

Tasks & Support
Task Descriptions as Functional Requirements

Soren Lauesen

IT University

Glentevej 67, DK-2400 Copenhagen NV
slauesen@itu.dk

Abstract
This paper shows how task descriptions (a kind of use cases) can serve as verifiable
requirements that the user easily can understand. Properly used, they avoid a pre-
mature division of work between user and computer, which is particularly important
when buying COTS-based products. An extended version of task descriptions (Tasks
& Support) furthermore allow a structured comparison of present user problems
against possible solutions. We have used the techniques in many kinds of real-life
projects and compare our experiences against traditional forms of requirements

Keywords: tasks, use cases, COTS, validation, method testing in real-life.

1. Introduction
There are many ways to write functional require-

ments, but most of them somehow describe the possible
input to the system, the output from the system, and the
relation between the two. In the following we will use a
hotel administration system as an example. One of the re-
quirements could be this:

Feature requirement
R1: The system shall record check-in of guests, and

automatically allocate free rooms to them.

This traditional requirement style says what the computer
system shall do. In many cases, this approach is not suit-
able because we have prematurely selected a division of
work between the computer system and the user. Later in
the project, we might for instance realise that automatic
allocation isn't good for various reasons, and then we
have to choose between developing an inferior system or
changing the requirements. We might also be interested
in not developing the system ourselves, but buying a
COTS system through a tender pro??cess. If the best
available system doesn't allocate rooms automatically,
our requirement would be a barrier.

Are there any alternatives? Could we specify verifi-
able requirements without specifying what the computer
system shall do? Yes, we can - at least to a large extent.
The trick is to specify what the computer and the user
shall do together, without caring about how the work is
divided between the two actors. We will call this specifi-
cation a task description. One of the requirements could
then be this:

Task-based requirement
R2: The system shall support the check-in task de-

scribed in . . .

Whether this is a good requirement depends of course on
how we describe the tasks. Below we will describe them
in ways inspired by Cockburn's use cases [2, 3]. For rea-
sons to be explained in section 4, we prefer to talk about
tasks rather than use cases.

Many authors have described how use cases, tasks,
scenarios, etc. are used in development [e.g. 1, 3, 5, 11].
Here we will focus on how they can be used for require-
ments.

Given a developed system, can we verify whether it
meets requirement R2? Yes, we can see whether it actu-
ally supports the described task, but we have to exercise
a quality judgement to see how good the support is.

Below we will show detailed requirements that use
task descriptions. We use a hotel system as an example
because most people can imagine such a system. How-
ever, the example scales up to large systems. Over the
last couple of years, I and my colleagues have success-
fully used task descriptions as requirements in real-life
projects, including large COTS-based systems, small in-
house systems, and product development for interna-
tional markets.

2. Task descriptions
Figure 1 shows our version of task descriptions, il-

lustrated by a hotel system. In addition to the tasks them-
selves, the description also has background information
for the entire work area.

Work area
The example shows only the work area reception. A

realistic hotel system would also support work areas such
as staff scheduling, room maintenance, and accounting.

The work area description explains the overall pur-
pose of the work, the work environment, the user profile,
etc. You might wonder whether this information is re-
quirements. As it appears in the example, it is not. It is
background information that helps the developer under-
stand the application domain. No matter how complete
we try to make the specification, most real-life design
decisions are based on developer intuition and creativity.
The background information sharpens the developer's
intuition.

In the example, the background information tells us
that the system should support several concurrent tasks
because there are frequent interrupts; a mouse might not
be ideal when standing at a reception desk; allowing
computer games or Web access during night shifts might
be an advantage to keep the receptionist awake, etc. De-
pending on the kind of project, you might replace some
of this with explicit requirements.

The work area description is the common back-
ground information for all the tasks in that work area.

Use case specialists rarely use separate work area de-
scriptions, but give some description of the user (the ac-
tor) for each task or use case. This duplicates information
because the same users perform many tasks. As a result,
the background descriptions tend to be short. Collecting
them in a work area description encourages a more
thorough description.

Individual task descriptions
Below the work area description, we find descrip-

tions of the individual tasks in a form similar to Cock-
burn's use cases. Each task has a specific goal or pur-
pose. The user carries out the task and either achieves the
goal or cancels the whole activity.

In the example, we recognise the booking, check-in,
and check-out tasks. Let us look at check-in in detail.

Purpose. The purpose of check-in is to give the
guest a room, mark it as occupied, and start the ac-
counting for the stay. This translates well into state
changes in the database. If the user cancels the task, there
should be no traces in the database.

Trigger/Precondition. The template has space for a
trigger or a precondition. A trigger says when the task
starts, e.g. the event that initiates it. For check-in, the
trigger is the arrival of a guest – he reports at the recep-
tion desk.

A precondition is something that must be fulfilled
before the user can carry out the task. In the check-in
case we have specified a trigger, but not a precondition.
There is rarely a need for both, and in general we find
that preconditions are rarely needed for tasks while they
are important for use cases.

Frequency and critical. The fields for frequency
and critical are very important in practice. The require-
ment on Figure 1 is to support 0.5 check-ins per room
per day, and support critical activities with 50 guests ar-
riving. What can that be used for in development?

Imagine 50 guests arriving by bus and being checked
in individually. Imagine that each guest reports at the re-
ception desk, the receptionist finds the guest, prints out a
sheet for the guest to sign, and then completes the check-
in of that guest. This could easily take over a minute per
guest. The last guest will be extremely annoyed at having
to wait one hour! Maybe we should provide some way of
printing out a sheet for each guest in advance with his
room number on it?

What about 0.5 check-ins per room per day? How
many rooms are there? Well, a large hotel has 500
rooms, meaning that there are approximately 250 check-
ins per day, with most guests probably arriving in peak
hours. We definitely need a multi-user system – so that
the system can deal with concurrent check-ins and ensure
that no two customers end up being assigned to the same
room. We can derive several design constraints from
these two lines.

Figure 1. Task descriptions

Work area: 1. Reception
Service guests - small and large issues.
Normally standing. Frequent interrupts.
Often alone, e.g. during night.

Users: Reception experience, IT novice.

R1:The product shall support tasks 1.1 to 1.5

Task: 1.1 Booking
Purpose: Reserve room for a guest.

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it as

occupied. Start account.
Trigger/Precondition: A guest arrives
Frequency: Average 0.5 checkins/room/day
Critical: Group tour with 50 guests.

Sub-tasks:
1. Find room
2. Record guest as checked in
3. Deliver key

Variants:
1a. Guest has booked in advance
1b. No suitable room
2a. Guest recorded at booking
2b. Regular customer

Task: 1.3 Checkout
Purpose: Release room, invoice guest.
. . .

Missing
sub-task?

Sub-tasks. The central part of the task description is
the list of sub-tasks. The receptionist must find a suitable
room for the guest, record guest data, and record that the
guest is checked in and the room occupied. Finally he
must give the guest the room key.

These sub-tasks specify what the user and the com-
puter must do together. Who does what depends on the
design of the product or on the chosen COTS system.
What about the sub-task Deliver key? Should that be
computer-supported too? Maybe. Some hotel systems
provide electronic keys, unique for each guest, but that is
expensive. Obviously the solution has to be decided later
in the project, depending on the costs and benefits in-
volved.

One of the advantages of task descriptions is that the
customer readily understands them. If we try to validate
the check-in task with an experienced receptionist, he
will immediately notice that something important is
missing: ‘ In our hotel, we don't check guests in until we
know they can pay. Usually we check their credit card,
and sometimes we ask for a cash deposit. Where is that
in your task description?’

"Oops" said the analyst and added this line between
sub-task 1 and 2:

2. Check credit card or get deposit

Variants. Finally, there is a list of variants for the sub-
tasks.

Sub-task 1 (find room) has two variants: (1a) The
guest may have booked in advance, so a room is already
assigned to him; (1b) There is no suitable room (suggests
some communication between receptionist and guest
about what is available, prices etc.).

Sub-task 2 (record guest) also has variants: (2a) The
guest may have booked in advance and is thus recorded
already. (2b) He is a regular customer with a record in
the database.

Variants are a blessing for analysts. You don't have
to describe rules or specify logic for the many special
cases; simply list the variants to be dealt with.

Task sequence. Although the sub-tasks are enumer-
ated for reference purposes, no sequence is prescribed. In
practice users often vary the sequence. It is a good idea
to show a typical sequence, but it doesn't mean that it is
the only one.

Development and verification
How can a task description of this kind be used

during development and at delivery time? Although
customers as well as developers easily understand task
descriptions, there is a larger gap to design and deve-
lopment than with traditional feature requirements. The
developers have to be more innovative to find good ways

of supporting the tasks, and the responsibility to do so
rests with them.

However, once a design is suggested, it is easy to
check that it supports the tasks. The developers can sim-
ply simulate that they carry out the tasks and all their
variants. Verifying the requirements at delivery time is a
matter of having the user carry out the tasks and the
variants.

Actually, the design problem is not that hard. Laue-
sen & Harning [8] explain a systematic way to handle it.
In summary, the developers first design screens that give
the user the necessary data for each task or sub-task,
trying at the same time to keep the number of screens
low. Second, the developers add the necessary functions
for carrying out the tasks, resulting in a mockup or proto-
type of the interface. Finally, they usability test the user
interface, modify it as needed, and implement it. The
usability test essentially serves as an early verification
that the tasks are supported in an efficient way.

Developers that follow this approach have realised
that the traditional object-oriented analysis doesn't help
in this design process (except for the datamodel aspect of
the classes). On the contrary, it slows down the
pro??cess. The datamodel and the task descriptions are a
sufficient basis for the design. Programming may - de-

Sub-tasks:
1. Find room.
Problem: Guest wants
neighboor rooms; price
bargain.

2. Record guest as
checked in.

3. Deliver key.

Problem: Guests forget
to return the key; want
two keys.

Variants:

1a. Guest has booked in
advance.
Problem: Guest
identification fuzzy.

Example solution:
System shows free
rooms on floor maps.

System shows bargain
prices, time and day
dependent.

(Standard data entry)

System prints electronic
keys. New key for each
customer.

System uses closest
match algorithm.

Figure 2. Tasks & Support

Task: 1.2 Checkin
Purpose: Give guest a room. Mark it . . .
Frequency: . . .

Future:
Computer

part
Past:

Problems
Domain

level

pending on the programming language used - be object-
oriented or not.

3. Tasks & Support
The ideal task descriptions are independent of the di-

vision of work between computer and user, but are they
also independent of whether we talk about the past or the
future? Is the difference between how we carried out the
tasks before and how we want to carry them out in the fu-
ture merely a matter of a new way of dividing the work?
In principle yes, but in practice it turns out to be advanta-
geous to identify problems in the old way of doing things
and outline new ways of doing them in the future.

Tasks & Support is a systematic way of dealing with
this. Figure 2 shows a Task & Support description of the
check-in task. It consists of several parts:

Domain-level activity. The left-hand column de-
scribes the domain-level activity – what human and com-
puter do together. In the example the description is very
short; simply the name of the sub-task. In real specifica-
tions, a few lines are sometimes needed.

We suggest that imperative language should be used
here, e.g. Find room, to hide whether a human or a com-
puter carry out the sub-task.

Problem. The problem part is the only part of the
description that mentions something about what happens
in the old system. You only specify problems if there are
any. As an example, sub-task 2, Record guest, doesn't
have any significant problems, so a description of the do-
main-level activity suffices.

Note that the problem part gives us an opportunity to
specify things we cannot specify in more traditional re-
quirements. For instance, the problems in sub-task 1
show that automatic room allocation is a bad idea.

Solution. In the right-hand column we outline how
the new system could support the activities and how it
could solve the problems. This part shows something
about the future and what the product should do. In prac-
tice this is an area for discussion between customer and
supplier, who should try to arrive at an agreement based
on the benefit to the customer and the cost of providing
the solution.

Figure 2 shows example solutions as indicated by the
right-hand column heading. In a later version, the
supplier may change this column to reflect new ideas or
proposals, and the heading should change to 'Proposal'.
Finally, the column is changed to what the two parties
eventually agree to provide, and the heading should
change accordingly to ‘Agreement’ .

To emphasize the computer aspect, we suggest that
statements with an explicit subject should be used, e.g.
System shows free rooms or Product shows free rooms.
Traditional wording such as The system shall show free
rooms may be used if you like, but only if the parties de-
cide that the right-hand column is the requirement, thus

giving up the explicit requirement to support the user
tasks and solve the user problems.

Figure 2 shows various non-trivial solutions to the
problems. For instance, some hotels may be willing to
negotiate a discount if the customer arrives in the after-
noon and the hotel has many vacancies. The system
could guide the receptionist in these matters. Perhaps one
supplier has realised that the weather has an influence on
such negotiating, since customers would be more
reluctant to go to other local hotels in rainy weather, so
he offers a feature for entering weather conditions, thus
exceeding the customer's expectations. The supplier
specifies this proposal in the solution column.

In some cases the solution is trivial. Sub-task 2, for
instance, calls for ordinary data entry only; nothing needs
to be specified. Many sub-tasks in real systems are trivial
data entry tasks. In these cases there is not much differ-
ence between the domain-level activity, the user activity,
and the computer activity. The feature requirements are
trivial.

See Lauesen [9] for further explanation of the tech-
nique, how to compare proposals, etc.

4. Use cases versus tasks

Figure 3. Use cases vs. tasks

Hotel system

Booking

Checkin

Checkout
Receptionist

Hotel system

Booking

Receptionist

Account
system

UML use case
diagram:

. . .

Transferactor

actor

Task descriptions.
Split postponed:

Account
system

Transfer

Human and computer
separated: Hotel system

Receptionist

. . .

Booking

A task is what human and computer do together. In
contrast, a use case is primarily the computer's part of a
task, including its interaction with the user. Use cases
were introduced by Jacobson et al. [6] as a literal transla-
tion from Swedish, and the term is now used extensively
in connection with object-oriented software development
(Booch et al. [1]; Stevens and Pooley [10]). However,
the term use case has been used in so many ways that it
is hard to know what people are really talking about
when they use it (Cockburn [2]; Constantine and Lock-
wood [4]).

We will first look at the UML version of use cases.
UML definitions of use cases have changed over time,
but here is a recent definition by Booch et al. [1]:

A use case is a description of a set of sequences of
actions, including variants, that a system performs to
yield an observable result to an actor.

Note that the definition only talks about the actions
performed by the system (the computer), not the actions
performed by the user.

The first diagram on Figure 3 is a UML diagram of
four use cases. The box represents the computer system
and the diagram shows that the receptionist can carry out
(be the actor) of the use cases booking, check-in, and
check-out. These use cases are handled by the computer
system, as illustrated by the bubbles inside the box. Each
use case bubble might involve several system functions,
for instance listing free rooms, selecting rooms, and re-
cording guest information.

Note that the accounting system is an actor too. We
assume that accounting is handled as data transfer to a
separate accounting system. The bubble shows the hotel
system's part of the transfer.

The graphical representation suggests that the use
case is something done by the computer, not something
done by user and computer together. The figure reflects
the current thinking that use cases are computer-oriented.

However, there are other types of use cases than the
one defined in UML. In the second diagram in Figure 3,
we have illustrated a kind of use case where we can see
user actions as well as computer actions (one example is
Constantine & Lockwood's essential use cases [4, 5]).
The diagram shows that the entire booking task consists
of two parts, one carried out by the user and one carried
out by the product.

The last diagram in Figure 3 illustrates the task con-
cept. The bubble represents the entire task. It floats over
the product boundary, illustrating that the task is carried
out by human and computer together, but the division of
labour is not yet determined. The transfer task also has a
hotel system part and an accounting system part, with a
division not yet determined.

5. High-level tasks
Above we have assumed that the same users will

carry out the tasks in both the old and the new solution.
What should we do if this assumption isn't valid, or if we
plan an entirely new system without present users? A
good approach is to look at the situation as seen from the
client's viewpoint. In the hotel example, the receptionist
is the user and the guest is the client.

If we look at the hotel from the guest’s point of view,
staying at the hotel is a kind of task. It is not a traditional
human-computer task since the guest may not interact di-
rectly with the computer, but it is an interesting task any-
way, because the ultimate success of the system depends
on how well it serves the guests.

Figure 4 shows the sub-tasks of a hotel stay as seen
by the guest. Now we see the previous tasks, Book,
Check-in, etc., as sub-tasks of this high-level task.

We also see two new tasks: select a hotel and reim-
burse expenses. Are they of interest when defining the re-
quirements? They may very well be. For instance, a busi-
ness guest needs an invoice to claim reimbursement, but
some of his expenses will not be reimbursable and it sim-
plifies matters to the guest if they do not appear on the
main invoice. (In fact, some expenses might be outright
embarrassing to have on the main invoice!)

Figure 4. High-level tasks

Sub-tasks:

1. Select a hotel.
Problem: We aren’t
visible enough.

2. Booking.

Problem: Language and
time zones. Guest wants
two neighbor rooms

3. Check in.

Problem: Guests want
two keys

4. Receive service

5. Check out

Problem: Long queue in
the morning

6. Reimburse expenses

Problem: Private
services on the bill

Example solution:

?

Web-booking.

Choose rooms on web at
a fee.

Electronic keys.

Use electronic key for
self- checkout.

Split into two invoices,
e.g. through TV.

Task: 1. A stay at the hotel
Actor: The guest
Purpose: . . .

Our preoccupation with the receptionist has so far
prevented us from seeing the customer's needs, so a high-
level task description will help us to see the key business
needs. We can use the high-level task as an analysis tool
to reveal additional requirements. In this case we identi-
fied a need for separating reimbursable expenses from
other expenses. We could add it as a feature requirement
or we could state it as a problem in the Task & Support
description for check-out.

Business process re-engineering uses radical restruc-
turing of a company to better serve the clients and reduce
costs. The present user tasks are not taken for granted.
Some of them may disappear, others are redefined, and
new ones may come up. High-level task descriptions can
help in that process. For instance, we might ask whether
we could support the hotel-stay task any better.

In the example, we first identified the customer's
sub-tasks and problems. In a later brainstorming session,
we came up with possible solutions to some of the
problems.

The general trend in the solutions is to allow the cus-
tomer to do more for himself. We could help him to book
through the Internet, and why not allow him to select a
room too? We could also allow him to order services
electronically during his stay. He could check out by in-
serting his electronic room key into a slot at the reception
desk, thus bypassing the morning queue of other guests
checking out.

6. A hospital case
The Task & Support idea was developed by the

author and Marianne Mathiassen in close co-operation
with a large customer (West Zealand hospital) and three
COTS suppliers [7].

The hospital had experienced severe problems when
acquiring systems through tender processes, and we stud-
ied what had happened and how it related to the require-
ments. As a result of this study we came up with the Task
& Support idea, and we wanted to test the idea on a real-
istic scale in the same organisation.

We took an existing hospital system recently con-
tracted with a supplier but not yet delivered, and devel-
oped Tasks & Support for the most difficult application
area: roster planning. This was also the most business-
critical area because many savings were expected from
improved roster planning. Modelling this area required
eight task descriptions.

Figure 5 shows an abbreviated version of the most
critical and complex task: allocating duties to staff. The
task is actually carried out over a period of several days
where the user tries to allocate staff and get feedback
from others about the allocation. Some of the sub-tasks
are carried out several times during the total planning
task.

Note sub-task 3, Allocate staff for unstaffed duties. It
is the most critical part because most of the economic ad-
vantage must be obtained there. Although the monetary
benefits are not shown there, you can clearly see that this
is a very important sub-task.

Another interesting thing is variant 3b, No staff
available. The user (planner) works for a single hospital
department and doesn't have information on staff in other
departments. Because qualified staff are becoming
scarcer, the users dreamt of getting on-line information
about available staff in other departments. They reasoned
that the system ought to know the roster for other depart-
ments too, so it should be able to list available staff
whom they might call on for additional help.

When we later checked the approach with three sup-
pliers, one of them laughed at this ‘primitive require-
ment’ . His company provided computer services for all
the local hospitals, and they could easily provide access
to available staff there too. The requirements format en-
abled him to tell the customer that he could exceed his
dreams.

What is covered by the technique?
To what extent can Tasks & Support replace tradi-

tional functional requirements? We checked that in the
hospital where we developed the technique. When we
had developed the Task & Support requirements in co-

Figure 5. Hospital roster planning

Task 1.2 Make roster
Goal Staff all duties. Ensure regulations . . . Ensure low cost
Frequency Once every two weeks. In some departments . . .
Critical Vacation periods . . .
Sub-tasks: Example of solution:
1 Initialize new roster

period
System generates roster for new
period based on . . .

2 Record staff leave
Two kinds of leave: . . .

Present problems:
Leave requests kept on
manual notes, often
months into the future.

System can record leave one year
into the future. System warns if leave
is against regulations.

It must be easy to record a long
period of leave (several months).

3 Allocate staff for
unstaffed duties.
Ensure level of
competence, regulations,
leave days, and low cost.

Present problems:
Difficult to ensure this
manually. Costs are
higher than necessary
and errors occur.

System shows unstaffed duties and
suggestions for staffing. User selects
the actual staff. System warns if
duties are unstaffed, leave or
regulations violated, or cost
unnecessary. Warnings must be
immediate to support the puzzle.

System supports extensive undo and
several temporary versions.

4 Send roster for review A print of the roster is sufficient.
5 Modify roster Steps above suffice
6 Authorize roster . . .
Variants: Example of solution:
3a Staff not yet recorded

in the staff file
User enters preliminary data for new
staff.

3b No staff available
Present problem: No
information about staff in
other departments

System suggests staff from other
departments based on their
authorized rosters.

operation with the expert users, we compared the 38
original, feature-based requirements with those expressed
through the task descriptions. Figure 6 shows a summary
of the results.

Sixteen original requirements were covered by the
task descriptions.

Seven original requirements were not covered by the
task descriptions, but we estimated that they would have
been if we had made a data model and cross-checked it
against the tasks. For instance, we had overlooked that
the system had budgets for each department, and some
tasks dealing with budgeting were needed to provide the
budget data.

Fifteen original requirements were not covered, and
we had difficulty seeing how this could have been done.
They all specified some special report to be produced,
and the old system had these features. However, nobody
we talked to could explain what these reports were used
for, so it was impossible for us to identify any tasks
needing these requirements. We believe that some of
them were actually used somewhere, while others were
just relics of the old system.

Eight requirements were new. The task descriptions
clearly showed a need for these eight things, but they
were not mentioned in the old requirements. All were
critical in some task. Half happened to be provided by
the supplier anyway, but the rest were not. This led to
great consternation in the IT department as these defi-
ciencies were realised, particularly because some of the
business goals could thus not be met.

The conclusion is that Tasks & Support can reveal
critical requirements that can otherwise be easily over-
looked. However, some functional requirements are hard
to catch in this way, because they don't clearly relate to
tasks. Unfortunately we cannot point to any single tech-
nique that would reveal these missing requirements.

Cost of the technique
The Task & Support technique doesn't require a lot

of time, training or tool support; but it needs close guid-
ance by an expert. We will illustrate the typical pattern
with what happened in another project.

The hospital decided to use Tasks & Support in a
new COTS acquisition, possibly with tailor-made exten-
sions. The application was about patient administration
across all departments. The value of the contract was ex-
pected to be approximately US$4 million plus around $2
million per year for operating the system. Here is a brief
account of the work.

The author, working as a consultant, trained two ex-
pert users and one IT specialist for two days. They had
been involved in traditional feature-oriented require-
ments before, but had never seen task or use case tech-
niques.

As part of the two days of training, they outlined a
single high-level task that covered most of the system as
seen from the patient's point of view. This outline used
nine ordinary task descriptions to be specified later.

Next, the two expert users worked alone specifying
some of the ordinary tasks. After some initial mistakes,
which the consultant helped them correct, they com-
pleted the entire spec in ten more days, including reviews
in the departments. Then they sent it for a blitz review by
the consultant. He was truly impressed. They had not
only made excellent task descriptions, but they had also
found a creative way to use the same template for non-
task issues, such as maintenance, daily operation, and
usability.

The consultant had only minor comments, and the
spec was sent out for tender. Total man days: around 25.
Total consultancy days: 3. Seasoned developers seem to
learn the technique even faster. We have seen them
master it in a single day.

Improved requirements writing
The hospital team later reported that similar projects

used to take 25 weeks with feature-based requirements,
rather than the three weeks with the new approach. Fur-
thermore, the new approach ensured that they got what
they needed. Figure 7 summarises the differences.

Previously, the IT department had asked each user
department (wards, labs, personnel department, etc.) to
write down their requirements, and the IT department
then edited the whole thing and sent it for comments and
approval in the departments. This caused a lot of debate
on whether the spec was complete and whether this or
that was needed.

Amazingly, although the IT department had edited
the spec, they often didn't understand the requirements,
but assumed that the user departments knew what they
had asked for and that the supplier would also know. Our
later talks with the suppliers revealed that they too

Figure 6. Match with old feature spec

Feature
requirements

Task
descriptions

Critical
issues Tasks +

data model +
CRUD

Special
reports

15 reqs8 16 7

weren't sure what the hospital asked for, but assumed it
could be resolved during the project.

With the Task & Support approach, a small group of
expert users, assisted by the IT department, wrote a set of
task descriptions, sometimes with suggested solutions.
The expert user's deep task understanding was a key
factor in the approach. Then they sent it off for com-
ments and approval in the user departments as usual. The
departments now commented primarily on the complete-
ness of the task descriptions, which are facts, rather than
on the required features, which tend to be a matter of
opinion. When a department suggested some solutions,
they were simply included as possible solutions in the
right-hand column, i.e. as an example rather than a re-
quirement.

It should be mentioned that in this example, the hos-
pital had a fairly good idea what kind of system they
wanted and what kind of business goals to go for. There
was also a reasonable commitment by all departments in-
volved. This had been the case both when the old fea-
ture-based method had been used, and when Tasks &
Support had been used.

In other organisations, goals and commitment may
be serious issues. Resolving them may take a long time,
making it difficult to see the full effect of the Task &
Support approach.

Comparing proposals
Comparing the suppliers' proposals also went much

more smoothly than usual. The team spent 20 man days
comparing the two best proposals in detail. Essentially
they made a kind of acceptance test of the existing ver-
sions of the products, working through all the task de-
scriptions and variants to see and describe how well the

systems and the promised extensions would support
them. Their comparison convinced stakeholders without
further discussion. The traditional approach required ten
times as much work because many stakeholders had to
review and comment on the proposals.

7. Conclusion

Advantages of task-based requirements
The comparison below is based on experiences from

many types of real-life projects, e.g. product develop-
ment, tailor-made systems, and COTS based acquisition.

Validation, verification, etc. The customer can eas-
ily validate task descriptions and ensure that he gets what
he needs. Developers can better understand the re-
quirements and check that their design is adequate. Fi-
nally, the parties can easily verify the requirements dur-
ing and at the end of development.

Product development. Tasks & support help the de-
velopers identify the important features to be developed.
High-level tasks have repeatedly given rise to innovative
products with excellent market acceptance.

Tenders. We have much experience with task &
support requirements in tender processes, where the
customer announces a request for proposal and several
suppliers reply. Whether we are dealing with COTS-
based products or tailor-made products, suppliers as well
as customers report these advantages:
1. It is much easier than usual to understand what the

customer really needs and what kind of solution he
has in mind.

2. It is possible to trace between requirements and
business goals [7, 9].

3. The supplier can specify the advantages of his solu-
tion by relating it to the user tasks, and he can also
show where his solution exceeds the customer's ex-
pectations.

4. The supplier can demonstrate to the customer how
the tasks will be supported, and how the critical is-
sues will be handled.

5. All suppliers get equal opportunities since no solu-
tion is prescribed.

6. It is possible to adjust ambitions in the solution ac-
cording to needs and costs.

Disadvantages of task-based requirements
No data specified, non-task activities. Little is

shown about the data required for the tasks. Also, some
activities are hard to describe as tasks.

More work for the COTS supplier? Some COTS
suppliers are concerned that the task-based approach
takes longer than traditional approaches. Previously, they
could just cut and paste from other proposals. With task-
based requirements they have to understand the user's
tasks, they complain. This is true, but a clever customer
will insist on task descriptions for just that reason.

Figure 7. Early experiences

Traditional Tasks & Support
Write requirements Write requirements
Everybody asked. Expert users describe
All dream up reqmts. tasks.
Combined into one spec. Everybody can correct
Few understand it. tasks and add wishes.

Time: 25 weeks Time: 3 weeks (first time)

Assess proposals Assess proposals
Everybody has a say Carry out the tasks - give

scores.
Political choice Selected stakeholders

asked. No doubt.
Time: 10 man months Time: 1 man month

More work for the developer? When the system is
to be developed from scratch, there is a longer jump to
the solution than with traditional feature requirements.
On the other hand, the task descriptions better ensure that
the solution actually meets the real demands.

More work for the customer? Some suppliers sug-
gest that it is more laborious for the customer as well. In
our experience, this is not true. The specification work is
actually reduced drastically compared to traditional
specifications. Of course, compared to the approach
where the customer doesn't specify anything but leaves it
to the supplier to set up a specification, it is more labori-
ous.

Unusual reply format. In tender processes, we have
found that many suppliers hesitate to modify the right-
hand column to show their solution. They prefer to
specify their solution in attachments. This, however,
makes it more difficult for the customer to evaluate the
proposals. Skilled suppliers modify the text in revision
mode, thus clearly showing what they have changed.
They sometimes attach product descriptions, for instance
screen pictures, and then refer to them from the task de-
scription.

When supplier and customer jointly develop Tasks
& Support, there is no such problem with modifying the
description.

Acknowledgements
Large parts of this paper are copied from the author's

book "Software Requirements" [9], with permission from
the publisher, Pearson-Addison Wesley.

References
1. Booch, G., Rumbaugh, J. & Jacobson, I. (1999) The Uni-

fied Modelling Language. User Guide. Addison-Wesley.
2. Cockburn, A. (1997) Structuring use cases with goals.

Journal of Object-Oriented Programming, Sep-Oct, 35–40
& Nov-Dec, 56–62. Also in: http://members.-
aol.com/acockburn/papers/usecases.htm.

3. Cockburn, A. (2000) Writing Effective Use Cases.
Addison-Wesley.

4. Constantine, L. & Lockwood, L.A.D. (2001) Structure and
style in use cases for user interface design. In Object Mod-
elling and User Interface Design (ed. M.V. Harmelen),
Addison-Wesley.

5. Constantine, L. & Lockwood, L.A.D. (1999) Software for
Use: A practical guide to the models and methods of usage-
centered design. Addison-Wesley.

6. Jacobson, I., Christerson, M., Jonsson, P. & Övergaard, G.
(1994) Object-oriented Software Engineering – a use case
driven approach. Addison-Wesley.

7. Lauesen, S. & Mathiassen, M. (1999) Use cases in a COTS
tender. In Proceedings of the Fifth International Workshop
on Requirements Engineering (eds A.L. Opdahl, K. Pohl
and E. Dubois), REFSQ’99, Presses Universitaires de Na-
mur, 1999, 115–129.

8. Lauesen, S. & Harning, M. B. (2001) Virtual Windows -
Linking user tasks, data models, and interface design. IEEE
Software, July/August, 67-75.

9. Lauesen, S. (2001): Software Requirements - Styles and
Techniques. Pearson-Addison Wesley (in print).

10. Stevens, P. & Pooley, R. (2000) Using UML, Software en-
gineering with objects and components. Pearson Educa-
tion, London.

11. Weidenhaupt, K., Pohl, K., Jarke, M. & Haumer, P. (1998)
Scenarios in system development: Current practice. IEEE
Software, March/April, 34–45.

