
Custom Formula-Based

Visualizations for Savvy

Designers

Mohammad Amin Kuhail

Software and Systems Section

IT University of Copenhagen

A thesis submitted for the degree of

PhilosophiæDoctor (PhD), DPhil,..

October 2012

mailto:moak@itu.dk
https://sss.wikit.itu.dk/
http://www.itu.dk

Abstract

Despite their usefulness in many domains (e.g. healthcare, finance, etc.),

custom visualizations remain tedious and hard to implement. It would be

advantageous if savvy designers (designers with basic programming knowl-

edge and much domain knowledge) could refine visualizations to their needs.

For instance, it would save time and money if a clinician familiar with

spreadsheet formulas could refine a visualization (e.g. the lifelines) rather

than hiring a programmer.

Existing approaches to visualization are one of the two: accessible to savvy

designers but limited in customizability, or inaccessible and expressive. For

instance, chart tools are easy to use, but support only predefined visualiza-

tions, while visualization tools support custom visualizations, but require

program-like specifications.

This thesis presents Uvis, a visualization system that targets savvy design-

ers. With Uvis, designers drag and drop visual objects, set the visual object

properties with formulas, and see the result immediately. The formulas are

declarative and similar to spreadsheet formulas. The formulas compute the

property values and can refer to fields, visual properties, functions, etc.

This thesis hypothesizes that it is possible to express custom visualizations

with spreadsheet-like formulas, and savvy designers can learn to refine the

visualizations. The thesis presents four contributions: The first is the ex-

pressive power of formulas, substantiated with a collection of custom vi-

sualizations. The second contribution is iteratively refining Uvis based on

feedback from savvy designers. Uvis provides novel cognitive aids that as-

sist the designers in creating and refining custom visualizations. The third

contribution is a usability evaluation of Uvis with savvy designers. The

fourth contribution is a usability analysis of several visualization tools in-

cluding Uvis. The analysis highlights the differences between approaches

and argues why Uvis is more suited for custom visualizations.

Apart from the thesis, I am the main author of two peer-reviewed, accepted

papers and a co-author of another one.

iv

Dedication

I dedicate this thesis to my beloved parents, wife, and family members.

I also dedicate it to all positive people in the world who always focus on

changing themselves to the better and making the world a better place

rather than blaming others, the situation, etc.

I also dedicate it to the children who are having a hard time. I hope the

future will bring something positive to them. One by one, we all make a

difference.

Acknowledgements

I would like to acknowledge my supervisor Soren Lauesen for helping me so

much during my PhD studies. I have learned so much from him not only

at a professional or academic level, but also a personal level.

Soren Lauesen invented the basic Uvis principles, including the formula

principles. The rest of the initial Uvis ideas are the joint intellectual work

of Mohammad Amin Kuhail, Soren Lauesen, Kostas Pantazos, and Shangjin

XU (in alphabetical sequence). Each team member developed his version

of Uvis to validate his research ideas.

I would like to acknowledge my parents and other family members who gave

me a lot of positive energy during my PhD journey.

I would like to acknowledge my wife, Zara Al-Ali, who supported me during

writing the thesis. She contributed so much to my success.

I would like to thank professor Margaret-Anne (Peggy) Storey who super-

vised me during my stay abroad in the CHISEL lab, Victoria, Canada. In

general, all the lab members were friendly and inspiring.

I would like to acknowledge many of colleagues who inspired me with their

innovative ideas and hard work. In particular, I would like to thank Kostas

Pantazos, XU Shangjin, Soren Lippert, and Lars Grammel.

Contents

List of Figures ix

1 Introduction 1

1.1 The Uvis Approach . 3

1.1.1 Example . 7

1.2 Thesis Statement and Research Contributions 11

1.3 List of Publications . 11

1.4 Organization of the Dissertation . 12

2 Background 15

2.1 Visualization Reference Model . 15

2.2 Approaches to Visualization . 16

2.2.1 Charting Tools . 16

2.2.2 Analytical and Exploratory Tools 16

2.2.3 Custom Visualization Tools . 17

2.2.4 Programming Languages . 22

2.2.5 Summary . 23

3 Uvis Formulas 27

3.1 Introduction . 27

3.2 Architecture . 27

3.3 Visual Objects . 29

3.3.1 Properties . 29

3.3.2 Functions . 32

3.4 Formula Basics . 33

3.4.1 Visual Containers . 33

iii

CONTENTS

3.4.2 Connecting visual objects to data 33

3.4.3 Property Formulas . 36

3.4.4 End-user Data and Interaction 38

3.5 Performance . 40

3.5.1 One SQL Query per Multiple Visual Objects 42

3.5.2 Fast GDI+ Shapes . 43

3.5.3 Multi-Cell Canvas . 44

4 Formula-Based Visualizations 45

4.1 Introduction . 45

4.2 Example Visualizations . 45

4.2.1 Passenger Statistics . 45

4.2.2 Train Schedule . 49

4.2.3 Medicine Tree . 51

4.2.4 Website Hits . 54

4.3 Other Visualizations . 57

4.4 Lines of Code . 59

4.5 Expressiveness Factors . 59

4.6 Limitations . 61

4.6.1 Recursion and Loops . 61

4.6.2 Complex Interaction . 62

4.6.3 Other Types of Visualizations . 63

4.6.4 Inability to Define Functions . 63

4.7 Summary . 63

5 Uvis Usability 65

5.1 Introduction . 65

5.2 Initial Uvis Version . 65

5.2.1 Drag-Drop-Set-Property . 66

5.2.2 Documentation . 66

5.2.3 Only Visual Objects . 68

5.3 Uvis Enhanced Version . 68

5.3.1 Table view . 68

5.3.2 Inspector . 70

iv

CONTENTS

5.3.3 Showing multiple visual objects as a staircase 72

5.3.4 Showing Parent . 74

5.3.5 Positioning children on top of parents 74

5.3.6 Visual Editing Functions . 74

5.3.7 Default Formulas . 76

5.3.8 Documentation . 76

5.3.9 Benefits . 78

6 Iterative Design of the Uvis System 79

6.1 Introduction . 79

6.2 Iterative Design Process . 79

6.2.1 Objectives . 80

6.2.2 Uvis Concepts to Evaluate . 80

6.3 Test Tasks . 84

6.3.1 First Version of Tasks . 84

6.3.2 Second Version of Tasks . 86

6.3.3 Third Version of Tasks . 89

6.4 First Phase of Evaluation . 92

6.4.1 The Participant’s Background . 92

6.4.2 The Usability Study Settings . 92

6.4.3 Qualitative Results: . 93

6.4.4 Quantitative results: . 93

6.4.5 Causes and Solutions: . 93

6.4.6 Changes - the second version of Uvis 95

6.5 Second Phase of Evaluation . 96

6.5.1 The Participant’s Background . 96

6.5.2 The Usability Study Settings . 97

6.5.3 Qualitative Results: . 97

6.5.4 Quantitative results: . 98

6.5.5 Causes and Solutions . 98

6.5.6 Changes - The Third Version of Uvis 100

6.6 Third Phase of Evaluation . 102

6.6.1 The Participant’s Background . 102

v

CONTENTS

6.6.2 The Usability Study Settings . 103

6.6.3 Qualitative Results . 103

6.6.4 Quantitative Results . 104

6.6.5 Causes and Solutions . 104

6.6.6 Changes - The Fourth Version of Uvis 105

6.7 Fourth Phase of Evaluation . 106

6.7.1 The Participant’s Background . 106

6.7.2 Usability Study Settings . 107

6.7.3 Qualitative Results . 108

6.7.4 Quantitative Results . 108

6.7.5 Causes and Solutions . 108

6.7.6 Changes - The Fifth Version of Uvis 110

6.8 Summary . 110

7 Evaluation 113

7.1 Introduction . 113

7.2 Tool Comparative Analysis . 113

7.2.1 Selected Tools . 114

7.2.2 Prefuse . 114

7.2.3 Protovis . 116

7.2.4 Improvise . 117

7.2.5 Uvis . 119

7.3 Evaluating the Tools with the Cognitive Dimensions of Notations 121

7.3.1 Abstractions . 122

7.3.2 Hidden Dependencies . 123

7.3.3 Premature Commitment . 123

7.3.4 Progressive Evaluation . 124

7.3.5 Viscosity . 124

7.3.6 Visibility and Juxtaposability . 125

7.3.7 Summary . 126

7.4 Experimental Evaluation . 127

7.4.1 Objective . 127

7.4.2 The Participant’s Background . 128

vi

CONTENTS

7.4.3 Procedure . 128

7.4.4 Tasks . 129

7.4.5 Form . 130

7.4.6 Results . 131

8 Conclusion and Future Work 133

8.1 Contributions . 133

8.2 Future Work . 134

References 137

A Usability Study Documentation 141

A.1 The Usability Log of Participant 1 . 142

A.2 The Background Form of Participant 10 143

A.3 The Understandability Form of Participant 10 145

vii

CONTENTS

viii

List of Figures

1.1 The Uvis environment . 4

1.2 An employee task plan visualization. The model of the visualization

data is on the right. 6

1.3 Double clicking the employee table (box) shows a sample of the table . 6

1.4 Dragging a time scale visual object to the design panel 7

1.5 Connecting EmployeeLabel to data . 8

2.1 Visualization Reference Model . 16

2.2 Features provided by several custom visualization tools for data trans-

formations . 18

2.3 Features provided by several custom visualization tools for visual mappings 19

2.4 Summary of the existing approaches . 24

2.5 Summary of the existing approaches . 25

3.1 Uvis architecture . 28

3.2 An example of a vism file . 28

3.3 Examples of Uvis visual objects . 30

3.4 Examples of common built-in properties 30

3.5 Size and position properties of some visual objects 31

3.6 Visual-object-specific properties . 31

3.7 Examples of utility functions provided by Uvis 32

3.8 A task plan visualization . 34

3.9 Performance results of the lifelines example 40

3.10 A visualization inspired by LifeLines . 41

3.11 Performance of visualizations created with Uvis 41

ix

LIST OF FIGURES

3.12 Comparison of single-row queries against multiple-row queries 42

3.13 Performance of a GDI+ Box in comparison to a .NET TextBox 42

3.14 A visualization inspired by the Spiral Graph (1) containing 10,000 el-

lipses representing website hits . 43

3.15 Comparison of performance of a spiral visualization with one-cell canvas

against multi-cell canvas . 43

4.1 An overview of the selected visualizations 46

4.2 Passenger statistics visualization . 47

4.3 Pie Slice properties . 48

4.4 A train schedule visualization . 50

4.5 A spline specification . 50

4.6 Medicine tree visualization . 52

4.7 Medicine tree visualization with TreeNode objects 54

4.8 Website hits Visualization . 56

4.9 Other visualizations created with Uvis. (A) LifeLines. (B) Horizon

Graphs. (C) Tile Maps. (D) CircleView. (E) Tree Maps. (F) Heat-

map grid . 58

4.10 Lines of code needed to created several visualizations with Uvis 59

4.11 Examples of what formulas can refer to 60

4.12 A visualization that is updated every 0.1 seconds. The visualization is

adapted from (2) . 64

5.1 Basic version of Uvis environment . 67

5.2 Uvis tutorial, version 1 . 67

5.3 Enhanced version of Uvis environment 69

5.4 The table view feature . 69

5.5 The inspector showing the relationship between a visual object and a

data row . 70

5.6 The inspector showing values behind the formula sub-expressions 72

5.7 The inspector showing irregular values in red and warnings in yellow . . 73

5.8 The staircase metaphor . 73

5.9 Highlighting parent visual objects . 74

5.10 Positioning child objects on top of parent objects 75

x

LIST OF FIGURES

5.11 Positioning PieSlice child objects on top of parent objects 75

5.12 Setting the pie slice’s StartAngle . 76

5.13 A power-point based tutorial . 77

6.1 The iterative design process . 80

6.2 Uvis language concepts . 81

6.3 Uvis environment and visual object concepts 82

6.4 The Uvis concepts that tasks evaluate 83

6.5 Visual tasks, version 1 . 85

6.6 Visual tasks, version 2 . 88

6.7 Visual tasks, version 3 . 91

6.8 The first phase problems, causes, and solutions 94

6.9 Changes in version 2 of the Uvis environment 96

6.10 Quantitative results of the second phase 99

6.11 The second phase problems, causes, and solutions 100

6.12 The third version of the Uvis environment 101

6.13 The third phase quantitative results . 104

6.14 Causes and solutions for problems observed in phase 3 105

6.15 The fourth version of the Uvis environment 106

6.16 Quantitative results of the fourth phase tests 108

6.17 The fourth phase problems, causes, and solutions 109

6.18 The changes in the fifth version of Uvis 110

6.19 The fourth phase problems, causes, and solutions 111

7.1 A custom scatter plot based on table HighReading 114

7.2 Creating a custom scatter plot with Prefuse. a: binding the visualization

to data, b: defining time and numeric axes, c: defining a conditional vi-

sual mapping, d: associating the visual mappings with the visualization,

e: defining tick marks and associating them with the axes. f: defining

ellipses representing the temperature readings 115

7.3 Creating a custom scatter plot with Protovis a: defining the visualiza-

tion, b: defining the numeric (temperature) and time scales (axes). c:

defining dots and visually mapping them to temperature and date fields

according to the scales . 117

xi

LIST OF FIGURES

7.4 Creating a custom scatter plot with the Protovis environment (Pro-

toviewer) . 118

7.5 Creating a custom scatter plot with Improvise 118

7.6 The specifications of the custom scatter plot with Uvis 120

7.7 The scatter plot visualization in the Uvis environment 120

7.8 The Left expression values . 121

7.9 The evaluation tasks . 129

7.10 Evaluation Quantitative results. T=Time, Q=Solution quality, GA=Group

A, and GB=Group B . 130

A.1 A snapshot of the usability log of participant 1 142

A.2 The background form of participant 10, part A 143

A.3 The background form of participant 10, part B 144

A.4 The understandability form of participant 10, part A 145

A.5 The understandability form of participant 10, part B 146

A.6 The understandability form of participant 10, part C 147

xii

1

Introduction

Information visualization (InfoVis) seeks to leverage human visual abilities to derive

insights by showing data as position, colour, orientation, etc. The insights of InfoVis

are applied in many areas such as financial data analysis, health care, biology, etc.

Despite the potential of InfoVis, implementing or refining custom visualizations

such as Lifelines (3) remains time consuming and accessible only to experienced pro-

grammers.

Custom visualizations use position, size, shape, colour, and orientation to show data.

However, unlike conventional visualizations (e.g. bar chart), they cannot be created

by selecting predefined visualization templates and mapping data to the templates.

Custom visualizations are tailored to a specific need, and designers might not be exactly

sure about what the desired visualization should look like. It is a trial and error

approach.

It would be advantageous if a savvy designer, a designer with basic programming

skills and domain knowledge, could implement or refine a custom visualization. For

instance, it would save a lot if clinicians with basic programming skills and domain

knowledge were able to refine a lifelines visualization to their own needs rather than

hiring a programmer to do it.

Allowing savvy designers to implement or refine custom visualizations necessitates

an approach that combines ease of use and expressiveness.

There are many tools that support the creation of visualizations. The strengths

and weaknesses of these tools can be summarized as follows:

1

1. INTRODUCTION

• Charting tools such as Excel allow designers to create visualizations that corre-

spond to predefined templates. Limited customization is possible. For instance,

designers can change some appearance properties such as colour, text formatting,

etc.

This approach is accessible to savvy designers but does not support custom vi-

sualizations. Designers do not have full control over the fine building blocks of

the visualization. For instance, not all the visual properties (e.g. Height) of the

visual objects (e.g. ellipse, bar) are exposed. Moreover, designers cannot reuse

the building blocks in other visualizations.

• Analytical and exploratory tools such as Spotfire (4) allow more data ex-

ploration than charting tools. They provide more visualization templates and

functionalities.

These tools are accessible to savvy designers and more expressive than charting

tools. However, the designer’s control over the resulting visualization is still

limited, making the tools unsuited for the design of custom visualizations. For

instance, a visualization like the Lifelines (3) can not be made.

• Visualization tools such as Prefuse (5) and Protovis (6) allow designers to

build custom visualizations. The approaches of these tools vary from imperative

to declarative programming. However, designers may still need to implement

program-like specifications. For instance, designers need to declare variables,

program functions, etc. Consequently, the gap between the objective (what the

designer wants to accomplish) and the solution (how the designer accomplishes

the objective) remains high. This is described by Norman as the gulf of execution

(7).

• Programming languages provide graphics APIs such as GDI+ (8) and Java

2D (9) that can be used to create advanced visualizations, but these languages

mainly target experienced programmers.

The programming languages can be integrated with development environments

(e.g. MS Visual Studio (10)). The environments allow programmers to manually

build a non-functional user interface. The environments use the drag-drop-set-

property approach. Programmers manually drag and drop graphical components

2

1.1 The Uvis Approach

(buttons, text boxes, etc.) and set their properties. Then the screen looks right,

but it has little functionality. Programming behind is needed to make the interface

functional.

To sum up, existing tools are either inflexible and accessible to non-programmers,

or flexible and inaccessible to non-programmers.

An evaluation study (11) found out that drag-drop-set-property tools (called inter-

face builders and interactive graphical tools) were much more successful with designers

than program-based tools. The study also reports that spreadsheets are the only kind

of ”programming” widely accepted by end-users.

MS Access is an example of a successful drag-drop-set-property tool. Designers cre-

ate useful database applications by dragging and dropping UI elements (e.g. TextBox).

Further, designers define formulas that make the elements show data. However, the

formulas are very limited. For instance, it is not possible to show data as position,

orientation, etc.

Inspired by MS Access, Uvis is a drag-drop-set-property tool where designers drag

and drop visual objects, and specify formulas for the visual object properties. A for-

mula computes and sets the value of a property, and can bind visual objects to data.

A formula corresponds to a spreadsheet formula, but is able to combine data from

databases, visual components and end-user input.

The following section explains the Uvis approach.

1.1 The Uvis Approach

The Uvis approach relies on these elements:

• The development environment assists the designer in creating or refining a

visualization (Figure 1.1). The environment consists of seven panels: toolbox,

visualization form, property grid, data model, error list, table view, and inspector.

The toolbox is a list of the available visual objects. The visualization form contains

the visualization the designer is currently building. The property grid allows the

designer to change the properties (e.g. colour, position, etc.) of a visual object.

The error list lists the problems in the visualization. The data model shows the

structure of the data the designer wants to show. The table view shows a sample

3

1. INTRODUCTION

Figure 1.1: The Uvis environment

4

1.1 The Uvis Approach

of the data in the data model. The inspector allows the designer to view data

behind the visual objects and their properties.

• The visual objects are the building blocks of a visualization. They can be

traditional UI elements (e.g. button, textbox), geometric shapes (e.g. ellipse, tri-

angle), or specialized objects (e.g. time scale). The visual objects have properties

that define their appearance (e.g. position, size, colour) and behaviour.

• Formulas are declarative spreadsheet-like expressions that can bind visual ob-

jects to data and make their properties represent the data. The formulas can

refer to data fields, visual properties, functions, etc.

• The documentation is a tutorial that walks the designer step-wise through the

main Uvis concepts. It is easy to read, and contains concrete examples.

To create a visualization, the designer drags a visual object from the toolbox and

drops it on the visualization form. To make the visual object show data in the database,

the designer sets the Rows property with an SQL-like formula that can retrieve a subset

of tables in a relational database . The result is a local record set. Uvis creates a visual

object for each row in the record set. Uvis automatically positions the visual objects

like a staircase to make them visible to the designer. The designer sees the result

immediately in the visualization form.

To make the properties of the visual objects show data, the designer can set the

appearance properties (e.g. Height, Top) with formulas that refer to data fields in the

record set. Again, the designer sees the impact of the formulas in the visualization

form immediately.

If Uvis encounters errors while the designer is typing the formulas, Uvis highlights

the problematic parts, and produces a list of the errors.

To check that the visual objects show the right data in the right way, the designer

can select a visual object and view the data row behind it in the inspector. Moreover,

the designer can inspect the values of the formula sub-expressions.

Now we will give an example of how to create a visualization with Uvis. The

example uses the same style used in the documentation.

5

1. INTRODUCTION

Figure 1.2: An employee task plan visualization. The model of the visualization data is

on the right.

Figure 1.3: Double clicking the employee table (box) shows a sample of the table

6

1.1 The Uvis Approach

Figure 1.4: Dragging a time scale visual object to the design panel

1.1.1 Example

Objective: Kim is a Uvis experienced designer. She wants to create the visualization in

Figure 1.2 with Uvis. The visualization shows a task plan for employees. The employees

are shown as labels on the left. The employee tasks are shown as green, red, and grey

boxes. Each colour represents a task status: green for done, red for cancelled, and

grey for postponed. The tasks are aligned to the employees and horizontally positioned

according to their start time.

The data behind the visualization come from two tables: Employee and Task.

Kim starts building the visualization in this fashion:

• Getting familiar with the data: She familiarizes herself with the data she

wants to show. She sees tables Employee and Task in the data model. She

double clicks the Employee box, and takes a look at a sample of the Employee

table (Figure 1.3.)

• Showing time: To show time, Kim drags a horizontal time scale from the toolbox

and drops it on the visualization form (Figure 1.4.)

In the property grid, she sets the following properties of the time scale:

Range: #1-1-2010#, #1-6-2010#

Width: 500

7

1. INTRODUCTION

Figure 1.5: Connecting EmployeeLabel to data

This makes the time scale display the period of time between January and June

2010 in 500 pixels. She names the scale hScale to be able to refer to it later on.

• Creating a label per employee: To show labels of employees, Kim drags a label

from the toolbox and drops it in the top left area, and names it EmployeeLabel.

To create a label for each employee, Kim sets the following Rows property of

EmployeeLabel in this way:

Rows: Employee

As a result, Uvis creates as many employee labels as there are rows in the

Employee label. Uvis positions the labels like a staircase (Figure 1.5.) This

cognitive aid explicitly shows that many visual objects were created. Further,

Kim can now select an employee label and inspect the data row behind it, and

vice versa (Figure 1.5.)

How does Uvis position the labels like a staircase? Prior to defining the Rows

property, the label’s Top and Left values were 80 and 23 (the position where Kim

8

1.1 The Uvis Approach

dropped the label.) Upon defining the Rows property, Uvis sets the following Top

and Left formulas automatically:

Top: 80 + index*25

Left: 23 + index*25

The Top formula consists of numbers and index. The index is the label number.

The first label’s index is 0, the second is 1, and so on. The Top formula means:

The first label’s top is 80 + 0*25 (80), the second labels top is 80 + 25 (105), and

so on. The Left formulas works in the same way. The result is that the labels

cascade like a staircase.

To gain some understanding of how the calculation happens, Kim can select (click)

the Top property, and the inspector will show all the Top values and the values

of sub-expressions (i.e. index.)

• Showing data from a table: To show the employee names on the labels, Kim

selects any employee label, and changes the following Text formula:

Text: Employee.name

The Text formula navigates to an Employee row and takes its name field. The

result is that the labels now show employee names.

• Showing visual objects that meet a criterion: To only show employees who

work more than 25 hours per week, Kim specifies the Rows property in this way:

Rows: Employee where WeeklyHours>20

The result is we only see employees with weekly work hours greater than 20.

• Showing related data: Kim wants to show the employee tasks as boxes. The

tasks reside in the Task table. The Task table has a many-to-one relationship

with the Employee table.

First, Kim drags and drops a Box object. Second, she specifies the following

formulas for the Rows and Parent properties:

Parent: EmployeeLabel

Rows: parent-<Task

9

1. INTRODUCTION

The Parent formula means: Create a Box object for each parent (EmployeeLabel)

object. The Rows formula means: Start in the Employee row connected to

EmployeeLabel (the Parent). The join (-<) operator symbolizes a one-to-many

crow’s foot in the data model (Figure 1.2). Now navigate along the crow’s foot

to the Task table. The result is the related Task rows. Uvis creates Box objects

that correspond to the rows.

• Aligning a visual object to the time scale: Kim wants to align the boxes

representing tasks to the time scale according to their start time. She selects a

task box, and defines the following Left property formula:

Left: hScale!Position(Task.start)

The Left formula means: Navigate to the time scale object (hScale). Call its

Position function with Task.Start as a parameter. The result is that the time

scale calculates the horizontal position of the task boxes according to their start

time (Task.Start.)

• Making a property depend on a condition: To make the task colour repre-

sent the status, Kim defines the following formula for the BackColor property:

BackColor: Task.Status="done"? Green : Task.Status="cancelled"?

Red : Gray

The BackColor formula looks at the field Task.Status. If it is done, make the

box green. If it is cancelled, make the box red. Otherwise, make the box grey.

• Checking the correctness of the visualization: To check that the visualiza-

tion shows the right data in the right way, Kim selects several employee labels,

looks at the connected rows, and checks all the weeklyhour values. They all are

greater than 20. This looks right. She moves on, and selects a task box. She looks

at the connected row, and checks whether Task.Status is done or cancelled, and

compares the status against the box colour. Kim moves on, and selects a box,

compares the Task.Start value against the visual position of the box. It looks

right too. Kim is now confident that her visualization is correct.

10

1.2 Thesis Statement and Research Contributions

1.2 Thesis Statement and Research Contributions

My hypothesis is as follows: It is possible to create custom visualizations with spreadsheet-

like formulas, and savvy designers can learn how to refine the custom visualizations.

This dissertation describes the following four primary contributions to the field of

information visualization:

• The first contribution is a mechanism of creating custom visualizations with Uvis

spreadsheet-like formulas. The visualizations cover several categories: time ori-

ented, radial, hierarchical, etc.

• The second contribution is a visualization system (Uvis) that allows savvy de-

signers to build formula-based visualizations with the drag-drop-set-property ap-

proach. The system provides cognitive aids that makes the process of building and

checking a custom visualization easy to learn. The system has been iteratively

designed based on feedback from savvy designers.

• The third contribution is a preliminary experimental evaluation with six potential

savvy designers. The evaluation assesses how easy it is to learn the Uvis approach.

The evaluation concludes that savvy designers can learn the basics of the Uvis

approach.

• The fourth contribution is a usability analysis of several visualization tools. It

highlights the striking differences between the existing approaches and Uvis.

1.3 List of Publications

• Soren Lauesen, Mohammad A. Kuhail, Kostas Pandazos, Shangjin Xu, and Mads

B. Andersen. A drag-drop-formula tool for custom visualization. Submitted to

IVAPP 2013.

• Mohammad A. Kuhail and Soren Lauesen. Customizable Visualizations with

Formula-linked Building Blocks. In GRAPP/IVAPP, pages 768 (771, 2012.)

• Mohammad A. Kuhail, Kostas Pandazo, and Soren Lauesen. Customizable Time-

Oriented Visualizations. In ISVC (2), pages 668 (677, 2012.)

11

1. INTRODUCTION

• Mohammad A. Kuhail, Kostas Pantazos, and Soren Lauesen. The Inspector: A

Cognitive Artefact for Visual Mappings. Submitted to IVAPP 2013.

• Mohammad A. Kuhail, Soren Lauesen, Kostas Pantazos, and XU Shangjin. Us-

ability Analysis of Custom Visualization Tools. Submitted to SIGRAD 2012.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows.

An overview of the existing approaches to visualization construction. Also, a survey

of the relevant academic and commercial visualization and data analytic tools is given

in Chapter 2.

I substantiate that it is possible to express custom visualizations with formulas as

follows:

• The principles of Uvis formulas are explained through an example. This is fol-

lowed with principles ensuring that Uvis performs sufficiently (Chapter 3.)

• A collection of formula-based custom visualizations are presented. This is fol-

lowed with a discussion about the expressiveness and limitations of Uvis formulas

(Chapter 4.)

I refined Uvis to make sure it is easy to learn for savvy designers as follows:

• I carried out several usability studies with savvy designers. The studies resulted

in a refined version of Uvis. The initial and refined version of Uvis are presented.

In particular, the cognitive aids that support the designers that resulted from the

usability studies are presented (Chapter 5.) Furthermore, the usability studies

with savvy designers are summarized (Chapter 6.)

I substantiate that savvy designers can learn how to refine custom visualizations as

follows:

• Usability analysis of four tools including Uvis is presented. The analysis compares

the tool approaches using a custom visualization, and evaluates them using the

cognitive dimensions of notations (12).

12

1.4 Organization of the Dissertation

• An evaluation study that was carried out with seven savvy designers is presented.

Finally, the benefits and limitations of the Uvis system, an outline of future work,

and a summary of contributions and findings are presented.

13

1. INTRODUCTION

14

2

Background

This chapter provides an overview of the existing approaches to visualization. The

chapter describes each approach and assesses whether it is accessible to savvy designers

and suited for custom visualizations. The visualization reference model (Section 2.1) is

used where relevant to review how each approach supports visualization construction.

The existing approaches can be divided into charting tools (Section 2.2.1), analytical

and exploratory tools (Section 2.2.2), custom Visualization Tools (Section 2.2.3), and

programming languages (Section 2.2.4). A summary of the existing approaches is given

(Section 2.2.5).

2.1 Visualization Reference Model

One of the most famous models that describes how designers create visualizations is

the visualization reference model ((13), (14)). The model decomposes the visualization

design into three steps (Figure 2.1): First, raw data is transformed into structured data

(e.g. tables) that can be further transformed by filtering, sorting, etc. (data transfor-

mations). Second, the data is mapped into visual structures (visual mappings). This

step is considered the most crucial step for visualization effectiveness and expressiveness

(15). Third, visual structures are mapped into interactive views (view transformations).

Chi showed that the visualization reference model (or data state model) can charac-

terize the majority of visualization techniques through a taxonomy of visualization

techniques.

The model is used to analyse the visualization systems in the following section.

15

2. BACKGROUND

Figure 2.1: Visualization Reference Model

2.2 Approaches to Visualization

2.2.1 Charting Tools

One of the most popular tools for creating standard visualizations (e.g. bar charts) are

charting tools such as MS Excel, Google spreadsheets (16), and Many Eyes (17). They

are easy to use, and designers can create visualizations that correspond to predefined

templates with a few clicks.

In Excel and Google spreadsheets, data are defined manually in cells. However, it

is not easy to transform data (e.g. filter, group, etc.). This must be done by computing

new cells. Visual mappings are made by selecting the cells to be visualized and choosing

a visualization that shows it. Designers do not have full control over how visual objects

show data. It is automatically handled by the system.

ManyEyes is a Java-Applet-based visualization platform. Designers create a visual-

ization with three simple steps. Designers choose or provide a data set (usually a table),

choose a predefined visualization, customize and publish it. Again, customization is

very limited.

To sum up, charting tools are accessible to novice designers, designers with lim-

ited IT skills that correspond to using basic MS office applications and web browsers.

However, the tools are not suited for custom visualizations.

2.2.2 Analytical and Exploratory Tools

Some data analytical and exploratory tools such as Spotfire (4), Tableau (18), and

Omniscope (19) allow more data exploration than charting tools. They provide more

16

2.2 Approaches to Visualization

visualization templates and functionalities. For instance, they allow conditional colour-

ing, sizing, etc.

Visual mappings are made by selecting predefined visualizations for selected data

and changing some settings for selected visual objects such as ”Size by” or Colour by”.

Tableau is a commercial data analytical tool that is based on Polaris (20). Tableau

helps designers to explore relational data through visualization. Designers drag and

drop ordinal and quantitative fields onto axis shelves to create visualizations. As a re-

sult, Tableau creates a visualization showing data from the fields. Tableau also employs

interaction techniques such zooming, and filtering. However, designers are limited in

customizing the visual output of the system.

Spotfire supports designers with a predefined number of visualizations (e.g. Line

charts) to analyse and interact with relational data. Furthermore, designers can create

visualizations using data from a number of data sources, such as ODBC/JDBC source,

flat files, xml files, etc. Like Tableau, Spotfire allows limited customization. Advanced

customization, though, can be obtained programmatically.

Like Tableau and Spotfire, Omniscope creates visualizations based on predefined

templates. Again, the designer does not have full control over the find building blocks

of the visualization.

To sum up, these tools are more expressive than charting tools. However, designer’s

control over the resulting visualization is still limited, making the tools unsuited for

the design of custom visualizations. For instance, a visualization like the Lifelines (3)

can not be made.

2.2.3 Custom Visualization Tools

The research community has produced several visualization systems that support cus-

tom visualizations. Examples include InfoVis (21), Improvise (22), Prefuse (5), Flare

(23), Protovis (6), and D3 (24). Only a few of these tools (e.g. Improvise and Protovis)

use development environments that assist designers in data transformations and visual

mappings. Figures 2.2 and 2.3 summarize the features that a representative set of these

tools provide for data transformations and visual mappings.

InfoVis is a visualization toolkit that supports the creation of advanced visualiza-

tions such as trees and parallel co-ordinates. It provides a rich set of visual objects,

and a framework for managing data structures like tables, graphs, and trees. To create

17

2. BACKGROUND

Figure 2.2: Features provided by several custom visualization tools for data transforma-

tions

a visualization, the infoVis designer writes java-based code that refers to the infoVis

framework (e.g. functions, constants, etc.)

Infovis provides data transformation mechanisms. For instance, data (columns) can

be filtered using dynamicQuery types. There are many types (subclasses) of dynamic

queries. For example, the StringSearchDynamicQuery can be used to search for a

string in a column.

InfoVis provides specialized and primitive visual objects. To make a visual prop-

erty (e.g. Height) show data, the designer can bind the property to a column using

setVisualColumn function. To show data by colour, four types of classes can be used

(e.g. CategoricalColor, NominalColor, etc.). InfoVis supports basic time-oriented

visualizations such as time lines using a specialized visual object (Axis). Likewise,

hierarchical data or data that require complex layout algorithms are supported by

specialized visual objects.

An advantage of InfoVis is that some interaction mechanisms (e.g. Fisheyes) are

easy to incorporate. It is just a visualization option. However, custom interaction

requires in-depth programming.

18

2.2 Approaches to Visualization

Figure 2.3: Features provided by several custom visualization tools for visual mappings

19

2. BACKGROUND

In summary, InfoVis supports useful visualizations, but the designer needs in-depth

knowledge of the various abstractions (e.g. classes, functions). Designers can combine

the abstractions to create custom visualizations or programmatically extend the ab-

stractions. The approach requires in-depth tool and programming knowledge to create

custom visualizations.

Prefuse is a visualization toolkit suited for advanced visualizations (e.g. tree maps,

sunburst, etc.). It provides modules (e.g. functions, layout classes, etc.) suited for

various visualization tasks. To create visualizations, the designer writes Java code that

uses the modules.

Prefuse supports several aspects of data transformations. For instance, to filter a

table, the designer can pass a textual logical expression to a table constructor, and the

result is a filtered tuples (a row set).

Like InfoVis, Prefuse supports visual mappings by means of visual objects and

modules. Prefuse provides simple geometric visual objects (e.g. rectangles, ellipses,

etc.) and advanced visual objects that are suited for specific visualizations such as

trees and graphs. To make the visual objects show data, the designer uses separate

classes (actions) that map data columns to visual properties. The designer passes the

visual property, and the data column to be mapped in the action constructor. There

are many actions. Some actions (e.g. EncoderAction and ItemAction.) can show

data conditionally since they map the data if a condition (Predicate) is met. Other

actions support temporal data (e.g. Axis), and can encapsulate complex algorithms

(e.g. ForceDirectedLayout). Further, Prefuse provides layout classes that can be

used to position or resize visual objects. For instance, ForceDirectedLayout is a class

that positions visual objects in a graph based on the force directed layout.

Prefuse allows easy incorporation of interaction mechanisms. For instance, interac-

tive controls (e.g. drag, zoom, etc.) can be added to the display.

In summary, Like InfoVis, Prefuse uses many abstractions that designers have to

know. The separation of actions from the visual objects and their properties can

facilitate the management of code and allow reuse, but might increase the gap between

the problem and the solution (Normans gulf of execution (7)).

Flare borrows many of its concepts from Prefuse, but supports web-based visu-

alizations. It is a visualization toolkit written in ActionScript. This toolkit supports

designers with a variety of simple and advanced visualizations. Designers define the

20

2.2 Approaches to Visualization

properties of the visual objects (e.g., position, shape, colour), and write imperative

commands to create the visualization. Designers can also define new operators and

visual objects. However, solid programming is required.

Improvise is a visualization system that mainly supports coordinated visualiza-

tions. The visual properties can show data using declarative expressions. The ex-

pressions can be conditional, logical, mathematical, etc. Designers use a development

environment to create a visualization. They navigate from panel to panel to accomplish

visual mappings. Each panel has a distinct purpose. For instance, one panel shows the

available visual objects and their properties. Another panel shows the variables that

can be used in expressions.

For data transformations, Improvise provides a table view for the to-be-visualized

tables. The tables can be filtered using Filters expression. The designer composes

an expression by choosing logical operators (e.g. >, <, AND, etc.) from a combo box.

The resulting expression is shown as a tree. To make the expression operands refer to

data fields, the designer assigns a variable to an expression operand and binds it to a

field in another panel. Sort and Group by expressions are created in a similar fashion.

To create a visual object, the designer chooses a visual object (control) from a

list (Type list). Next, the designer chooses a visual property of the visual object from

the Properties list, and creates Projections expressions that can map data to the

property. The projections are created in a fashion similar to other expressions (e.g.

Filters, Sort, etc.), and can contain mathematical or logical operators, and refer to

functions and data fields. Improvise provides specialized visual objects that facilitate

visual mappings. For instance, it supports time-oriented and geographical data using

a specialized visual object PlaneView.

Improvise allows some interaction using interactive components such as sliders. The

designer can link the interactive components with visualizations using shared variables.

However, this requires navigating back and forth through a series of panels.

In summary, Notation-wise, Improvise use declarative programming. However, the

environment forces the designer to use combo-boxes that have the expression elements.

It is difficult to find the expression elements. Moreover, the longer the expression, the

harder it is to create and read.

Protovis is a JavaScript-based visualization toolkit that uses a declarative domain

specific language that can map data to geometric visual objects (e.g. bar, dot, etc.)

21

2. BACKGROUND

and their properties. The toolkit can be extended with a development environment

called ”Protoviewer” (25).

Data transformations are supported by Protoviewer and the toolkit. Protoviewer

provides a table view for the to-be-visualized tables. The tables can be programmati-

cally filtered or sorted using JavaScript filter or sort functions. Protovis provides a

function nest to transform flat to relational (multi-dimensional) arrays. Furthermore,

Protovis provides statistical functions such as max (maximum), avg (average) that can

be applied on an array.

Visual mappings are supported as follows: To bind a visual object (mark) to data,

the designer passes an array to property data. To let a visual property (e.g. Height)

represent data, the designer specifies a declarative expression (an anonymous function).

The expressions can contain mathematical , logical, and conditional operators, reference

to functions, and array columns. Protovis evaluates the expressions for each visual

object, and the designer does not need to specify any loops. Protovis provides non-

visual objects (scales) that support temporal data. The scales generate ticks data

that can be used to draw ticks. Protovis provides layout classes (e.g. Treemap) that

encapsulate complex algorithms, and support hierarchical visualizations such as trees.

Protovis supports interaction. However, it is much like event-driven programming.

Even worse, the interactive components (e.g. combo boxes) are often separate HTML

objects that are not part of the specifications.

To sum up, Protovis mostly uses declarative rather than imperative programming.

This simplifies the effort required by the designers since they specify what the visualiza-

tion should be rather than how it is constructed. Unlike Prefuse, Protovis expressions

are directly associated with the visual properties. However, the specifications in Pro-

tovis remain program-like, and the designer often needs to define variables and worry

about the sequence of doing things.

D3 is a JavaScript library for manipulating documents based on data. It borrows a

lot of its concepts from Protovis, but is more expressive since it leverages web standards.

It can be used to create custom visualizations, but the specifications are program-like.

2.2.4 Programming Languages

Several programming languages provide general purpose graphics APIs such as GDI+

(8) and Java 2D (9), and Processing (26). The APIs provide low-level building blocks

22

2.2 Approaches to Visualization

such as lines, curves, and ellipses. Such building blocks can be combined in numerous

ways to compose visualizations. However, since they are general-purpose languages,

it is tedious and hard to construct visualizations with this approach. Moreover, this

approach requires programming skills that many visualization designers do not have.

The programming languages can be integrated with development environments like

NetBeans (27), Eclipse (28), and MS Visual Studio (10). Providing cognitive aids, the

environments can facilitate the development. For instance, the environments highlight

the erroneous parts of the code, and provide suggestions while the developer is writing

the code (Auto-completion). Still, these environments are designed to help program-

mers while coding, not designers while designing a visualization.

Processing is a programming language that can be used to construct interactive

advanced visualizations. It is very expressive, and designers have full control over the

fine building blocks of a visualization. However, it requires imperative programming,

loops, etc. Processing has a development environment that allows designers to type the

visualization specifications and view the outcome.

To sum up, the programming languages are very expressive but accessible only to

expert designers, designers with solid programming skills.

2.2.5 Summary

Figures 2.5 and 2.4 summarize the findings in section 2.2. Charting tools are easy

to use but inflexible. In comparison, analytical tools require more training since they

are more expressive. They are accessible to non-programmers, but are still not suited

for custom visualizations. The existing visualization tools have not been rigorously

evaluated with savvy designers. They are more expressive than analytical tools. How-

ever, despite providing visualization abstractions, visualization tools are less accessible

to savvy designers than analytical tools since they require program-like specifications.

Programming languages are more expressive than visualization tools but are only ac-

cessible to expert designers (programmers).

An evaluation study showed that present visualization tools do not support savvy

designers in constructing advanced visualization (29)

23

2. BACKGROUND

Figure 2.4: Summary of the existing approaches

24

2.2 Approaches to Visualization

Figure 2.5: Summary of the existing approaches

25

2. BACKGROUND

26

3

Uvis Formulas

3.1 Introduction

Uvis formulas are declarative spreadsheet-like expressions that can bind visual objects

to data and make their properties represent the data.

This chapter presents the principles of Uvis formulas as follows: First, the Uvis

architecture is presented (section 3.2.) The architecture explains the context in which

Uvis formulas operate. Second, the visual objects, their properties, and their func-

tions are presented (section 3.3.) Third, the formula principles are explained using an

example (section 3.4.)

Of course a useful visualization has to perform sufficiently. The chapter discusses

the design principles that ensure that Uvis performs sufficiently. The principles are

followed with performance figures (section 3.5.)

3.2 Architecture

Figure 3.1 shows the Uvis system architecture. A Connection description file (vism

file) is a text file with vism extension (Figure 3.2). It contains descriptions of connection

to one or more databases, the relationships of interest, and the foreign and primary

keys behind the relationships. Further, it contains a reference to a visualization form

to be shown at start up. A data architect or a programmer writes these descriptions.

The Uvis kernel reads this file, establishes connection to database, and prepares the

relationships that designers can use.

27

3. UVIS FORMULAS

Figure 3.1: Uvis architecture

Figure 3.2: An example of a vism file

28

3.3 Visual Objects

A visualization description file (vis file) is a text file with vis extension. Each vis

file corresponds to a visualization form, and contains formulas that specify properties

of visual objects. Visual objects are the building blocks of a visualization. Visual

classes are the blueprints from which the visual objects are created. The Uvis compiler

compiles the vis file, and stores data which the visualization shows in the data buffer.

In principle, designers can build visualizations by textually editing vis files with

a notepad. However, cognitive barriers will be high. The development environment

provides cognitive aids to help designers. Chapter 5 explains the environment.

Currently, Uvis can run on a pc. Once it is installed, end-users can run a visualiza-

tion form by clicking a vism file. From this form, they can navigate to other forms.

3.3 Visual Objects

Visual objects are the building blocks of a visualization. Figure 3.3 shows examples

of the visual objects Uvis provides. Some of them are based on .Net UI elements (e.g.

Button, Textbox, etc.). Others are geometric visual object such as Triangle, Ellipse,

etc. They are inspired by Cleveland (30)) recommendations, and can be used to show

data as position, colour, orientation, etc. Furthermore, I designed specialized objects

that are commonly used in visualizations. For example, VNumericScale is a specialized

object that shows a vertical numeric scale.

3.3.1 Properties

Visual objects have properties. The properties can bind the visual objects to data and

determine their appearance and behaviour. Each property can have a formula that

computes its values.

There are four kinds of properties:

• Built-in properties are defined by the visual object. They bind visual objects

to data and determine the visual object appearance (e.g. position, size, colour,

etc.). For consistency, some built-in properties are common for all visual objects.

Figure 3.4 and Figure 3.5 show examples of the common built-in properties.

Other built-in properties are specific to some visual objects. For instance, a

PieSlice has InnerRadius and OuterRadius as specific properties (Figure 3.6.)

29

3. UVIS FORMULAS

Figure 3.3: Examples of Uvis visual objects

Figure 3.4: Examples of common built-in properties

30

3.3 Visual Objects

Figure 3.5: Size and position properties of some visual objects

Figure 3.6: Visual-object-specific properties

31

3. UVIS FORMULAS

Figure 3.7: Examples of utility functions provided by Uvis

• Designer properties are added by the designer. As an example, the designer

may write a complex formula in such a property and let other properties refer to

it rather than repeat it. As another example, the designer may define a property

without a formula. It serves as a variable that keeps track of whether the end-user

has clicked this control.

• Event properties do not have a formula but one or more statements that are

performed when the event happens. As an example, the Click event for a Button

may contain an OpenForm statement that opens another form.

3.3.2 Functions

As other tools, Uvis has utility functions (e.g. math, string, and aggregation functions).

Further, it has a Refresh function that causes Uvis to explicitly check for changed data

and update all visual objects that have changed. Figure 3.7 shows examples of these

functions.

Some visual objects have built-in functions that formulas can call. As an example,

HTimeScale provides functions that can translate a point in time into a pixel position,

and vice versa. This allows a visual object to position itself according to a point in

time.

32

3.4 Formula Basics

3.4 Formula Basics

In general, a formula is an expression that takes some data as input and computes

a result. In designing the formulas, we wanted them to be somehow like spreadsheet

formulas. Spreadsheet formulas have been successful with savvy and novice users. They

are declarative since they specify what the result of the computation should be rather

than how it should be done, and where the result should be stored. Further, they are

sequence-free, and do not have loops.

The formula basics are explained through the example in Figure 3.8. The visualiza-

tion in the example is an employee task plan. The employees are shown as a vertical

list of labels. They are based on data from table Employee. Only employees who work

more than 20 hours per week are shown. A time scale on the top displays the period

of time between January and June 2010. The employee tasks are shown as boxes. The

boxes use the time scale to position themselves horizontally according to the task start

time. The width of the boxes represents the task duration. The task boxes are verti-

cally positioned according to the employee the task belongs to. A box is green if the

task has a ”done” status, and red if the status is ”cancelled”. Otherwise it is grey. If

an end-user clicks an employee label, a label showing more details about the employee

pops up. Further, if an end-user drags the time scale to show more or less time detail,

the task boxes are automatically updated to reflect the new time scale.

3.4.1 Visual Containers

By default, visual objects (e.g. EmployeeLabel) are shown on the form (i.e. TaskPlanForm).

They can also be shown on a canvas. This helps to clip visual objects that go beyond

the canvas boundaries. We specified that the time scale and objects mapped to it (e.g.

TaskBox objects) are shown on a canvas (timeScaleCanvas). Hence, when an end-user

drags the time scale (to show more or less time details), the objects mapped to the

scale do not go beyond the canvas borders. Therefore, they do not overlap with other

visual objects out of the canvas (e.g. EmployeeLabel).

3.4.2 Connecting visual objects to data

Uvis formulas can connect visual objects to tables in relational databases using for-

mulas. For instance, we connected EmployeeLabel (Figure 3.8) to the Employee table

33

3. UVIS FORMULAS

Figure 3.8: A task plan visualization

34

3.4 Formula Basics

with the following formula:

Rows: Employee

As a result, Uvis generates a corresponding SQL statement and sends it to the database

engine. Uvis retrieves a row set and creates a bundle of EmployeeLabel objects that

correspond to the row set. Each object is connected to a row.

Transforming data: Uvis formulas can transform the retrieved data. For instance,

they can filter, order, and join the tables. As an example, we connected EmployeeLabel

to only employees who work more than 20 hours per week with this formula.

Rows: Employee Where weeklyHours>20

The Rows formula retrieves the employees who fulfil the criterion in the Where clause.

Uvis formulas can show related data. For instance, we made TaskBox objects show

the tasks related to the employees labels with these formulas.

Parent: EmployeeLabel

Rows: Parent -< Task

The Parent formula means: Create a TaskBox object or bundle for each parent (EmployeeLabel)

object. The Rows formula means: Start in the Employee row connected to EmployeeLabel

(the Parent). The -< symbolizes a one-to-many crow’s foot in the data model (Figure

3.8). Now navigate along the crow’s foot to the Task table. The result is a bundle of

rows, one for each of the employee’s tasks, and a corresponding bundle of TaskBoxes.

The Rows formula corresponds to the following SQL statements.

SELECT Employee.ID, Employee.Name, Task.Start, Task.Duration, Task.Status

FROM ((SELECT Employee.id FROM Employee WHERE [weeklyHours] > 20 ORDER BY

[name]) AS nested1) LEFT join Task on Task.employeeID= nested1.id"

Rows formulas are more compact than SQL statements. The designer does not have

to worry about specifying primary and foreign keys. The data architect has specified

them in the vism file. Furthermore, the designer does not specify the fields to select.

Uvis collects the selected fields from property formulas that refer to them.

To sum up, Rows formulas can bind visual objects to data, and transform the data.

This corresponds to the step of data transformations in the visualization reference

model.

Chapter 4 gives examples of more advanced SQL-like formulas. For instance, for-

mulas that can refer to visual properties.

35

3. UVIS FORMULAS

3.4.3 Property Formulas

Each property can have a formula that specifies how to compute its value. Uvis eval-

uates the formula for each visual object in the bundle and sets the property with the

resulting value.

The formulas can be mathematical, logical, and conditional. Further, they can refer

to data fields, properties, and functions. Let us look at examples of different formulas.

• Formulas referring to properties: We positioned the EmployeeLabel objects

like a vertical list with this formula.

Top: 70 + Index*(Height+10)

The Top formula refers to Height and Index. Height is an EmployeeLabel prop-

erty. Its value for all EmployeeLabels is 20. Index is the visual object number

in the bundle. The first visual object’s index is 0, the second is 1, and so on.

Thus, the Top value of the first EmployeeLabel object is 70 + 0*(20+10). This

corresponds to 70. The second Top value is 70 + 1*(20+10)) This corresponds

to 100, and so on.

The result is that the employee labels are positioned like a vertical list.

• Formulas referring to functions and data fields : The TaskBox objects

align themselves to the time scale with these formulas.

Left: timeScale!Position(Task.Start))

Right: timeScale!Position(Task.Start + Task.Duration)

The Left formula means: Navigate to timeScale. Call its Position function

and ask it to translate the start time of the task (field Task.Start) to a pixel

position. Use this position as the Left property.

Notice that the designer does not have to write the table name before the field

name, but it helps if there are two identical field names in different tables.

The Right formula adds the task duration (in days) to the task start, and asks

timeScale to calculate the position. The result is that each TaskBox object is

stretched correctly in the time dimension.

The bang (!) operator navigates from a visual object to a property or a function

while the dot (.) operator navigates from a visual object to a field. In principle,

36

3.4 Formula Basics

we could have used the dot operator for both cases, but it introduces ambiguities

if there are identical field and property or function names. However, the designer

can still use a bang operator to navigate to a field, but the compiler looks for

a property or a function first. Similarly, the designer can use a dot operator to

access a property, but the compiler gives priority to a field.

• Formulas referring to parent properties: We positioned the TaskBox objects

according to their parents (EmployeeLabel) with these formulas.

Top: Parent!Top

The Top formula means: Navigate to the parent (EmployeeLabel) object and

take its Top value. The result is that the task boxes are vertically aligned to the

employee labels they belong to.

• Conditional formulas: We made TaskBox objects show task statuses as colour

with this formula.

BackColor: Task.Status = Done ? Green : Task.Status = Cancelled ?

Red : Gray

The BackColor formula means that if field Task.Status is ”done”, make the box

green. If it is ”cancelled”, make the box red. Otherwise, make the box grey.

• Addressing properties of other visual objects: We will illustrates how

a formula can address properties in other visual objects. We defined a label

(DetailLabel) that shows up upon clicking an EmployeeLabel object. The label

shows the employee address and type.

We gave DetailLabel these property formulas

Selected: Init -1

Visible: selected >= 0

Top: EmployeeLabel[selected]!Top Default 0

Left: EmployeeLabel[selected]!Right Default 0

Text: Bold("Address: ") & EmployeeLabel[Selected].Address & NewLine()

& Bold("Type: ") & EmployeeLabel[Selected].Type Default ""

37

3. UVIS FORMULAS

We added property Selected. It is not a built-in property, but a designer prop-

erty. Init -1 means that Selected is initially -1, but the value can change as a

result of end-user actions. When the end-user selects an employee label, Selected

should become the Index of the label.

The Visible formula says that the label should be visible when something is

selected (selected >= 0). Initially it will be invisible

The Top formula says: Navigate to the bundle of employee labels. Take the label

with the index given by Selected. Take its Top property value. If this doesn’t

work, for instance because nothing has been selected, use the default value and

make Top= 0. The Left formula works in a similar manner. The result is that

the label is aligned according to the employee label.

The Text formula says: Show ”address :” in bold. Concatenate it with what

follows. Navigate to the bundle of employee labels. Take the label with the index

given by Selected. Take its Address field value, and so on.

The Top, Left, and Text formulas are examples of addressing properties and

fields in another visual object.

To sum up, Uvis formulas use the navigation principle to address data fields, visual

objects, properties, and functions. Uvis navigates from component to component to

get the result. The Top formula above is an example of this. The formula navigates to

a bundle of visual objects, then to a visual object to the property of that visual object.

Using this principle and having different kinds of expressions (e.g. logical, mathe-

matical, etc.), Uvis formulas can make properties show data. This corresponds to the

step of visual mappings in the visualization reference model.

3.4.4 End-user Data and Interaction

We only lack one thing to make the selection run: a way to set Selected. This is done

through the EmployeeLabel object. It should respond when the end-user clicks it. We

defined an event handler property for it:

Click: DetailLabel!Selected=index, Refresh()

When the end-user clicks an employee label, Uvis performs the statements in the Click

formula. As a result, Selected will become the index of the clicked employee label. The

38

3.4 Formula Basics

statement Refresh() asks Uvis to re-compute all formulas and redraw visual object

where a property value has changed.

In contrast to ordinary property formulas, an event handler formula cannot be

evaluated at any time. The event handler is evaluated only when the end-user does

something.

Let us look at a case where the designer does not need an event handler formula to

implement interaction. Consider this default formula in the timeScale object.

Dragged: Refresh()

Dragged is an event that is triggered after the end-user has just dragged the time scale.

The Dragged formula means: Call Refresh() when the event is raised. As a result,

Uvis will re-compute all the formulas, and sets new property values where needed. For

instance, the TaskBox objects will update their horizontal positions since they use the

Position function provided by timeScale.

A default formula is a formula specified in the visual object by default. It corre-

sponds to the most likely behaviour. However, a default formula can be changed or

deleted by the designer. For instance, we might want the TaskBox objects to update

their positions as the end-user is dragging the time scale. To accomplish that behaviour,

the designer deleted the default Dragged formula, and defined this formula.

Dragging: Refresh()

Dragging is an event that is triggered as the end-user is dragging the time scale. The

Dragging formula means: Call Refresh() when the event is raised. The result is that

TaskBox objects will update their horizontal positions as the end-user is dragging the

time scale.

To sum up, Uvis event-handler formulas specify what happens upon end-user ac-

tions. Designers do not always have to write event-handler formulas.

Interaction with the visualization can change the view. For instance, it can view

more information on demand, zoom in a visualization to see more details, or filter

out uninteresting data. This corresponds to the step of view transformations in the

visualization reference model.

39

3. UVIS FORMULAS

Figure 3.9: Performance results of the lifelines example

3.5 Performance

To evaluate Uvis performance, we used profiling tools to measure the time that Uvis

takes to open or refresh a visualization form. The data were collected using Windows

XP OS, with a 2.66 GHz Intel Core 2 Duo processor and 2.66 GB RAM, and a local

MS Access database. Averages of 10 measurements per result were taken.

Figure 3.9 shows the performance of a visualization inspired by the Lifelines (3)

created with Uvis. The visualization is shown in Figure 3.10. The total time to open

the screen is 0.6 seconds including 0.4 seconds to make 8 queries to the database. The

time to refresh the entire form is 0.07 seconds.

Compilation time is the time Uvis needs to compile all the formulas in the visualiza-

tion form. Creation time is the time Uvis needs to create all visual objects according to

data rows, compute all formulas, and set the properties. Refresh time is calculated this

way: Recompute all formulas, re-query the database if an SQL statement has changed,

set all visual properties to the new computed value (whether it has changed or not),

and update the screen accordingly. SQL-query time is the time needed to send an SQL

query and retrieve the data. Rendering time is the time needed to render the visual

objects on the screen.

Figure 3.11 shows the performance of several other visualizations created with Uvis.

More details about performance results can be found at (31).

In the following sections, we will discuss some principles that ensure adequate per-

formance.

40

3.5 Performance

Figure 3.10: A visualization inspired by LifeLines

Figure 3.11: Performance of visualizations created with Uvis

41

3. UVIS FORMULAS

Figure 3.12: Comparison of single-row queries against multiple-row queries

Figure 3.13: Performance of a GDI+ Box in comparison to a .NET TextBox

3.5.1 One SQL Query per Multiple Visual Objects

Rather than sending one SQL query per visual object, Uvis sends only one SQL

query for all visual objects defined by a Rows formula. As an example, all objects

of EmployeeLabel (Section 3.4.2) correspond to one SQL query. As another example,

TaskBox objects correspond to one SQL query too.

The performance difference between sending one SQL per row and one SQL per

multiple rows is immense especially for a large number of rows. Figure 3.12 shows the

difference assuming the connection is established once for both SQL queries. The data

were collected using MS Access and a table with 16 fields, 126,000 rows, and 44MB in

size.

42

3.5 Performance

Figure 3.14: A visualization inspired by the Spiral Graph (1) containing 10,000 ellipses

representing website hits

3.5.2 Fast GDI+ Shapes

Most Uvis visual objects, except for the .NET ones, are shapes based on GDI+ drawings

(8). They are fast to draw, and they have fewer properties. Figure 3.13 compares the

performance of a GDI+-based Box with a .NET-based. Changing time is the time

needed to reposition the objects. It was not possible to create more than 9,500 .NET

Textbox objects. The computer froze.

Figure 3.15: Comparison of performance of a spiral visualization with one-cell canvas

against multi-cell canvas

43

3. UVIS FORMULAS

3.5.3 Multi-Cell Canvas

In the beginning, we only had a one-cell canvas. All visual objects were drawn on the

canvas. Upon an end-user action, for instance, if the end-user clicks a visual object, Uvis

compares the coordinates of all visible visual objects against the Click coordinates,

and triggers a Click event on the shape of highest z-order (the shape on top). This

performed reasonably with visualizations containing fewer than 2,000 shapes. However,

it performed poorly with visualizations with more shapes. For instance, it would take

more than a second to respond to an event.

A cell-based canvas was designed to speed up the interaction performance. The

canvas is divided into cells where each cell is 32 X 32 pixels at most. Hence, the number

of cells depends on the canvas width. When shapes are created or repositioned, they

are classified according to which cell they belong to.

The multi-cell canvas has two advantages. First, when the canvas receives an end-

user event, the co-ordinates of the event are checked against the cells, then compared

against the shape boundaries that belong to the cell. The right shape with the highest

z-order receives the event. Otherwise, the canvas does. Second, when a shape is

repositioned, only the affected cells (where the shape was and where it will be) are

re-drawn (rendered) rather than all the visual objects. I call this partial rendering.

These advantages come at the cost of extra creation time due to the classification of

objects.

To evaluate the effect of the multi-cell canvas on a visualization with relatively

large number of visual objects, I created a visualization inspired by the Spiral Graph

(1) (Figure 3.14). I varied the number of objects to see the difference. Figure 3.15 has

the details.

44

4

Formula-Based Visualizations

4.1 Introduction

This chapter substantiates the expressiveness of Uvis formulas, the breadth of visual-

ization ideas that can be expressed. First, the chapter explains how a selected collection

of visualizations are made with Uvis. Second, the chapter discusses the expressiveness

factors and limitations of Uvis.

Figure 4.1 shows an overview of the selected visualizations. The Task Plan vi-

sualization was explained in chapter 3. The rest of the visualizations have various

characteristics. For instance, some have a radial layout while others have a linear one.

Interaction-wise, some visualizations are based on the details-on-demand metaphor,

and others allow end-user dynamic queries. The examples are not necessarily great

visualizations, but illustrate the expressiveness of formulas.

Three papers explain more examples. The papers can be found at (32), (33) and

(34).

4.2 Example Visualizations

4.2.1 Passenger Statistics

Figure 4.2 shows an example of showing data using a radial layout. The example also

uses a formula that sorts a table. It is a custom pie chart that represents the percentages

of all passengers of several flying classes (e.g. Crew, Economy, etc.). The percentages

are sorted by the number of passengers. The percentages of male passengers are shown

45

4. FORMULA-BASED VISUALIZATIONS

Figure 4.1: An overview of the selected visualizations

46

4.2 Example Visualizations

Figure 4.2: Passenger statistics visualization

in light blue pie slices, while the female passengers are shown in pink on top of the

male ones. The visualization is based on table Passenger with these columns: Type

(e.g. economy, business, etc.), males (number of male passengers), females (number

of female passengers).

We want to connect PassengerPie to the Passenger table. Further, the table

should be sorted according to the number of male and female passengers. To accomplish

that, we defined the following Rows formula of PassengerPie:

Rows: Passenger Order By males + females

The Rows formula retrieves a bundle of rows from the Passenger table. The rows

are sorted by the number of male and female passengers. Uvis creates a bundle of

PassengerPie slices that correspond to the rows.

Next, we set other visual properties such as CenterX, CenterY, and OuterRadius

(Figure 4.3 shows the meaning of these properties).

Sibling formulas: The PassengerPie slices align next to each other with the

following formula:

47

4. FORMULA-BASED VISUALIZATIONS

Figure 4.3: Pie Slice properties

StartAngle: index=0?0:Me[index-1]!EndAngle

The StartAngle formula means: If this is the first pie slice, the start angle is 0. Oth-

erwise, navigate to my bundle. Get the visual object with index-1. Get its EndAngle.

The result is that each pie slice’s StartAngle is the previous pie slice’s EndAngle except

for the first slice (Figure 4.3). Consequently, the slices align next to each other.

Notice that Me refers to this visual object (corresponds to this in Java and C#)

while Me[] refers a specific visual object in its own bundle . Thus, index-1 accesses

the previous visual object in the bundle.

The StartAngle formula is set by default in PieSlice objects. The slices commonly

need to align next to each other. However, the designer can specify a different formula.

Referring to aggregate functions: Each pie slice’s SweepAngle should repre-

sent the number of passengers for a particular class (e.g. Economic, Emperor, etc.).

To accomplish that, the SweepAngle property is defined in this way:

SweepAngle: 360.0*(males + females) / (Total(males) + Total(females))

Total is a function that calculates the sum of fields in the rows connected to a visual

object bundle. The result is that SweepAngle represents the percentage of all passengers

(males and females) for the different passenger classes in.

48

4.2 Example Visualizations

The MalePie and FemalePie are connected to the same data as PassengerPie

objects, and can access the same fields (according to their Parent formulas). Hence,

the SweepAngle formulas of MalePie and FemalePie show male and female passengers

respectively.

4.2.2 Train Schedule

Figure 4.4 shows a train schedule visualization. The stations that the trains stop at are

shown on the left. An hourly time scale shows the time from 4:00 AM till 12:30 PM.

The train stop times are shown as dots connected with lines. Southern trains are shown

in red while northern ones are shown in blue. The data come from tables Station,

Train, and StopTime.

This visualization explains how to show line segments with Uvis. Furthermore, it

explains how Uvis formulas navigate from data rows to visual objects. Let us look at

the details.

To show the stations as labels, we connected StationLabel to the Station table,

and positioned it vertically with the following formulas:

Rows: Station

Top: 78+0.7*Dist

The Top formula positions the labels vertically according to the station distances from

the start point (field Dist).

Next, to show the trains as labels, we connected TrainLabel to the Train table.

Showing curves: Uvis supports curves using a Spline visual object. A Spline

represents a curve segment. A Spline has a start point (StartX and StartY) and an

end point (EndX and EndY) (Figure 4.5). To connect the Spline objects to each other

so they form a curve, the default specification is that the end point of a Spline is the

start point of the next Spline in the bundle. The last Spline’s start point is the same

as its end point. However, when a designer first creates a Spline , it is not connected

to data. We still want it to look like a curve segment. The default specification in this

case is that the end point is just 5 pixels to the top and to the right of the start point.

To show the train stops as curves, the designer defined the following formulas of

StopTimeSpline:

Parent: TrainLabel

Rows: parent -< StopTime

49

4. FORMULA-BASED VISUALIZATIONS

Figure 4.4: A train schedule visualization

Figure 4.5: A spline specification

50

4.2 Example Visualizations

Left: timeScale!Position((Hour+Minute/60)/24)

Tension: 0

The Parent and Rows formulas make the StopTimeSpline objects show the stop times

of the trains.

The Left formula positions the StopTimeSpline objects in the time dimension

using a Position function provided by timeScale. The Position function takes a

DateTime or a double value as a parameter. In this case, it takes a double value

representing the number of days.

The Tension property determines how much the spline segments bend. If the value

of the tension parameter is 0, the spline uses segments that are straight lines. Tension

accepts floating numbers from 0 to 1.

Navigating from data rows to visual objects: To align the StopTimeSpline

objects to the stations, we defined the following formula:

Top: Me-=StationLabel!Top

The Top formula means: For the row connected to me (StopTime row), navigate to

the StationLabel object that is related to the same row. Finally, use the label’s top

position as the stop time spline’s top.

Notice that StationLabel is connected to the Station table and StopTimeSpline

is connected to the StopTime table. Now notice that the Station table has a one-to-

many relationship with the StopTime table. The relationship allowed Uvis formulas

to navigate from the row of a StopTimeSpline object to the related StationLabel

object.

4.2.3 Medicine Tree

Figure 4.6 shows a two-level interactive tree of medicines. The first level is the medicine

group and the second is the medicines that fall under these groups. The end-user can

collapse or expand the second level using expand/collapse icons.

This example demonstrates how Uvis formulas can express visual hierarchies. It may

be challenging to construct for a savvy designer. It is also an example of interaction

that shows more or less information on demand.

We construct the tree from primitive visual objects such as Label, Icon, and Line.

The result is that every visual object can be customized. For instance, the label showing

51

4. FORMULA-BASED VISUALIZATIONS

Figure 4.6: Medicine tree visualization

52

4.2 Example Visualizations

medicine Codeine is bold and the line connecting that particular label is dotted. Such

customizability is difficult to obtain with present visualization tools.

Let us look at how we created the tree with Uvis.

Visual Hierarchy: To position the first and second levels as an indented tree, we

defined these formulas for the first level (MedGroup) objects.

NodesExpanded: init false

LevelHeight: MedLabel[Last]!Bottom - MedLabel[0]!Top Default 0

Top: Index=0 ? 5 : Me[index-1]!LevelHeight + Me[index-1]!Bottom

NodesExpanded and LevelHeight are designer properties. NodesExpanded shows whether

the second-level objects (MedLabel) are shown (expanded). NodesExpanded initially

has a false value (i.e. the second-level objects are hidden.)

LevelHeight calculates the space the second-level objects occupy (MedLabel ob-

jects). The space is the distance between the first and last objects in the bundle. The

space is zero if there are no second-level objects.

The Top of the first MedGroup object is 5. The rest of the instances are positioned

below the sibling objects and their children objects. The result is that the first and

second levels are positioned like a tree.

Interaction: To allow end-users to expand and collapse the second-level objects ,

we defined an Icon object (MedGroupIcon) and defined these formulas.

Parent: MedGroupLabel

Click: Parent!NodesExpanded = NOT Parent!NodesExpanded

The Click formula negates the NodesExpanded of the MedGroupLabel when the end-

user clicks an icon. This collapses or expands its MedLabel objects.

MedLabel objects position themselves vertically with this formula.

Top: Parent!NodesExpanded ? Parent!Bottom + 10 + index*(Height + 10)

: Parent!Bottom+10

The Top formula means: if Parent (MedGroupLabel) objects are expanded, MedLabel

objects position themselves vertically. Otherwise, they align on top of each other below

their parents. This behaviour is different from the behaviour in present tools where the

children nodes are completely hidden when they are collapsed.

Of course, we can still completely hide the children nodes by defining the following

formula of MedLabel objects:

Visible: Parent!NodesExpanded

53

4. FORMULA-BASED VISUALIZATIONS

Figure 4.7: Medicine tree visualization with TreeNode objects

Customizing primitive visual objects: Now that the tree has been made, let

us try to show the tree node Codein differently. First, to show the Codeine label in

bold, we defined this formula of MedLabel:

Bold: Name="Codeine" ? True : False

To make the line connecting the Codeine tree node dotted, we defined this formula of

MedLine:

Style: Name = "Codeine" ? Dotted : Solid

Constructing an indented tree with a specialized object: We can construct

the medicine tree with much less effort with a specialized object called TreeNode.

It is more customizable than similar objects in present tools, but it is still not as

customizable as constructing an indented tree from primitive visual objects. Figure 4.7

shows the specifications of the medicine tree with TreeNode objects. The TreeNode

objects position themselves, expand, and collapse automatically. The designer does not

have to worry about these details.

4.2.4 Website Hits

Figure 4.8 shows an interactive visualization inspired by the Spiral graph (1). The

visualization shows the hits on a website between 18 February 2007 and 24 February

2007 on a spiral. Each cycle in the spiral represents a day. The spiral starts from the

54

4.2 Example Visualizations

centre clockwise. The visualization is based on two related tables. Page is the website

pages. Hit is the visitor’s hits on the pages.

End-users can interact with the visualization in these ways: First, to magnify or

shrink the spiral, end-users can change the spiral radius using a track bar. Second,

they can un-check the pages when they do not want to see their hits. Third, they can

search for the country the hits come from. This corresponds to dynamic queries since

the visualization is constantly updated based on the end-user’s changes, and queries

are sent behind the scene.

Constructing the spiral: Uvis supports spiral graph visualizations with a Spiral

object that displays cyclic time-oriented data on a spiral.

To define a spiral that covers a specific period of time and allow the end-user to

change the spiral radius, we defined the following formulas for WebsiteSpiral:

Range: #18-2-2007#, #24-2-2007#

Radius: RadiusTrackBar!Value

Range is a property that determines the period of time the spiral covers. It is a two-item

list property. The first item is the range start, and the second is the range end.

The Radius formula means: Navigate to RadiusTrackBar object. Take its Value

property. The result is that the spiral radius gets updated when the end-user drags the

track bar. The default behaviour is that RadiusTrackBar calls Refresh() when the

value is changed. The designer, of course, can change that.

Dynamic Queries: To allow end-users to search for hits in a specific country. we

defined the following formulas for HitEllipse:

Parent: PageCheckbox

Rows: parent -< Hit Where Country LIKE CountryTextbox!Text & "%"

The Rows formula means: Start in the Page rows connected to the parent. Get the

related Hit rows provided that the Country field starts with the text provided by the

end-user through CountryTextBox. CountryTextBox calls Refresh() when its text

changes.

Filtering out unnecessary items: To only show the hits that represent pages

that have been checked by the end-user, we defined the following formula for HitEllipse:

Visible: Parent!Checked

55

4. FORMULA-BASED VISUALIZATIONS

Figure 4.8: Website hits Visualization

56

4.3 Other Visualizations

The Visible formula means: Make a HitEllipse object visible when its parent

PageCheckboxis checked. PageCheckbox objects call Refresh() when the end-user

checks or unchecks them.

Polar Positioning: To position HitEllipse objects according to the time they

show, we defined the following formulas for HitEllipse:

Left: WebSpiral!HPosition(Date) - Width/2

Top: WebSpiral!VPosition(Date) - Height/2

The Left formula means: Navigate to the WebSpiral object. Call its HPosition func-

tion with the Date field as a parameter. WebSpiral provides HPosition and VPosition

functions that calculate the horizontal and vertical positions of a point in time. Sub-

tract half the ellipse’s width to make its centre represent the point in time. The Top

formula works in a similar fashion.

The result is that the ellipses are aligned to the spiral according to the time they

represent.

Over-plotting: Since it is likely that many hits occur at the same time, we need

a way o distinguish a few from many hits occurring at the same time. This is called

the over-plotting problem (35). We solved the problem with the following formula for

EllipseHit:

Alpha: 50 ’out of 255

The Alpha property represents the transparency component of a colour. Its value is 50

out of 255. EllipseHit objects are 19 % visible.

4.3 Other Visualizations

Figure 4.9 gives an overview of other visualizations that have been created with Uvis.

Some of the visualizations are explained in (36), (37), and (32). Some of the visualiza-

tions were created using only primitive visual objects. For instance, the visualization

inspired by CircleView (38) was created using PieSlice objects.

Other visualizations were created with specialized objects. For instance, the vi-

sualization inspired by the horizon graph (39) is created with Area objects that have

a specialized layout property. The property can have a "HorizonGraph" value that

supports the horizon graph visualizations.

57

4. FORMULA-BASED VISUALIZATIONS

Figure 4.9: Other visualizations created with Uvis. (A) LifeLines. (B) Horizon Graphs.

(C) Tile Maps. (D) CircleView. (E) Tree Maps. (F) Heat-map grid

58

4.4 Lines of Code

Figure 4.10: Lines of code needed to created several visualizations with Uvis

4.4 Lines of Code

Figure 4.10 shows the lines of code needed to create various visualizations with Uvis.

Uvis formulas shorten the lines of code in many ways. For instance, Rows formulas

are much more compact than SQL statements since they don’t contain key nor select

specifications.

In general, Uvis does many things behind the scene that shorten the specifications.

As an example, Uvis creates objects that correspond to rows, evaluates property for-

mulas and sets the values for properties of each visual object, updates property values

when Refresh is called, etc.

Sometimes specialized objects can reduce the lines of code. For instance, creat-

ing intended trees with TreeNode requires considerably fewer lines of code than using

primitive objects.

4.5 Expressiveness Factors

Uvis expressiveness depends on these factors:

1. Referencing mechanism: Rows formulas have the same expressiveness as SQL

statements plus the ability to refer to these operands:

• Utility functions

59

4. FORMULA-BASED VISUALIZATIONS

Figure 4.11: Examples of what formulas can refer to

• Properties, functions, and fields of any visual object connected to data with

a different Rows formula.

Other property formulas can navigate to these visual objects:

• A visual object in the current bundle. The visual object can be the current

or any other object in the bundle.

• A visual object in another bundle. This can be a parent, a child, or any

other object in another bundle.

Once the formula navigates to a visual object, it has access to its properties,

functions, or fields. In addition, Uvis formulas can refer to utility functions.

Figure 4.11 gives examples of what formulas can refer to. For a complete reference

on formulas, consult the Uvis reference card (40).

2. Kinds of expressions supported: Uvis formula expressions correspond to

Visual Basic expressions. For instance, Uvis formulas support conditional, logical,

string, and mathematical expressions.

3. Utility functions: Uvis utility functions that correspond to Visual Basic and

spreadsheet functions. For instance, the regular math and aggregation functions

are available.

60

4.6 Limitations

4. What visual objects provide: Visual objects also provide functions the for-

mulas can call. For instance, formulas can call the HPosition function of Spiral

objects.

4.6 Limitations

Despite the expressive power of Uvis formulas, they have the limitations discussed in

the following subsections.

4.6.1 Recursion and Loops

Uvis formulas alone do not support visualizations that require recursive algorithms.

Such algorithms contain loops and/or functions that call themselves recursively until a

condition is met.

Uvis formulas support recursion as long as it is within the context of existing visual

objects. Consider the following formula:

TotalTop: index=0 ? 0: Me[index-1]!TotalTop+Top

The formula calculates the sum of Top values in a bundle of visual objects. This is an

example of recursion that Uvis formulas allow. Now, let us see examples of recursion

that are not possible to create.

Loops: We have a bundle of Boxes that are connected to a table with field Number.

We want to show the Boxes with prime Numbers in red. Uvis formulas alone do not

support that since it requires a loop. A possible solution is to provide a utility function

that checks whether a number is prime.

Inability to create visual objects recursively: Section 4.2.3 presented a two-

level tree. However, Uvis formulas fall short if we want to show a recursive tree, for

instance a folder tree. Since Uvis uses SQL-like formulas, it inherits SQL limitations.

For instance, it is not possible to send a query that retrieves the nesting levels of the

folders. As a result, it is not possible to create a recursive tree with Uvis formulas

because new visual objects have to be defined for each level in the tree. A possible

solution is to delegate the responsibility of constructing the recursive visual hierarchy

to the visual object. Designers can set a property Recursive to true if they want the

tree levels to be defined dynamically.

61

4. FORMULA-BASED VISUALIZATIONS

Complex Algorithms: Tree maps require a complex recursive algorithm that

Uvis formulas do not support. A possible solution is to provide a visual object that

performs these complex layout algorithms. Pantazos developed a TreeMap visual ob-

ject that supports a tree map visualization with Uvis formulas (41). However, the

customizability of the tree map objects becomes very limited.

Similarly, graphs of different layout types (e.g. force-directed, node-link, etc.) re-

quire complex recursive algorithms. A Graph visual object with a Layout property

could support graphs of various layouts.

4.6.2 Complex Interaction

Sometimes interaction requires much more than a simple assignment statement. For

instance, some interaction mechanisms such as semantic zooming are cumbersome to

implement with Uvis formulas. Interactive visual objects that incorporate interaction

mechanisms provide a solution. For instance, HTimeScale incorporates semantic zoom-

ing. When the end-user drags inwards or outwards the scale, it shows more or less time

details.

Uvis provides another solution for implementing complex interaction. Developers

can write Java or C# code as event handlers. However, this solution requires program-

ming.

Sometimes visualizations should be updated constantly over a certain time period.

We have not implemented a visualization that exhibits such a behaviour. However, in

principle, the solution is easy. For example, Figure 4.12 shows a visualization of the

annual average income and life expectancy for some countries in a certain year. The

visualization is updated every 0.1 seconds. As a result, it shows the life expectancy and

income for next year. When it is the year 2011, the visualization stops updating itself.

Let us see how Uvis can solve this problem in theory.

To show the current year of life expectancy and income, we defined the following

properties of YearLabel:

Year: init 1954

Text: Year

Year is a designer property that retains the current year the visualization is showing

information about. Text makes the label show the year.

62

4.7 Summary

Now we want to create ellipses that show country life expectancy and income for

the year in YearLabel. To accomplish that, we defined the following formulas for

CountryEllipse:

Rows: Country -< Values where year=YearLabel!Year

The Rows formula retrieves the information (e.g. life expectancy, income, etc.) for all

countries in table Country provided the year is the Year of YearLabel.

To make the ellipses show information for next year every 0.1 second, we defined

the following properties of the form object:

Timer: YearLabel!Year < 2011 ? 0.1 : 0

OnTimer: YearLabel!Year = YearLabel!Year + 1, Refresh()

The Timer formula looks at the Year property of YearLabel. If it is less than 2011,

the time has a duration of 0.1 second. Otherwise the timer gets a zero duration. A

zero duration makes the timer stop.

OnTimer is an event that is raised repeatedly according to the Timer value. When

it is raised, Year gets increased by 1, and the visualization is updated.

At present Uvis does not have a timer, but the plan is to make one similar to

what for instance MS Access has: A timer in each Form object. With this in place, an

animation could be made as we discussed.

4.6.3 Other Types of Visualizations

Despite their importance, we have not implemented some types of visualizations such

as geographical ones. A possible solution to geographical visualizations is to provide a

Map visual object that can show a geographical map, and translate coordinates to pixel

positions.

4.6.4 Inability to Define Functions

A designer can not define new functions in Uvis. They require programming, however.

An escape solution is to provide utility functions or specialized visual objects that

perform the required functionality.

4.7 Summary

Despite the limitations, it is possible to create lots of custom visualizations with Uvis.

63

4. FORMULA-BASED VISUALIZATIONS

Figure 4.12: A visualization that is updated every 0.1 seconds. The visualization is

adapted from (2)

Whenever it is not possible or cumbersome to create a visualization, a third party

can provide a specialized object that makes it easy and possible. For instance, it

is not possible to create a spiral with Uvis formulas and Splines. This requires a

recursive algorithm. Hence, we provide a Spiral specialized object (section 4.2.4.). It

is cumbersome to create an indented tree with primitives (e.g. line, label, etc.). Thus,

we provide a TreeNode specialized object (section 4.2.3.)

Specialized objects reduce customizability, but are convenient to use. Other visual-

ization tools such as Protovis use a similar approach. For instance, some visual objects

have a Layout property that automatically positions them. However, unlike Protovis’

program-like specifications, Uvis uses spreadsheet-like formulas also in these cases.

64

5

Uvis Usability

5.1 Introduction

For many reasons, it can be challenging to implement or refine custom visualizations

like the ones in Chapters 3 and 4. For instance, some formula concepts are new to

designers or it is hard to verify that the implemented visualizations are correct. Be-

ing aware of that, the original Uvis approach uses a development environment that

provides cognitive support for designers. For instance, the environment highlights the

problematic parts of the formulas, and immediately updates the visualization.

I made several usability studies with savvy designers to find usability problems in

the initial approach. The details of the studies are presented in chapter 6. The studies

resulted in new features in the environment to improve usability. Further, I investigated

other ways of making Uvis easy to learn. For instance, I designed visual objects with

default formulas that cater for common cases. Further, I provided a tutorial that

thoroughly explains the concepts to the designers.

This chapter presents the principles behind the initial and enhanced versions of the

Uvis system.

5.2 Initial Uvis Version

This section presents the main principles behind the initial Uvis version. The principles

aim at providing a system that is easy to use. Let us look at the details.

65

5. UVIS USABILITY

5.2.1 Drag-Drop-Set-Property

Existing tools for constructing user screens (e.g. MS Visual Studio) use the drag-drop-

set-property principle. The developer drops components (buttons, text boxes, etc.) on

the screen and defines their properties (e.g. position, colour and text.) Then the screen

looks right, but it has little functionality. If developers want real functionality or a

custom visualization, they have to switch to tools that are more like programming. An

evaluation study (11) gave an overview of user interface tools in 2000 and explained why

drag-drop-set-property tools were much more successful with designers than program-

based tools.

Uvis uses the existing drag-drop-set-property principle, but allows designers to im-

plement custom visualizations that show data as position, colour, etc., and respond to

events.

The basic version of Uvis consists of seven panels (Figure 5.1) : Toolbox, property

grid, property values, visualization form, data model, error list, and application folder.

The toolbox is a list of the available visual objects. The property grid shows the property

formulas that define/set the appearance of the visual objects. The property values

shows the property values of an individual selected visual object. The visualization

form is the visualization the designer builds. The data model is the structure of the

data that the designer has access to. The error list shows the problems with the

visualization specifications. The application form displays the directory of the current

Uvis application.

To build a visualization, designers drag a visual object from the toolbox and drop

it on the visualization form. They can set the properties of the visual object using

the property grid. The changes are reflected immediately on the visualization form. If

designers want to see the property values of an individual visual object, they can select

an object (using ctrl+click) and view the properties in the property values panel.

5.2.2 Documentation

The initial documentation for designers was a seven-page tutorial. The tutorial consists

of text and figures that are in separate pages (Figure 5.2). The text has a two-column

style. The tutorial explained step-wise how to create a custom visualization. Uvis

concepts are explained meanwhile. The objective of each step is clearly stated.

66

5.2 Initial Uvis Version

Figure 5.1: Basic version of Uvis environment

Figure 5.2: Uvis tutorial, version 1

67

5. UVIS USABILITY

5.2.3 Only Visual Objects

Unlike present tools that use invisible objects that can be used to draw something

visual on the screen, Uvis visual objects are visual as the name implies. They can be

seen on the screen immediately when the designer drags and drops them. Visibility

improves usability since it keeps designers informed about what is going on (42).

5.3 Uvis Enhanced Version

The Uvis enhanced version is a result of several usability studies with savvy designers

(Figure 5.3). Chapter 6 provides the details. This section only explains the enhanced

version.

The enhanced version kept the parts that communicated well with the designers

such as property grid, data model, etc. However, other parts such as the property

values panel confused the designers. Therefore, they were removed.

The designers needed more cognitive aids to learn how to create or modify custom

visualizations. The new cognitive aids helped removing many usability problems.

The following sub-sections present these cognitive aids.

5.3.1 Table view

Table view shows a sample of the data table on demand. To view a table sample, the

designer clicks a table box in the data model. This feature helps designers explore

the data they want to visualize. Such exploration helps them make sense of data

particularly if the data field names are not self descriptive. For instance, the designer

clicked the Employee box in the data model. As a result, a sample of the Employee

table showed up. The field weeklyHours means the hours the employees work per week.

It might not be descriptive for some, but looking at the values can give hints about

what it means. A research study showed that novice designers relate to data using

concrete values rather than field names (43).

Designers can also explore the data to be aware of irregular data values (typos, null

values, etc.)

68

5.3 Uvis Enhanced Version

Figure 5.3: Enhanced version of Uvis environment

Figure 5.4: The table view feature

69

5. UVIS USABILITY

Figure 5.5: The inspector showing the relationship between a visual object and a data

row

5.3.2 Inspector

The usability studies revealed that designers encountered difficulties with visual map-

pings. Particularly, understanding the relationship between visual objects and data.

Other research studies showed that novice designers experienced similar problems with

visual mappings ((44), (43).)

In response, I developed the inspector, a data grid that shows the data behind visual

objects and properties. Let us look at the details.

• Connection Between Visual Objects and Data: Figure 5.5 shows the task

map visualization (presented in chapter 3) in Uvis environment. Three parts

of the environment are shown: The visualization, the property grid, and the

inspector.

The designer selected (clicked) a label showing employee Peter. The inspector

highlighted the data row behind the label. According to the formula that connects

the labels to data (Rows property), only employees who work more than 20 hours

70

5.3 Uvis Enhanced Version

per week should be shown. To confirm that the expression is correct, the designer

can sort (click) the WeeklyHours field in the inspector to check if there are values

less than 20.

Principle: The inspector allows the designers to view the relationship between

a visual object and the underlying data. Selection can be done both ways. De-

signers can select rows in the inspector and the corresponding visual objects are

highlighted and vice versa. When the underlying data changes (due to a change

in the Rows formula), the data in the inspector is updated immediately.

• Connection Between Visual Properties and Data: Figure 5.6 shows that

the designer has selected (clicked) a Box (TaskBox) representing Alice’s task on

28th January 2010 and the Left property that positions the boxes according to

the time scale.

The Left property of the TaskBox visual object is defined by an expression

(timeScale!Position(Task.Start)).

The inspector breaks the expression down into two sub-expressions: Task.Start

and timescale!Position(Task.Start), and shows the values of the sub-expressions

as well as the index of each TaskBox object in the bundle.

Principle: The inspector allows the designer to view the details of the visual

property mappings and the data behind them. This has a potential of improving

the designer’s understanding of how visual mappings show data.

• Problematic Data Values: Figure 5.7 shows ellipses representing charity marathon

runners. The size of the ellipses represent the runners age. The Left formula

results in negative values for the first two objects. As a result, the objects could

be fully or partly out of view. Hence, the inspector shows the values in yellow as

a warning. If the designer did not intend for this to happen, a visual feedback

would not help. Only concrete values can reveal such a problem. The Hight and

Width formulas are identical, and they refer to field Age. For runner Laura, the

value is null. The default values for Hight and Width in this case are 0, but the

inspector shows the null value in red so the designer is aware.

Principle: In the world of programming, values such as null and division by

zero can be problematic. This applies to the visualization world too, and the

71

5. UVIS USABILITY

Figure 5.6: The inspector showing values behind the formula sub-expressions

inspector highlights these values in light red (erroneous values). The values that

could cause visual objects to be out of view or invisible such as negative values

for position and size properties are taken into consideration. These values are

highlighted in yellow (warning).

5.3.3 Showing multiple visual objects as a staircase

Connecting a visual object to data through Rows formulas results in multiple objects.

When the designer typed a Rows formula, the multiple visual objects were on top of

each other visually. They looked like a single object, and the designer was puzzled. A

visual feedback was missing.

To give the designers visual feedback, Uvis sets Top and Left formulas for the visual

object when the designer types a Rows formula. The result is that the visual objects

cascade like a staircase (Figure 5.8). This helps the designer learn that multiple visual

objects are created as a result of connecting them to data.

This effect works only if Top and Left values are constants, for instance, the designer

has just dragged and dropped a visual object. However, if Top or Left has a formula,

Uvis does not change it since it would be changing a designer’s specification.

72

5.3 Uvis Enhanced Version

Figure 5.7: The inspector showing irregular values in red and warnings in yellow

Figure 5.8: The staircase metaphor

73

5. UVIS USABILITY

Figure 5.9: Highlighting parent visual objects

5.3.4 Showing Parent

It was hard for some designers to learn the Parent concept. To help designers identify

parent visual objects, Uvis environment highlights parent visual objects in a dotted

frame (Figure 5.9).

5.3.5 Positioning children on top of parents

To help designers understand that a child object is created per parent object (provided

the child has no Rows formula), Uvis positions the child objects on top of parent objects.

For instance, Figure 5.10 shows that Uvis positioned the TaskTriangles on top of

EmployeeLabels by changing the Top and Left formulas. Again, only constant formulas

are changed.

Rather than setting Top and Left properties, PieSlice objects are positioned using

properties such as CenterX, CenterY, etc. Figure 5.11 shows an example.

5.3.6 Visual Editing Functions

A common feature in drawing tools is to allow designers to copy, cut, paste, and delete

text or visual objects for efficiency or ease of reuse. Naturally some designers missed

these functionalities and tried to copy and paste some visual objects without success. As

a result, the enhanced environment introduced editing features.This introduced some

74

5.3 Uvis Enhanced Version

Figure 5.10: Positioning child objects on top of parent objects

Figure 5.11: Positioning PieSlice child objects on top of parent objects

75

5. UVIS USABILITY

Figure 5.12: Setting the pie slice’s StartAngle

difficulties though. Position formulas of the newly copied objects have to be adjusted

so that the copied object is not on top of the source object. It has to be horizontally

and vertically shifted.

5.3.7 Default Formulas

To improve ease of use without compromising customizability, some visual objects pro-

vide default formulas that cater for common cases. These formulas are still changeable

by the designers if they want a different behaviour. As an example, the StartAngle of a

PieSlice object has a default formula (Figure 5.12). As another example, HTimeScale

has a default formula that calls Refresh() when the event Dragged is triggered. Chap-

ter 4 has more examples.

5.3.8 Documentation

The documentation is divided into two parts. A step-wise tutorial, and visualization

examples.

• Tutorial: The textual tutorial did not communicate all the Uvis concepts ef-

fectively. Designers skipped some parts or did not fully relate the text to the

environment parts. Moreover, designers felt awkward about steps that asked

them to carry out unfulfilling tasks, for instance, steps that did not have a real

impact or output. These steps were present because they were important for the

concept.

As a solution, I designed a power-point based tutorial (Figure 5.13). The tutorial

showed information bit by bit to increase the chances of designers not skipping

76

5.3 Uvis Enhanced Version

Figure 5.13: A power-point based tutorial

77

5. UVIS USABILITY

parts. Furthermore, the steps were only the tasks that resulted in something real

on the screen.

The tutorial was improved in other areas too. For instance, the language was

simplified to correspond to the designer’s language, the slides were consistent,

and smooth animation was used to draw the attention of the designer to new

concepts.

• Visualization examples: It is well known that concrete examples improve un-

derstanding (45). This was supported with evidence from usability studies too.

Designers missed an example that is similar to some tasks. In response, examples

on pie slices and curves were produced

5.3.9 Benefits

Although the improvements of Uvis were based on feedback from savvy designers, it

is hard to tell the precise impact of individual improvements on ease of learning. The

improvements collectively reduced the usability problems that designers encountered

with the initial version of Uvis. Chapter 6 provides more details. In one case, however,

I tested the impact of a major cognitive aid as explained in chapter 7. The result is

that it improved completion time and solution quality.

78

6

Iterative Design of the Uvis

System

6.1 Introduction

The main objective of the Uvis system (language, environment, visual objects, and

tutorial) is to make custom visualizations accessible to savvy designers. The initial

version of the Uvis system in chapter 5 was not tested with designers. This chapter

presents how the Uvis system evolved iteratively through involving novice, savvy, and

expert designers. The iterative design process was followed to refine the Uvis system.

This chapter is structured as follows: First, it briefly explains the iterative design

process, the objectives of using the process, the Uvis concepts to be evaluated, and the

tasks designed to evaluate them. Second, the chapter presents the rounds that the Uvis

system went through. Finally, a summary of the findings is given.

6.2 Iterative Design Process

It has been widely recognized that a user interface (UI) should be designed iteratively

since it is almost impossible to design a UI without a usability problem from the

beginning (46, 47, 48). Iterative design (Figure 6.1) is a cyclic process of prototyping,

testing, and refining a UI. An initial prototype is proposed first. The prototype is

usability tested with typical users. Usability studies identify usability problems. The

problems are dealt with according to their severity, and ease of fixing(49). As a result,

79

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.1: The iterative design process

a new prototype might be designed and usability tested. The usability test can be

modified too, and so on until a stable version is reached.

The following subsections present the objectives of using the iterative design process,

and the Uvis concepts that the process is designed to evaluate and make accessible to

designers.

6.2.1 Objectives

• Evaluating how easy it is to learn and/or understand Uvis main concepts, and

use Uvis.

• Making custom visualizations accessible to designers based on feedback from us-

ability studies.

• Investigating new ways to support designers.

6.2.2 Uvis Concepts to Evaluate

Figures 6.2 and 6.3 provide overviews of selected Uvis language, environment, and

visual object concepts to evaluate. Only concepts crucial for using Uvis are selected.

For each concept, there are one or more usability factors (e.g. ease of learning) used

to evaluate. For instance, an ease of learning factor means evaluating how easy it is

to learn a concept. Further, each concept is classified according to where it belongs in

the data transformations and/or visual mappings steps (two steps in the visualization

reference model (50))

The usability studies in section 6.4 will explain how I evaluate the Uvis concepts

and measure the corresponding usability factors.

80

6.2 Iterative Design Process

Figure 6.2: Uvis language concepts

81

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.3: Uvis environment and visual object concepts

82

6.2 Iterative Design Process

Figure 6.4: The Uvis concepts that tasks evaluate

83

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

6.3 Test Tasks

This section presents different versions of test tasks. The tasks are designed to eval-

uate the Uvis concepts. Participants carry out the tasks during the usability studies.

Together with Uvis, the tasks iteratively evolved as it was feasible to test more concepts.

The tasks can be visual, understandability questions, or survey questions. The vi-

sual tasks are tasks that ask the participant to create or refine a visualization. Under-

standability questions ask participants questions to check their understanding. Survey

Questions check the participant’s opinions on Uvis concepts and collect information

about the participant’s experience.

For visual tasks, participants saw the goal that they should accomplish on the

screen. For instance, they saw an example of how the goal visualization should look.

The data sets in the participant tasks were different from the ones shown to them.

They were told that the visualizations shown to them in the task are just examples.

The tasks were designed to fulfil three criteria: First, the visual tasks should cover

a collection of different custom visualizations. Second, all the tasks (e.g. visual, un-

derstanding, etc.) should evaluate Uvis concepts in figures 6.2 and 6.3. Third, all the

tasks should vary in complexity. Fourth, Together with the usability studies, the tasks

should not take longer than two hours.

As the tasks evolved, they fulfilled the criteria.

Figure 6.4 shows how the different task versions evolved to evaluate more concepts.

6.3.1 First Version of Tasks

Figure 6.5 shows the first version of the visual tasks. The visual tasks and understand-

ability questions evaluate fundamental formula concepts such as how formulas bind

visual objects to data rows. The evaluation is not strong since there were only two

simple tasks that demonstrate very little of the formula power (Figure 6.4).

The tasks also evaluate basic features of the environment such as the drag-drop and

the immediate visual feedback concept.

• Visual Tasks:

– Task 1: The vertical list shows employee names. Make the list show their

addresses instead.

84

6.3 Test Tasks

Figure 6.5: Visual tasks, version 1

Data: Table Employee.

– Task 2: Show employee names in light green, and position the names to the

right of their addresses.

Data: Table Employee.

• Understandability Questions:

– Question 1: What data do the employee labels in Task 1 show? Where do

the data come from?

– Question 2: Can you explain how the employee labels in Task 1 are posi-

tioned like a vertical list?

85

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

6.3.2 Second Version of Tasks

Figure 6.6 shows the second version of the visual tasks. This version of tasks and under-

standability questions evaluate more advanced formula concepts than the first version.

For instance, the tasks evaluate join formulas, conditional formulas, and formulas that

refer to visual properties.

This version of tasks evaluates some development environment concepts stronger

than the first version. For instance, the data model concept is strongly evaluated in

task 4 since designers have to work out a problem from scratch. They actually have to

use the data model extensively.

The visual tasks vary in complexity. For instance, some tasks draw on concepts

that are familiar to spreadsheet users (e.g. basic mathematical formulas) while others

require the understanding of Uvis specific formulas

• Visual Tasks:

– Task 1: The pink vertical list shows employee names. Make the list show

their addresses instead, also change the list colour to yellow.

Data: Table Employee.

– Task 2: Show employee names in light green, and position them to the right

of their addresses.

Data: Table Employee.

– Task 3: The visualization shows the employee activities in a certain period

of time. Make the activity width represent the activity duration.

Data: Tables Employee and Activity. One employee can have zero or more

activities.

– Task 4: Create a visualization that shows the projects and their activities.

The activities are positioned according to the time scale, and the projects

they belong to.

Data: Tables Project and Activity. One project can have zero or more

activities.

• Understandability Questions:

86

6.3 Test Tasks

– Question 1: What data are the employee labels in Task 1 showing? Where

do the data come from?

– Question 2: Can you explain how the employee labels in Task 1 are posi-

tioned like a vertical list?

– Question 3: Can you explain what Parent means?

– Question 3: Can you explain what the join (-<) symbol mean?

87

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.6: Visual tasks, version 2

88

6.3 Test Tasks

6.3.3 Third Version of Tasks

Figure 6.7 shows the third version of the visual tasks. The visual tasks evaluate all

the Uvis concepts. Some concepts (e.g. joining two tables) are not evaluated strongly

by the visual tasks, but the understandability questions and opinion survey provide a

supplement to that.

The visual tasks progress in complexity from easy to difficult.

• Visual Tasks:

– Task 1: The bars show data from table Sales.

∗ A. Position the bars horizontally.

∗ B. Make the bar heights show the amount of sales.

∗ C. Sort the bars according to the amount of sales.

Data: Table Sales.

– Task 2:

∗ A. The ellipses on top (grey ellipses) show all runners of a marathon.

Make the male runners blue, and the female ones pink.

∗ B. On the bottom (the Citizen runners row): The ellipses show runners

that are citizens. Now we want the ellipses to only show runners that

are older than 30. Also, change the label from ”Citizen runners” into

”Runners older than 30”.

– Task 3: You have a custom pie chart (see figure below) representing per-

centages of all passengers of several flying classes (e.g. Crew, Economy, etc.).

The percentages of male passengers are shown in light blue pie slices.

Add pink pie slices that show percentages of female passengers on the top

of the male passengers.

Data: Table Passenger

– Task 4: The visualization shows the high temperature readings in three

cities in the period of time from 1 June 2011 to 1 October 2011. The cities

are shown by the labels on the left. The time is displayed by a time scale on

the top. Numeric scales on the right show the range of possible temperatures

in Celsius. The high temperature readings are shown as red curves.

89

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Add blue curves showing low temperature reading for the shown cities.

Data: Tables City, HighReading, and LowReading. One city can have zero

or more high readings/low readings.

• Survey Questions:

– To what extent do you agree with the following statements?

The answer should be: I strongly agree, I agree, I neither disagree nor agree,

I disagree, or I strongly disagree.

∗ I am confident that my visualizations produce the expected outcomes

described in the tasks

∗ The inspector was helpful.

∗ The tutorial was helpful.

∗ The formulas were easy to understand.

– How often did you use the inspector on average per task?

– What difficulties did you encounter during the study?

– Which parts of the formulas were difficult to understand for you?

– Which parts of the formulas were easy to understand for you?

– Do you have any suggestions for improvement?

• Understandability Questions:

– Describe the effect of the ”.” element in the Uvis formulas.

– Describe the effect of the ”!” element in the Uvis formulas.

– Describe the effect of the "-<" element in the Uvis formulas

– Describe the effect of the ”index” element in the Uvis formulas.

The following subsections will present the phases that the Uvis system went through.

In each phase, the section gives a summary of one ore more usability studies and the

identified problems and their fixes. At the end of each phase, a new version is presented,

and the refinements are explained.

The details of the usability studies can be found at (51).

90

6.3 Test Tasks

Figure 6.7: Visual tasks, version 3

91

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

6.4 First Phase of Evaluation

This phase was carried out with one participant only. One participant is enough to

detect usability problems that everyone will encounter.

6.4.1 The Participant’s Background

• Participant 1

– Gender: male

– Age: 29

– Position: medicine student.

– IT skills: novice IT user, has basic knowledge of MS word and power-point.

6.4.2 The Usability Study Settings

• Tutorial: The first version of the Uvis tutorial, a textual tutorial that explains

step-wise how to make a custom visualization (Employee activity plan). The

tutorial has a two-column style, and the figures are in separate pages.

• Uvis environment: The first version of the Uvis environment, the initial version

of the environment that is presented in chapter 5.

• Test duration: 1 hour and 30 minutes.

• Procedure: The test was carried out in a lab. The participant was asked to

read the tutorial, follow the steps he is asked to do, and think aloud meanwhile.

The tutorial had two sections. At the end of each section, the participant was

asked to carry out a task and answer a few understandability questions.

• Visual Tasks: Tasks 1 and 2, version 1 (Figure 6.5).

• Understandability Questions: Questions 1 and 2, version 1.

92

6.4 First Phase of Evaluation

6.4.3 Qualitative Results:

The participant could easily learn some concepts of the Uvis system. For instance, the

immediate visual feedback and how to set a property and a few other concepts seemed

natural. However, he could not answer the questions.

The participant encountered these problems.

• Problem 1: Connection between visual objects and table rows: When

asked about the relationship between visual objects and data, the participant

could not explain that each visual block is bound to a data row. ”It comes from

the table somehow”, he said.

• Problem 2: Data field formulas: The participant thought he needed to type

the field value for each label’s text (Task 1).

• Problem 3: Data Model: The participant could not use the data model in

both tasks. He did look at it, but could not see the connection between the data

model, and what he needed to do (Tasks 1 and 2).

• Problem 4: Index-based position formulas: The participant could not fig-

ure out how index-based position formulas (i.e. vertical list) were calculated

(Question 2).

• Problem 5: Selecting visual objects is cumbersome: At times, the partic-

ipant forgot how to select a visual object. It was cumbersome to remember the

combination of ctrl and click.

6.4.4 Quantitative results:

The participant failed in both visual tasks. He spent 15 minutes on task 1 and 20

minutes on task 2.

6.4.5 Causes and Solutions:

Figure 6.8 provides an overview of the problems, causes, and solutions.

• Cause 1: Insufficient explanation: Some Uvis concepts (e.g. visual objects

and data, etc.) were not explained well in the tutorial. The language was rather

93

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.8: The first phase problems, causes, and solutions

technical. Furthermore, the tutorial layout was not intuitive to the participant.

This was judged to be a reason behind the four problems the participant encoun-

tered.

Solution: Avoid technical language. Switch to a regular layout (i.e. one col-

umn, pictures and text go hand in hand), Emphasize the concepts that were

problematic.

• Cause 2: No table view: It was hard to imagine that there were data rows

behind the visual objects simply because the participant could not see the data

rows. This was judged to be a reason behind problems 1, 2, and 3.

Solution: Simply show the tables upfront (Employee and Activity) in the tu-

torial.

• Cause 3: Poor property value view: The participant could not understand

the property value panel. It looked so different from the property grid. This was

judged to be a reason behind problems 1, 2, and 4.

94

6.4 First Phase of Evaluation

Solution: Add a third column in the property grid. This column shows the

values of the properties for a selected visual object.

• Cause 4: The pile of labels did not communicate: Upon defining a Rows

formula, Uvis sets the Top and Left formulas automatically. This causes the

labels to cascade a bit, but the labels did not have visible borders. The participant

could not correctly interpret this cognitive aid. ”It just looked a bit bigger”, he

said. This was judged to be a reason behind problems 1.

Solution: Make the label borders visible. Displace the labels further

• Cause 4: Ctrl+ click is cumbersome: Selecting a visual object this way

is unusual. It was decided to simply allow selecting a visual object by simply

clicking it.

6.4.6 Changes - the second version of Uvis

Development Environment: The second version of the Uvis environment was im-

plemented as a result of the study. Figure 6.9 shows the changes in the environment.

A third column that shows property values was added. When the designer clicks a

visual object, the property values of the object are shown in the column in grey colour.

Moreover, the pile of labels is now more visible with clear borders. Finally, the designer

can select a visual object by clicking it, and it will be highlighted with a blue frame.

Tutorial: The second version of the tutorial has a one-column style, and the figures

are in the same pages as text. Furthermore, it provides better explanation of Uvis

concepts that were problematic in phase 1.

95

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.9: Changes in version 2 of the Uvis environment

6.5 Second Phase of Evaluation

This phase was carried out with three participants with different IT skills to get a

feeling of how accessible the Uvis system is.

The changes made in the second version of Uvis did not make a visible difference.

In fact, one of the changes (the property value column) caused confusion. Let us look

at the details.

6.5.1 The Participant’s Background

• Participant 2

– Gender: female

– Age: 29

– Position: a BSc student in biology.

– IT skills: novice IT user, has basic knowledge of MS word and power-point.

• Participant 3

– Gender: male

– Age: 26

– Position: a MSc student in IT.

96

6.5 Second Phase of Evaluation

– IT skills: expert IT user, has knowledge about programming, but has no

visualization design experience.

• Participant 4:

– Gender: male

– Age: 25

– Position: a PhD student in IT.

– IT skills: expert IT user, has knowledge and experience in programming,

but has no visualization design experience.

6.5.2 The Usability Study Settings

• Tutorial: Uvis tutorial version 2.

• Test duration: For Participant 2, it lasted 1 hour and 15 minutes. For par-

ticipant 3, it lasted 1 hour and 40 minutes, while for participant 4, it lasted 30

minutes only.

• Procedure: The tests for participants 2 and 3 were carried out in a common

room in a student dorm, while the test for participant 4 was carried out in a

lab. The participants were asked to read the tutorial, follow the steps they are

asked to do, and think aloud meanwhile. At the end of each tutorial section, the

participant were asked to carry out a task and answer a few question to check

their understanding.

• Tasks: Participant 2 carried out tasks 1 and 2, version 2 (Figure 6.6). Participant

3 and 4 carried out tasks 1,2,3, and 4, version 2 (Figure 6.6).

• Understandability Questions: Participant 2 was asked questions 1 and 2,

version 2, while participant 3 and 4 were asked questions 1,2,3 and 4.

6.5.3 Qualitative Results:

Like participant 1, all participants could easily learn some concepts of the Uvis system

(e.g. Drag-drop, immediate visual feedback, etc.) Noticeably, participant 4 did not

97

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

encounter any usability problem, but gave a few suggestions. However, participants 2

and 3 encountered problems.

A summary of the observed problem is given as follows.

• Problem 1: Connection between visual objects and table rows: Like

participant 1, participant 2 could not explain that each visual object is connected

to a data row. The tutorial made things worse, particularly, page 9 was confusing.

”Do I need to produce this?”, she asked about the illustration figure (arrows

connecting the labels to corresponding rows).

Participants 3 and 4 did not have that problem, but thought viewing the table

would help make the connection easier.

• Problem 2: Data Model: Like participant 1, participant 2 could not use the

data model in tasks 1 and 2, and participant 2 did not fully understand related

tables.

• Problem 3: Index-based position formulas: Participant 2 could not figure

out how index-based position formulas were calculated(Question 2).

• Problem 4: Parent property formulas: Participant 3 could not use the Par-

ent property, or any formula containing references to parent. (Task 4, Question

3).

• Problem 5: Joining two tables: Participant 3 could not learn how to use the

join operator (-<). He did not specify the right operands (Task 4, Question 3).

6.5.4 Quantitative results:

Figure 6.10 shows the time the participants spent in the tasks, and who succeeded in

which task.

6.5.5 Causes and Solutions

• Cause 1: Inadequate explanation: Participants 2 and 3 pointed to pieces

in the tutorial that did not adequately communicate important concepts such as

98

6.5 Second Phase of Evaluation

Figure 6.10: Quantitative results of the second phase

visual objects and data. Participant 2 thought she needed to produce the illus-

tration figure in page 9. Furthermore, participant 2 lacked the context. ”Where

am I? What am I exactly doing now?”, she often asked.

This was judged to be a reason behind all the encountered problems.

Solution: Provide context (where the reader is) and objective. Explain index-

based position formulas in a procedure-like manner. For instance, start explaining

how the first visual object’s position properties are calculated, then the second,

etc. Furthermore, get rid of ambiguous figures, and show only what the designer

is supposed to produce.

• Cause 2: Being afraid to experiment: Participants 2 and 3 wanted to ex-

periment more with Uvis formulas, but they were scared of the impact, and the

fact that it takes long to go back to the previous state.

This was judged to be the cause of problems 3 and 4.

Solution: Provide undo/redo buttons.

• Cause 3: Invisible Connection between the data model and tables:

Some participants (e.g. participant 2) saw a data model for the first time. The

new concept has to be related to something all the participants know (e.g. table).

This was judged to be the cause of problem 2.

Solution: Provide table view upon clicking a table box.

99

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.11: The second phase problems, causes, and solutions

• Cause 4: Invisible Connection between parent and child visual objects:

This was judged to be the cause of problem 4.

Solution: Highlight the parent object with dotted lines when a child is selected.

Further, position child objects on top of parent objects.

• Cause 5: Poor property value view: None of the participants used the prop-

erty value column. Participant 3 did not even notice it (He skipped the tutorial

part that explained it). Participant 2 looked puzzled when she was reading about

it. ”I do not understand what this is supposed to do”, she commented.

This was judged to be the cause of problem 3.

Solution: Remove the property value column.

6.5.6 Changes - The Third Version of Uvis

Development Environment: Version 3 of the Uvis environment was implemented as

a result of phase 2 usability tests. Figure 6.12 shows the changes in the environment.

A table is shown when the designer double clicks the corresponding table box in the

data model. A parent visual object is highlighted with a dotted frame when one of

100

6.5 Second Phase of Evaluation

Figure 6.12: The third version of the Uvis environment

its visual children is selected. Further, the child objects are positioned on top of the

parent objects upon the specification of Parent property (Section 5.3.5). The property

value column in Uvis 2 was removed, and the property grid has lighter colours.

Tutorial: Version 3 of the tutorial provided a clear objective for the steps the

participant is taking. Furthermore, it provided procedure-like explanation for how the

formulas are calculated.

101

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

6.6 Third Phase of Evaluation

This phase was carried out with three participants, two of them are potential savvy

designers, and one of them is expert (programmer). Moreover, this phase evaluates a

lot more Uvis concepts than the previous phases.

The introduced changes in the third version of Uvis fixed some of the encountered

problems in previous phase. For example, participants this phase were able to use the

data model most of the time. However, other problems remained. For instance, most

participants in this phase did not precisely understand the relationship between the

visual objects and the table rows.

6.6.1 The Participant’s Background

• Participant 5

– Gender: male

– Age: 22

– Position: a BSc student in Computer Science

– IT skills: expert user, has knowledge of programming, but no knowledge

of excel formulas.

• Participant 6

– Gender: male

– Age: 18

– Position: a first year mechanical engineering student.

– IT skills: savvy designer, has basic knowledge of programming.

• Participant 7

– Gender: female

– Age: 17

– Position: student.

– IT skills: savvy designer, knows basic math, and has created charts with

Excel formulas before.

102

6.6 Third Phase of Evaluation

6.6.2 The Usability Study Settings

• Tutorial: Uvis tutorial version 3.

• Test duration: For Participant 5, it lasted 1 hour and 40 minutes. For partici-

pant 6, it lasted 1 hour and 50 minutes, while for participant 7, it lasted 2 hours

and 20 minutes.

• Procedure: The tests for participants 6 and 7 were carried in a lab, while the

test for participant 5 was carried out at a public library. The participants were

asked to read the tutorial, follow the steps he is asked to do, and think aloud

meanwhile. At the end of each tutorial section, the participants were asked to

carry out a task and answer a few question to check their understanding.

• Visual Tasks: All participants carried out tasks 3, version 3 (Figure 6.7).

• Questions: All participants were asked to fill in the form in section 6.3.3.

6.6.3 Qualitative Results

• Problem 1: Connection between visual objects and table rows: Partic-

ipants 6 and 7 had difficulties explaining the relationship between visual objects

and table rows. To them, the visual objects (labels) come from the table some-

how. Participant 5, though, could point to the direct relationship between a

visual object and a data row.

• Problem 2: Inability to check the correctness of the visualization: Par-

ticipant 7 came up with the right Rows formula for task 2, B, but changed her

mind because she did not see a visual difference. She could not confirm her

solution.

• Problem 3: Conditional formulas: Participant 6 could not figure out how to

use conditional formulas .

• Problem 4: Order by formulas: Participant 5 could not learn how to use

order by formulas.

103

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.13: The third phase quantitative results

• Problem 5: Complex visual objects: All participants spent significant time

finding their way through task 3 because it had some mathematical barriers (e.g.

inner radius, outer radius, etc.)

6.6.4 Quantitative Results

Figure 6.13 gives an overview of the quantitative results of the third phase.

6.6.5 Causes and Solutions

• Cause 1: Participants skip tutorial parts Most participants tend to skip

parts in the tutorial that do not catch their attention. Unfortunately, some of

these parts might be crucial to the Uvis concepts understanding. For instance,

explaining how visual objects and rows are related.

Solution: Provide a power-point tutorial that proceeds step by step so that the

participant tends to focus on one thing at a time. The textual tutorial will still

be there as a reference.

• Cause 2: Insufficient data/feedback In many cases, visual feedback is not

sufficient for the designer to check the correctness of the visualization.

Solution: Provide the inspector (See chapter 3 for more details)

• Cause 3: Lack of examples of complex visual objects

104

6.6 Third Phase of Evaluation

Figure 6.14: Causes and solutions for problems observed in phase 3

Solution: Provide documentation that gives examples of complex visual objects

(e.g. pie slice).

6.6.6 Changes - The Fourth Version of Uvis

Development Environment: The fourth version of the Uvis environment was im-

plemented as a result of phase 3 usability tests (Figure 6.15). The inspector was added

to the version.

Tutorial: The fourth version of the tutorial is power-point based. The highlight

of the tutorial is that it shows information bit by bit so that participants do not skip

the parts.

105

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.15: The fourth version of the Uvis environment

6.7 Fourth Phase of Evaluation

This phase was carried out with three participants who qualify as savvy designers.

The changes introduced in the fourth version of Uvis removed most of the usability

problems encountered in the previous phase. For instance, the participants understood

the relationship between the visual objects and the data tables. Furthermore, most

participants were able to check the correctness of the visual tasks.

6.7.1 The Participant’s Background

• Participant 8

– Gender: female

– Age: 55

– Position: a professional musician

– IT skills: savvy IT user, has knowledge of database tables, also knows a

bit about excel formulas.

106

6.7 Fourth Phase of Evaluation

• Participant 9

– Gender: male

– Age: 60

– Position: businessman.

– IT skills: savvy IT user, has basic knowledge of excel formulas.

• Participant 10

– Gender: male

– Age: 53

– Position: a philosophy graduate.

– IT skills: savvy IT user, knows basic math, and has written simple pro-

grams before.

6.7.2 Usability Study Settings

• Manual: Uvis tutorial version 4.

• Test duration: For Participant 8, it lasted 2 hours. For participant 9, it lasted

1 hour and 50 minutes, while for participant 10, it lasted 1 hour and 30 minutes.

• Procedure: The tests for participants 8 and 9 were carried at their house, while

the test for participant 10 was carried out at a public library. Each participant

was asked to read the tutorial, follow the steps he/she is asked to do, and think

aloud meanwhile. At the end of each tutorial section, the participant was asked

to carry out a task. At the end of the test, the participant filled in a form.

• Visual tasks: All participants carried out the third version of the tasks (Figure

6.7).

• Questions: All participants were asked to fill in the form in section 6.3.3.

107

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.16: Quantitative results of the fourth phase tests

6.7.3 Qualitative Results

The participants encountered these problems.

• Problem 1: Visual object disappearing on error: Participants 8 and 9

encountered a problem with Task 3. When they set incomplete specifications

for a PieSlice object. The object disappeared. The participants dragged and

dropped a new PieSlice object.

• Problem 2: Inability to compare two visual object specifications: Par-

ticipant 9 wanted to see the specifications of an existing PieSlice object with a

new one he dragged side by side. He did it on a paper and pencil.

• Problem 3: Data field formulas: Participant 8 explained that she did not

understand data field formulas after carrying out task 1.

6.7.4 Quantitative Results

Figure 6.16 shows the quantitative results of the fourth phase tests.

6.7.5 Causes and Solutions

Figure 6.17 shows an overview of the problems, causes, and solutions of the fourth

phase.

108

6.7 Fourth Phase of Evaluation

Figure 6.17: The fourth phase problems, causes, and solutions

• Cause 1: Inadequate visual feedback for pie slices: Designers did not

get an easy feedback when there was an error with the pie slice object. It just

disappeared.

Solution: Show the pie slice (in design mode only:) even if they have erro-

neous specifications, but it should be obvious that there is a problem with the

specifications.

• Cause 1: Inadequate Explanation of data field formulas Participant 8 did

not get the fact that data field formulas refer to field names that exist in the data

model.

Solution: In the tutorial, link the explanation to the data model fields.

• Cause 3: Lack of support for comparing two visual objects:

Solution: An ideal solution would be to allow viewing more than one property

grid for different visual objects. For time reasons, this solution was not imple-

mented. Instead, copy/paste functions were provided hoping that designers can

copy the object they want to refine.

109

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

Figure 6.18: The changes in the fifth version of Uvis

6.7.6 Changes - The Fifth Version of Uvis

Figure 6.18 shows the changes in the fifth version of Uvis. Copy and paste functions

were added. A PieSlice becomes dotted with an ”error” text when it gets the wrong

specifications. This only happens in design mode. This way, the designer gets feedback

about what is happening.

The fifth version of the tutorial explains data field formulas in connection to the

data model.

Section 5.3 explains the version in more detail.

6.8 Summary

Figure 6.19 provides a summary of the problems the participants encountered in the

usability studies. As Uvis evolved, fewer problems were encountered. In conclusion,

many usability problems were reduced. For instance, it became easier to debug visu-

110

6.8 Summary

Figure 6.19: The fourth phase problems, causes, and solutions

alizations, and understand the relationship between visual objects and data. However,

some concepts (e.g. Parent) are still not straightforward.

111

6. ITERATIVE DESIGN OF THE UVIS SYSTEM

112

7

Evaluation

7.1 Introduction

This chapter presents different types of evaluation of Uvis. First, I compare Uvis with

other tools. The ideal would be to make usability tests for the other tools, but this

will introduce bias, and require a lot of time and resources. Therefore, I compare Uvis

with other tools using comparative analysis (Section 7.2) and the cognitive dimensions

of notations (Section 7.3.)

Finally, I evaluate Uvis using an experimental evaluation that measures the de-

signer’s performance (Section 7.4.)

7.2 Tool Comparative Analysis

This section compares three tools with Uvis using a custom scatter plot example (Figure

7.1). The example shows high readings of temperature in a given city. The readings

are taken from 1 June 2011 to 1 October 2011. The dots represent the readings, and so

far it looks like a conventional chart. However, we want to customize the colour of the

dots. If the dot is showing the highest temperature, it is black. Otherwise, if the dot

is showing a temperature greater than 25, it is red. The rest of the dots are orange.

Although the example is simple, it was selected because it can be made with all the

selected tools even though they are geared for different areas in the visualization world.

113

7. EVALUATION

Figure 7.1: A custom scatter plot based on table HighReading

7.2.1 Selected Tools

Three visualization tools were selected for evaluation: Prefuse (5), Improvise (22), and

Protovis (6). The tools were selected based on: Support for custom visualizations, how

recent they are, whether they are general-purpose, difference of approaches, and finally

the number of citations.

All the selected tools support the creation of custom visualizations, have been de-

veloped in the last decade, and are general-purpose. Also the tools have different

approaches to visualization creation.We only selected a representative tool from tools

similar in approach or cognitive aids. For instance, we excluded Flare (23) since it

adapted its design from Prefuse. Likewise, we excluded D3 (24) as it borrows a lot of

its concepts (e.g. helper functions) from Protovis.

The selected tools were ranked based on the total number of citations on ACM

Portal and IEEE website.

7.2.2 Prefuse

Figure 7.2 shows the specifications of a custom scatter plot with Prefuse. First, a visu-

alization object is created and bound to data (lines 1-3). Prefuse uses an AxisLayout

abstraction that supports plots (lines 4 and 5). The to-be-visualized fields are passed

in the AxisLayout constructor.

Actions are objects that perform visual mappings (lines 8-10). There are many

kinds of them. For instance, ColorAction can make a colour property (e.g. border

colour or background colour) show data. The orangeColor variable makes all visual

objects orange (line 8). It sets the FILLCOLOR (background colour) of all visual objects

114

7.2 Tool Comparative Analysis

Figure 7.2: Creating a custom scatter plot with Prefuse. a: binding the visualization

to data, b: defining time and numeric axes, c: defining a conditional visual mapping,

d: associating the visual mappings with the visualization, e: defining tick marks and

associating them with the axes. f: defining ellipses representing the temperature readings

115

7. EVALUATION

to orange. However, the redColor variable makes objects that conform to a condition

red (line 9). The condition is specified by a predicate that checks if the temperature

fields are greater than 25. This predicate is specified at line 6. The actions are attached

with the visualization object (lines 11-15).

The axes are positioned using a RenderFactory class (lines 17-20), and tick marks

of the axes are generated using an AxisLabelLayout class (lines 21-24). The tick marks

are associated with their corresponding axes (line 25).

Finally, ellipses are chosen as visual objects to represent the temperature readings,

and associated with the axes defined previously (lines 26-28).

Conclusion: There are many abstractions that designers have to know and create

(e.g. AxisLayout, RenderFactory). The separation of actions from the visualizations,

predicates, and their properties can facilitate the management of code and allow reuse,

but reduces the understandability of the visual mappings. A designer might be won-

dering ”which visual object or property does this action relate to?”.

7.2.3 Protovis

Figure 7.3 shows the specifications of a custom scatter plot with Protovis. First, a

visualization object is defined (lines 1-4). Protovis uses non-visual scale classes for

creating time and numeric axes (lines 5-11). The designer uses them to generate tick

data. Rule and Label visual objects are used to draw the axes based on the tick data

(lines 12-18).

Dot objects are bound to data (an array that corresponds to the HighReading

table) (lines 19-21). The Left and Bottom properties position the Dot objects horizon-

tally and vertically (lines 22 and 23). The designer specified expressions for the two

properties that call functions provided by the scales that calculate the positions based

on temperature and date fields. Finally, a conditional expression for the FillStyle

(background colour property) sets the colour of dots that show the highest temperature

black. Otherwise, it sets the colour red for dots showing temperature greater than 25

red. Otherwise, they are orange (lines 24 and 25).

Development Environment (Protoviewer): The visualization can be built

with the Protoviewer development environment (Figure 7.4). This has several advan-

tages. Designers can see the resulting visualization immediately as they are modifying

116

7.2 Tool Comparative Analysis

Figure 7.3: Creating a custom scatter plot with Protovis a: defining the visualization, b:

defining the numeric (temperature) and time scales (axes). c: defining dots and visually

mapping them to temperature and date fields according to the scales

the source code. Moreover, clicking a visual object, designers can view the position

values (x and y) of the object. This can help inspecting the object.

Conclusion: Protovis provides non-visual scale classes that facilitate the construc-

tion of axes. The axes are not defined directly. Instead, primitive objects such as Label

and Rule are used for drawing the axes. This separation increases flexibility (e.g design-

ers might obtain a custom axis in this way), but increases the steps of such a common

task. Unlike Prefuse actions, the declarative expressions for the Dot visual objects are

not separated from the visual properties. This increases visibility and understandabil-

ity.

7.2.4 Improvise

The designer starts by importing the HighReading table. The Lexicon panel displays

imported data sets, grouped by relational schema. To define a scatter chart, the de-

signer chooses Plane View 2D object from the list of visual objects. To define visual

mappings for the visual object, the designer chooses Layer.Projection from the list

117

7. EVALUATION

Figure 7.4: Creating a custom scatter plot with the Protovis environment (Protoviewer)

Figure 7.5: Creating a custom scatter plot with Improvise

118

7.2 Tool Comparative Analysis

of properties. He clicks ”Create” to create a new projection (visual mapping). This

leads him to a new panel (Lexicon) where he can define expressions.

We want to define this expression for the background colour property.

Temperature > 25 ? "red": "orange"

This expression has to be built step-by-step using combo boxes that provide the

available Expression elements (Figure 7.5). First, the designer creates the conditional

part of the expression by choosing Function from the Category combo box, and Other

and ?(boolean,Color,Color). Improvise shows the result as a conditional expression

tree with default colours as results for the true and false expressions.

Second, the designer can manipulate the conditional statement parts by clicking the

tree nodes. To create a comparison condition, the designer chooses Function from the

Category combo box, and Comparison and >(...) from the Operator combo boxes.

Third, to make one of the nodes refer to the Temperature field, the designer clicks the

node and chooses Attribute from the Category combo-box. Improvise displays the

available fields, and the designer just selects (clicks) it.

Comments: In general, data transformations and visual mappings rely heavily on

dialogues. For instance, even a simple expression takes long to create. The environment

forces the designer to use combo-boxes that have the expression elements. It is not easy

to find the expression elements. Moreover, the longer the expression, the harder it is

to read.

7.2.5 Uvis

Figure 7.6 shows the textual specification of the custom scatter plot with Uvis and

Figure 7.7 shows the environment where the chart was developed.

To create the time and numeric axes, the designer dragged HTimeScale and VNumericScale

visual objects from the toolbox and dropped them on a form. The designer moved and

resized them until they looked right. The environment sets position properties (i.e.

Top, Height, etc.) accordingly. To define the range of time and numbers the scales

show, the designer typed the value of the Range property in the property grid (lines 5

and 11 in Figure 7.6).

To create dots representing the temperature reading, the designer drags and drops

an Ellipse. The designer typed formulas for the position properties (Top and Left).

The formulas call position functions provided by the scales to calculate the positions

119

7. EVALUATION

Figure 7.6: The specifications of the custom scatter plot with Uvis

Figure 7.7: The scatter plot visualization in the Uvis environment

120

7.3 Evaluating the Tools with the Cognitive Dimensions of Notations

Figure 7.8: The Left expression values

based on temperature and date fields (lines 18 and 19 in Figure 7.6). Finally, a con-

ditional expression for the BackColor (background colour property) sets the colour of

ellipses (line 21 in Figure 7.6).

Development Environment: The environment has several advantages. Design-

ers can drag, drop, resize visual objects (Direct manipulation), and they can see the

resulting visualization immediately as they are updating the expressions.

The inspector shows data for a bundle of visual objects. It shows the data rows

behind the visual objects (Figure 7.7). Further, it shows the values of an expression

and its sub-expressions (Figure 7.8).

Comments: Unlike Prefuse, Protovis, and Improvise, Uvis deals only with visible

visual objects. Like Protovis, Uvis uses declarative expressions that directly define

the visual properties, but there is no need to define variables, and the sequence of

specifying the expressions is free. Like Improvise, the environment shows the available

visual objects, but it allows the designers to drag, drop, and resize them (as long as

the position and size properties do not have dynamic expressions) rather than textually

setting them.

7.3 Evaluating the Tools with the Cognitive Dimensions

of Notations

This section uses the framework of cognitive dimensions of notations (CDs) (12) to

evaluate how well the selected tools in the previous section support custom visualiza-

tions. The framework can be used as guidelines for designing and evaluating a notional

system and the environments it is manipulated in. It provides cognitive dimensions that

need to be addressed for several kinds of tasks. The user tasks can be classified into

121

7. EVALUATION

four types: Transcription (copying content from one structure to another), incremen-

tation (adding information without altering the structure), modification (changing the

existing structure possibly without adding new content), and exploration (combining

incrementation and modification taking into consideration that the desired end might

not be known in advance) (52). According to this definition, implementing a custom

visualization is an exploration task in essence.

The cognitive dimensions that are important to look at when designing or evaluating

tool support for exploration tasks are: Abstractions, hidden dependencies, premature

commitment, progressive evaluation, viscosity, visibility, and juxtaposability (52). Ide-

ally, systems that support exploration tasks (e.g. implementing a custom visualization)

should have low viscosity, few hidden dependencies, few premature commitments, few

abstractions, and high visibility and juxtaposability.

Let us look at how the selected tools perform in these dimensions.

7.3.1 Abstractions

The Abstractions dimension assesses the abstractions that encapsulate implementation

details and the mechanism to manage them. Although abstractions can make the

specifications shorter and sometimes fit the domain better, systems that require learning

many abstractions have an abstraction barrier. Furthermore, exploration tasks do not

tolerate many abstractions.

Prefuse is an example of a system that has an abstraction barrier. For instance,

there are many subtypes of Layout, RenderFactory, and Action to learn. The ab-

stractions can be extended programmatically by Java programming, but this requires

in-depth knowledge of Java.

Protovis has fewer abstractions to learn than Prefuse, but some programming ab-

stractions (e.g. variables, anonymous functions) are necessary to learn. Protovis ab-

stractions can be extended programmatically with JavaScript.

Like Prefuse, Improvise has many abstractions. For instance, there are many panels

and expression parts (e.g. conditional statements, functions, etc.) and the designers

need to be aware of their meaning, and how to manipulate them, etc. Like Prefuse,

Improvise abstractions can be extended with Java.

Uvis formulas resemble spreadsheet expressions, but obviously have more abstrac-

tions than spreadsheets. For instance, a Uvis formula can refer to data fields, visual

122

7.3 Evaluating the Tools with the Cognitive Dimensions of Notations

properties, etc. However, Uvis has relatively few abstractions. For instance, there are

no variables and rendering objects. Uvis does not allow defining new abstractions.

7.3.2 Hidden Dependencies

The hidden dependencies dimension assesses whether dependencies between entities

are hidden or visible. Hidden dependencies slow down information finding and can

potentially increase the risk of error. Exploration tasks tolerate only a few hidden

dependencies.

Most Prefuse abstractions have hidden dependencies. For example, the layout action

implicitly overrides a specific visual mapping of size and position properties.

Protovis expressions can depend on variables. Such dependencies can be hard to

see in textual specifications. More advanced visualizations use layout classes that po-

sition visual items implicitly (e.g. tree maps), or some operators such as ”Parent” and

”Sibling” that have hidden dependencies.

In Improvise, it is hard to derive the elements of an expression, particularly, if the

expression contains variables or other sub-expressions. These can be viewed in other

panels.

Uvis formulas can depend on other visual properties. The properties can have

their own formulas, and so on. When designers change an expression, it is hard to

know the implications of such a change. Furthermore, more advanced visualizations

such as hierarchical visualizations use operators (e.g. Parent) that result in hidden

dependencies.

All the surveyed tools except for Uvis do not explicitly show which particular visual

property depends on which field. The Uvis environment shows that using the inspector

(Figure 7.8).

7.3.3 Premature Commitment

The premature commitment dimension assesses whether there are any constraints on

the order in which tasks must be accomplished. Premature commitment is harmful for

exploration tasks.

Since the specifications are program-like, Prefuse and Protovis impose constraints

on the sequence in which visualizations are defined. For instance, if a property depends

on another, the independent one has to be defined first.

123

7. EVALUATION

Improvise imposes a strict sequence on how some things are done. Constructing

the expression step-by-step is an example of strict sequencing, and having to navigate

from panel to panel to carry out visual mappings is another one.

Uvis specifications are sequence-free. At run time, the kernel finds out the sequence

of execution. If the designer types a formula that refers to a property that does not

exist yet, Uvis kernel flags an error, but the application still runs.

7.3.4 Progressive Evaluation

The progressive evaluation dimension assesses how easy it is to evaluate and obtain

feedback on an incomplete task. Progressive evaluation is important for exploration

tasks.

In Prefuse, it is not easy for a designer to obtain visual feedback of the specifications.

The source code has to be run in another setting to obtain feedback.

Improvise bridges that gap with an immediate visual feedback feature. However,

the visual feedback can be over-shadowed with many editing panels.

Protoviewer and the Uvis environment provide a separate design panel that is up-

dated immediately when the specifications are changed. The Uvis environment provides

similar kinds of feedback as traditional environments such as highlighting erroneous for-

mula parts, error, and warning lists. In addition, the environment shows the formula

values in a separate panel that is updated when the formula changes (Figure 7.8.)

7.3.5 Viscosity

The viscosity dimension assesses the cost of making small changes. It is costly to make

a small change in viscous systems. Viscosity is harmful for exploration tasks. We

consider two types of viscosity. First, repetitive viscosity means a single goal-related

change which requires many repetitive actions. Second, knock-on viscosity means a

change in one part affects other related parts.

Prefuse is based on an object oriented language (Java.) Hence, inheritance can

reduce repetitive viscosity. For instance, a change can be made in a parent class rather

than all inheriting classes. Modern development environments can help with small

knock-on changes such as changing a variable name that is used in many places (re-

factoring.) Nevertheless, changing Prefuse specifications requires in-depth knowledge

of the language constructs and programming concepts.

124

7.3 Evaluating the Tools with the Cognitive Dimensions of Notations

Like Prefuse, the Protovis language has low-repetitive viscosity since it supports

inheritance for visual objects. Moreover, Protovis allows other changes easily, for in-

stance, changing the visual object type. The environment (Protoviewer) does not have

support for making changes.

Designers who are experienced with Improvise might find some things easy to

change. For instance, variables that are referred to from many expressions can be

changed in one setting. Otherwise, Improvise is highly viscous. For instance, changing

some specialized visual object types (e.g. Plane View) is not possible. In general, a

change in Improvise requires navigating across panels.

Like spreadsheets, simple visualizations in Uvis have low viscosity. However, viscos-

ity grows with size. Uvis does not support inheritance, but designers can add properties

that have formulas that other visual objects can refer to. In such a case, a change is

only required in the designer property. Since Uvis formulas can refer to other formulas

elsewhere, a change in one formula might affect other dependant formulas. The Uvis

environment shows errors that result from such a change.

7.3.6 Visibility and Juxtaposability

The visibility dimension assesses the ability to view data components easily. Juxta-

posability assesses the ability to view two similar components side by side. The two

dimensions are generally discussed together due to similarity. Both dimensions are

important for exploration tasks.

What data components would a designer want to view when implementing a cus-

tom visualization? Many can be considered important. Examples include the currently-

designed visualization, the available visual objects and their properties, the visual map-

pings, the available data, the visualized data, and errors. What needs to be viewed

varies from task to task and designer to designer, but a possible solution is to give

designers the ability to show or hide components.

Even if Prefuse is integrated with a development environment, only a few compo-

nents can be visible in one setting. Traditional environments show the source code, the

available visual objects, and a list of errors in one setting. However, the designer has

to view the currently-designed visualization in another setting.

Protoviewer shows the currently-designed visualization as well as the specifications

behind it. Furthermore, designers can view the position property values of a single

125

7. EVALUATION

selected visual object at a time. Protoviewer does not provide support for comparing

the specifications of two similar visual objects.

Improvise shows the currently-designed visualization, but it can be over-shadowed

by the editing panels. A panel can only show one expression at a time, and it occupies

a lot of space. This does not allow comparing many expressions. Further, many data

crucial for the task (e.g. data fields) are buried in combo boxes.

Uvis shows the currently-designed visualization, the properties (and the expressions

defining them) of a selected visual object, and a list of errors. Upon selecting a visual

object, Uvis shows the data behind that particular object. Further, to allow compari-

son, the data from other visual objects from the same data source are shown as well.

It is also possible to see the defining expressions of all properties of a selected visual

object. However, it is not possible to see expressions of two visual objects at the same

time.

7.3.7 Summary

The findings of the comparative analysis and the evaluation with the cognitive dimen-

sions of notations can be summarized as follows:

• All the surveyed tools suffer from low juxtaposability and high hidden depen-

dencies with slightly different degrees.

• All the surveyed tools except for Uvis suffer from high premature commit-

ment and low visibility with slightly different degrees.

• Prefuse uses a programmatic approach that relies on specialized modules. The

main strength of this approach is the breadth of visualizations it can express

due to the many modules it provides. However, there are many abstractions to

learn even to construct a simple example like a custom scatter plot. Furthermore,

even with a development environment, the approach suffers from low progressive

feedback.

• Improvise uses an approach that is heavily dependant on dialogues (panels).

The main strength of this approach is that the tool provides useful visual objects

tailored for some tasks. However, the functionalities are not easy to find. For

instance, the conditional expression is buried in a combo box item called ”Other”.

126

7.4 Experimental Evaluation

• Protovis uses an approach that relies on primitive visual objects and declarative

expressions. The main strength of the approach is that the properties of the visual

objects are directly specified. No middle-ware objects (e.g. Prefuse actions) are

needed to link visual properties with expressions. However, some programming

abstractions (e.g. variables) are still needed to learn the language.

• Uvis uses an approach that relies on declarative spreadsheet-like formulas for

visual mappings, and a dedicated environment with many features (e.g. drag-

drop, visual feedback, etc.). The approach has high visibility, low premature

commitment, and relatively few abstractions to learn. However, the approach

still suffers from high viscosity (especially when it is a large-sized application).

To sum up, the findings favour notations that use declarative expressions since fewer

abstractions are needed to learn in comparison with programming. Furthermore, the

findings favour environments that allow exploration (low premature commitment) and

have high visibility rather than environments that are dialogue-dependant.

7.4 Experimental Evaluation

This sections reports on a preliminary evaluation study with six potential savvy design-

ers. Unlike the usability studies in chapter 6, this evaluation is not mainly concerned

with finding usability problems. Instead, it assesses to what extent designers can suc-

ceed on their own. The experimenter does not provide any help. Further, it provides

an overall evaluation of the tool, and assesses the impact of the inspector on ease of

learning.

7.4.1 Objective

• Evaluating the ease of learning.

• Evaluating the impact of the inspector on ease of learning.

• Identifying the Uvis concepts that are easy or difficult to learn.

127

7. EVALUATION

7.4.2 The Participant’s Background

All the participants were non-programmers. They had no prior knowledge of the Uvis

formulas, and had never used the Uvis environment. They have basic knowledge of

Excel formulas, algebra, trigonometry, and sequences, and know what a database table

is. Further, they know how to read simple visualizations (e.g. bar chart, pie chart,

etc.).

In addition to these common skills, some participants have more IT skills.

• Participant 1: A 28 year-old male who currently does voluntary work. He is

familiar with logical expressions (e.g. AND/OR). He came across the E-R model.

• Participant 2: A 22 year-old female biology student.

• Participant 3: A 22 year-old male student who is familiar with advanced Excel

formulas (e.g. IF, AND, etc.). He has created simple visualizations with the

standard tools.

• Participant 4: A 19 year-old male student.

• Participant 5: A 26 year-old male chef assistant. He came across the E-R

model. He has created standard and non-standard charts.

• Participant 6: A 27 year-old male loan manager. He came across the E-R

model.

7.4.3 Procedure

Each evaluation study lasted 2 hours on average. The studies were carried out in a

lab. The participants were divided into two groups: participants 1, 2, and 3 belong to

group A while participants 4, 5, and 6 belong to group B. Each participant viewed two

screens. One screen showed a power-point based step-by-step tutorial available, and

the other showed the Uvis environment. The tutorials for both groups were identical

except that the group A tutorial explained about the inspector. Each participant was

asked to view the tutorial, and do what it says. The tutorial is divided into sections,

at the end of which, designers were given a task to work on their own, but they could

go back to the tutorial and/or example solutions.

128

7.4 Experimental Evaluation

Figure 7.9: The evaluation tasks

Quantitative measures: To evaluate ease of learning, I measured task completion

time (T) and the quality of the solution (Q). The quality of the solution was measured

by comparing the participant’s solution against the optimal solution and then rating it

on a scale 0-10.

Qualitative measures: To find out which concepts that are easy or hard to

understand, and collect other information related to Uvis, I observed the participants

while they used the tool, and asked them to fill the form in section 7.4.5

The detailed documentation can be found at (53).

7.4.4 Tasks

Figure 7.9 shows the tasks the designers carried out in the evaluation. They are the

same as the third version of tasks in chapter 6. The tasks are different in layout, and

evaluate most Uvis concepts. Moreover, they are relatively simple due to the short

experiment duration.

129

7. EVALUATION

Figure 7.10: Evaluation Quantitative results. T=Time, Q=Solution quality, GA=Group

A, and GB=Group B

• Task 1: The bars (on top of each other) show a company’s monthly sales. Po-

sition the bars representing monthly sales like a horizontal list, make the bar

heights represent the monthly sales, and order them based on the sales.

• Task 2: The ellipses on top show all runners in a marathon. The ones on the

bottom show runners that are citizens. For the ellipses on the top, make the male

runners blue, and the female ones pink. For the ellipses on the bottom, show only

runners older than 30.

• Task 3: A pie chart shows several classes of passengers (e.g. crew, emperor,

etc.). The male passengers are shown on the top as light blue pie slices. Show

female passengers on the top as pink pie slices.

• Task 4: The red curves represent the high readings of the weather in three cities

in a period of time. Show the low readings as blue lines.

7.4.5 Form

• Survey Questions:

– To what extent do you agree with the following statements?

The answer should be: I strongly disagree, I disagree, I neither disagree nor

agree, I agree, or I strongly agree.

130

7.4 Experimental Evaluation

∗ I am confident that my visualizations produce the expected outcomes

described in the tasks

∗ The inspector was helpful.

∗ The tutorial was helpful.

∗ The formulas were easy to understand.

– How often did you use the inspector on average per task?

– What difficulties did you encounter during the study?

– Which parts of the formulas were difficult to understand for you?

– Which parts of the formulas were easy to understand for you?

– Do you have any suggestions for improvement?

• Understandability Questions:

– Describe the effect of the ”.” element in the Uvis formulas.

– Describe the effect of the ”!” element in the Uvis formulas.

– Describe the effect of the "-<" element in the Uvis formulas

– Describe the effect of the ”index” element in the Uvis formulas.

7.4.6 Results

Quantitative results: Figure 7.10 provides an overview of the quantitative results

of the evaluation. In all tasks, participants in group A completed their tasks in a

shorter time than participants in group B. Furthermore, participants in group A had

better solution quality than participants in group B except for task 4 where there is no

noticeable difference.

Qualitative results: The qualitative results can be summarized as follows:

• Formulas

– All participants can learn basic SQL-like formulas.

– All participants found basic mathematical formulas that refer to indexes

easy to understand.

– All participants roughly explained what a join formula (-<) means.

131

7. EVALUATION

– Half the participants correctly explained what a dot (.) operator means.

– Only participant 1 correctly explained what a bang (!) operator means.

– Participants had problems understanding formulas defining the SweepAngle

of a PieSlice. The formula was rather long and contained aggregate func-

tions.

• General observations

– In customizing a visualization, participants could draw analogies from ex-

isting parts, and build on new parts that are slightly different. This was

obvious in tasks 3 and 4.

– Participant 2 appreciated the fact that she viewed everything she needed

(e.g. data, properties, form, etc.) when working on the tasks.

– Most participants found it annoying that they could not compare the spec-

ifications of two visual objects side by side.

– All participants ignored the error list.

– All participants learned to use the data model.

– Participants in group A found the inspector helpful and said it made them

learn how to specify a visualization.

– When asked after the end of each task about how confident they are about

their solution, two participants in group A looked at the inspector first to

check the visual mappings and answered ”yes”. The participants in group B

were hesitant to say yes. Instead the answers were ”I guess so” and ”Maybe

so”.

– Participant 6 thought the data was hidden, and that’s why he could not

check that his solution was correct. He did not have the inspector.

132

8

Conclusion and Future Work

This dissertation presented Uvis, a visualization system that targets savvy designers.

With Uvis, designers drag and drop visual objects, set each visual object property with

a formula, and see the result immediately.

The formulas are declarative and similar to spreadsheet formulas. The formulas

compute the property values and can refer to fields, visual properties, functions, etc.

Cognitive aids assist designers while implementing a visualization. For instance,

designers can check the correctness of their visualizations using the inspector.

Uvis produces visualizations that perform sufficiently.

Uvis formulas can express a collection of custom visualizations that are made of

primitive and specialized visual objects.

In theory, Uvis is more accessible to savvy designers than existing visualization

tools. A preliminary evaluation shows that savvy designers can learn the basics of

Uvis.

8.1 Contributions

The thesis hypothesizes: It is possible to express custom visualizations with Uvis spreadsheet-

like formulas, and savvy designers can learn how to refine the custom visualizations.

Substantiation of this hypothesis consists of the following contributions:

• The expressive power of formulas is substantiated with a collection of custom

visualizations. The visualizations have various characteristics. For instance, some

have a radial layout and others have a linear out. Using Uvis formulas, variations

133

8. CONCLUSION AND FUTURE WORK

of life lines (3), spiral graphs (1), horizon Graphs (39), circle views (38), tile maps

(54), tree maps (55), indented trees, line charts, pie charts, and bar charts have

been made.

Since Uvis formulas follow the spreadsheet paradigm, some interactive visualiza-

tions can be implemented with no or little event handling.

• To ensure that savvy designers can learn the Uvis approach, Uvis was iteratively

designed based on feedback from savvy designers. This resulted in novel cognitive

aids. As an example, upon specifying the Rows formula, Uvis automatically sets

the Top and Left formulas. The visual objects cascade, and designers can see that

multiple visual objects were created. As another example, the inspector shows the

data behind the visual objects, and the sub-expression values. Usability studies

show that these aids reduced usability problems.

• To compare the usability of Uvis with other tools, Uvis was compared with three

other visualization tools using an example and using the cognitive dimensions of

notations. The result favours Uvis as a tool for custom visualizations.

• To evaluate designer’s performance with Uvis, a preliminary experiment was car-

ried out with six savvy designers. The result is that they can learn the basic

concepts of Uvis, and modify custom visualizations. Further, the inspector im-

proved their performance.

8.2 Future Work

• Port to other platforms: Uvis currently supports desktop applications. The

web is much more prevalent. We need Uvis to run on the web. However, this

introduces challenges. Uvis applications need to integrate seamlessly with several

web technologies: CSS for styling, JavaScript for data binding and interaction,

HTML for web content, and so on.

Porting to mobile platforms is also a must for the future.

• Connect to other database systems: At present we have only tested Uvis

with MS-Access databases. We use .NETs ADO to access the database and in

134

8.2 Future Work

principle it should work with other databases too, but we expect surprises. For

instance, there are variations of SQL syntaxes depending on the database system.

• Support non-tabular data: Some data are not relational, for instance XML

data, trees, graphs. We need formulas that can make these data sources look like

relational tables.

• More interactive visualizations: We need to support more common interac-

tion mechanisms such as fish-eye lenses, linking and brushing technique, semantic

zooming, etc. We need to investigate the best way to support that, a visual object

that hides implementation details and reduces customizability, traditional event

handling, or somewhere in between?

Furthermore, we need to support event handlers for keyboard, mouse and ges-

tures. At present uVis handles only simple events such as Click.

• Run pilot projects: We need to run pilot projects with industry, for instance,

with health-record vendors, software houses and hospitals. This will help us

collect information about the kinds of problems savvy designers encounter in

daily production.

• Evaluate More: The current evaluation relied mainly on modification tasks.

Asking designers to create visualizations from scratch introduces new challenges.

For instance, designers need to remember formulas, and they don’t have existing

components to compare with. This will help us identify more weaknesses and

strengths of the Uvis approach.

We also need to evaluate to what extent savvy designers can implement or refine

interactive visualizations.

• Investigate cognitive aids: Some cognitive aids might improve ease of learning

at the expense of task efficiency. Further, the usefulness of cognitive aids vary

from designer to designer. These issues have to be investigated.

The fourth phase of iterative design as well as the evaluation resulted in designers

needing more cognitive aids. For instance, some designers needed to compare the

specifications of two visual objects side by side. We need to investigate whether

this aid is necessary, and whether more aids are needed.

135

8. CONCLUSION AND FUTURE WORK

136

References

[1] Marc Weber, Marc Alexa, and Wolfgang Müller. Visualizing Time-Series

on Spirals. In INFOVIS, pages 7–14, 2001. x, 43, 44, 54, 134

[2] From Poverty To Power. URL: http://www.oxfamblogs.org/fp2p/?p=250, 2012. Ac-

cessed October, 2012. x, 64

[3] Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shnei-

derman. LifeLines: Visualizing Personal Histories. In CHI, pages 221–227, 1996.

1, 2, 17, 40, 134

[4] Spotfire. URL: http://spotfire.tibco.com/, 2012. Accessed July, 2012. 2, 16

[5] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for

interactive information visualization. In CHI, pages 421–430, 2005. 2, 17, 114

[6] Michael Bostock and Jeffrey Heer. Protovis: A Graphical Toolkit for Visu-

alization. IEEE Trans. Vis. Comput. Graph., 15(6):1121–1128, 2009. 2, 17, 114

[7] Donald A. Norman. User Centered System Design: New Perspectives on Human-

computer Interaction. CRC Press, 1986. 2, 20

[8] GDI+. URL: http://msdn.microsoft.com/en-us/library/windows/desktop/ms533798(v=vs.85).aspx,

2012. Accessed August, 2012. 2, 22, 43

[9] Java2D. URL: http://www.oracle.com/technetwork/java/index.html, 2012. Accessed

September, 2012. 2, 22

[10] MS Visual Studio. URL: http://www.microsoft.com/visualstudio/eng/launch-day/,

2012. Accessed July, 2012. 2, 23

[11] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of

user interface software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28, March

2000. 3, 66

[12] T. R. G. Green. Cognitive dimensions of notations. In Proceedings of the fifth con-

ference of the British Computer Society, Human-Computer Interaction Specialist Group on

137

http://doi.acm.org/10.1145/344949.344959
http://doi.acm.org/10.1145/344949.344959
http://dl.acm.org/citation.cfm?id=92968.93015

REFERENCES

People and computers V, pages 443–460, New York, NY, USA, 1989. Cambridge University

Press. 12, 121

[13] Ed H. Chi. Expressiveness of the data flow and data state models in visualiza-

tion systems. In Proceedings of the Working Conference on Advanced Visual Interfaces,

AVI ’02, pages 375–378, New York, NY, USA, 2002. ACM. 15

[14] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in infor-

mation visualization - using vision to think. Academic Press, 1999. 15

[15] Andrew Sears and Julie A. Jacko. The Human-Computer Interaction Handbook:

Fundamentals, Evolving Technologies and Emerging Applications. CRC Press, 2007. 15

[16] Google Spreadsheets. URL: http://www.google.com/google-d-s/spreadsheets/, 2012.

Accessed September, 2012. 16

[17] Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and

Matt McKeon. ManyEyes: a Site for Visualization at Internet Scale. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1121–1128, November 2007.

16

[18] Tableau. URL: http://www.tableausoftware.com/, 2012. Accessed July, 2012. 16

[19] Omniscope. URL: http://www.visokio.com/omniscope, 2012. Accessed October, 2012.

16

[20] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: a system for query,

analysis, and visualization of multidimensional databases. Commun. ACM,

51(11):75–84, 2008. 17

[21] Jean-Daniel Fekete. The InfoVis Toolkit. In INFOVIS, pages 167–174, 2004. 17

[22] Chris Weaver. Building Highly-Coordinated Visualizations in Improvise. In

INFOVIS, pages 159–166, 2004. 17, 114

[23] Flare - Data Visualization for the Web. URL: http://flare.prefuse.org/, 2009. Ac-

cessed September, 2012. 17, 114

[24] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 Data-Driven Doc-

uments. IEEE Trans. Vis. Comput. Graph., 17(12):2301–2309, 2011. 17, 114

[25] Ryo Akasaka. Protoviewer: a web-based visual design environment for Pro-

tovis. In ACM SIGGRAPH 2011 Posters, SIGGRAPH ’11, pages 85:1–85:1, New York,

NY, USA, 2011. ACM. 22

[26] Processing. URL: http://processing.org/, 2012. Accessed October, 2012. 22

138

http://doi.acm.org/10.1145/1556262.1556327
http://doi.acm.org/10.1145/1556262.1556327
http://dx.doi.org/10.1109/TVCG.2007.70577
http://doi.acm.org/10.1145/2037715.2037811
http://doi.acm.org/10.1145/2037715.2037811

REFERENCES

[27] NetBeans. URL: http://netbeans.org/, 2012. Accessed June, 2012. 23

[28] Eclipse. URL: http://www.eclipse.org/, 2012. Accessed June, 2012. 23

[29] Kostas Pantazos and Søren Lauesen. Constructing Visualizations with InfoVis

Tools - An Evaluation from a user Perspective. In GRAPP/IVAPP, pages 731–736,

2012. 23

[30] William S. Cleveland. The Elements of Graphing Data. Hobart Press, 1994. 29

[31] Performance Details. URL: https://www.dropbox.com/sh/rw73hzc9n2xcf8y/ZxvTJ5hEWk,

2012. Accessed September, 2012. 40

[32] Soren Lauesen, Mohammad A. Kuhail, Kostas Pandazos, Shangjin Xu, and

Mads B. Andersen. A drag-drop-formula tool for custom visualization. 2013.

45, 57

[33] Mohammad A. Kuhail and Søren Lauesen. Customizable Visualizations with

Formula-linked Building Blocks. In GRAPP/IVAPP, pages 768–771, 2012. 45

[34] Mohammad A. Kuhail, Kostas Pandazo, and Søren Lauesen. Customizable

Time-Oriented Visualizations. In ISVC (2), pages 668–677, 2012. 45

[35] Stephen Few. Solution to the over plotting problem. 2008. 57

[36] Mohammad A. Kuhail, Kostas Pantazos, and Søren Lauesen. The Inspector:

A Cognitive Artefact for Visual Mappings. 2013. 57

[37] Mohammad A. Kuhail, Søren Lauesen, Kostas Pantazos, and XU Shangjin.

Usability Analysis of Custom Visualization Tools. 2012. 57

[38] Daniel A. Keim, Jörn Schneidewind, and Mike Sips. CircleView: a new ap-

proach for visualizing time-related multidimensional data sets. In Proceedings of

the working conference on Advanced visual interfaces, AVI ’04, pages 179–182, New York,

NY, USA, 2004. ACM. 57, 134

[39] Stephen Few. URL: http://www.perceptualedge.com/articles/visual business intelligence/time on the horizon.pdf,

2012. Accessed August, 2012. 57, 134

[40] Uvis Reference Card. URL: http://www.itu.dk/people/slauesen/S-

EHR/uVisCard.ppt, 2012. Accessed October, 2012. 60

[41] Kostas Pantazos. Custom Data Visualization Without Real Programming. IT

University of Copenhagen, October 2012. 62

[42] Larry L. Constantine and Lucy A. D. Lockwood. Software for use: a practical

guide to the models and methods of usage-centered design. ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA, 1999. 68

139

http://doi.acm.org/10.1145/989863.989891
http://doi.acm.org/10.1145/989863.989891

REFERENCES

[43] Lars Grammel, Melanie Tory, and Margaret-Anne D. Storey. Erratum to

”How Information Visualization Novices Construct Visualizations”. IEEE Trans.

Vis. Comput. Graph., 17(2):260, 2011. 68, 70

[44] Jeffrey Heer, Frank van Ham, Sheelagh Carpendale, Chris Weaver, and Pe-

tra Isenberg. Creation and Collaboration: Engaging New Audiences for Infor-

mation Visualization. In Andreas Kerren, John Stasko, Jean-Daniel Fekete,

and Chris North, editors, Information Visualization, 4950 of Lecture Notes in Com-

puter Science, pages 92–133. Springer Berlin / Heidelberg, 2008. 70

[45] Daniel Conrad Halbert. Programming by example. PhD thesis, 1984. AAI8512843.

78

[46] KF Bury. The iterative development of usable computer interfaces. pages 743–

748, 1984. 79

[47] William Buxton and Richard Sniderman. Iteration in the design of the human-

computer interface. pages 72–81, 1980. 79

[48] JOHN D. GOULD and CLAYTON LEWIS. C.H. Designing for usability: Key

principles and what designers think. pages 300–311, 1985. 79

[49] Soren Lauesen. User Interface Design: A Software Engineering Perspective. Addison-

Wesley, 2005. 79

[50] Ed Huai hsin Chi. A Taxonomy of Visualization Techniques Using the Data

State Reference Model. In INFOVIS, pages 69–75, 2000. 80

[51] Usability Studies. URL: https://www.dropbox.com/sh/5mbll18m20me0xs/cgFbWnQs-

H, 2012. Accessed September, 2012. 90, 141

[52] Thomas Green and Alan Blackwell. Cognitive Dimensions of Information

Artefacts: a tutorial. T.R.G. Green and A.F. Blackwell, 1(2), 1998. 122

[53] Evaluation Studies. URL: https://www.dropbox.com/sh/8knw16605ggmnrv/VoEwahs7aH,

2012. Accessed September, 2012. 129, 141

[54] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski.

Visualization of Time-Oriented Data. Human-Computer Interaction Series. Springer, 2011.

134

[55] Ben Shneiderman. URL: http://www.cs.umd.edu/hcil/treemap-history/, 2012. Ac-

cessed August, 2012. 134

140

http://dx.doi.org/10.1007/978-3-540-70956-5_5
http://dx.doi.org/10.1007/978-3-540-70956-5_5

Appendix A

Usability Study Documentation

The appendix gives examples of hand-written documentation used for the usability

study. For full and computerized documentation, refer to (51). For documentation of

the evaluation study, refer to (53).

141

A. USABILITY STUDY DOCUMENTATION

A.1 The Usability Log of Participant 1

Figure A.1: A snapshot of the usability log of participant 1

142

A.2 The Background Form of Participant 10

A.2 The Background Form of Participant 10

Figure A.2: The background form of participant 10, part A

143

A. USABILITY STUDY DOCUMENTATION

Figure A.3: The background form of participant 10, part B

144

A.3 The Understandability Form of Participant 10

A.3 The Understandability Form of Participant 10

Figure A.4: The understandability form of participant 10, part A

145

A. USABILITY STUDY DOCUMENTATION

Figure A.5: The understandability form of participant 10, part B

146

A.3 The Understandability Form of Participant 10

Figure A.6: The understandability form of participant 10, part C

147

	List of Figures
	1 Introduction
	1.1 The Uvis Approach
	1.1.1 Example

	1.2 Thesis Statement and Research Contributions
	1.3 List of Publications
	1.4 Organization of the Dissertation

	2 Background
	2.1 Visualization Reference Model
	2.2 Approaches to Visualization
	2.2.1 Charting Tools
	2.2.2 Analytical and Exploratory Tools
	2.2.3 Custom Visualization Tools
	2.2.4 Programming Languages
	2.2.5 Summary

	3 Uvis Formulas
	3.1 Introduction
	3.2 Architecture
	3.3 Visual Objects
	3.3.1 Properties
	3.3.2 Functions

	3.4 Formula Basics
	3.4.1 Visual Containers
	3.4.2 Connecting visual objects to data
	3.4.3 Property Formulas
	3.4.4 End-user Data and Interaction

	3.5 Performance
	3.5.1 One SQL Query per Multiple Visual Objects
	3.5.2 Fast GDI+ Shapes
	3.5.3 Multi-Cell Canvas

	4 Formula-Based Visualizations
	4.1 Introduction
	4.2 Example Visualizations
	4.2.1 Passenger Statistics
	4.2.2 Train Schedule
	4.2.3 Medicine Tree
	4.2.4 Website Hits

	4.3 Other Visualizations
	4.4 Lines of Code
	4.5 Expressiveness Factors
	4.6 Limitations
	4.6.1 Recursion and Loops
	4.6.2 Complex Interaction
	4.6.3 Other Types of Visualizations
	4.6.4 Inability to Define Functions

	4.7 Summary

	5 Uvis Usability
	5.1 Introduction
	5.2 Initial Uvis Version
	5.2.1 Drag-Drop-Set-Property
	5.2.2 Documentation
	5.2.3 Only Visual Objects

	5.3 Uvis Enhanced Version
	5.3.1 Table view
	5.3.2 Inspector
	5.3.3 Showing multiple visual objects as a staircase
	5.3.4 Showing Parent
	5.3.5 Positioning children on top of parents
	5.3.6 Visual Editing Functions
	5.3.7 Default Formulas
	5.3.8 Documentation
	5.3.9 Benefits

	6 Iterative Design of the Uvis System
	6.1 Introduction
	6.2 Iterative Design Process
	6.2.1 Objectives
	6.2.2 Uvis Concepts to Evaluate

	6.3 Test Tasks
	6.3.1 First Version of Tasks
	6.3.2 Second Version of Tasks
	6.3.3 Third Version of Tasks

	6.4 First Phase of Evaluation
	6.4.1 The Participant's Background
	6.4.2 The Usability Study Settings
	6.4.3 Qualitative Results:
	6.4.4 Quantitative results:
	6.4.5 Causes and Solutions:
	6.4.6 Changes - the second version of Uvis

	6.5 Second Phase of Evaluation
	6.5.1 The Participant's Background
	6.5.2 The Usability Study Settings
	6.5.3 Qualitative Results:
	6.5.4 Quantitative results:
	6.5.5 Causes and Solutions
	6.5.6 Changes - The Third Version of Uvis

	6.6 Third Phase of Evaluation
	6.6.1 The Participant's Background
	6.6.2 The Usability Study Settings
	6.6.3 Qualitative Results
	6.6.4 Quantitative Results
	6.6.5 Causes and Solutions
	6.6.6 Changes - The Fourth Version of Uvis

	6.7 Fourth Phase of Evaluation
	6.7.1 The Participant's Background
	6.7.2 Usability Study Settings
	6.7.3 Qualitative Results
	6.7.4 Quantitative Results
	6.7.5 Causes and Solutions
	6.7.6 Changes - The Fifth Version of Uvis

	6.8 Summary

	7 Evaluation
	7.1 Introduction
	7.2 Tool Comparative Analysis
	7.2.1 Selected Tools
	7.2.2 Prefuse
	7.2.3 Protovis
	7.2.4 Improvise
	7.2.5 Uvis

	7.3 Evaluating the Tools with the Cognitive Dimensions of Notations
	7.3.1 Abstractions
	7.3.2 Hidden Dependencies
	7.3.3 Premature Commitment
	7.3.4 Progressive Evaluation
	7.3.5 Viscosity
	7.3.6 Visibility and Juxtaposability
	7.3.7 Summary

	7.4 Experimental Evaluation
	7.4.1 Objective
	7.4.2 The Participant's Background
	7.4.3 Procedure
	7.4.4 Tasks
	7.4.5 Form
	7.4.6 Results

	8 Conclusion and Future Work
	8.1 Contributions
	8.2 Future Work

	References
	A Usability Study Documentation
	A.1 The Usability Log of Participant 1
	A.2 The Background Form of Participant 10
	A.3 The Understandability Form of Participant 10

