
REFSQ 2011

Task descriptions versus use cases

Soren Lauesen • Mohammad A. Kuhail

Received: 16 August 2011 / Accepted: 12 November 2011 / Published online: 30 November 2011

� Springer-Verlag London Limited 2011

Abstract Use cases are widely used as a substantial part

of requirements, also when little programming is expected

(COTS-based systems, Commercial-Off-The-Shelf). Are

use cases effective as requirements? To answer this ques-

tion, we invited professionals and researchers to specify

requirements for the same project: Acquire a new system to

support a hotline. Among the 15 replies, eight used tradi-

tional use cases that specified a dialog between user and

system. Seven used a related technique, task description,

which specified the customer’s needs without specifying a

dialog. It also allowed the analyst to specify problem

requirements—problems to be handled by the new system.

It turned out that the traditional use cases covered the

customer’s needs poorly in areas where improvement was

important but difficult. Use cases also restricted the solu-

tion space severely. Tasks did not have these problems and

allowed an easy comparison of solutions.

Keywords Use case � Task description � Software

requirements � Agile requirements � Verification � COTS �
Interaction design � Diffusion of innovation

1 Background

Traditional requirements consist of a list of system-shall-do

statements, but do not describe the context of use. IEEE-

830, for instance, uses this approach [8]. The lack of

context makes it hard for users to validate such require-

ments and developers often misunderstand the needs (Ku-

lak and Guiney [11]). Jacobson introduced use cases in the

late 1980s [9]. They describe the dialog (interaction)

between a system and a user as a sequence of steps. Use

cases provided something that traditional requirements

lacked, and they became widely used as a substantial part

of requirements. Soon other authors improved on the basic

idea and wrote textbooks for practitioners, e.g., Cockburn

[5], Kulak and Guiney [11], Armour and Miller [3], Con-

stantine and Lockwood [6].

Use cases have developed into many directions. Some

authors stress that use cases should be easy to read for

stakeholders and that they should not be decomposed into

tiny use cases [5, 10]. The CREWS project claimed that

use cases should be detailed and program-like with If and

While, and have rules, exceptions and preconditions

(reported in [1] and questioned in [7]). In contrast, Lilly

[19] and Cockburn [5] advise against program-like ele-

ments. Other authors claim that use cases must have dialog

details to help developers [26, 29]. In this study, we saw

examples of tiny use cases as well as program-like ones.

In the paper, we will only discuss how use cases handle

the user–system interaction. This is the most common use

in literature as well as in practice.

Virtually nobody discusses whether use cases in practice

are suited as verifiable requirements. Use cases seem to be

intended for system parts to be built from scratch, but this

situation is rare today. What if the use case dialog differs

from the dialog in one of the potential systems? If we reject

the system for this reason, we might reject an otherwise

good system. If we accept it, what are the real

requirements?

As a consultant, Lauesen had observed how use cases

were used as a main part of requirements in large software

S. Lauesen (&) � M. A. Kuhail

IT University of Copenhagen, Rued Langgaards Vej 7,

2300 Copenhagen S, DK, Denmark

e-mail: slauesen@itu.dk

M. A. Kuhail

e-mail: moak@itu.dk

123

Requirements Eng (2012) 17:3–18

DOI 10.1007/s00766-011-0140-1

acquisitions, even though the customer expected a COTS-

based system with little add-on functionality. Usually, the

use cases were not used later in the project. However, in

one large project, the customer insisted on them being

followed closely. As a result, the system became so cum-

bersome to use that the project was terminated [27].

Task description is a related technique that claims to

cover also the case where the system is not built from

scratch. One difference is that tasks do not describe a

dialog between user and system, but what user and system

have to do together. The supplier defines the solution and

the dialog—the customer should not. Figure 1 summarizes

the differences. The task technique was developed in 1998

(Lauesen [12, 13]) and has matured since [14, 15, 17].

To get a solid comparison of the two approaches, we

looked at a specific real-life project, invited professionals

and researchers to specify the requirements with their

preferred technique, and compared the replies.

2 The hotline case study

The case study is an existing hotline (help desk). Hotline

staff were not happy with their existing support system and

wanted to improve the one they had or acquire a new one,

probably COTS-based.

Lauesen interviewed the stakeholders, observed the

existing support system in use, and wrote the findings in a

three-page analysis report. Here is a brief summary: The

hotline receives help requests from IT users. A request is

first handled by a 1st level supporter, who in 80% of the

cases can remedy the problem and close the case. He

passes the remaining requests on to 2nd line supporters. A

supporter has many choices, e.g., remedy the problem

himself, ask for more information, add a note to the

request, transfer it to a specialist, order components from

another company, park the request, and combinations of

these. The hotline is rather informal and supporters fre-

quently change roles or attend to other duties. The report

included a screenshot of the existing key screen: a list of

pending support requests.

We invited professionals to write requirement specifi-

cations based on the analysis report. The invitation

emphasized that we looked for many kinds of ‘‘use cases’’

and did not care about nonfunctional requirements. It

started this way:

We—the IT professionals—often write some kind of use

cases. Our ‘‘use cases’’ may be quite different, e.g. UML-

style, tasks, scenarios, or user stories. Which kind is best?

Participants could ask questions for clarification, but few

did. The full analysis report is available in [16]. It started

this way:

A company with around 1,000 IT users has its own

hotline (help desk). They are unhappy with their present

open-source system for hotline support, and want to

acquire a better one. They don’t know whether to modify

the system they have or buy a new one.

An analyst has interviewed the stakeholders and

observed what actually goes on. You find his report below.

Based on this, your task is to specify some of the require-

ments to the new system: use cases (or the like) and if

necessary the data requirements.

We announced the case study in June–July 2009 to mem-

bers of the Requirements Engineering Online Discussion

Forum\re-online@it.uts.edu.au[, to members of the Danish

Requirements Experience Group, and to personal contacts.

The British Computer Society announced it in their July 2009

Requirements Newsletter. We got several comments saying:

this is a great idea, but I don’t have the time to participate.

Lauesen wrote special requests to Alistair Cockburn and

IBM’s Rational group in Denmark, but got no reply.

We received 15 replies. Eight replies were based on use

cases and seven on tasks. Some replies contained separate

data requirements, e.g., E/R models, and some contained

use cases on a higher level, e.g., business flows. When

identifying verifiable requirements, we looked at these

parts too. The full replies are available in [16]. Here is a

profile of the experts behind the replies:

 esac esu A noitpircsed ksat A

1. Describes what user and system do together. No dialog. Describes a dialog: what user does and what system replies.

2. Allows problem requirements, e.g.:
ABC is a problem, we want a solution.

Ignores problems where the analyst cannot describe a solu-
tion.

3. Requirement: Support the task and remedy the problems.
Can be met to various degrees.

Requirement: Implement the dialog - even if bad? Or accept
other dialogs?

4. Customer may give solution examples: what system might
do. Supplier specifies his proposed solution.

Doesn't distinguish requirement from solution.

 .golaid eerf-ecneuqes a ebircsed ot draH .tsomla - spets fo ecneuqes eerF .5

6. Suited for agile, waterfall and COTS-based. Intended for development from scratch.

Fig. 1 Key differences between task descriptions and use cases

4 Requirements Eng (2012) 17:3–18

123

Replies based on use cases. Decreasing requirement

completeness:

Expert A. A research group in Heidelberg, Germany.

The team has industry experience and has

taught their own version of use cases for

7 years.

Expert B. Consultant in California, US. Has 15 years

professional requirements experience.

Rational-certified for 11 years.

Expert C. A research group at Fraunhofer, Germany.

Expert D. Researcher at the IT-University of

Copenhagen. Learned use cases as part of his

education in UK, but has no professional

experience with them.

Expert E. Consultant in Sweden with ten years

experience. Specialist in requirements

management. Have classes in that discipline.

Expert F. A software house in Delhi. Write use cases

regularly for their clients. Were invited to

write a reply on a contract basis and were paid

for 30 h.

Expert G. Consultant in Sweden with four years

experience in requirements.

Expert H. Consultant in Denmark with many years

experience. Teaches requirement courses for

the Danish IT association.

Replies based on task descriptions. Decreasing

requirement completeness:

Expert I. Consultant in Sweden with many years

experience. Uses tasks as well as use cases,

depending on the project. Selected tasks for

this project because they were most suitable

and faster to write.

Expert J. Help desk manager. Has 15 years experience

with programming, etc.

Expert K. A recently graduated student who has used

tasks for 1.5 years. Little program experience.

Expert L. Researcher at the IT-University of

Copenhagen. Has 25 years industry

experience and has later used tasks for

10 years as a consultant and teacher.

Expert M. GUI designer with one year of professional

requirements experience.

Expert N. Leading software developer with 12 years

experience. Learned about tasks at a course

and wrote the reply as part of a 4 h written

exam.

Expert O. A research group in Bonn, Germany. The

team has several years of industry

experience, but little experience with the

task principle.

3 Evaluation method and validity

We evaluated the replies according to many factors, but

here we deal only with these:

A. Completeness: are all customer needs reflected in the

requirements?

B. Correctness: does each requirement reflect a customer

need? Some requirements are incorrect because they

are too restrictive so that good solutions might be

rejected. Other requirements are incorrect because

they are wrong; they specify something the customer

explicitly does not want.

C. Understandability: can stakeholders understand and

use the requirements?

Validity threats: for space reasons, we do not discuss all

the validity threats here, but only the most important ones:

• Lauesen has invented one of the techniques to be

evaluated. His evaluation of the replies might be biased.

We have reduced this threat by getting consensus from

several experts, as explained in the procedure later.

• The experts did not have the same opportunities for

talking to the client, as they would have in real life.

True, but it seemed to have little effect. During the

consensus procedure, there was no disagreement about

which requirements were justified by the analysis report

and which were not.

• Lauesen studied the domain and wrote the analysis

report. This gave him an advantage. True, but it had no

influence on the other six task-based replies. Further,

when ranking the task-based replies on completeness

(Fig. 6), Lauesen (Expert L) was only number 4. (His

excuse for the low ranking is that he spent only 1 h

writing the solution, plus 5 h pretty-typing it without

improving it in other ways.)

Procedure

1. The two authors have different backgrounds and

independently produced two very different replies,

Kuhail’s based on use cases (Expert D) and Lauesen’s

on tasks (Expert L). We evaluated all replies indepen-

dently. Each of us spent around 1–3 h on each reply.

2. We compared and discussed until we had consensus.

As an example, one of us might have found a missing

requirement in reply X, but the other could point to

where the requirement had been stated in the reply. We

had around 5 points to discuss for each reply.

3. For each reply, we sent our joint evaluation to the

experts asking for comments and for permission to

publish their reply and our comments. We also asked for

comments to our own solutions. Some authors pointed

out a few mistakes in our evaluation, for instance that

Requirements Eng (2012) 17:3–18 5

123

we had mentioned missing requirements in their reply

that were not justified by the analysis report or that our

own solutions missed more requirements than we had

noticed ourselves. We easily agreed on these points.

Other authors said that our evaluation basically was

correct and that they were surprised to see the task

approach and considered using it in the future.

4. Finally, we asked two supporters (stakeholders) to

evaluate the four representative replies presented

below. It was of course a blind evaluation. They had

no idea about the authors.

We asked the supporters these questions in writing:

a. How easy is it to understand the requirements?

b. Which requirements are covered [met] by the system

you have today?

c. Which requirements specify something you miss

today?[want-to-have]

d. Do you miss something in addition to what is specified

in the requirements?

e. Are some requirements wrong?

f. Could you use the requirements for evaluating the

COTS system you intend to purchase?

The supporter got an introduction to the case and the

style used in the first reply. He/she was asked to read it

alone and answer the questions above. He/she spent

between 30 and 50 min on each reply. Next, we met,

looked at the reply, and asked questions for clarification.

We handled the other replies in the same way.

Karin, senior supporter: The first supporter was Karin

Tjoa Nielsen. Karin had been the main source of infor-

mation when Lauesen wrote the analysis report. She is not

a programmer but has a very good understanding of users’

problems and the hotline procedures. She read the replies

in what we considered a sequence of increasing difficulty:

Expert H (tiny use cases), Expert L (Lauesen, tasks),

Expert A (program-like use cases), Expert K (tasks).

Morten, supporter with programming background:

The second supporter was Morten Sværke Andersen. Morten

is a Web-programmer, but had worked in the hotline until

2 years ago. He had never seen use cases, but had worked

with user stories. He read the replies in this sequence: Expert

L (Lauesen, tasks), Expert H (tiny use cases), Expert A

(program-like use cases), Expert K (tasks). We chose this

sequence to give Lauesen the disadvantage of being first.

4 Sample replies and stakeholder assessment

The replies varied widely in time spent and length, but

tasks tended to be faster to write and shorter than use cases.

The lengths below cover only the use case parts, not data

descriptions, introduction, high-level flows, etc. Space

characters are not included in the counts.

Use cases Task descriptions

Time spent 2.5–60 h 2–6 h

Length of use cases/

tasks

5,500–37,000

characters

1,200–9,000

characters

Some use case replies were extremely hard to under-

stand (B, F, G), and it would not be fair to use them in the

detailed comparison of use case principles against task

principles. We will illustrate the replies with the four

examples summarized in Fig. 2. We chose them because

they are short, well-written examples of tiny use cases,

program-like use cases, and task descriptions.

Task closure: One of the factors we will look at is task

closure. A use case or task is closed if it covers what a user

does without essential interruptions from start (trigger) to

end (done for now). This is important because we want to

make sure that the system supports the user well from start

to end. Use cases may or may not be closed, and in this

study many were not. They were either too small or too

large. Tasks should be closed according to the guidelines.

4.1 Tiny use cases

Expert H’s reply consists of seven use cases. Figure 3

shows one of them in detail (Transfer request). It describes

the dialog when a supporter wants to transfer a help request

to another supporter. The steps alternate between The

system does and The user does. Deviations from this

sequence are recorded as variants below the main flow,

e.g., the variant that the user wants to filter the requests to

see only his own.

Expert H’s use cases have a simple flow with few

deviations from the main flow. They are examples of tiny

use cases, where each use case describes a simple action

carried out by the user. Real-life user activities would often

include several of these use cases before task closure.

The reply is easy to read. However, it gives an incon-

venient dialog if the system is implemented as described.

As an example, several use cases start with the same steps

(UC 1, 2 and 3). If implemented this way, the supporter

will have to select and open the request twice in order to

add a note to the request and then transfer it (a common

combination in a hotline).

Supporter assessment: The supporters were confused

about the supplementary fields with goal, actor, etc., and

ignored them as unimportant. Apart from this, they found

the reply easy to read, but concluded that it contained only

few and trivial requirements. As an example, Morten

6 Requirements Eng (2012) 17:3–18

123

Expert H
(tiny use cases)

Expert A
(program-like use cases)

Expert L (Lauesen)
(tasks - no dialog)

Expert K
(tasks - no dialog)

UC1. Record new request
(IT user or supporter)

UC1. Trigger and control
hotline problem solution (IT
user)

T1: Report a problem
(IT user)

T1: Report problem and
follow up
(IT user)

UC2. Follow up on request
(IT user or supporter)

UC2. Accept request
(supporter)

T2: Follow up on a problem
(IT user)

UC3. Add request data
(IT user or supporter)

UC3. Clarify request (suppor-
ter, IT user, new supporter)

T3: Handle a request in first
line
(supporter)

T2.1: First line, handle re-
quest
(supporter)

UC4. Transfer request (sup-
porter)

UC4. Handle request (sup-
porter)

T4: Handle a request in
second line (supporter)

T2.2: Second line, handle
request (supporter)

UC5. Update request (sup-
porter)

UC5. Set support level
(supporter)

T5: Change role
(supporter)

T2.3: Change state - both
lines (supporter)

UC6. Retrieve statistics
(manager)

UC6. Get statistics
(manager)

T6: Study performance
(manager)

UC7. Generate reminder
(system use case)

UC7. Warn about orphaned
requests (system use case)

T7: Handle message from an
external supplier (supporter)

-nam(atad cisab etadpU .8T
ager)

Closure: Use cases are too
tiny for task closure.

Closure: A use case may
extend over a long time and
several users.

Closed tasks. One user. Closed tasks. One user.

Problems covered: 2 Problems covered: 5.5 Problems covered: 7 Problems covered: 7.5

Length: 5500 chars.
Time: 2.5 hours.

Length: 9900 chars.
Time: Unknown.

Length: 4600 chars.
Time: 6 hours.

Length: 2900 chars.
Time: 3 hours.

Fig. 2 Overview of four replies

USE CASE #04 Transfer request

Goal Transfer a request to a specific hotline employee

Level User goal (sea level)

Precondition User is logged in and has the right to transfer requests

Postcondition N/A

Primary, Secondary actors Hotline

Trigger Primary actor

NORMAL FLOW

 noitcA petS

1 The system shows a list of all open requests

 tseuqer troppus a stceles resu ehT 2

 tseuqer detceles eht rof atad tseuqer swohs metsys ehT 3

 seeyolpme eniltoh fo tsil a swohs metsys ehT 4

 tsil eht morf eeyolpme eniltoh a sesoohc resu ehT 5

 "level dn2" ot etats segnahc dna eeyolpme detceles eht ot renwO segnahc metsys ehT 6

 tseuqer eht setadpu metsys ehT 7

VARIANTS

Step Action

2a
1
2

User wants to filter his own requests
The system shows a list of all open requests with the user as Owner
The use case goes to step 2

Fig. 3 Expert H: dialog steps in one column. Tiny use cases

Requirements Eng (2012) 17:3–18 7

123

considered the entire use case in Fig. 3 one trivial

requirement. It is more of a build-specification, he said.

They noticed several missing or wrong requirements.

4.2 Program-like use cases

Expert A’s reply also consists of seven use cases. Figure 4

shows one of them in detail (Handle request). It describes

the dialog when a supporter takes on a help request and

either corrects the problem or transfers the request to

someone else. The steps are shown as two columns, one for

the user actions (A1, A2, etc.) and one for the system

actions (S1, S2, etc.). Variants are shown right after the

related step. There are many variants, if-statements,

included use cases, rules, and exceptions. Special notation

is used to show whether a step is optional, and whether it

terminates the use case if done. The description is a kind of

program that specifies the possible sequences.

The optional steps may be carried out in any order,

which gives the user much freedom to choose the sequence.

Some of A’s use cases involve several users and

describe a kind of dialog between them. As an example,

use case Clarify Request describes that a supporter can

require more information from the IT user, what the user

does, and how a (new) supporter handles it. These use

cases are too large to match a closed user task.

Expert A’s use cases are very different from H’s. As an

example, H’s entire use case 4 (Transfer request) is just

step A3 in A’s Handle request. An H use case shows a tiny

part of the dialog, while an A use case covers a more

coherent period. This is not just a matter of formatting, but

a different approach to the modeling.

Supporter assessment: Karin (the senior stakeholder)

could not understand the program-like details and ignored

them. She found the rest okay to read and used it as a

checklist. She identified many lines as requirements that

were met or want-to-have. She also noticed some missing

or wrong requirements. Morten (the programmer) found

the reply very hard to read and spent a lot of time checking

the program-like parts. If I had been asked to read this first,

I wouldn’t have done it, he said. He found many parts

wrong or dubious. He concluded that the use cases were

useless for checking against a new system, since it might

well work in some other way.

4.3 Task descriptions (Lauesen)

Expert L’s reply consists of eight task descriptions. Fig-

ure 5 shows one of them in detail (Handle a request in

second line). It describes what a second-line supporter can

do about a request from the moment he looks at it and until

he cannot do more about it right now (a closed task). He

has many options, e.g., contact the user for more

information, move to the problem location, order some-

thing from an external supplier—or combinations of these.

At first glance, task descriptions look like use cases, but

there are several significant differences:

1. The task steps in the left-hand column specify what

user and computer do together without specifying who

does what. Thus, no dialog is specified. In this way,

you avoid inventing requirements about what you

believe the system must do. Variants of the task step

are shown right after the step, e.g., 1a about being

notified by e-mail.

2. You can specify problems in the way things are done

today, e.g., 1p about spotting the important requests.

You do not have to specify a solution.

3. The requirements are that the system must support the

tasks and remedy the problems as far as possible. You

can compare systems by assessing how well they do

this.

4. In the right-hand column, you may initially write

examples of solutions, later notes on how a potential

system supports the step. Developers (also agile ones)

report that the left-hand side is relatively stable, but the

right-hand side is not. Sometimes the system can carry

out the entire step alone, for instance if it automatically

records the IT user’s name and e-mail based on the

phone number he calls from.

5. The steps may be carried out in almost any order. Most

of them are optional and often repeatable. The user

decides what to do and in which sequence. The steps

are numbered for reference purposes only. (Cockburn

and others also recommend this, but it is hard to realize

with use cases, because a dialog by nature is a step-by-

step sequence.)

Problem requirements: In Fig. 5, there are four prob-

lems in the way things are done today. Some of them, for

instance 7p, are very important but not easy to solve.

When a step has an example solution, the solution is not

a requirement. Other solutions are possible. Steps without a

solution may have an obvious one that the analyst did not

care to write (e.g., step 6)—or he cannot imagine a solution

(e.g., 7p). Both are okay.

Lauesen’s task list is quite different from expert H’s use

case list. As an example, H’s use case 3, 4, and 5 are steps

in Lauesen’s Handle a Request in Second Line. The rela-

tionship to A’s use cases is more complex. An A use case

may go across several users and a large time span. In

contrast, a task should be closed, that is, cover what one

user does without essential interruptions from start (trigger)

to end (done for now).

Supporter assessment: The senior supporter was exci-

ted about this reply: This is so clear and reflects our situ-

ation so well. It is much easier to read than the first one I

8 Requirements Eng (2012) 17:3–18

123

got [the tiny use cases]. I hope I don’t step on someone’s

toes by saying this. Although she correctly understood the

left-hand side, she tended to consider the example solution

a promise for how to do it. Morten read this reply as the

first one. He was excited about the start and end clauses

because they reflected the real work. He was puzzled about

the distinction between first and second line, because the

hotline did not operate in that way when he worked there.

Initially, he had not marked the problems as requirements,

but later included them. Both supporters marked most of

the steps as requirements that were met or want-to-have.

They did not notice any missing or wrong requirements.

We have seen also in other cases that the two-column

principle and the problem requirements are not fully intu-

itive. However, once reminded of the principle, readers

understand the requirements correctly. (The reply started

with a six-line explanation of the principles, but the sup-

porters did not notice it.)

The senior supporter decided to evaluate the system they

intended to buy by means of the task descriptions (she still

did not know whom the author was). She did this on her

own a few days later and concluded that most requirements

were met—also those that earlier were want-to-have. She

could also explain the way the new system solved these

want-to-have problems.

Task description: Expert K’s reply consists of four

tasks, very similar to Lauesen’s, but K has not covered

statistics and maintenance of basic data. For space reasons,

we do not show a detailed task. In general the task replies

are rather similar because they follow the closure principle.

Name Handle request

Actor Supporter (first/second line)

Supporting actors IT user

Goal Solve a problem.

Precondition [Workspace: request]

 metsyS rotcA noitpircseD

A1)
VAR1) the actor takes on an open request
from his/her line.
[Exception: No open requests]
VAR2) the actor receives a request for-
warded to him/her.

S1)
If VAR1) The system records the actor as owner of the
request.
[System function: take on request]

A2) [optional *] The actor adds information
[Include UC Clarify request]

A3) [optional X] The actor forwards the
request.
VAR1) forward to second line
VAR2) forward to specific expert (no matter
what line) [include UC Handle request]

S3) The system forwards the request [System function:
forward request]
If VAR1) The system changes the owner to “not set” and
the status to “second line”
If VAR2: The system sets the expert as the owner and
notifies him/her about the forwarded request.
If he/she is logged in at the moment, the system sends
an alert in a way designed to attract his/her attention
(e.g. a pop-up window).
Else it sends the alert as soon as the expert logs in.

A4) [optional *] The actor looks up informa-
tion of the request.

S4) The system provides information about the request.
[System function: show request details]

A5) [optional X] The actor solves the prob-
lem and closes the request.

S5) The system closes the request. The system sends
the user a notification.
[System function: close request]

Exceptions [There are no open requests]: The system contains no open requests.

Rules None

Quality
requirements

None

Data,
Functions

System functions: take on request, show request details, add information to description field . . .

Post
conditions

The request is closed in the system.

Included UCs Clarify request; Handle request

Fig. 4 Expert A: dialog steps in two columns. Program-like use cases

Requirements Eng (2012) 17:3–18 9

123

We chose K’s reply because K had no hotline domain

experience, but had some task experience from other

domains.

Supporter assessment: The senior supporter read this

reply a few months after reading the first three replies. She

found also this reply easy to read. She had marked eight of

the requirements with a smiley and explained that these

requirements showed that the author had found the sore

spots in a hotline. (Seven of these requirements were

problem requirements.) She had marked all the require-

ments as met in the new system, but explained that they

currently worked on improving the solution to one of the

problems (quick recording of problems solved on the spot).

She had noticed that requirements for statistics were

missing.

Morten also read this a few months later. He was asked

to compare the reply against the old system, since he did

not know the new one. He found the tasks easy to read and

noticed six requirements that were not met in the old sys-

tem (five of them problem requirements). He did not notice

that requirements for statistics were missing.

He also made comments that showed that the task

principles had to be reinforced. He surprisingly suggested

that the step estimate solution time should be deleted—

otherwise supporters would be annoyed at having to make

an estimate. He forgot that all task steps are optional, and

you do not have to carry out an optional step. In a few

places, he complained about missing or bad solutions. He

forgot that the solution side is just examples. The supplier

should specify the real solution.

5 Completeness: dealing with existing problems

Requirements are complete when they cover all the cus-

tomer’s needs. Completeness of the ordinary requirements

varied within both groups of replies due to participant’s

experience, time spent, etc. However, the means were

almost the same:

• Number of ordinary requirements covered by a use case

reply: 18.3 ± 3.2

• Number of ordinary requirements covered by a task

reply: 17.6 ± 4.8

However, the two groups handled the present problems

very differently. If requirements do not cover these prob-

lems, the customer may end up with a new system that does

not remedy the problems. He may not even notice that the

C4. Handle a request in second line
Start: The supporter gets an email about a request or looks for pending requests.
End: The supporter cannot do more about the request right now.

 :snoitulos elpmaxE :stnairav dna sksatbuS

1 Look at open second-line requests from time to time, or when
finished doing something else.

1p Problem: In busy periods it is hard to spot the important and
urgent requests.

Can restrict the list to relevant requests. Can sort ac-
cording to reminder time, priority, etc.

1a Receive email notification about a new request

2 Maybe contact the user or receiver to obtain more information.

3 Maybe solve the problem by moving to the problem location.

4 Maybe work for some time on the problem. Inform others that
they don't have to look at it.

Put the request in state taken.

5 Maybe order something from an external supplier and park the
request.

The system warns if no reminder time has been set.

6 In case of a reminder, contact the supplier and set a new
reminder time.

6p Problem: The user doesn't know about the delay. The system sends a mail when the reminder time is
changed.

 .tes neeb t'nsah esuac eht fi snraw metsys ehT .esac eht esolc ebyaM 7

7p Problem: To gather statistics, a cause should be specified,
but this is difficult and cumbersome today.

7q Problem: The user isn't informed when the request is closed. The system sends a mail when the request is closed.
The supporter has the possibility to write an explanation
in the mail.

8 Maybe leave the request in the "in-basket" or transfer it to
someone else.

User and computer together

p, q: Problems today
a.b: Variants of the subtask

Maybe: The user decides

Fig. 5 Expert L (Lauesen): tasks—no dialog. Problem as requirements

10 Requirements Eng (2012) 17:3–18

123

problems remain because they do not call his attention

while he verifies the requirements, e.g., during acceptance

testing.

The analysis report mentions nine problems in the

existing hotline, for example, In busy periods, around 100

requests may be open (unresolved). Then it is hard for the

individual supporter to survey the problems he is working

on and see which problems are most urgent.

In principle requirements can deal with such a problem

in three ways:

1. Specify a solution to the problem.

2. Ignore the problem.

3. Specify the problem and require a solution (a problem

requirement).

Problem requirements are unusual in traditional

requirements, but are used extensively in tasks. The use

case replies deal with problems by either specifying a

solution or ignoring the problem.

All the use case replies ignored the problem with the

busy periods. Expert A confirmed our suspicion that it was

because they could not see a solution.

Expert A explained: We do not think that this can be

solved by the system. The system gives all the important

information (e.g. date placed) for the user to decide.

With tasks you can just record the problem, for instance

as in Fig. 5, 1p. Lauesen’s experience from many kinds of

projects is that recording the problem helps finding a

solution later, for instance the one outlined in Fig. 5, 1p.

Even if the analyst cannot imagine a solution, a supplier

may have one. As an example, we considered problem 7p

(specifying the cause of requests) hard to solve until we

saw a product where the supporter could chose from a short

experience-based list of the most common causes and a

longer tree-structured list for the remaining causes. The

short list covered around 90% of the help requests. The

customer could edit and add to the lists, of course.

The analysis report mentions nine problems. For each of

the 17 replies, we checked which problems it covered,

either as a problem requirement or as a solution. Figure 6

shows the results. The problem above is recorded as

problem A. None of the use case replies deal with it.

Problems that have an easy solution, for instance problem

I, are covered by most replies.

Tasks cover these nine problems significantly better than

use cases do:

• Number of problems covered by a use case reply:

3.8 ± 1.2

• Number of problems covered by a task reply: 6.5 ± 1.9

The difference is significant on the 1% level for

ANOVA (p = 0.6%) as well as for a t test with unequal

variances (p = 0.5%).

The standard deviations are due to differences in

expertise, time spent, simple mistakes, etc. Not surpris-

ingly, the deviation for task replies is larger because some

task participants had little task experience (N and O).

Maiden and Ncube [21] observed that when comparing

COTS products, all products meet the trivial requirements.

Selection must be based on the more unusual requirements.

In the hotline case, the problem requirements are the ones

that will make a difference to the customer, while the

ordinary requirements will be met by most systems. As a

result, use cases would not help, but tasks would.

6 Compare systems: too restrictive requirements

In the hotline case, the purpose is not to develop a new

system, but to expand the existing one or acquire a new one

(probably COTS-based). With the task technique, stake-

holders check how well the system supports each task step

and each problem. In order to compare systems, they check

each of them in the same way.

We could not see how the use cases handled this situ-

ation. The use cases specify a dialog in more or less detail,

and it seems meaningless to compare this dialog with a

different dialog used by an existing system. The require-

ments arbitrarily restrict the solution space. So, we asked

participants how their use cases could be used for com-

parison with an existing system. Here are some of the

replies:

Expert F: We will make use of something that we call a

decision matrix. We have prepared a sample for your ref-

erence where we are comparing the present Hotline system

with the system that we propose…
Their matrix shows nine features to compare, e.g.,

Reminder management and Automatic request state man-

agement. They have no direct relation to the use cases. F

explained that their use cases specified a new system to be

developed from scratch.

Expert H: Use Cases are an optimal source for defining

Test Cases. So running these Test Cases against different

proposals and the existing system, it will be clear which

systems fulfill most of the functional requirements. The tests

can be run ‘‘on paper’’ since many solutions have not been

developed yet.

This seems a good idea. The only problem is at what

detail you define these test cases. Assume that you use the

use cases directly as test scripts. You would then test

Transfer request (Fig. 3) by trying to select a request from

the list, checking that the system shows request details and

later shows a list of hotline employees. But what about a

system where you do not need to see the request details, but

can transfer the request directly from the list? You would

conclude that the system does not meet the requirements

Requirements Eng (2012) 17:3–18 11

123

(actually it might be more convenient). One of the sup-

porters (Morten) actually tried to verify Expert A’s pro-

gram-like use cases in this way, but became so confused

that he gave up.

Hopefully, the testers have domain insight so that they

can abstract from the details of the use case and make the

right conclusion. If so, most of this use case is superfluous.

You could omit everything except the heading Transfer

request and simply test that the system can transfer a

request and make a note about how easy it is to do so. The

other supporter (Karin) actually verified all use cases in this

way.

Expert A: Our requirements only describe the to-be

system. They cannot be used to compare the other systems

with the current (open source) system. However, they could

be used to see whether the supplier’s system (if not avail-

able, the description of the system) meets our requirements.

Expert A (another team member): I think the purpose of

your [Lauesen’s] specification is quite different from ours.

We want to provide a specification that describes the

solution to the problems on a high level. For the purpose of

choosing between solutions your specification is much

better, but this was not so prominent in the experiment

description that we considered it the major context.

The other use case replies follow the same lines. They

describe a future solution in detail.

7 Wrong requirements

The supporters and we noted several wrong requirements in

the use cases. As an example, Expert C mentions these two

business rules:

R1. Only problems with high priority may be requested

via phone or in person

R2. For statistical purpose it is not allowed to create a

request for more than one problem

None of these rules are justified in the analysis report,

and it would be harmful to enforce them. Should hotline

reject a user request if it contains more than one problem?

The hotline would surely get a bad reputation.

Use-case
based:

A
: H

ar
d

to
 s

po
t i

m
po

rt
an

t r
e-

qu
es

ts

B
: D

iff
ic

ul
t t

o
sp

ec
ify

 a
 c

au
se

.
M

ay
 c

ha
ng

e
la

te
r

C
: U

se
r:

 W
he

n
ca

n
I e

xp
ec

t a

re
pl

y?

D
: F

or
ge

ts
 to

 tr
an

sf
er

 r
eq

ue
st

s
w

he
n

le
av

in
g

E
: C

um
be

rs
om

e
to

 r
ec

or
d

on
-

th
e-

sp
ot

 s
ol

ut
io

ns

F
: U

se
r:

 W
he

n
is

 it
 d

on
e?

G
: N

ob
od

y
le

ft
on

 1
st

 li
ne

H
: R

em
in

de
r:

 W
ar

n
ab

ou
t

ov
er

du
e

re
qu

es
ts

I:
T

od
ay

 it
 is

 h
ar

d
to

 r
ec

or
d

ad
di

tio
na

l c
om

m
en

ts

Total

Expert A 1 1 1 1 0.5 1 5.5

Expert B 0.5 1 1 1 0.5 1 5

Expert C 0.5 1 1 0.5 1 4

Expert D 1 1 1 1 4

Expert E 1 1 1 1 4

Expert F 0.5 1 1 1 3.5

Expert G 0.5 0.5 1 2

Expert H 0.5 0.5 1 2

Total UC 0 0.5 1.5 2.5 3 4 5 5.5 8

Task-based:

Expert I 1 1 1 1 1 1 1 0.5 1 8.5

Expert J 1 1 1 1 1 1 1 1 8

Expert K 1 0.5 1 1 1 1 1 1 7.5

Expert L 1 1 1 1 1 1 1 7

Expert M 1 1 0.5 0.5 1 1 1 6

Expert N 1 1 0.5 1 1 4.5

Expert O 0.5 1 1 1 3.5

Total tasks 6 5.5 4.5 4 5.5 7 5 2.5 5

Fig. 6 Problem coverage: 1 = fully covered, 0.5 = partly covered

12 Requirements Eng (2012) 17:3–18

123

We believe that use case theory and templates cause

these mistakes. Many textbooks on use cases emphasize

rules, preconditions, etc., and their templates provide fields

for it. Most replies used such a template, and as a result, the

authors were tempted to invent some rules, etc. Often these

rules were unnecessary or even wrong.

In order to avoid this temptation, tasks do not have fields

for preconditions or rules. When such a rule is necessary to

deal with a customer need, it can be specified as a task step

(e.g., check that the request has a high priority), as a

constraint in the data model (e.g., in the closed state, a

request must have a cause) or in other sections of the

requirements [15].

8 Discussion

When we presented the first, short version of this paper at

the REFSQ’11 conference, it caused an unusually long

debate. In this section, we will discuss some of the issues

brought up.

8.1 Addressing the wrong acquisition context

Why did all the use case authors describe a future solution

and later realize that it was not useful as requirements in

this case? The analysis report said that the customer wanted

to modify the existing system or buy a new one—not build

a new one. They addressed the wrong acquisition context.

Lauesen has seen this problem over and over, also in

very large acquisitions. The analysts define detailed use

cases and other requirements although they know that most

parts of the system will be COTS. Even if they expect the

system to be built from scratch, strict adherence to the use

cases will guarantee a poor user dialog. We believe that use

case principles and current practice are the causes:

1. Use case principles force you to design a dialog at a

very early stage. In this way, you design key parts of

the solution rather than specifying the customer’s

needs.

2. Use cases are so widely used that nobody questions

their usefulness.

3. Few analysts know alternative requirements that

specify the user–system interaction without specifying

the dialog.

The classical requirements textbooks [e.g. 24 and 30] do

not mention COTS at all. The modern ones say a bit, but not

enough to evaluate a COTS-based system’s user–computer

interaction. Wiegers suggest that use cases work well [28,

p 289], and Alexander and Beus-Dukic [2] suggest a com-

parison of COTS-based solutions based on higher-level

criteria similar to expert F’s decision matrix above.

8.2 How use cases and tasks deal with the step

sequence

Although Cockburn and others emphasize that the step

sequence should be rather free, it causes problems in

practice. First of all, why do you have to describe a

sequence at all? This seems necessary because you

describe a dialog of the form: the user does—the system

does. You are all the time encouraged to specify what

happens next.

The habit might also come from the simple examples

used in textbooks, for instance the ATM example. Here, a

strict sequence is okay. Analysts believe that they should

do something similar in the complex cases they deal with.

One way to avoid a strict sequence is to use tiny use

cases, each of which performs one simple action. Since

there is no prescribed sequence between use cases, this

allows the user to choose his own sequence. However, we

do not believe analysts make tiny use cases for this reason.

The consequence of tiny use cases is that you generate a

lot of useless formalities (preconditions, primary user,

exceptions, etc.) and invent dialog steps to prepare the

essential action (e.g., the first steps of Transfer request).

Yet, the true context of use is not visible. Figure 3 is a good

example.

Another way is to ‘‘program’’ the dialog and its different

flows. Many authors describe a main flow and alternate

flows. Each of these has a sequence of steps. Other authors

use exceptions, if-statements, variants, etc., to describe the

possible sequences. This makes the use cases hard to read

and introduces many unnecessary requirements about

sequence and rules. Figure 4 is an example.

Some analysts suggest using more precise specification

languages with parallelism, such as UML activity dia-

grams. This does not help because the basic problem is that

the dialog should not be specified in the requirements.

Furthermore, such specifications would make the require-

ments harder to understand for the real stakeholders.

HCI specialists have tried to model tasks for many

years, focusing on what users actually do with an existing

system. It was hard. There were too many variations and

special situations to deal with, and different users carried

out the same task differently. They did not seem to follow a

procedure in the computer-sense of the word [20, 22]. HCI

specialists seem to have concluded that precise task mod-

eling is unrealistic for nontrivial tasks [23].

Task descriptions avoid the sequence problem by not

specifying a sequence. Further, all subtasks are in principle

optional. The user decides which subtasks to carry out and

in which sequence. There may be preconditions for a task

step, e.g., that the supporter must have selected a request

before he can transfer it. However, this goes without saying

in the requirements. We can leave it to the programmer.

Requirements Eng (2012) 17:3–18 13

123

Example: We will illustrate the sequence problem with

an example everybody knows: the dialog in a popular

system such as MS Word. Imagine that users were forced

to follow this logical flow:

Create headings, create body text, create figures …
Authors would hate it unless we also supported a lot of

alternate flows so that authors might specify some body

text first and then a heading.

As an alternative, we might define a lot of tiny use cases,

for instance: create heading, create paragraph, edit heading,

etc. This would allow the author to choose the sequence he

likes. However, such a use case is too small to meet a

meaningful goal and does not reflect the true work situa-

tion. It might result in a system where the author had to

select what to do, for instance Edit Heading, next select the

heading, etc. We might not even get a full view of the text

because the need for such an overview is not visible in the

requirements.

Using tasks, we would specify one task with a free step

sequence:

Task 1: Edit document.

Start: The user has time for working on the document.

End: No more editing to do right now.

1. Get an overview of the document and read parts of it.

2. Maybe see what was changed recently.

Problem: The present system doesn’t support this.

3. Maybe create or edit a heading.

4. Maybe create or edit a paragraph …
…
20. Park the document for later editing.

The hotline case is actually closer to this than to an

ATM. The supporter finds a request to deal with and opens

it to see the details. Then, he chooses what to do, for

instance add a note, change priority, transfer the request,

park the request for now. He can do this in almost any

sequence. Attempts to prescribe a sequence will make his

job more difficult.

Task descriptions versus traditional shall-statements:

A task description looks suspiciously like a list of tradi-

tional functional requirements such as these:

The system shall have these functions:

Create a heading,

Edit a heading …

Why not write such a list rather than a task? The

important difference is that a task lists the functions needed

in a specific closed use context. You can see how the

functions cooperate, and you can check that the functions

are convenient to use in this context. Tasks are not a

grouping of functions because a function may be used in

several tasks. In the hotline case, a function such as Transfer

request may be used in first-line tasks as well as second line.

IEEE 830 [8] shows grouping of functions according to

various criteria, e.g., by object or by user class, but does

not suggest grouping according to closed use contexts.

(And, if done, it would not be a grouping anymore).

Traditional requirements supplement the shall require-

ments with various ways of describing the context, for

instance context diagrams [2, 28, 30] and rich pictures [2,

4] or operational requirements such as the product will be

used at freezing temperatures and the users will wear

gloves [24]. These are definitely useful, but not sufficient to

serve as requirements for the user–system interaction.

8.3 What comes after the tasks when you develop

a solution?

At the conference, Martin Glinz and others asked: If we are

going to develop a new system, what comes after task

description?

When you use tasks, you do not describe a dialog. So, it

seems tempting to design the dialog next, for instance as

use cases or some flow diagram. Many Web-designers do

so and next design a screen for each step in the dialog. The

result is the cumbersome dialogs we meet on many Web

sites. Most of us prefer ‘‘one-click shopping.’’

Experience from many projects suggests that it is better

to design the data-carrying screens first, that is, the screens

that show the important data the user needs to see. We call

these screens Virtual Windows [14]. They show detailed

data in a realistic layout, but they do not contain functions,

such as Save buttons, menus, or links to another screen. In

the hotline case, one of the Virtual Windows could show

all the details of a single request. Another Virtual Window

could show a list of pending requests. Since Virtual Win-

dows do not have functions, we cannot use them to

‘‘operate’’ the system. They are not the same as the mockup

screens used by interaction designers for usability testing

[23].

It is important to support each task with as few Virtual

Windows as possible in order to reduce the mental load on

the user. It is also important that we look at the entire

closed task, that is, what the user does from trigger to task

closure without essential interruptions.

The Virtual Window method has additional guidelines:

Reuse screens across tasks and task steps, strive for few

screens in total, provide good overview of data, make a

rather detailed graphical design of each screen, review the

screens with typical users, and improve the design until

users are happy.

The next step is to add functions (buttons, menus, etc.)

to each screen so that it can do something. Here, you look

at the task steps one by one, identify the screens needed,

and identify the necessary functions to support the step. For

the hotline system, you would identify a function to

14 Requirements Eng (2012) 17:3–18

123

transfer a request to someone else, a function for sending a

reply to the IT user, etc. These functions could be buttons,

combo-boxes or shortcut keys on the screen that shows the

request details. A typical task step will use a function or

two, but functions are reused across tasks so that the result

is a modest number of functions in total. The user can use

these functions in almost any sequence and in this way

create his ‘‘own’’ dialog.

When all of the functions have been added, for instance

on a mockup, it is possible to let typical users try to

‘‘operate’’ the system, while a developer simulates what the

system would do, and a few other developers observe what

goes on. This is usability testing—the only reliable way to

find out why real users cannot operate the system without

help from someone else. In order to make the system meet

usability requirements, you have to revise the design a

couple of times. The tasks come in handy to help select

realistic test cases (test tasks).

The experience is that when you design the Virtual

Windows first, it becomes easy to define the necessary

functions to support a free user dialog. Amazingly, in the

final system, the tasks are not visible. They were just a

scaffold for building a convenient user interface.

In the hotline case, four of the seven task replies include

a user interface built on the Virtual Windows approach

(replies K, L, N, and O). The user interfaces are surpris-

ingly similar and consist of three screens: (1) A list of

requests somewhat similar to the one in the analysis report.

(2) A single request with all details. (3) A list of supporters

with their current state. One of the use case replies also

included a user interface (reply A). It had a few more

screens customized for specific use case steps.

Lauesen’s Web site [18] has examples of larger user

interfaces designed with Virtual Windows. These examples

also show the task descriptions that are the base of the

design. One example is a redesign of Facebook for mobile

use. It reduced the number of Web-pages from around 40 to

around 10 and even added some functionality that users

missed.

8.4 How tasks were ‘‘invented’’

Until 1997, Lauesen thought that it was unrealistic to

describe larger tasks in any detail, and HCI specialists later

seemed to conclude the same [23].

In 1997, Lauesen saw Cockburn’s template for use cases

[5] with real-life examples and suddenly realized that task

descriptions were possible and that they even scaled up to

large systems. However, which of the many kinds of use

case were best in practice?

Together with Marianne Mathiassen (Masters student at

that time) and a team of analysts at a Danish Hospital,

Lauesen tried to answer these questions: Should we

describe what the user does? What the computer does?

What they do together? As-is? Or to-be?

Working on the most difficult part of the hospital’s

current software acquisition (roster planning), they tried

out many combinations using one, two, three, or even four

columns. The theoretically correct combination had four

columns: user as-is, system as-is, user to-be, system to-be.

They assessed each combination in light of its usefulness in

the acquisition process. There were several conclusions:

1. More than two columns were confusing, and the

columns tended to repeat what the other columns said.

2. It was best to describe what user and computer did in

combination. This allowed customers to compare with

the suppliers’ ways of doing things. Surprisingly, this

was the only combination that Cockburn rejected. He

insisted that it must be clearly described who did what.

(As the case study shows, the result is a premature

design of the dialog.)

3. It was not interesting to describe what users did today.

The purpose of the new system was to make users

work in a different way, so why describe the old way?

With one exception: Things that were problematic

today should be described in order to look for systems

that remedied these problems.

4. It was not interesting to describe what the old system

did, except where it was problematic. But, it was

highly interesting to describe what the new system

would do. However, the supplier or developer should

do this. The customer might describe a solution he

imagined, but it should not be a requirement, because

this might lead to excessively expensive solutions.

When the acquisition process was over, Lauesen asses-

sed the requirements with the three suppliers who had sent

a proposal. This caused only minor adjustments of the

approach. Overall, the suppliers were happy with the

approach, particularly because it allowed them to offer

something that was cheaper and still met the customer’s

needs, and because it allowed them to show solutions that

exceeded the customer’s expectations [12, section 10.7].

For a few years, Lauesen believed that the task approach

was only for acquisition of COTS-based products. Then, it

proved to be just as useful for ordinary development pro-

jects (also agile ones) and product development. The main

strength was that the customer’s demands could be caught

in such a way that developers could see the problem and

had space for inventing a good solution.

Until 2001, Lauesen considered task descriptions a

variant of use cases and called them use cases in task

notation. Soon readers and colleagues convinced him that

there was a much more profound difference between the

two techniques. Today, we simply call them tasks—a term

that the HCI community has used extensively for decades.

Requirements Eng (2012) 17:3–18 15

123

8.5 Diffusion of the task technique

At the conference, people asked why the technique was not

used widely when it seemed to have many advantages. As

an example, Björn Regnell reported that he had been

teaching the task approach for years, but when he met

students a couple of years later in industry, they had for-

gotten about it and wrote use cases, because this is the way

in our company.

The short explanation of the lack of spreading is that our

research ideals are an illusion. The ideal is that once you

have published something, other researchers and practi-

tioners can read it, and if the result is interesting, it spreads

by itself. Most of us know that things do not work this way.

However, we hope our students will bring the idea into

practice. Unfortunately, this is also hard as witnessed by

Regnell.

Lauesen has had some success spreading the task prin-

ciple, primarily in his home country, Denmark. This is

done not only through teaching, but also by giving courses

and seminars in industry (around eight a year) and by

providing consultancy for specific projects. Consultancy

has the largest impact, because it enables practitioners to

use the technique in their own projects. It also helps the

researcher improve his approach to deal with situations he

did not know about. Every now and then, Lauesen gets into

contact with small communities abroad who use task

descriptions and ask for additional advice. However, the

critical mass is missing.

In contrast, use cases have spread widely. What is the

difference? Everett Rogers’ theory about diffusion of

innovation [25] can shed some light on it. Rogers talks

about five driving factors. We will discuss each of them.

Relative advantage: How improved is the innovation

against the existing way?

As the paper shows, there are significant advantages of

tasks. However, they are not immediately visible. People’s

first reaction when seeing a task description is: This looks like a

use case. What is new? Although people can see and under-

stand the advantage when seeing a real-life example, they

cannot immediately see how it applies in their own projects.

When use cases spread in the nineties, there was no

competing technique that could specify the context of use

in a systematic way. Structured analysis and rich pictures

[4, 30] were common at that time, but too vague to deal

with user–system interaction.

Compatibility: How easy is it to assimilate the inno-

vation into the individual’s present life?

It is very hard to introduce tasks in a developer culture

that is accustomed to use cases. It is a pioneer’s job, not an

activity for the typical developer.

Could it be introduced through the big consultancy

organizations? This was actually attempted. The head of

the Rational Group in IBM Denmark had heard about the

advantages of tasks. In March 2009, he contacted Lauesen

to find a way to include tasks in Rational. Lauesen found it

a great idea and cooperated for some weeks with Rational

staff. Soon the parties agreed that it was not feasible. Too

much had to be changed in the course material, in the

Rational tool and in the consultants’ training. Although

Rational staff did not say so explicitly, there was not suf-

ficient new business in the idea. Tasks were not a

competitor.

In contrast, use cases had the advantage of being

introduced as part of the OOA/OOD wave.

Maybe tasks should be introduced together with the

spreading agile development, as a replacement for the

fuzzier user stories. Agile is a competitor to approaches

such as Rational. Usually, agile developers are very

aggressive against requirements. It is not possible to specify

requirements up front. It is only a waste of time. However,

when they have seen a couple of tasks, they become fas-

cinated. Oh, if these are requirements, they might be useful.

Some agile teams have used task descriptions (with a bit of

guidance from an expert) and reported back that they are

very useful. The left-hand column is very stable, but we

change the solution column a lot.

Simplicity: How easy is it to use for the individual?

Tasks seem easy, but when analysts try on their own,

90% of them write traditional use cases in the new tem-

plate—or traditional requirements in column 1 of the

template. This is all wrong—column 1 should describe

what user and computer do together. After feedback from a

task expert, most of them succeed.

We do not think this difficulty is much different from

use cases. In the case study, we saw several lengthy and

confusing use cases from seasoned practitioners.

Trialability: How easy is it to experiment with the

innovation?

You can easily experiment with writing task descrip-

tions, but it is harder to try them in practice. The real

feedback is during development, but analysts can get the

first feedback when reviewing the tasks with stakeholders.

This is often very encouraging, because users can see how

tasks relate to their work situation. Karin’s comments on

the task descriptions in Sect. 4 are a good example.

As this case study shows, use cases are much weaker in

this area. Stakeholders have trouble understanding them or

find them trivial. Some seasoned developers told us that the

purpose of use cases is not to communicate with stake-

holders, but to impress them: When stakeholders ask about

progress, we give them 1,000 pages of [tiny] use cases.

This makes them shut up.

Observability: How visible is the innovation to others?

In a specific project, tasks are visible to other developers

and to stakeholders. When successful, they bring them into

16 Requirements Eng (2012) 17:3–18

123

their next project. This is actually the way tasks spread

today. But, it is not the same visibility as if university

teachers and large consultancy companies started using the

technique.

Use cases are already very visible on the market, carried

by consultants and university teachers.

9 Conclusion

In this study, we compare real-life use cases against the

related technique, task description. We deal only with use

cases that specify the interaction between a human user and

the system. We do not claim that the findings can be

generalized to other kinds of use cases, for instance system-

to-system use cases.

The study shows that with use cases, the customer’s

present problems disappear unless the analyst can see a

solution to the problem. The consequence is that when the

customer looks for a new system, he will not take into

account how well the new system deals with the problems.

Even if the analyst has specified a solution, a better solu-

tion may not get the merit it deserves because the corre-

sponding problem is not visible in the use cases.

Task descriptions avoid this by allowing the analyst to

state a problem as one of the ‘‘steps,’’ with the implicit

requirement that a solution is wanted (a problem require-

ment). Example solutions may be stated, but they are just

examples—not requirements. In practice, stakeholders

need some guidance to understand these principles.

The study also shows that use cases in practice produce

too restrictive requirements for two reasons: (1) They force

the analyst to design a dialog at a very early stage, in this

way designing a solution rather than specifying the needs.

Often the dialog would be very inconvenient if imple-

mented as described. (2) Many use case templates provide

fields for rules, preconditions, etc., and these fields

encourage analysts to invent rules, etc. Often the rules do

not reflect a customer need and may even be harmful.

Task descriptions do not specify a dialog but only what

user and system need to do together. The supplier defines

the solution and the dialog, and stakeholders can compare

the solution against the task steps to be supported. Tasks do

not tempt the analyst with fields for rules, etc. When rules

are needed, the analyst must specify them as separate task

steps or in other sections of the requirements.

Tasks are also a good basis for designing the user

interface because the developer can focus on designing

screens that conveniently show the data needed during the

task. He can add functionality and the dialog later.

Unfortunately, the task method does not spread easily.

Use cases had the advantage of spreading with OOA/OOD

and powerful consultants. Using tasks instead requires a lot

of change in present practice and tools.

References

1. Achour CB, Rolland C, Maiden NAM, Souveyet C (1999)

Guiding use case authoring: results of an empirical study. In:

Proceedings of the 4th IEEE international symposium

2. Alexander I, Beus-Dukic L (2009) Discovering requirements.

Wiley, New York

3. Armour F, Miller G (2001) Advanced use case modeling. Addi-

son-Wesley, Reading

4. Checkland PB (1981) Systems thinking, systems practice. Wiley,

Chichester

5. Cockburn A (1997, 2000) Writing effective use cases. Addison-

Wesley

6. Constantine LL, Lockwood LAD (1999) Software for use: a

practical guide to the models and methods of usage-centered

design. Addison-Wesley, New York

7. Cox K, Phalp K (2000) Replicating the CREWS use case

authoring guidelines. Empir Softw Eng J 5(3):245–268

8. IEEE Recommended Practice for Software Requirements Speci-

fication, ANSI/IEEE Std. 830 (1998)

9. Jacobson I, Christerson M, Johnsson P, Övergaard G (1992)

Object-oriented software engineering—a use case driven

approach. Addison-Wesley, Reading

10. Jacobson I (2003) Use cases: yesterday, today, and tomorrow.

IBM Technical Library

11. Kulak D, Guiney E (2000) Use cases: requirements in context.

Addison-Wesley, Reading

12. Lauesen S (2002) Software requirements—styles and techniques.

Addison-Wesley, Reading

13. Lauesen S (2003) Task descriptions as functional requirements.

IEEE Softw 20(2):58–65

14. Lauesen S (2005) User interface design—a software engineering

perspective. Addison-Wesley, Reading

15. Lauesen S (2011) Guide to requirements SL-07—Template with

examples. ISBN: 978-87-992344-1-7, also on: http://www.itu.dk/

people/slauesen/SorenReqs.html#SL-07

16. Lauesen S, Kuhail MA (2009) The use case experiment and the

replies, http://www.itu.dk/people/slauesen/

17. Lauesen S, Kuhail M (2011) Use cases versus task descriptions.

In: Berry D, Franch X (eds) REFSQ 2011, LNCS 6606. Springer,

Berlin, pp 106–120

18. Lauesen S, Soren Lauesen’s website: http://www.itu.dk/people/

slauesen/ Contains examples of requirements and user interfaces

developed with tasks

19. Lilly S (1999) Use case pitfalls: top 10 problems from real pro-

jects using use cases. IEEE Computer Society, Washington

20. Lim KY (1996) Structured task analysis: an instantiation of the

MUSE method for usability engineering. Interact Comput

8(1):31–50

21. Maiden NA, Ncube C (1998) Acquiring COTS software selection

requirements. IEEE Softw 15(2):46–56

22. Polson PG, Lewis CH (1990) Theory-based design for easily

learned user interfaces. Hum Comput Interact 5:191–220

23. Preece J, Rogers Y, Sharp H (2002) Interaction design—beyond

human–computer interaction. Wiley, New York

24. Robertson S, Robertson J (1999) Mastering the requirements

process. Addison-Wesley, Reading

25. Rogers EM (1962, 1983) Diffusion of innovations. Free Press,

New York

Requirements Eng (2012) 17:3–18 17

123

http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07
http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07
http://www.itu.dk/people/slauesen/
http://www.itu.dk/people/slauesen/
http://www.itu.dk/people/slauesen/

26. Rosenberg D, Scott K (2001) Top ten use case mistakes. Softw

Dev. http://www.drdobbs.com/184414701

27. Sigurðardóttir, Hrönn Kold (2010) Project manager for the

electronic health record system at the Capital Hospital Associa-

tion (H: S): draft of PhD thesis

28. Wiegers KE (2003) Software requirements. Microsoft Press, US

29. Wirfs-Brock R (1993) Designing scenarios: making the case for a

use case framework, Smalltalk report, Nov/Dec, also: http://

www.wirfs-brock.com/PDFs/Designing%20Scenarios.pdf

30. Yourdon E (1989) Modern structured analysis. Prentice Hall,

New Jersey

18 Requirements Eng (2012) 17:3–18

123

http://www.drdobbs.com/184414701
http://www.wirfs-brock.com/PDFs/Designing%20Scenarios.pdf
http://www.wirfs-brock.com/PDFs/Designing%20Scenarios.pdf

	Task descriptions versus use cases
	Abstract
	Background
	The hotline case study
	Evaluation method and validity
	Sample replies and stakeholder assessment
	Tiny use cases
	Program-like use cases
	Task descriptions (Lauesen)

	Completeness: dealing with existing problems
	Compare systems: too restrictive requirements
	Wrong requirements
	Discussion
	Addressing the wrong acquisition context
	How use cases and tasks deal with the step sequence
	What comes after the tasks when you develop a solution?
	How tasks were ‘‘invented’’
	Diffusion of the task technique

	Conclusion
	References

