
Published in Howard et al. (eds.): Human-Computer Interaction
Interact'97, Chapman & Hall, 1997, pp. 15-22.

1

Usability Engineer ing in Industr ial Practice

Søren Lauesen

Copenhagen Business School, Howitzvej 60
DK-2000 Frederiksberg, Denmark

slauesen @ cbs.dk

ABSTRACT Do developers use proven usability techniques like user involvement, usability testing, and itera-
tive design in industrial practice? Based on inside knowledge of many different types of projects, the author must con-
clude that these techniques are seldom used. There are several reasons for that. For instance:

(1) The market pressure is not there. Users ask primarily for functionality, and cannot formulate their usability re-
quirements.

(2) Developers misunderstand the usability techniques. For instance they assume that usability testing is a kind of
debugging, rather than a step in designing the interface. Or they believe that expensive labs have to be used, rather than
a low-cost approach that can be learned in a day and carried out by developers.

(3) There is no proven way to make a good, first prototype. Since development in practice seems restricted to
modifications of the first prototype, it is essential to make it good.

(4) There is no proven way to correct observed problems.

KEYWORDS usability engineering, software engineering, industry, iterative design, thinking-aloud

1. INTRODUCTION
Most system development is dealing with rather tra-

ditional systems for business, banking, government,
technical purposes, embedded systems, etc. How are
user interfaces designed in such systems? Do developers
use proven techniques like user involvement, usability
testing, and iterative design?

It is not easy to get a true picture of the situation
through questionnaires because experience shows that
developers often misunderstand terms like usability test-
ing and iterative design. Also, they often say they do
something, when observation shows that they do not.

This report is based on my own observations. I have
inside knowledge of many development projects in
Denmark. With a background as a developer, I am often
consulted in usability issues, give courses in interface
design, and talk a lot with people from industry. I have
observed many kinds of projects like standard business
administration (accounting, invoicing, etc.); shipyard
administration; hospital support; teacher administration;
TV broadcast planning; insurance applications; network
software packages; process control systems; embedded
systems, etc.

So what is the general picture? Do developers care
about usability? Yes. Do they do something about it?
Very little. Do they know what to do? Partially, but of-
ten they do it incorrectly, misunderstand the approaches,
or give up after incomplete attempts.

In this paper I will explain what typically goes wrong

and what seems to work. Basically, I will try to look at
usability issues from the developer’s perspective, com-
paring them with the technical side of development.

I will concentrate on the proven techniques: user in-
volvement, usability testing, and iterative design. Other
techniques are important but not yet available in a form
ready for general industrial use. One example is task
analysis which covers many things and overlaps with
software engineering concepts like “use cases” ,
“scenarios” , and requirements specifications. See Lim
(1996) for a discussion of the industrial applicability of
task analysis.

2. USER INVOLVEMENT
It is a proven approach to involve users during the

entire development process from analysis to deploy-
ment. Grudin (1991) discusses the many obstacles to
user involvement, so I will just report how my Danish
observations fit into his picture.

The degree of user involvement seems to depend on
whether the project has a specific customer or aims at a
particular market:

Specific customer

These projects can be in-house projects, for instance
in banks and insurance companies; or they can be soft-
ware house projects for a specific customer. In these
cases we always find a great deal of user involvement
during analysis and design. Particularly with in-house

2

projects it is common to have users in the project team
during these phases. However, the “Scandinavian
Model” where users actually formulate the system ob-
jectives and do part of the design is very rare in Den-
mark.

The users involved are “expert users” with a good
understanding of the application domain. Management
gives their involvement in the new system a relatively
high priority, but the pressure of many daily activities
can make it somewhat difficult to find time for coopera-
tion. However, the amount of user involvement seems
somewhat better than what Grudin (1991) describes.

User involvement during usability testing, however,
is not as successful; as will be discussed later.

Product for a market

Products can be business applications, technical sys-
tems, or embedded software. In these projects we see all
the problems mentioned by Grudin: Marketing tries to
represent the users, barriers are set up to prevent devel-
opers from contacting users, the international market is
difficult to contact “ face to face” , etc.

3. USABILITY TESTING
Usability testing is probably the most important step

in assuring usability. Without a usability test we can
only make guesses at the level of usability. In order to
understand why developers don’ t readily accept usabil-
ity testing, it may be useful to compare usability testing
with traditional program testing.

When a developer tests a program, he tests whether
it works correctly with the hardware and other technical
environment. Usability testing does not test the correct-
ness of the program, but whether the user can work cor-
rectly and conveniently with it. During a usability test,
the system - or a prototype of it - is used by typical users
to carry out realistic tasks that the system was intended
to support. The testers observe the users and write down
any problems encountered by them. Next, developers try
to repair the problems, and a new usability test is made
to check whether the problems have disappeared. The
process will typically have to be repeated several times,
just as you have to repeat program testing.

Developers are confident with technical program
testing. They have learnt to accept that they commit er-
rors and that most errors can be identified through test-
ing. They have also learnt how to locate the source of
the error and how to correct it, and they know that re-
peated testing is necessary to make sure that the error
actually disappeared. Their managers know that testing
is costly and so provide good test equipment to save
working hours.

Not so with usability testing. Developers are usually
surprised that users can have problems with a program
that is technically correct, and they doubt that it is the
developer’s responsibility to fix such problems. On sev-
eral occasions I have heard product developers discuss
what the market value of increased usability would be.
They tend to conclude that sales wouldn’ t increase due

to increased usability. In some cases users have com-
plained about usability, and that seems to have some
effect. Mostly, however, users complain about function-
ality and compare products based on functionality. So
that is where efforts for the next release are directed.

Managers seem to share many of these beliefs and
are reluctant to fund usability testing. The critical “ test
equipment” for usability testing is the users. Developers
will normally have to find users themselves, sometimes
fighting with marketing and managers to be allowed to
contact users.

 If developers try to correct the usability problems,
they soon realize that it is difficult to find ways to do it.
The reason for this is that while they know how the
technical environment works in painful detail, they don’ t
know how the users “work” or think, and consequently
they cannot find good solutions.

While a developer wouldn’ t dream of shipping a
program without careful testing, most programs are ac-
tually shipped without any kind of usability testing.

In spite of all the motivational issues, some project
teams try to do some usability testing. They encounter
many procedural problems that may cause usability test-
ing to fail. I will discuss some of them.

3.1 When to Test?
Ideally the usability tests should be made early in

development, in order to allow a complete redesign.
Early prototypes are suitable for that. In practice, how-
ever, this is almost never done. Usability testing is
started late in the development cycle, almost as a kind of
debugging or technical program testing. This issue is
discussed further in Section 4.

3.2 Use Video and Usability Lab?
Many developers believe that usability testing re-

quires a usability lab with video and computer log of the
user’s actions (Neal & Simons, 1984). Therefore they
conclude that they cannot afford usability testing since
they have no access to such a lab. This is a very unfortu-
nate misunderstanding, since most usability testing can
be done fast and efficiently without a lab. Even many us-
ability experts believe that a lab is necessary. In Den-
mark this misunderstanding probably arose because a
large software house invested in a lab and used it to
market themselves as usability conscious. In many cases
this seemed to override earlier attempts to promote a
low-cost technique in Denmark (Jørgensen, 1990).

Large American companies also put much emphasis
on usability labs, and often start with the lab as a promo-
tional thing (Wiklund , 1994). I have even heard usabil-
ity specialists complain that to management, the usabil-
ity goal is "to utilize the lab 80% of the time".

In Section 5, I have outlined a low-cost technique
used extensively by my colleagues and myself for us-
ability testing. The main feature is to manually make a
log of the problems as they occur during the test, and
write a final problem list soon after the test, based on the
log and memory. This is quite reliable in most cases and

3

saves the expensive equipment and a lot of work view-
ing the video tapes.

Our technique finds ease-of-learning problems, and
also soft performance problems, where the user finds the
system too slow or requiring too many user actions.

Hard performance problems, where fast reactions or
motoric aspects are the issue, require eye movement
sensors and video to identify detailed task steps, fast and
unconscious user reactions, etc. Examples are support
systems for pilots or surgeons. However, there are few
systems of this kind.

3.3 Thinking Aloud or Observe Only?
Some proponents of usability testing stress that it is

important not to interfere with the user. They recom-
mend a silent test where the user’s actions are logged
and video taped while he works in his normal fashion.
Later the tester studies the actions in detail. This ap-
proach may be correct if we just want to observe the
problems, but most usability testing deals with finding
problems and correcting them.

To observe the usability problems is one thing, to
find their cause and repair the problems is a different
issue. In order to do that, it is essential to know what the
users actually thought, and why they did not do this and
that. This information is not available from the user’s
behavior or a video tape. The easiest way is to have the
users think aloud during the test, or cautiously ask them
what they are trying to do in case their behavior seems
strange.

The very act of thinking aloud causes the users to
proceed differently, for instance with a different per-
formance, but do they encounter different problems?
Henderson et al. (1995) and Hoc & Leplat (1983) have
investigated this issue. They compared four techniques:

1. Thinking-aloud: The users think aloud while doing

the task
2. Record and thinking-aloud: User actions are re-

corded and later replayed while the users explain
why they did what they did.

3. Record and study: User actions are recorded and
later studied by the testers.

4. Explain later: The users try to do the task and later
comment on the problems they encountered.

Technique 1 and 2 seem to reveal the same problems,
but technique 2 is much more time consuming. Tech-
niques 3 and 4 don’ t reveal the correct problems. Tech-
nique 3 is also very time consuming.

I would add that techniques 1 and 2 reveal soft per-
formance problems. Hard performance problems, where
fast reactions or motoric aspects are the issue, can be
revealed by technique 2 or 3.

The recommendation for all ordinary applications is
to use only technique 1: Thinking aloud.

3.4 Which Test Tasks?
Developers initially have some difficulties defining

good test tasks. Here is a typical badly defined task from
a system that can measure and compare sounds and
noises:

Task: Set sensor sensitivity
1. Open settings window
2. Select the sensor
3. Set the sensitivity to 10 mW

Testing with this task will not find out whether the user
is able to perform a real-life task. One weakness is that
the task description is a step-by-step instruction that tells
the user how to perform the task. But we wanted to find
out whether he could do it on his own. Another weak-
ness is that the task is not closed and meaningful to the
user. The user would never use the system just to set the
sensor sensitivity. He wants to make a measurement, and
setting the sensor sensitivity is a necessary step that he
might not think of himself. We also want to test that he
discovers this step.

A better task would be:

Task: Compare the noise at the top and bottom of
the dishwasher
Equipment: Sensor supplied in a separate box.
Dishwasher is a dummy during prototype testing (a
small table will do)

This task is closed and meaningful, and we don’ t pro-
vide “hidden assistance” . We also leave it to the user to
find the proper sensitivity - just as in real life. My expe-
rience is that when developers have seen a few examples
of good and bad tasks, they can define good tasks on
their own.

3.5 Developer in the Test Team?
Some usability specialists make usability tests with-

out developers on the test team. The developers get the
report later and may see the video tape of the session.
The reason is that the developer would interfere with the
test, discuss issues with the users, or guide the users.

This is a realistic risk, but there is a serious draw-
back of the approach: It drastically reduces the chance
of having the problems corrected. First of all, developers
seem to distrust a report stating various problems that
they have not experienced themselves and cannot repro-
duce. (The same pattern is seen when unrepeatable tech-
nical errors are reported to developers.) Second, they
cannot see what the real problem is, why the user did not
see what was at the bottom of the screen, etc. As a result
they fail to make a proper correction of the system. If
they had been present during the test, they could have
asked such questions.

In my experience, many developers are very good
participants in a usability experiment once they get the
idea of the whole thing. With a bit of support during the
first session, they find a good balance between inappro-
priate interference and important information gathering.
Jørgensen (1990) reported similar success with test

4

teams consisting of just one developer.

3.6 Rely On Standards and Heur istic
Evaluation?

Some developers believe that adherence to standards
or various kinds of heuristic evaluation (e.g. design in-
spection) will ensure usability. It would be nice if this
were true, but at present these techniques cannot replace
usability tests.

Standards (or style guides) improve learnability for
users knowing other systems that follow this standard.
However, domain-specific problems and many other
problems cannot be covered by a standard. For instance,
no standard can specify what terms to use for domain-
specific concepts. Only a usability test can reveal
whether the developer got it right. Several studies have
shown that a check against standards only find about
25% of the problems users encounter, although they find
a lot of standard violations that users don’ t notice
(Cuomo & Bowen, 1994; Desurvire et al., 1992; Jeffries
et al.,1991).

In some cases, we have observed usability problems
caused by a standard. A good example is the use of mo-
dal dialogue boxes under MS-Windows. Many users
complain that in order to enter the data needed in the
dialogue box, they have to see the windows behind the
dialogue box. But they cannot move windows around or
bring other windows forward until they have closed the
dialogue box.

Heuristic evaluation can be an expert's inspection of
the design, or a check against guidelines. Surprisingly,
heuristic evaluation finds only about half of the pro-
blems that users encounter (Cuomo & Bowen, 1994;
Desurvire et al., 1992; Jeffries et al.,1991). Furthermore,
about half of the problems reported with heuristic
evaluation are “ false” in the sense that real users do not
notice these problems. Trying to remedy the false prob-
lems is a waste of development effort. Generally, heuris-
tic evaluation should only be used to detect the most ob-
vious problems. If a problem seems dubious or is diffi-
cult to repair, let the usability test reveal whether it is
important.

In conclusion, standards and heuristic evaluation
may help, but do not eliminate the need for a usability
test.

3.7 Usability Test Or Demo?
Talking with developers, I often hear them say that

they made a usability test of their latest product. Great, I
say, how many problems did you find? None, they say,
the users were very happy with the system. That sur-
prises me a bit, since we usually find 20 to 30 problems
during a one hour usability test. A closer discussion re-
veals that what the developers did was a demo of the
system. They showed the system to the users, walking
through typical cases. The users were invited to com-
ment on the system, but did not notice any problems.

In my experience, users can find a system very at-

tractive when seeing a demo of it, yet be completely un-
able to perform anything with it on their own. The sys-
tem is thus not easy to learn.

I have noticed several times that developers feel very
uncomfortable with the thought of a real usability test,
whereas they love to make demos. The reason may be
their pride in their own work combined with the suspi-
cion that the users will just mess up the whole thing.
(This is what we actually expect users to do during the
usability test. That is why we make it).

In early stages of development, a demo may be very
useful for finding missing functionality, but that has lit-
tle to do with usability factors like ease-of-learning.

3.8 How To Find Test Subjects?
Maybe the greatest obstacle in usability testing is to

find test subjects. I have observed several times that this
issue blocks serious thoughts about usability testing. The
responsibility for finding test subjects is usually with the
developers, but they hesitate and don’ t know how to go
about it. They have few social contacts with users, and
their attitude is far from approaching users or customers
whom they don’ t know. In many product developing
companies they are not even allowed to. Grudin (1991)
discusses many other barriers between users and devel-
opers. Sales and marketing staff have much better po-
tential for getting user contact. I strongly suggest that
support in finding test users is planned early and pro-
vided from other parts of the company.

Since test subjects are difficult to find, the same test
subjects are often used for testing successive system
versions. The result is that the new version seems sur-
prisingly much better than the old version. The reason
may be that the users learned the concepts in the first
version and successfully transferred the concepts to the
next version. New users would likely encounter more
problems.

A related mistake is to test the system with users who
have been involved with analysis or design of the sys-
tem. They also know too much to be representative us-
ers. However, as pointed out by Carlshamre & Karlsson
(1996), expert users are very good at finding missing
functionality as part of a usability test.

If we are to test the ease-of-learning aspect of the
system, we should use new users for testing each new
version. Testing for performance, however, assumes ex-
perienced users, and the same users may well test sev-
eral versions if we allow them to gain experience with
each version.

4. ITERATIVE DESIGN
As mentioned earlier, the first usability tests should

be made on an early prototype in order to allow a com-
plete redesign. In practice, however, this is almost never
done. Usability testing comes in late, almost as a kind of
debugging or technical program testing.

In order to understand why it is so, it is useful to
compare the iterative design with traditional program
development. Experienced developers proceed in this

5

way:

Design: The overall structure of the system is devel-
oped. The process is highly iterative, particularly in
the first part of design. The product of design can be
inspected by fellow developers, but it is not in a
form where it can be tested.

Programming: The different modules are programmed.

It may happen that the design has to be modified,
but a complete redesign is considered a disaster.
Modifying what you have programmed is always the
preferred solution.

Testing: The modules are tested individually and in

combination. Many errors are detected, but mostly
they can be repaired through simple program modi-
fications. Reprogramming a module or redesigning
a part is considered a sign of bad craftsmanship.

It is obvious that developers try to use the same pattern
on the user interface. They assume that they can con-
ceive a good design, inspect it (heuristic evaluation),
implement it, and then correct the problems. But in re-
ality, we cannot inspect whether or not the interface de-
sign is good, we have to test the design, as discussed
under heuristic evaluation above.

Even when an early prototype is made, it turns out to
be so difficult to conceive a new design that it is never
done. What we have conceived seems so precious that
we prefer to repair it, rather than start all over. Bailey
(1993) has made the same observation in an experimen-
tal setting, and he concludes that the first prototype is
the major factor in how usable the system can become.

4.1 Problem Correction
A late usability test is better than no usability test.

When a test has been made and the problem list is avail-
able, it is time to remove the problems. But this is an-
other point where the process often stops. There are sev-
eral reasons for this:

1. The long list of problems was a surprise. Actually,

the development team had expected that the test
proved that the user interface was good. And they
have no time to remove the problems or cannot see
how they could remove them.

2. The developers have some time to remove problems,
but cannot agree with the “customer” on what to re-
move.

3. The developers try to remove some problems, but
the problems don’ t seem to disappear.

4.2 Problem Classification
Even if there is very little time available, some errors

can be removed. The question is: which errors? Many
development teams try to prioritize the problems, but
cannot agree on the priorities. The problem is that they
unconsciously mix up the importance to the user with

the difficulty of removing the problem. Separating the
two factors helps. I have good experience with this ap-
proach:

1. User impor tance. On the list of problems, note the

number of users that encountered the problem. Also
classify each problem according to its importance to
the user. For instance, use a scale with these steps:
failure (task failure), slow (performance problem),
inconvenient (small performance problem), difficult
(to learn), minor (fast to learn). When classifying
the problems it is important not to worry about how
to correct the problem, because it influences your
judgment of the importance to the user.

2. Difficulty. Let the problem list rest in the mind at
least one night. That often brings ideas for solution.
Then classify each problem according to how diffi-
cult it is to repair. A simple scale could be: small ef-
fort (change of screen text, etc.), medium effort
(several modules to be changed), large effort (new
logic and data structure), uncer tain how to repair.

3. Cost/benefit. Now prioritize according to user im-
portance compared with difficulty of repair
(cost/benefit). This can be formalized, but a discus-
sion based on the two factors is usually sufficient.

4.3 Removing a Problem
In programming, it is usually obvious how to remove

an error once we have found its cause. The repair may
be more or less costly, but the solution is usually clear.
In usability issues it is not that easy. We can roughly dis-
tinguish these classes of problems:

1. Obvious solution. It is easy to say what the proper

solution should be, although the actual repair can be
small, medium, or large. This is the frequent case in
programming, but in my experience less than half of
the usability problems are of this kind.

2. Wrong solution. You believe you have a solution,
but actually the solution does not work. This is fre-
quent in usability, but rare in programming. Note
that only a new usability test can reveal whether the
problem was of class 1 or 2.

3. Unknown solution. We understand the problem and
its cause, but don’ t have any idea how it could be
overcome. This is frequent in usability, but ex-
tremely rare in programming.

4. Unknown cause. We can observe the problem, but
cannot find its cause. The think-aloud approach in
usability testing can almost eliminate this class of
problems. In programming it often requires hard
work to find the cause of the problem, but once
found, the solution tends to be obvious.

Unfortunately the only thing to do about cases 2 and 3
above is to experiment with various solutions. In some
teams I have worked in, we have had to realize that we
could not find a solution within the existing framework.
The problem could be, for instance, that the users did

6

not have a consistent domain terminology, so whatever
terms we used, some users misunderstood them. We had
to rely on a written user introduction or personal instruc-
tion to overcome the problem. (This is of course better
than not knowing the existence of the problem.)

It would be wonderful to have a usability handbook
where you could look up various problems and find a set
of possible solutions. However, this is an area for further
research.

5. A LOW-COST USABILITY TEST
TECHNIQUE

Below I have summarized a usability test technique
used extensively by my colleagues and myself. It is easy
to learn: we practice one session with developers and
help them write the problem list. Then they seem able to
do it on their own.

1. Test team: At least one developer and preferably an-

other person knowing the system and the test tech-
nique. If the system is a prototype, the developer is
the Wizard of Oz, simulating the system. If there is
another person, he keeps a manual log during the
test, focusing on the problems encountered by the
users. If not, the developer keeps the log.

2. Preparation: Make sure that the system is in the right
state, data base initialized, etc. Have copies available
of windows with blank fields. Have a tape recorder
and tapes ready (optional).

3. Start of test: Explain the test purpose to the user, the
system purpose and the domain, but don’ t give more
introduction to the system than would realistically be
given in real life. (Many developers assume that us-
ers will have a course on how to use the system, but
in real-life users rarely get such courses, or they get
them only after having already used the system for
some time.) Start the tape recording (optional).

4. Give the users exercises with real-life tasks. State the
purpose of the task, but don’ t explain how to per-
form the task. Give them only one exercise at a time.

5. Ask the users to think aloud while trying to perform
the tasks. If testing with two users at a time, encour-
age them to discuss what to do and why.

6. During the test, log the rough flow of the dialogue
(menu points selected, windows brought up). When a
user encounters a problem or makes a comment on
the system, make a note in the log. If convenient, use
blank copies of screens to sketch the situation. Log
also the clock at various points of the session and the
point where you change tapes.

7. If the users asks for help, encourage them to find the
solution themselves.

8. If the users have searched for the solution for some
time, help them out, but make sure that you have
made a note of the problem. Such a problem is to be
categorized as a Task Failure, i.e. that the users
couldn’ t complete the task on their own. So make
sure that the users had ample time to try on their
own. By experience, the developer finds ten seconds

a long time, while the users finds it a brief moment.
9. If you don’ t understand what the users are doing, ask

cautiously.
10. End of test: Terminate the test itself after roughly

one hour. Everybody will be tired at that time. Inter-
view the users about what they liked and what they
didn’ t like. To get an impression of their understand-
ing of the system, ask them what they believe the
system would do in some specific cases of your
choice.

11. Within 24 hours, write a list of the problems de-
tected. This list may include problems from two or
more test sessions. Unless you have ample time,
don't listen to the entire tape recording, but refer to
it in cases where you are not quite sure what hap-
pened. Classify the problems as described in Section
4.2.

A usability test session should last about 1.5 hours in
total. Usually, we will run two or three sessions and then
write a joint problem list. It takes about 2 hours to write
the problem list. The report will generally contain 20 to
30 problems of various severity.

On a number of occasions, we have had two inde-
pendent log keepers. Each log keeper wrote their own
problem list. Later we compared them. The agreement
was quite good: 90% of the problems were in both lists.

CONCLUSION

Observations show that proven usability techniques
are used very little in industrial practice. We can sum-
marize the causes in this way:

Barr iers:

Developers are concerned about usability, but doubt
that much can be done about it. They also doubt that it is
worth doing anything, or that it is their responsibility.

The market pressure is not there. Users ask primarily
for functionality, and cannot formulate their usability
requirements.

Developers have difficulties finding users, particu-
larly for usability testing. When seeing the results of a
usability test, developers are surprised at the number of
problems, and don’ t know how to correct them.

Misunderstandings:

Developers assume that usability testing is a kind of
debugging, rather than a step in designing the interface.
Or they assume that a demo of the system is a usability
test.

Developers often believe that expensive labs have to
be used, rather than a low-cost approach that can be
learned in a day and carried out by developers.

Developers believe that standards and inspec-
tion/evaluation are sufficient.

Where HCI theory falls shor t:

There is no proven way to make a good, first proto-
type. Since development in practice seems restricted to

7

modifications of the first prototype, it is essential to
make it good.

There is no proven method for correcting observed
problems.

REFERENCES
Bailey, G. (1993): Iterative methodology and designer

training in human-computer interface design.
Proceedings of InterCHI'93, pp. 198-205.

Carlshamre, P. & Karlsson, J. (1996): A usability-ori-
ented approach to requirements engineering. Pro-
ceedings of ICRE’96, pp. 145-152.

Cuomo, D.L. & Bowen, C.D. (1994): Understanding
usability issues addressed by three user-system
interface evaluation techniques. Interacting with
Computers, Vol.6, No.1, pp. 86-108.

Desurvire, H.W., Kondziela, J.M & Atwood, M.E.
(1992): What is gained and lost when using
evaluation methods other than empirical testing.
Proceedings of HCI 92, pp. 89-102. Cambridge
University Press.

Grudin, J. (1991): Systematic sources of suboptimal
interface design in large product development
organizations. Human-Computer Interaction,
Vol.6, pp. 147-196.

Henderson, R. Podd, J., Smith. M. & Varela-Alvarez, H.

(1995): An examination of four user-based soft-
ware evaluation methods. Interacting with Com-
puters, Vol.7, No.4, pp. 412-432.

Hoc, J.M. & Leplat, J. (1983): Evaluation of different
modalities of verbalization in a sorting task. Int.
J. Man-Machine Studies, Vol. 18, pp. 283-306.

Jeffries, R., Miller, J.R., Wharton, C., and Uyeda, K.M.
(1991): User interface evaluation in the real
world: A comparison of four techniques. CHI'91
Proceedings, pp. 119-124. ACM 0-89791-383-
3/91/0004/0119..0124.

Jørgensen, A.H. (1990): Thinking-aloud in user inter-
face design: a method promoting cognitive ergo-
nomics. Ergonomics, 1990, Vol. 33, No.4, pp.
501-507.

Lim, K.Y. (1996): Structured task analysis: an instan-
tiation of the MUSE method for usability engi-
neering. Interacting with Computers, Vol.8,
No.1, pp. 31-50.

Neal, A.S. & Simons, R.M. (1984): Playback: A method
for evaluating the usability of software and its
documentation. IBM Systems Journal, Vol 23,
No 1, pp. 82-96.

Wiklund, M.E. (ed.): Usability in practice. AP Profes-
sional, 1994.

