
Command Languages, C. Unger, Editor.
North-Holland Publishing Company (1975)

Abstract

PROGRAMMING LANGUAGE EXTENSIONS WHICH

RENDER JOB CONTROL LANGUAGES SUPERFLUOUS

J¢rn Jensen and S¢ren Lauesen
A/S Nordisk Brown Boveri, Copenhagen.

A job control language need not be a "new" language, but can be
embedded in most existing programming languages. As an example, the
necessary extensions for Algol are outlined and several applications
of them are given.

Some aspects of the implementation and the requirements to the
operating system are discussed. A complete list of all requests from
job to operating system is given.

The approach gives several advantages: The Algol user will not
have to learn a new syntax and nearly no new concepts. Still his job
control language is much more powerful than any existing job control
language. From a theoretical point of view, the approach clarifies
the basic concepts and mechanisms of a job control language.

The main drawback seems to be a slightly more elaborate writing
of the commands (you may also call it more readable). But this is
completely independent of the job control purpose, and can be traced
back to· slight inconveniences in the syntax of Algol, for instance
the strict matching of actual and formal parameter list.

AJ.l the existing system programs like compilers, editors, and
linkers could relatively easy be made available from Algol, because
the proposed call mechanism allows each system program to use its own
core allocation method and its own strategy in communication with the
operating system and the drivers.

131

138

CONTENTS

l. INTRODUCTION
l.l. Job execution

J, JENSEN, S, LAUESEN

1.2. Program file, program parameter

2. AN ALGOL BASED COMMAND LANGUAGE
2.1. An Algol interpreter as the initial program
2.2. Algol shorthand, other interpreters
2.3. String operators for file name specifications
2.4. The Algol interpreter, dynamic change of command language

3. INTERFACE BETWEEN JOB AND OPERATING SYSTEM
3.1. Resource allocation
3.2. The program call mechanism
3.3. List of operating system requests

4. FILES AND ACCESS METHODS
4.1. File description and directory
4.2. Drivers and file access methods
4.3. Self-protection of primary input/output

5, CONCLUSION

REFERENCES

l. INTRODUCTION

This report discusses the interface between job and operating
system. It also discusses which language facilities the user needs
to make efficient use of the interface.

We conduct the discussion in the opposite sequence. First (in
Chapter 2), we use Algol as a model language and extend it slightly
to make it suitable for job control. Second (in Chapter 3), we dis­
cuss the requirements this makes on the operating system and we end
up with a list of the requests a job can issue to the operating sy­
stem. Finally (in Chapter 4), we show how the drivers can be simpli­
fied and the different file access methods put into procedures of the
job.

l.l. Job execution

When a user logs in on the system, the operating system will ask
for his user name and password (project number) . After proper check­
ing, the operating system creates a job process for the user and lets
the job process execute an initial program. The operating system
gives the initial program access to a primary input stream (lines
typed in on the terminal) and a primary output stream (output to the
terminal) . The rest of the job execution is controlled by the initial
program and the contents of primary input.

,,, JOB CONTROL LANGUAGES SUPERFLUOUS

In the case of a card batch job, nearly the same thing happens,
but primary input is the cards of the job, primary output a print
file.

1.2. Program file and program parameter

139

We will assume that the system contains a set of files each iden­
tified by a file name. Some of these files are program files which
by means of a program call can be loaded and executed. A Program call
must specify a list of program parameters.

A particular program file is the initial program and it requires
two parameters: the primary input stream and primary output stream.
Other examples of program files are compilers. We will assume that
they as a standard require 5 parameters:

1. A source stream containing the source text.

2. An output file name specifying the name of the object file.

3. A message stream to contain diagnostic messages and possible li­
stings.

4. A mode integer which specifies whether listing should be produc­
ed, etc.

5. A result integer to contain information of how the compilation
proceeded (has the output file been successfully created, were
syntax errors detected, etc.).

Further we assume that the object file from the compilation has
to pass through a linking (loading) phase where it is combined with
precompiled parts from a library. We will discuss this a little more
in section 2.3 and 4.1.

The program file containing the linker requires also 5 parameters
like those above, except that the first parameter is the file name
of the object file to be linked.

We define three types of program parameters: integer, file name,
and stream. They are all exemplified above. You should notice the
difference between a file name and a stream. A stream is an open
file, with buffers allocated, and ready for sequential input or out­
put. For instance, if two programs are called in succession with the
same file name as an input parameter, they will get exactly the same
data from that parameter. But if they are called with the same
stream as an input parameter, they will get succeeding parts of the
file.

For simplicity, we assume the following implicit type conversion
for program parameters: If a program specifies a program parameter
of type stream, the corresponding actual parameter may be of type
stream or type file name. In the latter case, an implicit file open­
ing and buffer allocation is assumed.

A system like OS/360 deviates from the principles above in the
way access methods and buffers are specified. Above, we always
assume that a program (or the implicit type conversion) can infer
a proper buffering and access method from the file name alone. We
will elaborate on that subject in Section 4.2.

140 J. JENSEN, S, LAUESEN

2. AN ALGOL BASED COMMAND LANGUAGE

2.1. An Algol interpreter as the initial program

We will now discuss a system where the initial program is an Al­
gol interpreter, which reads an Algol program from primary input,
compiles it, executes it, reads the next program from primary input,
and so on. The compiled program is executed (called) with two pro­
gram parameters of type stream: "in" which actually is primary in­
put and "out" which actually is primary output. A third parameter
"mode" (of type integer) is supplied for reasons explained in Sec­
tion 2.4.

As shown in example 1, such a system is well suited for simple
Algol jobs.

We now postulate the existance of a standard procedure "execute"
which can call a program file with a list of program parameters and
execute it. The Algol statement for this is:

execute((name of program file),(list of program parameters));

A program parameter of type file name appears simply as a string in
the call, while streams are introduced as new Algol quantities.

This standard procedure is used in Example 2 to compile, link,
and execute a Fortran program. The Fortran compiler has the file
name ·· ftncomp', the linker the file name link'. All the job control
statements" are statements of the Algol program from begin to end.

These examples are hardly surprising, but one advantage of the
approach appears when the user decides to replace the job control
statements by a single statement. That is, he wants to write his job
as in Example 3. This requires the existence of a standard procedure
"fortran" or a user defined external procedure as shown in the exam­
ple. The procedure "fortran" has been improved relative to Example 2,
so that it skips linking and execution if the compilation caused
troubles. A further standard procedure "cancel" is invoked to cancel
the intermediate object file from the compilation.

Example 4 shows another application where the Fortran program is
executed ten more times with new sets of data,

The real advantages of the approach appear when we discuss high
level job control commands like these:

A job control command which has a set of source file corrections
as input and returns only the result of four test runs. It updates
version numbers and takes safety copies automatically.

A job control command which executes a sequence of administrative
programs like input conversion, sorting, merging, print out. It takes
care of back-up versions, reporting of file contents, reruns, etc.

We hope that the reader can imagine that such commands are rela­
tively simple to implement with the tool outlined. The key point is
that streams, programs, and files can be handled by the programming
language whith the same flexibility as integers and reals.

••• JOB CONTROL LANGUAGES SUPERFLUOUS 141

Example 1: Simple Algol job

This example shows the contents of primary input for a simple Algol
job.

job (user identification)

begin real a, b; .. .

read (in, a,b, ...);

write(out, ...);

end;

(data)

Example 2: Simple Fortran job

The Algol program, which is
read and compiled by the
initial program of the job.

}
The data which is read
by the compiled program.

This example shows the contents of primary input for a simple Fortran
job - still with an Algol interpreter as the initial program.

job (user identification)

begin integer result;

execute(~ftncomp', in, "obj', out, 0, result);

execute('"link', "obj', 'prog', out, 0, result);

execute(/prog', in, out, 0);

end;

subroutine

end

<data for Fortran program)

Example 3: Fortran job with compile-link-go procedure

This job uses a precompiled procedure "fortran" to achieve the effect
of Example 2.

job <user identification)

begin

fortran(in,/prog',out,O);

end;

subroutine

end

<data for Fortran program)

l
could be abbreviated to:
fortran(in,. "prog', out, 0);

The procedure "fortran" may have this appearence (improved slightly
relative to Example 2):

142 J, JENSEN, S, LAUESEN

(Example 3, continued)

external procedure fortran(source,object,message,mode);

stream source, message; string object; integer mode;

begin integer result;

execute('' ftncomp', source, "work' ,message, mode, result);

if result = 0 then

execute(1 link' ,/work',object,message,mode,result);

cancel(/work1
);

if result = 0 then

execute(object,source,message,mode);

end;

Example 4: Fortran job with repeated execution

This job compiles and executes a Fortran program, and next executes
it ten more times with new sets of data.

job (user identification)

begin

fortran(in,/prog',out,O);
end;

subroutine

end
(data for Fortran program)

begin integer i;

for i:=l step l until 10 do

execute(/prog',in,out,O);

end;

(data 1)
(data 2>

(data 10)

Example 5: Use of templates for parameter specification

By allocating meaning to Algol's fat commas, the job of Example 3
could be written like this:

or like this:

job,,,

fortran(in) object: eprog')message: (out)mode: (0);

subroutine •••

job •••

fortran(O)source:(in)message:(out)object:(/prog');

subroutine .• ,

••• JOB CONTROL LANGUAGES SUPERFLUOUS 143

2.2. Algol shorthand, other interpreters

It is clear that the use of Algol introduces a slightly move elab­
orate writing of the "job control commands".

For instance, Algol 60 demands that a program must be a block or
a compound statement, i.e. start with a begin and terminate with an
end. It would be reasonable to allow any statement as a program, so
that the begin-end could be omitted in Example 3.

More troublesome is Algol's strict matching of actual and formal
parameter list. If by a mistake two parameters are reversed in the
execute call, the strangest things may happen. A method used by many
control languages is to specify for an actual parameter which formal
parameter it should match. In an extended Algol language, this could
be accomplished by giving meaning to the parameter comments, the "fat
commas". The job of Example 3 could then be written as in Example 5.
This also opens the possibility for default specifications, like
those of Example 6.

It should be clear that most command languages are developed with
facilities like these in mind. Normally the command languages lack
the following facilities found in high level languages: general con­
ditions and loops, variable declarations, procedure (or macro) de­
clarations. But these differences have nothing to do with the inter­
face to the operating system. They are rather a question of notation­
al convenience.

In view of the principles of job execution explained in Section
l.l above, the operating system need not care whether Algol is used
for job control or whether an ordinary control language is used. It
only depends on whether the initial program is an Algol interpreter
or an interpreter for an ordinary control language, Of course, the
initial program could also be an interpreter for Fortran, Cobol, or
Basic.

2.3. String operators for file name specifications

Many control languages make implicit extensions of file names to
distinguish between various representations of a program. For in­
stance, when compiling the source file 11 pr 11

, the object file may au­
tomatically be called 11 probj 11

•

This may be a dubious facility, but if we insist to build it into
our "fortran" procedure of Example 3, we will need some string oper­
ators in our extended Algol language. The "fortran" procedure now re­
quires a file name for the source instead of a stream. It is shown
in Example 7.

For a compilation or a linking it would also be convenient to
specify a list of source files to be treated concatenated as a sin­
gle stream. This facility is more troublesome, but one solution is
to allow a file name parameter to be a list of file names, so that
the following call is legal and compiles "sourcel" followed by
"source2 11

:

execute(· ftncomp', ·sourcel-source2 , obj , out, 0, result);

144 J. JENSEN, S. LAUESEN

Again, the availability of string operators and string variables
would make this approach suitable for use in procedures lilce "for­
tran".

We could of course abandon such automatic concatenation and in­
sist that files are concatenated explicitly by means of a program
(or a procedure) which takes two input streams and concatenates them
into one output file.

2.4. The Algol interpreter, dynamic change of command language

In the examples above, we have assumed that the initial program
is an Algol interpreter. If we have available an Algol compiler ana­
logous to 11 ftncomp 11

, we could compose the Algol interpreter as in
Example 8.

We have specified the program parameters as we would have speci­
fied procedure parameters. This possibility is needed if we want to
write general systems programs in our extended Algol. In the preced­
ing examples we have assumed the following default specification of
the program parameters:

program(in,out,mode); stream in,out; integer mode;

This corresponds to the way the Algol interpreter calls the final
program. Notice, that the "program name" is the file name of the
program file, and thus need not be specified in the source text.

With this Algol interpreter, consider the effect of Example 9.
The first program "mode:=l" will change the integer "mode" in the
Algol interpreter. When the following programs are compiled, the Al­
gol compiler will get the mode-parameter l, which is assumed to pro­
duce listing of the source text. Thus, we obtain the effect of a job
log which contains a listing of all "job commands" executed.

Consider next Example 10. Here we call the program file "algolint"
specifying the files "subjob" and "subout" for "in" and "out". Thus
we will have the "commands" in "subjob" executed, and when "subjob 11

is exhausted, we return to executing the commands of primary input.

The new incarnation of the Algol interpreter works on other input
and output streams, and we could call the technique a recursive
change of the current input and output. If we had a Fortran inter­
preter, it could be called the same way, and we would then obtain a
change of the current command language.

,,, JOB CONTROL LANGUAGES SUPERFLUOUS

Example 6: Use of templates and defaults

If a parameter is not in the actual list, a default specification
could be used, lil{e this:

job

fortran()object:(~prog');

where "fortran" looks somewhat like this:

external procedure fortran(source,object,message,mode);

stream source default in, message default out;

string object; integer mode default 0;

begin integer result; ,,,

Example 7: Automatic file name extensions

145

The following "fortran" procedure requires a file name for the
source. It delivers the object program in a file with a name derived
from the source file name. An operator for string concatenation is
used,

external procedure fortran(source, .•.);

string source; ,,,

begin integer result;

execute('fntcomp', source, source concat 1 obj', ...);

Example 8: The Algol Interpreter

This example shows an Algol interpreter based on a traditional Algol
compiler. We have adopted a convention of specifying the required
program parameters.

program (in,out); stream in,out;

begin integer result, mode;

rep:
mode :=0;

execute('algolcomp',in,'wrk',out,mode,result);

if result =0 then

execute('' link', "'wrk', 1 wrkl', outO, result);

cancel ("' wrk');

if result =0 then

execute('wrkl' ,in,out,mode);

if result t"end of file" then goto rep;

146 J. JENSEN, S. LAUESEN

3. INTERFACE BETWEEN JOB AND OPERATING SYSTEM

In this chapter we will discuss what happens on the interface
between the job process and the operating system when jobs like
those of Chapter 2 are executed.

3.1. Resource allocation

A job requests resources from the operating system when it calls
a program and when it opens or creates a file. The basic operations
for this should be available in the programming languages, although
file opening and creation in the examples were done entirely inside
the compilers and linkers.

The set of resources needed for a given operation may vary from
system to system. For instance, file opening may involve special re­
sources like file control blocks, buffers, exclusive writing permis­
sion, etc. In some systems the buffers are part of the job's core
store, in others they are considered special resources by the opera­
ting system.

In the following we will just assume that a set of resources are
necessary for each operation, without further specification.

When the job process is created, it has an initial set of resour­
ces which enables it to interpret at least some statements. Other
statements may request further resources from the operating system.

The examples of Chapter 2 assume that we have a dynamic resource
allocation. For instance, when the job has created a file, it may
later create another file without cancelling the first. And no state­
ment of the total set of files has been given initially or at the be­
ginning of the "job-step".

Under operating systems with a static resource allocation, the
job-process must state the resources (or even worse - the files)
needed for a job-step at the beginning of that job-step. (We can de­
fine the beginning of the iob-step as a point where the job holds
only the initial resources . The operating system then allocates all
the resources before the job is allowed to proceed.

If the resource specification has to be very detailed (including
for instance file names), it could be simplified by procedures, just
as we simplified compilation and linking in Example 3. This assumes
only that the initial resources are sufficient to interpret calls of
such procedur~s.

For an operating system with a dynamic resource allocation, the
limit for some of the resources must be stated initially or between
job-steps. Such limits correspond to the claims used in for instance
the Banker's Algorithm (ref. 4), although it is not mentioned in the
literature that the job could change its claims freely between job
steps. Within the limit, the job may then request resources dynami­
cally.

The main advantages over fixed resource allocation seem to be
that the limits need not be stated so detailed as the resources and
a certain overstatement has less influence on the turn-around time.
As a result, the limits can often be stated in a standard fashion or
the initial limits can be made sufficient.

,,, JOB CONTROL LANGUAGES SUPERFLUOUS 147

3.2. The program call mechanism

The program call mechanism proposed above is recursive. Under op­
erating systems with a limited core area for each job, this seems
to cause trouble. However, the execute-procedure postulated above
could proceed as follows: First it creates a working file and saves
the proper core area parts here. Next, it relocates the parameter
list to a standard form and position. Finally, it opens the program
file, loads the program in the standard way and enters it. The pro­
gram returns after execution to a resident part of the execute-proce­
dure, which then restablishes the core area.

This implementation of the execute-procedure does not make any
special requests to the operating system. It uses only the ordinary
operating system requests to create a file, open a file, and perform
input/output. But there might be two reasons to replace this imple­
mentation by special operating system requests.

One reason is file protection in case the system distinguishes
between read, write, and execute protection. (Above, ordinary input
was used to load the program file).

Another reason is self-protection, i.e. protecting the user's job
against the user's own programs. When a program runs off the track,
it may destroy the core area of the job. But in a properly protected
system the operating system is always unharmed and may force a pro­
gram return. Also, the operating system could make a copy of the erro­
neous core area on a file, thus allowing subsequent job statements
to analyze or print out the core area. This gives much better possi­
bilities than present day octal dumps.

The operating system could force such program returns when the
job exceeds its resource limits or in connection with the time super­
vision explained in the next section.

Example 9: Job execution with listing of commands

The following job will list all

job .••

mode:=l

"job commands" as

{

strictly:
begin mode:=l

they are executed.

comment mode=l is assumed to mean "list source text";

fortran(in, 'prog', out, 0);

Example 10: Change of current input and output

The following job will execute the "commands" found in the file "sub­
job" with output to the file "subout". Later job commands may then
process the contents of "subout".

job .•.

execute(/ algolint" ;' subjob"' / subout');

execute(~edit',Asubout', ...);

148 J, JENSEN, S, LAUESEN

3.3. List of operating system requests

We are now prepared to make a list of the requests a job can issue
to the operating system. These requests should be directly avail­
able in the major programming languages. The internal form of the re­
quest may vary from system to system.

File creation: The request specifies the file name, the volume on
which the file is to be created, the position within the volume (im­
plicit for common volumes like drum and disc), the access method for
the file data, the size of the file (where needed).

File cancel: The request specifies the file name.

Change of protection: The request specifies the file name and the
new protection situation, permanency, etc.

File opening: The request specifies the file name and the stream.
The stream comprises a set of buffers, control blocks, etc. It also
holds data corresponding to a 11 file Lookup" (see below).

File closing: The request specifies the file name and the stream.

File lookup: The request specifies the file name. Data corresponding
to the file creation and protection situation is returned.

In ut out ut: The request specifies the stream, an operation (input/
output upspace/rewind/ ...), a maximum physical block size, and- for
random access files - a position within the file. These requests are
rather to drivers than to the central operating system in order to
save some of the overhead. Notice, that the driver is not concerned
with the file access method, which is handled by procedures in the
job process (see Section 4.2).

Program call: The request specifies the program file name and the
program parameters.

Program return: No parameters needed. The return from the initial
program corresponds to job termination or logout.

Time supervision: The request specifies a maximum period to program
return. If the program return is not issued in due time, the opera­
ting system forces a program return as explained Section 3.2. This
suffices for debugging based on post mortem analysis of the core
area.

Resource statement: The request specifies a resource and an amount
of it, either as static allocation or as a claim (see Section 3.1).

Core store allocation: The request specifies an extension or reduc­
tion of the core store area of the job.

,,, JOB CONTROL LANGUAGES SUPERFLUOUS 149

4. FILES AND ACCESS METHODS

4.1. File description and directory

When a job makes a request to create a file, the operating system
will enter a corresponding file description in a directory. The fol­
lowing information seems to be needed in the file description:

File name as used for identification.

Volume on which the file is kept. This includes a volume type allow­
ing the operating system to select a proper device for mounting the
volume, and a driver type allowing the operating system to select a
proper addressing of the physical file blocks.

Position within the volume.

Size of the file if needed.

Protection situation describing which users have which access to the
file, the lifetime of the file, etc.

Access method, which is only used by the job, not by the operating
system (see below).

It ·is advantageous if the directory is kept in files which are
readable for all users. In this way selective directory listing can
be produced by ordinary programs. Note that even though the protec­
tion information is publically available, the protection can still
be maintained. The method is to store the passwords (or the like) in
another file only available to the operating system. Then a user can­
not readily get the information needed to log in with another user's
identification.

4.2. Drivers and file access methods

When a job has opened a file, it can make requests to a driver in
order to read or write physical blocks. The physical blocks are
transferred between the file and the buffers of the stream.

It is not necessary to let the drivers care about the contents of
the file, whether it is a text, a sequence of logical records, a
hash-ordered file, etc. The corresponding different access methods
can be implemented as procedures in the job. The procedures will use
the driver requests when new physical blocks are needed,

If a program is prepared to access files in various ways, it will
need to know the proper access method for a given file. This it can
obtain by means of the request "file lookup" or from the stream de­
scription. It could not reasonably obtain it from the physical file
blocks, because the proper access method is not known yet. And it is
too troublesome to let the user specify it.

System programs should of course always check their own require­
ments against the file's access method,

4.3. Self-protection of primary input/output

As explained in the preceding section, the job can exert some d.i-

150 J. JENSEN, S. LAUESEN

rect control over the buffers of a stream. For instance, an erro­
neous program can destroy a buffer part containing output previously
produced. Debugging under such circumstances is very difficult, but
the trouble can be remedied by making primary input and output self­
protected. This requires that the associated drivers handle only one
line of text in an input/output request.

5. CONCLUSION

The report has demonstrated that it is possible to replace the
command language by extensions of one or more normal programming
languages. These extensions need only a rather simple interface to
the operating system, and the interface is the same for all program­
ming languages.

The user is relieved from learning a separate command language,
and still he is able to compose his own job control statement with
any degree of complexity or use system control statements composed
in the same way.

The programming language takes care of the different file access
methods - either explicitly or implicitly. Consequently, only simple
access methods need to be built into the operating system and the
drivers. Hopefully, the user will also benefit from the increased
reliability of the operating system resulting from the simple inter­
face.

The run time efficiency of the approach depends mainly on the
speed of the compiler for the programming language. This is impor­
tant if several small commands (programs) are compiled, but most
jobs will perhaps contain a few composite commands like Example 3.

Another problem is that the initial resources of the job must be
sufficient to compile the commands. This may cause troubles for many
operating systems where the initial resources just are a set of
tables in the operating system.

These problems seem to point to a general
language with few resources for compilation.
might be a candidate in computers where only
gol, Fortran, PL/1 are available.

purpose, incremental
A language like Basic

slow compilers for AJ-

Perhaps the most important part of the report is the clarifica­
tion of the interface to the operating system and the underlying con­
cepts in the command language.

REFERENCES

1. D.W. Barron and I.R. Jackson: The evolution of job control lan­
guages. Software - Practice and experience, :VOl.--~; p '143-164
(1972).

2. W.A. Clark, G.H. Mealy, and B.I. Witt: The functional stFUeture
of OS/360. IBM Systems Journal, no. 1 (1966).

3. G. Cuttle and P.B. Robinson (eds.): Executive programs and opera­
ting systems. Mac Donald, London 1970.

••• JOB CONTROL LANGUAGES SUPERFLUOUS 151

4. A.N. Habermann: Prevention of system deadlocks. Comm.ACM 12,7
(July 1969), p373-377,385.

5. S. Lauesen: Program control of operating systems. BIT 13 (1973),
p323-337·

