report

	Appendix C Evaluation with End-User Developers - Documentation
	Appendix D Evaluation with Clinicians - Documentation
	References

