
Engaging Clinicians in the Visualization Design Process – Is It Possible?

Kostas Pantazos

IT-University of Copenhagen

ABSTRACT
Creating and customizing visualization for electronic health
record data requires a close collaboration with clinicians, to
understand their tasks, needs and mental model. This process can
develop into an infinite process. Taking into consideration the
existence of clinicians with advanced IT knowledge, but not
programmers, we focus on engaging them to create their own
visualizations. This paper presents how clinicians can use uVis
Studio to create three visualizations by dragging and dropping
controls into the design panel, and specifying formulas for each
control in the property grid.

KEYWORDS: Visualization Tool, Spreadsheet Formulas,
Development Environment, Design Process, Health Care.

INDEX TERMS: H.5.2. [Information Interfaces & Presentation]:
User Interfaces – Graphical User Interfaces (GUI)

1 INTRODUCTION
Healthcare systems provide a huge amount of data and the
challenge of presenting these data is present. Clinicians need easy
and intuitive presentations that fulfill their tasks and needs based
on their experience and knowledge [7]. Most of EHR systems use
more table or text based presentation rather than visualization
techniques. Innovative visualizations like LifeLines [9], TimeLine
[3], etc. provide a better presentation. These visualizations have
been developed in close collaboration between developers and
clinicians who have the domain knowledge. Creating and
customizing advanced visualizations need programming skills and
considerable time.

Although several visualizations have been developed for
clinical data, there is a need for more novel and customizable
visualizations [3]. Clinicians need presentations which are easy to
understand and to access the right information [3]. Furthermore,
the visualization has to match the mental model of the clinician.
To overcome this challenge, it is recommended that clinicians are
involved during the development process of a user interface or
visualization [7]. Applying user-centered design may resolve
these issues, but still questions like: “What about the clinicians
that did not participate in the design process? Are the
representatives a good sample, to conclude to the right
visualization?”. Furthermore, is the same visualization sufficient
for the same department but in different hospitals ? Answering
these questions raises several challenges which are also closely
related with the available time, budget and resources used.

Using user-centered design does not solve the problem of
customizability; adjusting an existing visualization to clinician
needs. For instance, different departments or different hospitals
have different needs. Different clinicians perform the same tasks
in different ways, because of different experiences, knowledge
and so forth. The same visualizations can be integrated in
different departments or used by different clinicians, but to
achieve better user satisfaction some changes may be needed.
Furthermore, there is a need for more customizable visualizations
to fulfill users’ needs [3], and more tools which can support this
customizability.

Nowadays, some clinicians have gained advanced IT skills,
starting from simple browsing through web-applications to more
advanced applications, such as MS Excel or MS Access. For
instance at Bispebjerg hospital in Copenhagen, Denmark, a
department uses a system developed in MS Access by one of the
clinicians. We believe that in the healthcare environment there are
a considerable number of such clinicians with advanced IT
knowledge. So, with proper training, engaging clinicians in the
process of developing their own visualizations using a specialized
development environment will increase even more the possibility
of developing successful visualizations for clinical data.

We present uVis, a formula-based visualization tool for
clinicians. This tool provides clinicians with a development
environment (uVis Studio) to design their visualizations.
Clinicians with advanced spreadsheet level knowledge and
familiar with basic database concepts can design visualization by
dragging and dropping controls into the design panel. Next,
specifying simple and advanced formulas in the property grid,
they can bind controls to data and specify controls properties such
as color, height, width, etc. The uVis Studio provides the basic
features a development environment has, and more specialized
ones such as data related intellisense and a design panel which
shows visualizations as it would look to the end-users, described
in the next sections. Finally, clinicians without IT experience can
collaborate with IT experienced clinicians to create visualizations
and use them as well.

2 RELATED WORK

2.1 Visualizations in healthcare
One of the most well-known visualizations in healthcare is the
LifeLines [9]. It presents the history of a patient’s medical record
and it was designed in close collaboration with clinicians initially,
and later with a cardiologist. This presentation uses the timeline
metaphor, data presented in facets, color coding and size coding.
The evaluation showed that the Lifelines was more
understandable and that clinicians responded faster than the
traditional presentations. This visualization was developed in
Java, and customizing it requires advanced programming skills.
The TimeLine system by Bui et al. visualizes problem-centric
patient data [3]. Their study showed that clinicians need more
flexible visualizations which fulfill their needs and tasks. A need
for more flexible visualization and customizable by clinicians is
raised by An et al. [1]. An integrated viewer for EHR was
developed with basic visualization techniques, where clinicians
were able to hide and show visualizations but not customize them
to their needs.

Although, several previous research projects have concluded
that there is a need for more customizable visualizations in
healthcare, to our knowledge there is no previous research
addressing this problem or engaging clinicians directly in the
development process.

2.2 Visualization tools
We investigated some popular tools in the market for non-
programmers mainly used in the business area. MS Excel [8]
provides a user-friendly interface where built-in visualizations can

be created with few steps. However, this tool provides a limited
number of visualizations which are not fully customizable. For
instance, graph colors cannot reflect data values. Furthermore,
users cannot create new visualization types and integrate them
into MS Excel. Finally, due to the amount and structure of data in
an EHR system, clinicians may encounter difficulties in creating
meaningful visualizations with MS Excel. Other visualization
tools such as Spotfire [10] and Tableau [11] are more specialized
in data visualization and provide a larger variety of visualizations.
Nevertheless, these tools do not support users to create and
customize advanced visualizations, such as LifeLines. User
creativity is restricted to the pre-designed views. Furthermore,
creating appropriate visualizations with Tableau or Spotfire needs
some advanced knowledge on how to create visualizations.

In academia, there are several visualization toolkits [2, 5, 6]
for programmers. Programmers can create and customize
visualizations by means of programming. Unfortunately, this
approach is too complex for users with advanced spreadsheet-like
knowledge, such as clinicians. Most of these toolkits miss an
integrated development environment. Usually, they can be
integrated in general-purpose integrated development
environments (IDE) such as Visual Studio, Eclipse, etc., but still
is not enough for non-programmers. A specialized IDE should
support users in creating and customizing visualizations by means
of simple actions such as drag-and-drop.

3 SOLUTION
Previous research [1, 3] has been using user-centric design where
clinicians had a close collaboration with the developer. We
propose a different approach on developing visualizations for
healthcare data: allow clinicians with advanced IT knowledge to
create and customize their own visualizations using uVis.

uVis Studio (figure 2) is the development environment of uVis
and contains six work areas. Toolbox lists the available controls,
and supports drag-and-drop. Design Panel shows the visualization
as it would look to the end-user. This panel is updated every time
a control is dragged-dropped or a control property is changed.
Hence, the user sees exactly the same screen in development
mode as well as in end-user mode. Property-Grid is the area
where a user can type the formulas. We integrated the intellisense
feature in the Property-Grid to reduce typing errors and
misunderstandings. Furthermore, the intellisense assists clinicians
with suggestion related to control properties, tables and table
fields. Solution Explorer is the area where project files are listed.
The clinician can create a new project by adding a visualization
mapping document (.vism) and a visualization file (.vis). Vism
files contain information regarding the database the user is using,
the tables, etc. The Vis file contains the visualization
specifications. Design Modes allows the user to choose the mode
for viewing and interacting with visualizations in the design panel.
For instance, the user can select the mode InteractionMode, which
deactivates event handlers attached to the visualization in the
development environment. Data Map, currently under
development, provides a visual overview of tables, fields and
relationships in the database the user is using. It resembles an
entity relationship (ER) diagram.

In the remainder of this section, we present three scenarios,
three visualizations and elaborate on how they were created by the
author.

3.1 Scenario 1: Simple LabResults visualization
In one of the clinics at Copenhagen Hospital, clinicians use the
VistA EHR system. For each patient that comes in the clinic, they

have to check the lab results of the patient. Figure 1.a presents a
screenshot of the presentation of a patient lab result that clinicians
use, and our simple solution using uVis in figure 1.b. Clinicians
have to go through all the cumbersome texts for more than one lab
test and find the important information for the patient. The lab test
has a positive or negative result. A simple overview of the current
state of the patient is missing. In the early phase of our research,
we collaborated with clinicians who identified three important
variables (date, result and lab name) in the texts, which are used in
our visualization created using uVis Studio. Our approach is
trying to minimize this collaboration and empower the clinicians
to create their visualization.

Preconditions: uVis can visualize only relational data at the
moment, for instance data in MS Access. The Vism file has to be
created the first time by the database manager, unless the clinician
who will use uVis studio has good database knowledge.
Furthermore, an introduction of how the studio works and how to
use formulas is necessary for clinicians.

3.1.1 Using uVis Studio
Figure 2 shows a screenshot of the studio, containing a simple
visualization for the lab results, and some of the steps clinicians
have to follow. The clinician opens the uVis Studio and selects the
Vism file using the explorer. The default Vis file is opened in the
design panel. In our case it will be an empty form.

Clinicians can drag and drop controls (e.g. panel, label, textbox,
etc.) in the design panel. Furthermore, they can resize the controls
and move them around the design panel. For each control they
specify simple and advanced formulas for control properties in the
property grid. Every change done in the property grid reflects on
real-time on the design panel. Unlike other development
environment, uVis Studio shows the form exactly as it will be
shown at the end-user outside Studio. Clinicians use the property
grid to specify the formulas. Intellisense feature helps them to
write the correct formulas. For instance, clinician starts typing
“cli” in the DataSource property and a list of suggestions will pop-
up with name of tables, table fields, controls and control
properties that contain “cli”.

3.1.2 Key Principles of uVis Kernel
In this section we present some of the key principles of uVis
Kernel which are used in creating the LabResult visualization,
Figure 2.

Controls: Visualizations are created by combining .Net
controls, simple shapes (e.g. triangle) and several special uVis
controls (e.g. timescale). A control can be bound to data that

Figure 1. a) Current presentation at the clinic and b) a
potential solution for presenting patient Lab Results.

makes it repeat itself. A control has a number of properties that
specify its appearance and its behavior.

Formulas: Control properties can be specified by spreadsheet-
like formulas. The formula specifies how to compute a property
value for a control. A formula can refer to data in the database,
control properties. uVis kernel computes the formulas for each
control, and sets the property values accordingly.

Bind control to data: Each control may have a data source that
binds it to data rows. To define the data source, in this case the
clinician specifies the DataSource, the uVis property of the
control. The clinician writes a formula which represents an SQL
statement. uVis kernel translates the DataSource formula into an
SQL statement, retrieves data from the database and generates the
corresponding record set. Next, the control creates one control for
each row in the record set. Each control is bound to a row in the
record set.

To create the visualization showed in figure 2, we used only
two tables from our EHR database: ClientTable and ClinicalData.
Each patient may have one or more clinical data. For instance in
Figure 2, the patient is tested three times for P-Human
immundefektvirus 1+2.

The clinician specifies the DataSource of panel PanelLab as
follows:
 ClientTable where CivilRegistrationNumber =
 TextBoxCPR!Text

ClientTable refers to a table in the data model and
CivilRegistrationNumber is a field in table ClientTable. The dot (.)
operator allows the clinician to access a table field. TextBoxCPR is
the control of type TextBox that shows the patient civil registration
number (CPR). The operator ! allows the user to access a control
property. Thus, TextBoxCPR!Text is the current patient’s CPR. As
a result, the data source of PanelLab is the patient record whose

civil registration number is specified in TextBoxCPR. As a result,
uVis kernel creates one PanelLab control.

To show the lab tests of a patient, the user drags and drops a
panel (PanelTest) inside PanelLab and specifies the DataSource of
PanelTest as follows:
 Parent -< ClinicalData.

Parent means the data parent of PanelTest, in this case
PanelLab. The operator -< allows us to navigate from one row to
multiple rows. Therefore, we navigate from the parent row (the
ClientTable row) to the related ClinicalData rows. This allows us
to access the lab tests of the patient. uVis kernel automatically
detects the tables and table fields used in the formulas. Next, uVis
Kernel translates the formula to an SQL statement, which is
executed and a record set is created. In this case the record set
contains three rows. Clinicians are not involved in this process,
apart from the fact that they need to specify the correct formula in
the property grid.

3.2 Scenario 2: Advanced LabResults visualization
We present in addition lab tests with numerical value as results.
Instead of going through the text, clinicians can create or
customize the first version of Lab Results Overview and present
numerical lab tests as shown in Figure 3.

Following the same principles presented before, the clinician
can bind controls to data. PanelTestScale presents visually the
lowest and highest value this test may have in theory. However, in
this case one of the test result was higher than 10. In this
presentation, the clinician can spot it out easily, compared to the
text based presentation. To align LblResultLine to PanelTestScale
clinician specifies the Left property to:

PanelTestScale!Left

Figure 2. Creating LabResults overview with uVis Studio.

To calculate the width of the LblResultLine, the clinician
specifies this formula for the width property:
 PanelTestScale!Width * Me.MeasurementValue /

(Me.ValueHigh - Me.ValueLow).
Me is used to refer to the current instance, which is bound to a

row. Using the dot operator we can navigate to a specific field of
this row (MeasuremnetValue, ValueHigh and ValueLow in our
case).

3.3 Scenario 3: LabResults using LifeLines
In the last scenario, the clinician creates a simple LifeLines
visualization for some of the lab tests, shown in figure 4.

The clinician follows the same steps as before to bind controls
to data. The difference in this case is the Timescale control, which
is a uVis control. The clinician defines the period shown in the
timescale by specifying the BorderValues to:
 #2011-08-01#, #2011-09-01#

Clinicians can interact with the TimeScale control, moving the
date backwards or forwards. To align the LblLabResult the
clinician specifies the left position to:
 TimeScaleLab!HPos (me.TransDate).

HPos is a special function in the timescale which translate date
to pixels.

4 DISCUSSION
Nowadays, computers are part of our daily and working life.

More and more users are using computers to facilitate their
working process. Starting from simple usage (such as checking
emails, browsing web application), users, especially the new
generation, are moving towards a better and broader
understanding of how to utilize computers in daily work. The real
case in Copenhagen Hospital, where a clinician developed an
application in MS Access, confirms this tendency. Although
several visualization tools exist, there is a need for new tools
which provide a development environment for clinicians with
advanced IT knowledge, but not programmers. Such a tool will

facilitate the development process, allowing clinicians to create
and customize their own visualization based on the department
needs or their mental model.

In this paper, we present an on-going research project, which
focuses on engaging clinicians in developing simple and advanced
visualization using spreadsheet-like formulas. The spreadsheet
formulas have proven to be successful approach among users and
programmers [4]. Furthermore, by means of the development
environment, clinicians can customize their visualization and
adjust them to fulfill their needs.

The abovementioned visualizations were created by the author
who has a good understanding of uVis Studio and formula
principles, but is not a clinician. A more in depth evaluation with
real clinicians is needed, and we are planning to conduct it in the
future. The evaluation will show if our approach is adequate and
if it is possible to engage clinicians in the visualization design
process.

Now, we are focusing on making uVis Studio more stable. Data
Map is being developed and simpler and advanced controls are
being developed. A more specialized error messaging system for
clinicians is being developed.

5 CONCLUSION
In this paper we presented a new visualization tool for clinicians.
Clinicians can create and customize visualizations by means of
iteratively dragging and dropping controls and specifying
spreadsheet-like formulas. Although, three visualizations for lab
results were developed, we plan to conduct an evaluation with real
clinicians. To conclude, in this paper we present a first attempt to
engage clinicians more and allow them to visualize the data in
their own way.

REFERENCES
[1] J. An, Z. Wu, H. Chen, X. Lu, H. Duan: Level of detail

navigation and visualization of electronic health records,
Proceedings of Biomedical Engineering and Informatics (BMEI),
2010.

[2] M. Bostock and J. Heer. Protovis: A graphical toolkit for
visualization. IEEE Trans. Vis. and Comp. Graphics, 15(6):1121–
1128, 2009

[3] A.A. Bui, D.R. Aberle, and H. Kangarloo, "TimeLine: Visualizing
Integrated Patient Records", IEEE transactions on information
technology in medicine, vol. 11, no. 4, 2007.

[4] M. Burnett, John Atwood, Rebecca Walpole Djang, James
Reichwein, Herkimer Gottfried, and Sherry Yang. 2001. Forms/3: A
first-order visual language to explore the boundaries of the
spreadsheet paradigm. J. Funct. Program. 11, 2 , 155-206, March
2001.

[5] Flare. http://flare.prefuse.org, February 2011.
[6] J. Heer, S. K. Card, and J. A. Landay. “prefuse: a toolkit for

interactive information visualization”. In Proc. ACM CHI, pages
421–430, 2005

[7] C. M. Johnson, T. R. Johnson, J. Zhang. 2005. A user-centered
framework for redesigning health care interfaces. J. of Biomedical
Informatics 38, 1, 75-87, February 2005.

[8] Microsoft Excel. http://office.microsoft.com/en-us/excel/, February
2011.

[9] C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and B.
Shneiderman, “LifeLines: Using visualization to enhance navigation
and analysis of patient records,” In Proc. American Medical
Informatic Association Annu. Fall Symp., Orlando, FL, , pp. 76-80,
November 1998.

[10] Spotfire. http://spotfire.tibco.com/, February 2011.
[11] Tableau. http://www.tableausoftware.com/, February 2011.

Figure 4. Simple LifeLines visualization using uVis Studio

Figure 3. LabResults Overview using uVis Studio

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5624551
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5624551
http://office.microsoft.com/en-us/excel/
http://spotfire.tibco.com/
http://www.tableausoftware.com/

	1 Introduction
	2 Related work
	2.1 Visualizations in healthcare
	2.2 Visualization tools

	3 Solution
	3.1 Scenario 1: Simple LabResults visualization
	3.1.1 Using uVis Studio
	3.1.2 Key Principles of uVis Kernel

	3.2 Scenario 2: Advanced LabResults visualization
	3.3 Scenario 3: LabResults using LifeLines

	4 Discussion
	5 Conclusion

