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Background  
 

IT developers and consultants often ask for an exemplary requirements specification 

as a starting point for their own project. Problem-oriented requirements SL-07 is 

such a specification. It is a template filled out with a complex example: Require-

ments for an Electronic Health Record system (EHR). There is a matching contract. 

 

This booklet explains why the requirements are written the way they are, what to 

be careful about, how the requirements relate to business, the contract, etc. 

 

You can download the requirements template, the contract, and an on-line version 

of this guide here:  

http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07 

SL-07 is based on experience with public IT tenders according to the EU rules, in 

particular when the system is COTS based (Commercial Off-The-Shelf) so that large 

parts of it exist already. Later, SL-07 proved advantageous for other kinds of acqui-

sition too, e.g. product development and agile in-house projects.  

In 2007, I wrote large parts of the template and the guide on request from the 

Danish Ministry of Research, Technology and Development, as part of their standard 

contract for software acquisition (K02). My students introduced the name SL-07. 

 

The template has been used with success in more than 150 very different projects, 

tender processes as well as in-house projects, agile as well as waterfall, for 

instance: management of home care in a municipality, including route optimization; 

a pharmaceutical company's innovative document management system; electronic 

health records; stock management for movie production; claims management for 

car insurance with GIS as documentation. 

 

My web-site contains the full requirements specification and the supplier’s proposal 

for the Y-Foundation’s case management system and applicant web-site. There is 

also the note to the board about supplier selection, list of issues/errors, etc. 

http://www.itu.dk/people/slauesen/Y-foundation.html 

 

Experiences from these 150+ projects are used in this version. The former name 

was Guide to Requirements SL-07 - Problem-oriented requirements. 

 

I have experienced that SL-07 works extremely well in practice - once you have 

learnt how to use it. Although it looks easy, most people get it all wrong the first 

time, particularly the tasks in Chapter C. With a bit of help they get it right. Many of 

them become great and have helped me improve the SL-07 approach. 

Any comments - positive as well as negative - are most welcome and will help me 

improve future versions. If you try SL-07 on your own, feel free to ask me for 

advice. 

 

Soren Lauesen 

The IT University of Copenhagen, November 2020 

slauesen@itu.dk 

http://www.itu.dk/people/slauesen 

http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07
http://www.itu.dk/people/slauesen/Y-foundation.html
mailto:slauesen@itu.dk
http://www.itu.dk/people/slauesen
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1. The purpose of the template 
IT requirements may be formulated in many ways. The main principle in Require-

ments template SL-07 is to be problem-oriented rather than solution-oriented: 

Don’t describe what the system shall do. Describe what it will be used for and which 

problems it shall eliminate.  

It is much easier to describe what the system is to be used for, than coming up with 

a potential solution. Leave it to the supplier to suggest a solution, be innovative and 

build on what he has already. 

The template achieves this by means of two requirements columns: Column 1 

shows the customer's demands, i.e. what the system is to be used for. Column 2 

becomes the supplier's proposed solution. Initially column 2 is empty or shows a 

solution example imagined by the customer. In case of a tender process, the 

customer can choose one of several suppliers according to the suitability of their 

solutions. 

The experience is that column 1 (demands) is rather stable, while column 2 (solu-

tions) changes as the parties learn about the possibilities. This makes the approach 

suitable also for agile development. 

When customer and supplier are two different companies, there will usually be a 

contract too. The requirements will be an appendix to the contract. There are no 

fixed rules for what to put in the contract and what to put in appendices. Chapter 6 

of this guide presents a short contract that matches SL-07. 

Requirements template SL-07 uses an Electronic Health Record system (EHR) as 

the main example. The example is slightly simplified to make it easier to under-

stand for readers outside the hospital area. The EHR area is very complex, so the 

example illustrates how to deal with difficult requirements. Only a few kinds of 

requirements had to be illustrated with examples outside EHR. 

You can reuse large parts of the example in other projects. However, don't blindly 

reuse parts in blue. They are very EHR specific. Red parts are the supplier’s 

proposal. Parts with yellow background are advice to the customer that isn't intend-

ed for the supplier. Delete them when finalizing the requirements. 

1.1. Beware of template blindness 
Using a template easily causes template blindness: Your world view narrows down 

to what the template deals with. 

The template doesn't cover everything 

The template shows typical requirements within each requirement area, but doesn’t 

cover everything. Add the requirements needed for your project. Listen carefully to 

management and users and make sure their concerns are covered. Often they ask 

for a specific solution. Write it in column 2 and make sure it doesn't become a 

requirement in column 1. 

The template comprises too much 
At the same time the template may comprise more than needed for your specific 

project. You easily include unnecessary parts. The result may be that you pay far 

too much for the system, or that no supplier sends a proposal. As an example, the 
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template contains requirements that will allow the customer to expand the system 

on his own. This is costly, but important in an EHR system. In most other projects it 

is not necessary.  

Look at each requirement and ask: What would happen if we got a system that 

didn't meet this requirement? If it doesn't make a difference, the requirement is 

superfluous. 

The template includes very demanding requirements 

A requirement may be relevant, but too demanding. As an example, the template 

requires response times around a second for systems used intensely on a daily 

basis. However, if the system is a website used rarely, longer response times may 

suffice. 

1.2. The major requirements dangers 
Experience from tender processes show that some major problems occur over and 

over. This guide can help you avoid the following dangers: 

a. The requirements are on a wrong level. They may be so solution-focused that 

only a single supplier can meet them. Or they may be so business-focused that 

the supplier cannot take responsibility for them. 

b. The requirements are too imprecise to verify. You cannot test whether they are 

met. Or they may be so open-ended that you cannot compare the supplier's 

proposals. 

c. The requirements don't cover the important demands. Even if the requirements 

are met, the user demands and business goals are not covered. 

d. The major risks appear too late in the project. Often much of the functionality is 

delivered early and the customer deploys part of the system. The hard parts are 

postponed. Eventually it turns out that the supplier cannot deliver the hard 

parts, but due to time pressure, the customer ends up accepting the unsatis-

factory system anyway.  

We elaborate on these issues below. 

1.3. The right requirement level 
The requirements shall not describe in detail what the system must do, because the 

result may be that only one supplier can meet the requirements. On the other hand, 

requirements may be so high-level that the supplier cannot take responsibility for 

them. There has to be a balance. We distinguish between four requirement levels: 

Requirement 1 (goal-level: too business oriented). The system must ensure that 

the number of medication errors is reduced from the present 10% to 2%. 

Comment: This requirement is on a too high level. It comprises business issues that 

are the customer's area of responsibility. The supplier cannot meet this requirement 

on his own. The customer is needed too, for instance to train staff and to provide 

the necessary data. 

Requirement 2 (problem-level: adequate balance). The system must support 

user tasks C1 to C7.  
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Comment: A task describes what user and computer must do together to carry out 

a piece of work. Tasks resemble "use cases" but don't specify who does what. In a 

task you can specify that something is a problem to eliminate. You don't have to 

specify how. This kind of requirement allows the supplier to take responsibility for 

it, yet it can be met in several ways. The template uses this approach. 

Requirement 3 (system-level: a required function with hidden purpose). The 

system shall show an overview of the patient's diagnoses.  

Comment: We cannot see the purpose of this overview. Is it to find a treatment, 

explain a new symptom, or write a discharge letter? As a result, we cannot judge 

whether the supplier's solution is adequate. This is the traditional way of writing 

requirements (IEEE 830) and a major reason why customers don't get what they 

need - although they get what they ask for. 

Requirement 4 (design level: too solution oriented). The system must show the 

patient's diagnoses as a hierarchical structure. Clicking on plus and minus must 

show the subordinate and superior diagnoses.  

Comment: This requirement describes a solution. It is inspired by a system the 

customer has seen. A supplier with a different, but better solution must be discard-

ed because it doesn't meet this requirement. 

1.4. Precise (verifiable) requirements 
The requirements must be so precise that they can be verified, i.e. we can decide 

whether the requirements are met. Precision has nothing to do with the require-

ment level. As an example, requirements 3 and 4 above can be verified when the 

system is delivered. Requirement 1 can be verified after some time.  

Requirement 2 can also be verified, but on a scale of degrees. Some systems may 

support the tasks well, others less well, but still adequately. The customer's staff 

can assess how well by walking through the tasks with the supplier, looking at the 

screens or screen outlines and noting down how well the tasks are supported (see 

Chapter 3). This assessment is essential for choosing the best supplier. 

Here is a requirement that cannot be verified. It is not clear how to measure "easy 

to use" and decide when it is good enough: 

Requirement 5 (not verifiable). The system must be easy to use.  

A requirement may be verifiable, yet express a demand so vaguely that we cannot 

compare the solutions. Here is an example: 

Requirement 6 (too open-ended: hard to compare the proposals). The supplier is 

asked to describe his software integration strategy.  

Comment: This requirement can be verified already at proposal time. All you have 

to do is to check that the supplier has described a strategy. However it is hard to 

compare the strategies because they are "novels" in free style.  

1.5. Cover the customer's needs 
In practice we see many systems that meet all requirements, yet are unsuccessful. 

The user needs are not covered, nor are the business goals.  
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We can ensure that the user needs are covered by describing the user tasks to be 

supported by the system, and check that they actually are supported. If we wrote 

the requirements on product level or design level, we might get a system that did 

what we asked for, but didn't support the tasks efficiently. 

It is harder to cover the business goals. Many projects have fine business goals, but 

nobody cared how to achieve these goals and how the new system should contrib-

ute. The result is usually that the expected results do not materialize. Section B2 of 

the template provides a simple way to trace business goals to requirements. Used 

properly it can help you identify business goals and come up with innovative solu-

tions. 

1.6. Early mitigation of major risks 
The major technical risks in a project are usually response time with the full number 

of users, ease-of-use, and integration with existing systems. Deficiencies in these 

areas are virtually impossible to correct late in the project.  

Section B3 of the template asks for an early proof of concept (POC) in order to 

mitigate these risks. Such a proof is expensive, however, so it isn't reasonable to 

ask the supplier to do it without a signed contract. However, he has to do it soon 

after signing. If he cannot provide an early proof, the customer may terminate the 

contract. 

2. Gathering the requirements 
The work of gathering and writing the requirements may seem overwhelming, 

particularly in a large organization. It is tempting to delegate the work to individual 

departments and let a central team edit the whole thing. Don't do that! 

a. Each department will look at their own needs and find it hard to look at it from a 

global company perspective. As a result the requirements reflect the existing 

business processes without innovation and cross-departmental improvements. 

b. The departments usually lack requirements expertise, and as a result the quality 

of the requirements becomes poor. 

c. The central team doesn't obtain the necessary insight to understand the depart-

ment, so they cannot improve the result - apart from language editing. One 

team expressed it in this way:  

We didn't understand what they wanted. So we just edited it into one big docu-

ment and sent it to the potential suppliers. They should understand. We didn't 

realize until much later that the suppliers too didn't understand. They just pre-

tended so and told themselves: "we have to find out later". 

2.1. Centralize the work 
Let a small team carry out most of the work:  

1. Gather demands, visions and wishes from the various stakeholders (including the 

departments, expert users, managers and clients). 

2. Transform it into requirements according to this guide and the template. 

3. Validate the requirements with the stakeholders and revise as needed. 

4. Don’t write traditional requirements too (“the system shall …”) because you 

believe that “then we are covered”. It ruins the positive effect of SL-07.  
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5. Send the requirements in tender (see section K1,  below). 

 

The team should consist of 3-5 members with expertise from as many work areas 

as possible, including the IT function. At least one of the team members must have 

competence in problem-oriented requirements. 

This approach can reduce the total work to one fifth of the decentralized approach. 

At the same time, the quality of the requirements increases dramatically.  

2.2. Involve the stakeholders and maybe the suppliers 
Although the team has broad expertise, it cannot know everything. Stakeholders 

must be involved too. Here are some ways to do it: 

1. Interview users - expert users as well as ordinary users. Ask about present work, 

problems in the way things are done today, wishes and visions for the future. 

2. Make the users show how they carry out their tasks today, in particular the rare, 

but difficult tasks. 

3. Collect relevant documents, for example reports and forms used today, screen 

dumps, documentation of the existing database and the technical interfaces to 

the systems, statistics and operational reports. 

4. Run workshops where stakeholders together with team members map the exist-

ing cross-departmental workflow and the ideal workflow. 

5. Run brainstorm sessions or focus groups where participants inspire each other to 

new ways of doing things. 

6. When introducing new work processes, design them in some detail. As an exam-

ple, when clients have to use electronic access rather than personal contact, 

customer staff has to work in a different way. This is often badly planned. 

Describe the new tasks with the notation in Chapter C and carry them out as role 

plays to check that the tasks "work" correctly. 

7. Visit similar organizations to see their solution. 

8. Visit potential suppliers. They often know how other customers utilize their prod-

ucts, and they can provide contact to them. They can also tell the customer 

about possibilities he didn't think of, or new ways to do things. 

Some teams just list this very mixed information as requirements. Don't do that! It 

easily becomes a long wish list of requirements on a too solution-oriented level. Ask 

instead: Why is this wish interesting? When is it needed? What is the purpose? 

Which tasks would benefit? The result becomes broader demands that can be trans-

formed into requirements. 

2.3. Early change control 
During the requirement process, you gather a lot of ideas, wishes, problems and 

potential requirements. Participants can spend oceans of time trying to agree on 

what to include, and this blocks progress. Instead record the issues in a list so that 

the team can progress. Defects and change requests is another name for issues. 

Review the issues regularly and decide whether to transform them into require-

ments, into potential solutions, reject them, or keep them on the list. You will often 

see that an issue that seemed impossible to deal with early in the project finds an 

easy answer later. 
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Continue the change control after signing the contract. You should observe that 

column 1 (the demands) are rather stable, while column 2 (the solutions) change as 

the parties learn about the possibilities. 

3. Request proposals and assess them 
If you as a company send the requirements to some selected suppliers and ask for 

a proposal, there is a high risk that few suppliers reply, and you don’t understand 

their reply. The same applies if you are a government organization that asks for 

proposals according to the EU rules. We have good experiences with this approach 

to market dialog before the tender: 

a. Send the requirements to some selected suppliers and ask for a meeting with 

each of them (3 hours at most). At the meeting the supplier should show how 

his system can meet the requirement. You may mention some requirements or 

tasks as particularly interesting. Ask the supplier to identify requirements that 

are unsuitable or missing. He is not expected to write anything. Suppliers can 

meet in this way with a modest effort. 

b. Allow at least one day of rest between supplier meetings. Your brain must 

recover. 

c. Use the results to revise the requirements. Send them in tender and/or to the 

suppliers that still are interesting (may be more than those from the first series 

of meetings). Ask for a formal proposal where they write solutions at the right, 

specify prices, etc. 

When the customer is a government organization in EU and the acquisition price is 

above a certain limit (around 70,000 to 160,000 Euro), the project must follow the 

EU tender regulations. You must then select one of the many EU procedures and 

follow its rules of announcing the tender, deadlines, etc. With the open procedure, 

anyone can send a proposal. With the restricted procedure, the customer selects at 

least five potential suppliers and invite them to send a proposal. With the 

negotiation procedure, the requirements are rather open, e.g. because no solution 

is readily available and some innovation is needed. You create the final 

requirements through negotiation and ask for a final proposal.    

d. Arrange meetings for clarification with each supplier. Next select one of them. 

In EU tenders, the customer must assess the proposals on a numeric scale and 

choose the winner with the highest score. In many other cases it is also a good idea 

to assess on a numeric scale, even if it is not formally required. 

The basic approach is that the customer looks at each requirement and assesses 

how well the solution meets it. The best is to get evidence for it, rather than opin-

ions. Let the appropriate stakeholders participate in assessment of the various 

requirement areas. 

As an example let us look at a requirement to support a specific task. Together with 

staff familiar with this work area, carry out the task with the supplier's proposed 

system. Take notes of how well the task is supported. You may try it on your own 

or have the supplier show how the task would be carried out. If this is not possible 

because the necessary system parts don't exist yet, you must base the assessment 
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on the supplier's screen outlines or other explanations of his solution. In this case, 

you should also note the risk of the solution not working in practice. 

Based on the notes, you can give a single score for support of this task. Section B5 

of the template shows how to give a score in money terms. B6 how to use score 

points.  

For other types of requirements you can use a similar approach. For integration 

requirements, the supplier might show how existing integrations work, or explain 

how they will work. For documentation requirements, the customer can look at the 

supplier's existing documentation. For usability requirements, the customer can run 

usability tests or talk to existing users of a similar system that the supplier has 

delivered. 

Sections B5 and B6 of the template show ways to combine the many scores into 

one score for the entire proposal. The sections also show how to guard against 

seemingly unimportant requirement areas being supported so badly, that the entire 

system becomes a disaster. 

4. Testing the system 
Before the customer accepts the new system, he must test it - or have someone 

else test it. Otherwise, when defects are found later, he may have lost his rights to 

have the defects remedied. In many countries the rule is that in order to win a court 

case, the customer must prove that reasonable tests wouldn't have found the defect 

at the time of delivery. 

As a minimum, the customer should verify all requirements (i.e. check that they are 

met). However, many errors don't relate to specific requirements. As an example, 

the customer has a reasonable expectation that the system doesn't crash when 

users do strange things, or when the communication lines fail, etc. He doesn’t need 

to write this as a requirement. If the system crashes, it is an error that the supplier 

has to deal with. However, the customer should test this kind of situations. Here is 

a brief list of things to test for (see more in Patton, 2006). 

1. Test that each requirement is met. 

2. For each screen, test each button in various cases. Also test that boundary val-

ues and special values are handled correctly for each data field. 

3. Test for exceptional events in the surroundings, for example loss of data 

communication and crash of external systems. 

4. Verify that each branch in the program has been taken. 

In medium-sized systems, thousands of test cases are needed, and testing may 

take weeks. It is common to find hundreds of errors during testing. When the 

system is COTS-based (Commercial-Off-The-Shelf), large parts of it exist already. It 

is usually unnecessary to make detailed tests of these parts (i.e. points 2, 3 and 4 

above). 

Testing is usually done in stages, e.g. system test, deployment test, pilot test and 

operational test. This is explained in the requirement note to K1, Acquisition plan. 
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5. Guide to the template sections 
The rest of this guide comments the template, section by section. The gray text 

boxes are pieces of the template. Page 13, for instance, shows the front page of the 

template. Notice that the section numbers A, B . . . in the guide, match the chapter 

numbers A, B, C . . . in the template. 

You may freely download and use the template for your own requirements as long 

as you clearly state the source and copyright notice, for instance as in the footer of 

the front page of the template. 

Template chapters are numbered A, B, C rather than 1, 2, 3 . . . This is to avoid 

confusion with appendix numbers in the contract, which usually are 1, 2, 3. As an 

example, appendix 1 is the requirements with the chapters A, B, C . . .  

Don’t change the chapter headings. Many people are familiar with the SL-07 struc-

ture and know by heart that Chapter C is tasks and Chapter H security. If a chapter, 

e.g. Chapter E, isn’t necessary, keep the heading and write N/A below it. 

The template starts with an introductory page to be deleted in your document. The 

next page is the front page of the final requirements (shown on page 13). It states 

the name of the system to be delivered. It is convenient to also define a short 

system name since parts of the template may refer to the system by name, e.g. to 

distinguish it from systems it interacts with.  

The front page also states the name of the customer, the name of the supplier, and 

a short description of what the delivery comprises. This helps the reader understand 

up front whether the delivery also comprises hardware, operation, etc. If the re-

quirements specification is an appendix to a contract, the system name, customer 

name, etc. will be stated in the contract and are not needed on the requirements. 

Some parts are blue. These parts must be replaced with something else in the final 

requirements - or deleted. Parts with yellow background are warnings or alterna-

tives. Delete them. Other parts can often be reused. Red parts are the supplier’s 

proposal. 

The front-page heading shows when the document was last changed and who 

changed it. These are document fields that MS-Word automatically updates when 

the document is printed or saved. The heading also shows the version number. 

Change the heading as needed to match your company standard. 

The page after the front page is the change log. It shows what was changed when 

and by whom. Change it to match your project. 

Chapter A is background information about the project and a guide to the supplier 

on how to interpret the text and write a proposal. Chapter B explains the business 

goals for the project, what to prove early and how the customer selects the winner. 

Chapters C to J specify what the supplier must provide on the day of delivery (i.e. 

when the acceptance test is approved). Chapter K specifies the acquisition process 

and what the customer must provide. Chapter L specifies the supplier's responsibi-

lities after delivery. 

  



13 

 

 

 
 Version 8 15-10-2020, 20:17 
 Last changed by: slauesen 
 

Requirements specification for 
Electronic Health Record System 

(below called the EHR system) 
 

Customer 
Midland Hospital 

 

Supplier 
… 

 

The delivery comprises 
Software, operation and maintenance for an EHR system 

 

Contents 
A. Background and supplier guide ................... 4 

A1. Background and vision .............................. 4 
A2. Supplier guide ............................................ 5 
A3. Customer options ...................................... 6 
A4. Overall solution .......................................... 6 
A5. Supplier options ......................................... 6 

B. High-level demands ....................................... 7 
B1. Patient treatment (future flow) ................... 7 
B2. Business goals .......................................... 8 
B3. Early proof of concept ................................ 9 
B4. Minimum requirements ............................ 10 
B5. Selection criteria: Highest net benefit ...... 11 
B6. Selection criteria: Most score points per 

dollar ........................................................ 12 
C. Tasks to support .......................................... 13 
Work area 1: Patient management .................. 13 

C1. Admit patient before arrival ...................... 13 
C2. Admit immediately ................................... 13 

Work area 2: Patient treatment ........................ 14 
C10. Perform clinical session ......................... 14 
C11. Order medicine for the patient  

(long subtask) .......................................... 15 
C20. Perform clinical session, mobile ............ 15 

D. Data to record ............................................... 16 
D0. Common fields ........................................ 17 
D1. Diagnosis ................................................. 17 
D2. Diagnosis Type ........................................ 18 
D3. Service .................................................... 18 

E. Other functional requirements .................... 21 
E1. System generated events ........................ 21 
E2. Reports .................................................... 21 
E3. Business rules and complex calculations 22 
E4. Expansion of the system.......................... 23 

F. Integration with external systems ............... 24 
F0. Common integration requirements ........... 25 
F1. SKS.......................................................... 26 
F2. LabSys ..................................................... 27 
F10. Integration with new external systems ... 28 

 

G. Technical IT architecture ............................. 29 
G1. Existing hardware and software  

Alternative 1: Use what we have .............. 29 
G2. New hardware and software  

Alternative 2: Supplier suggests .............. 29 
G3. The supplier operates the system 

Alternative 3: Supplier's problem ............. 29 
H. Security ......................................................... 30 

H1. Login and access rights for users ............ 30 
H2. Security management .............................. 31 
H3. Protection against data loss ..................... 32 
H4. Protection against unintended user  

actions ..................................................... 32 
H5. Privacy requirements ............................... 33 
H6. Protection against threats ........................ 34 

I. Usability and design ...................................... 35 
I1. Ease-of-learning and task efficiency.......... 35 
I2. Accessibility and Look-and-Feel ................ 36 

J. Other requirements and deliverables .......... 37 
J1. Other standards to obey ........................... 37 
J2. User training ............................................. 37 
J3. Documentation ......................................... 38 
J4. Data conversion........................................ 38 
J5. Installation ................................................ 38 
J6. Testing the system ................................... 39 
J7. Phasing out .............................................. 39 

K. The acquisition process .............................. 40 
K1. Acquisition plan ........................................ 40 
K2. Project management ................................ 42 
K3. Update issue list....................................... 43 
K4. Work place and the customer's  

deliverables.............................................. 44 
L. Operation, support, and maintenance ........ 45 

L1. Response times........................................ 45 
L2. Availability ................................................ 46 
L3. Data storage ............................................. 46 
L4. Support ..................................................... 47 
L5. Maintenance ............................................. 48 

 
 
This document is based on Problem-oriented requirements SL-07 (© Soren Lauesen, 2020). 
Requirements and template may be freely used in a document on the condition that this copyright clause is 
stated in the document. 
 



14 

A. Background and supplier guide 

A1. Background and vision 
This section gives the reader a quick overview of the system and its purpose. Ex-

plain the main business goals (why the customer wants to spend money on the 

system), but don't go into detail (section B2 elaborates the business goals). Briefly 

explain the customer's present situation and his visions about the future. 

Suppliers like some figures about the customer in order to get an idea about the 

"size" of the project. How many users, how much data, etc. Write a few key figures. 

Context diagrams for the present and future situations are good illustrations. The 

arrows show the flow of data. In surprisingly many requirements specifications, it is 

unclear what is to be delivered and who will do the integration with other systems. 

Make sure to show the system to be delivered as a single box with double-line 

borders. Show the integrations that the supplier must perform as double-line ar-

rows.  

In the example, the supplier must deliver an EHR system including a medication 

system. This is indicated with the double-border box (the delivery) that contains the 

medication system. Maybe the supplier’s own EHR system already contains a medi-

cation system, or he chooses one (maybe the customer's present one) and inte-

grates with it. 

He also has to integrate with the existing SKS tables and LabSys. The diagram 

shows that he is not required to integrate with new external systems. As specified 

in section F10, a third party must be able to make these integrations. 

We often see customers writing a long story about their IT strategy, the historical 

development, etc. This is okay if it is limited to a few pages and helps the supplier 

understand the situation. However the story is often the customer's internal consid-

erations or political statements that are not relevant to the supplier. 

There may be a need for the customer - or his consultant - to explain the internal 

considerations in length, for instance the meetings held, the choices made, and the 

sources of the requirements, but do it in a separate paper. Not in the requirements. 

Also make sure that the background and vision section doesn't contain require-

ments. Requirements have to be in boxes, as explained in the next section. 
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A. Background and supplier guide 
A1. Background and vision 
Presently the customer has several old EHR systems that he wants to replace with one system to obtain: 
 
1. more efficient support for the clinical work, 
2. better possibilities for integration with future systems,  
3. lower cost of operation. 
 
Midland Hospital has around 5,000 employees, 800 of which are doctors. The hospital has around 50,000 
in-patients a year and around 200,000 outpatients.  
 
The customer expects that the supplier has a COTS system (Commercial-Off-The-Shelf system) that can 
meet many of the requirements. In return, the customer is willing to change his work processes to a 
reasonable extent, as long as the business goals are met (see section B1). 
 
The present and future situations are illustrated with these context diagrams. The supplier's responsibilities 
are indicated: The box with double-line border shows the system to be delivered. Double-line arrows show 
integrations to be delivered. There is presently insufficient integration between the EHR system and the 
medication system. The customer wants an EHR system that includes a medication system. It may be the 
customer’s present medication system or a new one delivered as part of the EHR system. 

Figure 1: Existing system
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Medication

Clinician

Patient

management

SKS

Batch transfer

of data

requests,

results

codes

Figure 2: Vision for the new system
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tion system
requests,

results

codes
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The supplier integrates
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The delivery
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A2. Supplier guide 
This section explains how the requirements are formulated and how the supplier's 

proposal is to be structured. Emphasize is on how to use the tables (the boxes), 

what are requirements, what are solutions and what are assumptions the supplier 

can make.  

The intent is that the supplier doesn't need other explanations than this section of 

the template. For instance he doesn't need to read this guide.  

We recommend that the supplier's proposal is in red. After several experiments 

with various indications such as italic or a color per author, it was obvious that red 

for the proposal was the most distinct and legible. It is also far easier to read than 

traditional tables with a column for each party or - worse - one appendix for the 

requirements and another for the proposal. 

Column 3 (code) may be used in many ways, for instance: 

1. Requirements priorities. 

2. The supplier's indication of whether the proposal is part of a COTS system, an 

extension, a later delivery, etc. 

3. The customer's score for the proposal. 

4. Later in the project a reference to a test case that tests the solution for this 

requirement. In this way you ensure that all requirements are tested some-

where. 

You may specify what the code column is to be used for in this project. 

Open target and options 

The supplier guide explains how some requirements need a reply with a number, 

e.g. the response time or the system availability. This is called open target. The 

customer must write what he expects, e.g. 2 seconds and 99.5%. Otherwise the 

supplier has no idea whether to propose something ambitious or something cheap. 

The supplier may propose options, i.e. something the customer can accept or reject. 

An option is useful for instance when the supplier can propose an expensive solution 

that fully meets the customer’s requirements, or a cheaper solution, that doesn’t 

meet all the requirements, but probably suffices. The supplier may offer several 

options for the same area, e.g. several degrees of availability, as shown in the 

example. 

This puts a burden on the customer who has to assess all of this, maybe in different 

combinations. For this reason, many tender processes don't allow the supplier to 

specify options. But it is not that difficult. We show below (A5) how the customer in 

a rational way can say yes or no to each option. 

It is risky to forbid supplier options. A2 below, shows an example from a large 

project: The customer had required a system availability of 99.5%. The supplier had 

two operation options (99.0% at 0.5 m USD per year and 99.8% at 2 m USD per 

year), but was not allowed to offer options. So he offered 99.8%, which the 

customer accepted. The customer could easily have done with 99% and thus lost 

1.5 million USD per year because he didn't allow options. 

The supplier guide shows how to avoid this. The supplier proposes a basic version at 

99% and two options. The exact price is – as other prices – in contract appendix 2. 
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A2. Supplier guide 
This section explains the requirements format. Everything written by the supplier must be in red. 
 

All requirements are written in tables: 

• Column 1 is the requirement (the customer's demand - what he wants the system to support).  

• Column 2 may contain the customer's solution example. In the supplier's reply, column 2 is a 
short description of the proposed solution. It must be in red. 

• Column 3 (Code) may be the customer's rating of the proposal, test references, etc. 

 
The requirements are organized in chapters according to their kind, e.g. Chapter C about user tasks to be 
supported, Chapter H about security. Within each chapter, the requirements are written in tables, e.g. a 
table with requirements relating to a specific task. A reference to requirement 3 in section L2 looks like this: 
L2-3, and to requirement 4 in D3.1 like this: D3.1-4. 
 
The customer's solution examples are only for inspiration. The supplier is welcome to suggest completely 
different solutions. They become legal requirements when both parties have accepted them. However, if 
the accepted solution does not meet the demands stated in column 1 in a reasonable manner, column 1 
has priority. See contract §9.1.  
 
Text outside tables 
Text outside the tables can serve several purposes: 
A. Assumptions behind the requirements, for instance that the task must be supported for this kind of 

users, this frequency of use, etc. 
B. Requirement notes that elaborate column 1 in the table. In principle, they should be inside the table, 

but they don't fit well. One example is a list of access rights to the system. 
C. Solution notes that elaborate column 2 in the tables. They are not requirements but example 

solutions. One example is various ways a user can look up a code in a table. 
D. Examples and other information to help the reader understand the requirements. 
 
Options 
Customers often write requirements that turn out to be very expensive to meet. In such cases, the supplier 
is welcome to offer options: an expensive one that fully meets the customer's requirements and one or 
more that only partly meet them. The requirement in the table below is an example. 
 
When the proposal has several areas, e.g. availability and response time, each with several options, it is 
important that the customer can assess them independently. 
 
Open target 
Chapter L has many "open target" requirements. As an example, the customer may ask for high system 
availability, but isn't sure what it will cost. So he states what he expects and leaves it to the supplier to 
suggest something. In the proposal, it becomes requirement L2-2 with two supplier options: 

 

L2. Availability 
Availability requirements: Example solution Proposed solution: Code: 

2. In the period from 8:00 to 
17:00 on weekdays, the 
system must have high 
availability. 

In these periods the availability is at least ____%.  
(The customer expects 99.5% or better). 
Base version: 99.0% 
Option A5-1: 99.8% (around 2 m$/year, see app. 2) 
Option A5-2: 99.95% (around 3 m$/year, see app. 2)  

 

 
Notice that the customer has written "99.5 or better". It means that the supplier earns additional points for 
both options. If the supplier had omitted "or better", none of the options would earn more than 99.5%. 
 
The template format 
The template is an MS-Word document. It uses Heading 1, Heading 2 and sometimes Heading  3, plus a 
special heading style, Heading no  number. They automatically generate the table of contents. In order to 
improve the overview, some headings have a forced page break. It may be changed through 
 Home → Paragraph → Line and Page Breaks → Page break before 
Tables use the embedded table style Requirements Table. It has borders of 3/4 point. The cells have top 
and bottom cell margins of 0.5 mm. Column 1 has a hanging indent of 0.75 cm. Within a table cell, you 
tabulate with Ctrl+Tab, since Tab alone moves the cursor to the next cell. 
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A3. Customer options 
Above, the supplier specified options. The customer may also define some. It is 

useful if he would like something, unless it is too expensive. The example in the 

template is integration with two old MR scanners. 

A4. Overall solution 
This section is for the supplier’s short description of his solution. The more precise 

description is his reply in red to each requirement. He may provide a longer descrip-

tion as an appendix, e.g. with user screens from his system. 

A5. Supplier options 
A supplier may send a proposal with options. In the example, the supplier offers a 

high and an ultra-high availability, as described further in requirement L2-2. Notice 

that the customer has written 99.5% or better. This means that the customer will 

consider the ultra-high availability too.  

The supplier also proposes something that the customer hasn’t mentioned at all, but 

which the supplier considers valuable for the customer in this project. 

Select the options 
How can the customer decide which of the many options to accept? And when he 

assesses a proposal, which options should he include? 

If the customer uses a selection approach with a modest number of sub-criteria 

(like section B5 and B6), it is rather easy to assess the options: For each option, 

calculate the change of each sub-criterion, the change on the total score, and the 

change on the cost. 

1. If there is a clear advantage, include the option in the calculation of the total 

score. The customer can in all circumstances delay the final choice of the option 

until the contract has been signed. 

2. If a requirement area has several options, e.g. several degrees of availability, 

then select the one with the biggest advantage. Include this option in assess-

ment of the full proposal. 

In order for the approach to give good results, the requirement areas must be 

independent of each other. As an example, it must be possible to assess the options 

for availability and response time independently. The supplier must ensure this. 
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A3. Customer options 
The customer wants a proposal for these options . . . 
 
1. Integration with two old MR scanners 
. . . 
 
 

A4. Overall solution 
The solution is based on . . . 
 
 

A5. Supplier options 
The supplier proposes these additional options: 
 
1. High availability 
99.8%. See details in L2-2 and prices in contract appendix 2. 
 
2. Ultra availability 
99.95%. See detalails in L2-2 and prices in contract appendix 2. 
 
3. Integration with the WHO DNA database 
WHO provides possibility for … 
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B. High-level demands 
This chapter doesn't contain real requirements, but provides connections between 

the customer's business goals, requirements, and the acquisition process. 

B1. Flows 
When you observe users, you often see small pieces of work (tasks) that are part of 

a larger flow that produces the results the customer cares about. 

The EHR example has one flow only: Treatment of a patient from admission to cure. 

On the way you examine the patient, make diagnoses (what are the diseases), plan 

and perform treatments, check results and discharge the patient. The entire process 

can take days or months. 

Notice that it is the future flow we look at. Often the benefit results from having 

another flow than today. 

A flow is also called a process, a business process, a life cycle, a high-level task or a 

high-level use case. A flow may move from actor to actor, even across organiza-

tional boundaries. In the EHR example, however, we only see what the hospital 

does. 

In the health sector there are other flows than patient treatments, for instance the 

life cycle of a treatment from it once upon a time was recommended by a commis-

sion until it years later is abandoned by another commission. The EHR system is not 

supposed to support this flow, but it might deliver data to it. 

Flow as a table: In section B1 you describe the flows to be supported. We recom-

mend that it is text in a table, showing the relation from flow step to tasks and 

other requirements. In the example, a treatment flow consists of 12 steps, but 

many of them are optional. Some steps may be repeated several times, for instance 

check-ups. 

Column 2 of the table shows the tasks and subtasks that perform the step. As an 

example, two different task descriptions can handle step 1: Admission before arrival 

(C1, e.g. through the GP) and acute admission (C2, e.g. a traffic accident). As 

another example, steps 3 to 4 and 6 to 9 are handled by the same task description, 

the clinical session (C10). 

As you see, there is a many-to-many relation between the steps of the flow and the 

physical, observable tasks. It is not a hierarchy or a “break down”. 

When you describe a flow, you often find new demands for IT support. In this case 

we detected a need for arranging check-ups (step 8) and for coordination with 

home care (step 10). These defects are shown as question marks in the table. 

Flow as graph: A widely used graphical notation is BPMN (Business Process Model-

ing Notation). It shows each step as a box and connects the boxes with arrows to 

indicate the sequence, and with diamonds to show choices to be made about the 

sequence. It can give a nice overview - unless you go into too much detail and try 

to specify also what to do in exceptional cases. 

In practice we see a lot of effort being spent on flow diagrams and they occupy 

many pages. Often it is hard to see whether the flow is about the logical steps or 
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the physical tasks. It is even harder to check that they are covered by the require-

ments, as we have done in column 2 of the table. 

 

  

B. High-level demands 
This chapter explains how the customer's business goals are met through the requirements, how to 
mitigate high-risk requirements, and how to compare proposals. 
 

B1. Patient treatment (future flow) 
The system shall only support one kind of flow: treatment of a patient. The table below is the general, 
logical flow of a treatment. Many of the steps can be omitted (e.g. step 2 and 8) or repeated several times 
during the treatment (e.g. step 3 to 9). 
 
The logical flow is carried out in physical tasks, where an employee for a short period of time works with 
the patient without essential interruptions. Column 2 shows the related tasks and subtasks for each step in 
the flow. Chapter C shows the details. 
 

Steps in patient treatment Tasks and subtasks 

1. Admit the patient either through GP (General Practitioner), the patient 
in person or acutely (e.g. traffic accident with unconscious patient). 

C1, C2 

2. Call the patient to make an appointment.  C1-4 

3. The patient arrives to the ward. Examine the patient to make a 
diagnosis, including making tests on the spot or through a lab.  

C10-1, 2, 3 

C12 

4. Plan the treatment, including ordering medicine, booking time, order 
implants, etc. 

C10-6, C11, C13 

5. Maybe transfer the patient to another ward, for instance in case of 
several diagnoses. 

C3 

6. Treat the patient. C10-3, C14 

7. Evaluate the result. Maybe perform further tests and treatments. C10 

8. Make appointments for check-ups.  C10-6 ?  

9. The patient arrives for check-up. Perform various tests and maybe 
supplementary treatments. 

C10 

10. Arrange home care. ?     

11. Discharge the patient and inform relevant parties, e.g. own GP or social 
services. The patient may also have died. 

C6, C7 

12. Settle accounts C8 

 
In the general flow above, we haven't mentioned time monitoring at the various steps. It is described in 
tasks and subtasks. 
 
The flow description is not requirements, but a cross check between the logical flow and the tasks. In the 
case above, it revealed some flaws in the tasks, marked by question marks. 
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B2. Business goals 
This section of the template contains the business goals of the system, arranged in 

a table to show how the goals are to be met. Column 1 is the goal; column 2 the 

vision - the solution in broad terms; column 3 the requirements that make the 

vision possible. It is emphasized that the goals aren't requirements to the supplier, 

but background information. Column 4 allows the customer to state the deadline for 

meeting the goal. When stated, it is the deadline for the joint effort of the supplier 

and customer. The supplier should bear in mind that the customer also needs time 

for the organizational implementation. 

The business goals serve several purposes: 

a. They tell the supplier what the customer wants to achieve. 

b. They are important criteria for choosing a solution. 

c. They help the customer check that the crucial requirements are included. 

In the example, goal 1 (efficient support of all user tasks) is a very broad goal that 

depends on a lot of requirements. The customer may discard solutions that poorly 

support one or more tasks. As an example, the surgeon needs a good overview of 

the patient's situation in order to make the right decision. It must be possible to 

discard a system with a poor overview screen although this is just one of 1000 

details in the system. Section B4 explains how this can become part of the selection 

criteria. 

In the example, the customer had identified goal 3, continuous improvement of the 

work processes. However, he hadn't realized that this required that you easily could 

make new treatment plans and new user screens. When they had to fill in the goal 

table, they realized the demand and came up with the requirements in E4. 

Don't specify a lot of goals. If there are more than 10, check that they are not just 

requirements. We often see "goals" of this kind: It must be easy to print consump-

tion reports. Although this was important to one of the stakeholders, it is a simple 

system requirement, not a business goal. A business goal is about the results of the 

entire organization, not just something the computer can do. 

If you cannot write something reasonable in column 2 (vision), it may be a sign that 

the goal is not a true business goal, but a requirement. As an example, if the goal 

is: It must be easy to print consumption reports, it will be hard to write a large 

scale solution. If you insist on a goal that isn't a true business goal, simply leave 

column 2 blank. 

Measuring the goals: A really good goal can be measured and compared against 

the existing state of affairs. Goal 2 is clearly of this kind. Goal 1 can be measured 

on a subjective scale of degrees (e.g. 1 to 5), but this is hard to relate to a business 

value. It could also be measured as the number of tasks performed per person per 

day, or as the time spent at the computer per patient. These are hard data and they 

relate well to a business value. Goal 4 could be measured as operational costs 

before and after system deployment.  

It is important to have these measurements, in order to select the most advanta-

geous proposal as described in section B5. 
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Although the goals can be measured, the customer may not want to reveal the 

measurements. They might tell the supplier which price the customer is willing to 

pay. Section B6 gives an example of how to avoid it. 

B3. Early proof of concept 
This section lists certain high-risk aspects of the project - things that cannot be 

amended late in the project. To reduce the risk, the supplier has to provide an early 

proof that it is possible to deliver what is required.  

Most of the functional requirements are low-risk. It is for instance straightforward to 

add some fields and tables to the database, or some simple screens to the user 

interface. Most high-risk areas concern the quality requirements. In general, quality 

is not an add-on feature.  

The template mentions that the contract allows both parties to terminate the con-

tract if the early proof fails. Make sure this is the case.  

Points B3-1 to B3-5 specify what is to be tested early. Column 2 provides an exam-

ple of how to test it. The supplier may change it to his own test proposal. He also 

specifies when the proof will be ready. (Sometimes a supplier may even have a 

proof before the contract is signed.)  

B2. Business goals 
The customer's reason to acquire the system is to reach some business goals. The customer expects that 
the system contributes to the goals as stated below. The supplier can rarely reach the goals alone. 
Customer contribution is needed too. This means that the goals are not requirements to the supplier. 

They are shown in a table only to provide overview. 
 
All goals are important and the sooner they can be met, the better. Some goals are crucial to meet at a 
specific date, for instance for business or legal reasons. Such deadlines are shown in the table. 
 

Goals for the new 
system 

Solution vision Related requirements Deadline 

1. Efficient support 
of all user tasks. 

All relevant data are available 
during the task without switch-
ing between several systems. 
All parties can see the health 
record. 

Support for all tasks in Chapter C. 
System integration, particularly 
F2. Adequate response times in 
L1.  

 

2. Reduce medica-
tion errors from 
10% to 2%. 

Avoid manual steps - record 
the order immediately. 
 
The system checks for validity, 
drug interaction, etc. 

Support for task C10 (clinical 
session), in particular problem 2p 
(assess the state of the patient) 
and 6q (errors at hand-over). 
Support for task C11 (order 
medicine), almost all the subtasks. 

 

3. Continuous 
improvement of 
the work proc-
esses. 

Easy to set up and modify 
standard treatment plans.  
Easy to integrate the system 
with new lab systems, etc. 

Requirements in sections E4 and 
F10 (system expansion and 
integration with new systems). 

 

4.  Lower opera-
tional costs. 

Acquire a new, hopefully 
cheaper, system. 

All the requirements and the 
selection criteria in B5. 

 

5. Meet the new 
EU rules on ... 

… … 1-1- 2020 
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These tests may be expensive, so it is not reasonable that the supplier must carry 

them out before signing the contract. With POC, he can include the cost of the proof 

in his quotation, and will thus be paid when he delivers as promised. 

Experience shows that the customer hesitates to reject a supplier who doesn’t meet 

the POC, because a new tender process is needed. You can avoid this with B3-10, 

which asks the suppliers to abide by their proposal for a period of time, giving them 

another chance if the first supplier fails the POC. Suppliers are actually happy with 

this opportunity, because they know that some suppliers lie to win, but fail the POC.   

B3. Early proof of concept 
Some requirements are high-risk and the supplier may not be able to deliver what he promised in his 
proposal. If this is detected late in the project, the customer may terminate the contract, but this is a 
disaster to both parties. Usually the customer chooses to accept the inadequate system, possibly with 
compensation from the supplier. To reduce the risk, the customer requires an early proof of concept for the 
high-risk requirements. 
 

According to the contract, both parties can terminate the contract if the early proof fails. 
 

The following requirements are considered high-risk. Deficiencies here can hardly be rectified late in the 
project. In his reply, the supplier must state how he will carry out the proof of concept and when. The date 
must be stated as the number of workdays after signing the contract. The customer expects 40 workdays 
or less. 
 

Areas where an early proof of concept 
is required: 

Example of proof: Code: 

1. Efficient support of clinical sessions 
(task C10).  

A prototype of the necessary computer screens 
(maybe a paper mockup) is assessed by expert 
users. Can be done within __ workdays.  

(See also area 5 below.) 

 

2. Usability (all requirements in section 
I1).  

A prototype (maybe a paper mockup) is usability 
tested with ordinary users.  

Can be done within __ workdays. 

 

3. Response times with the required 
number of users (all requirements in 
section L1).  

A test setup is used to simulate the required 
number of users. The response times are meas-
ured. Can be done within __ workdays. 

 

4. Possibility for third-party expansion of 
the system (sections E4 and F10). 

An independent software house studies 
documentation of parts of the system and the 
technical interfaces in order to assess whether it is 
adequate for expanding the system.  

Can be done within __ workdays. 

 

5. Integration with other systems. A test setup which demonstrates the data 
exchange. Can be done within __ workdays. 

 

 

In case the contract is terminated: Example solution: Kode: 

10. In case the customer contracts with another supplier, 
but the contract is terminated (e.g. during POC), the 
customer would like to contract with the next supplier 
in priority sequence, without a new request for 
proposal.  

The supplier abides by his 
proposal for ___ workdays after 
the proposal deadline. The 
customer expects 100 work days. 

 

 

In case this need disappears, the customer will as soon as possible inform the supplier.  
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B4. Minimum requirements and selection criteria 
Which proposals should we reject and which one should we select. Ideally we could 

do as follows: 

For each proposal we calculate its net benefit in USD. The net benefit is the value 

the system will provide (e.g. for 5 years), minus the price of the system and other 

costs. The minimum requirement is that the net benefit is above zero. So we reject 

all proposals without a net benefit. We will not lose money on the project. 

Among the remaining proposals, we select the one with the largest net benefit. This 

means that the selection criterion is the net benefit.  

In practice this may be hard because not all values and costs can be stated in USD. 

It may also be hard to agree on details, for instance why use 5 years and what to 

include in the cost.  

When the customer is a company, the criteria are only for internal use and the 

customer might define them after seeing the proposals. There may not even be any 

written criteria.  

In an EU tender process, there must be minimum requirements and selection crite-

ria. The criteria must be objective and known to the suppliers before they send a 

proposal. The aim is to prevent the customer from manipulating the criteria to make 

the favorite supplier, or the one who pays the largest kickback, get the contract.  

Bad practice 1: Select the system requirements that are mandatory 
For each of the many system requirements, the customer indicates whether it is a 

minimum requirement. So if the supplier doesn’t meet this requirement, his pro-

posal is rejected. 

It is extremely rare that you can find a system requirement that is mandatory: If 

this requirement isn’t met, the system is useless or has a negative net benefit. So 

this practice doesn’t ensure that we get a useful system.  

What is worse: We may have to reject the best proposal, what often happens. We 

might get a proposal that is perfect in all ways, except for a system requirement we 

have nominated as a minimum requirement. This requirement may be important in 

some connections, but not mandatory. 

This practice is also very time consuming during analysis. You may for instance 

spend long time discussing whether it is a minimum requirement that the customer 

can configure user screens. The right question to ask is: Will we reject a proposal 

that is perfect in all areas, except this one? Hardly! Then it isn’t a minimum 

requirement. 

But the minimum requirements don’t have to be system requirements. A 

minimum requirement might for instance be a positive net benefit.   

If we want to avoid the monetary assessment, we can define minimum score points 

for requirement areas (see the example below). There might be around 30 

requirement areas and it makes sense to check that each of them is supported 

sufficiently, although some of the requirements in this area not met. Typically, 

some suppliers fail for some requirements in this area, others for other require-

ments. Yet they all meet the minimum in this area. 
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Bad practice 2: Choose the proposal with the highest weighted score 

The customer defines a list of assessment factors and give each of them a weight. 

Typically, you use the factors functionality, quality and price. Each factor gets a 

weight, e.g. 40%, 25% and 35%. Often you divide each factor into sub-factors.  

Each proposal gets a score for each sub-factor, usually a number between 0 and 10. 

Next you weigh and add the scores. The winner is the proposal with the highest 

weighted score. 

The scores are subjective, for instance how good is the overview of the patient’s 

clinical state, and how sure are you that you look at the correct patient. For the 

price, you give for instance 0 scores if the system costs 40 million USD and 10 

scores for 20 million USD.  

The problem is that the result has no relation at all to the net benefit as defined 

above. Ironically, this approach is called the “economically best proposal”. Alas, it 

has no relation to economy. 

SL-07 shows two solutions: One where the selection criterion is the net benefit 

(B5), and one where it is the highest scores per dollar (B6).  

Minimum requirements: Minimum score for each requirement area 
The customer divides the requirements into areas. For each proposal, the customer 

gives a score for each area: -2 (not supported or very inconvenient), -1 (inconve-

nient), 0 (just sufficient), 1 (efficient), 2 (very efficient). 

Further, the customer has specified a minimum score for each area. The minimum 

requirement is that the proposal gets at least the minimum score for each area. 

Here are the areas and the reasons behind the minimum scores in the EHR 

example: 

Area Minimum scores 

C1-C4 Admit patient (one area). Support is not really needed for this task. The 
customer can just keep his existing admission system. 

-2 

C10 Perform clinical session. To avoid selecting a supplier who scores high else-
where, but handles clinical sessions badly, we demand that the system sup-
ports clinical sessions at least as well as the present system.  

0 

C11-C… Medication (one area). This too must be supported at least as well as today. 0 

… … … 

D Data. Not assessed separately. Done indirectly as task support. N/A 

… … … 

F10 Integration with new external systems. Must be better than today - it is one of 
the business goals.  

1 

H1 Login and access rights for users. Must be at least as good as today. 0 

H2-6 Other security (one area). We accept that it is a bit worse than today. -1 

I Usability. Must be at least as good as today.  0 

J2 User training. Must be at least as good as today. 0 

J4 Data conversion. This just has to be sufficient. It is a one-time issue. 0 

L1. Response times. Must be at least as good as today. 0 

… … … 



27 

When the suppliers have submitted their proposals, the customer must assess each 

proposal. Chapter 3 explains how to give a score for each task, each integration, 

etc. and take notes about it. Give a final score for each requirement area based 

on the scores and notes. A single bad score for one of the tasks may give a bad 

score for the entire area. Make a note of why the area is not supported adequately. 

The notes are useful for internal customer discussions. They are also useful in case 

a supplier finds the assessment unfair and goes to court. The notes can prove that 

the customer actually made a fair assessment. 

 

B4. Minimum requirements 
In public tenders according to EU rules, the suppliers must know the minimum requirements and selection 
criteria before writing a proposal. In commercial acquisitions, the customer needs not state any criteria. 
 
Scores: The customer gives each proposal scores for the requirement areas shown in the table below. To 

provide better overview, the tables have space for several proposals (columns A, B and C). The detailed 
requirements in Chapter C to L explain where the problems are today. Below, the customer states the 
scores he would give his present system.  
 
The scores use this scale: -2 (not supported or very inconvenient), -1 (inconvenient), 0 (just sufficient), 1 
(efficient), 2 (very efficient). 
 
Minimum score: For each requirement area, the customer has stated the minimum scores below. A 

system that that doesn't meet the minimum scores in all areas, will be useless in practice. 
 
Minimum requirements: The system must meet the minimum scores below in all requirements areas. 

 
Notice that a minimum score may be -2 or -1. This means that a proposal may be acceptable even if it is 
worse than the present system in this area. As an example, area C1-C4 has a minimum score of -2 
because the customer can use his existing admission system. The table shows an example where supplier 
A scores -1 (worse than today) for area H2-H6, but this is acceptable because the minimum score is -1. 
 

Requirement area Points 
today 

Minimum 
 score 

Score 

Sup 
A 

Sup 
B 

Sup 
C 

C1-C4.  Admit and discharge patients (considered 
one area). 

0 -2 1   

…      

C10. Perform clinical session. -1 0 1   

C11-C… Medication (considered one area).  -1 0 2    

…      

D. Data. Assessed through the task support. N/A N/A N/A   

…      

F10. Integration with new systems. -1 1 1   

H1. Login and access rights for users. 0 0 0   

H2-H6. Other security (one area). 0 -1 -1   

I. Usability and design. 0 0 1   

J2. User training. 0 0 0   

J4. Data conversion. N/A 0 1   

K. Acquisition process (project cost) N/A -1    

L1. Response times. 0 0 0   

…      
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Don't let the supplier write the scores. Amazingly many customers have a table 

of all the requirements and ask the suppliers to state to which degree they meet 

each requirement, e.g. met/not met. We don't have the time, says the customer, 

let the supplier do it. Imagine what suppliers do in this case? They let their sales 

department fill in the scores. Not surprisingly, all suppliers get top scores for every-

thing. As a result, the customer must choose based on the cost only, and often ends 

up choosing a bad system. 

The consequence may be that the customer saves some work hours now, but 

wastes thousands of hours later because his staff has to work with a bad system. 

B5. Net benefit in 5 years 
Method B5 discards proposals that don’t meet the minimum requirements. Among 

the remaining proposals, we have to select the winner. 

Method B5 computes the net benefit in dollars for each proposal. The customer 

selects the proposal with the highest net benefit. Below we show a complex version 

where we assess the degree of meeting the benefit and the risk for each business 

goal. We might simplify by omitting the risk. 

First the customer computes the potential benefit of each business goal. In the ex-

ample, the customer has computed the potential value for a period of 5 years. As 

an example, efficient task support might save each employee an hour a day. This 

estimate is based on observations of clinicians at work. Today they have to log into 

several systems for each patient and take paper notes to get an overview. They 

spend around an hour on this every day. It might be avoided with proper system 

integration and overview screens. For 4000 clinicians, it means saving 200 million 

USD in 5 years. 

Fraction obtained: A proposal may have weaknesses that will reduce the actual 

benefit to a fraction of the potential. For each proposal and each business goal, the 

customer estimates this fraction. As an example, if the proposed system can save 

only 0.5 hour a day, the fraction is 0.5. In principle the fraction may be higher than 

1. This happens if the proposal exceeds the customer's expectations. 

Risk: A proposal may be risky, for instance because the solution hasn't been tried 

somewhere else, or the solution is very sketchy, or the supplier needs a long time 

for the POC. For each proposal and each business goal, the customer estimates the 

risk that the benefit will not materialize. 

Based on the potential value and the proposal-specific fractions and risks, we com-

pute the five-year value for each proposal. 

Total cost: The cost in the example consists of the product cost as offered by the 

supplier, the cost of hardware and other equipment that the customer has to buy, 

the cost of training the staff, and the operating costs for a period of 5 years. 

Notice that all of these may differ between proposals. Some proposals need more 

customer hardware than others; some need more staff training than others, etc. 

Net benefit: The net benefit - the bottom line - consists of the total benefit for 5 

years minus the total cost for 5 years.  

The customer now selects the proposal with the highest net benefit. 
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B5. Selection criteria: Highest net benefit 
Use either section B5 or B6 as selection criteria. 
 
The total benefit of the proposal is based on a financial value for each business goal. The table shows an 
example with fictitious figures for supplier A.  
 
Potential: The customer's estimate of the potential benefit for a 5-year period. Measured in million $. 

 
Fraction:  For each proposal, the customer estimates the fraction of the potential benefit that this proposal 

can reach if the supplier delivers as promised. It is stated as a number with one decimal, normally in the 
range from 0.0 to 1.0. Example: The potential cost saving of efficient task support is estimated to one hour 
per day per employee. Proposal A seems to save only half an hour and gets the fraction 0.5. 
 
Risk: For each proposal, the customer estimates the risk that the fraction will not be met. The risk is 

estimated based on how detailed the solution is, whether the relevant part of the solution exists, whether it 
is used elsewhere, the supplier's domain knowledge, and the time proposed for the proof of concept. 
Example: Supplier A has sketched a detailed solution but it doesn't exist yet. However, he has good 
domain knowledge. The risk is estimated to 30%. 
 
5-year value: Computed as Potential * Fraction * (1-Risk) 

 

Business goal 5-year 
poten-

tial 

Fraction Risk 5-year value 

Sup
A 

Sup
B 

Sup
C 

Sup
A 

Sup
B 

Sup
C 

Sup
A 

Sup
B 

Sup
C 

1. Efficient support of clinical tasks 200 0.5   30%   70   

2. Reduce medication errors 50 1.0   10%   45   

3. Continuous improvement 50 1.0   40%   30   

4. Lower operating costs (included 
below) 

          

Total benefit for 5 years (million $)  300       145   

 
The customer estimates the net benefit for each proposal. The total benefit for a period of 5 years is 
computed above. The costs of deploying and operating the system are subtracted. The result is the net 
benefit for 5 years. Notice that all the figures may differ between proposals. 
 
The customer selects the proposal with the highest net benefit for 5 years. 
 

Benefit for 5 years, million $ Sup A Sup B Sup C 

Total benefit for 5 years 145.0   

Product cost 20.0   

Customer hardware costs 10.0   

Staff training 5.6   

Operating costs for 5 years 20.0   

Total costs for 5 years 55.6   

Net benefit for 5 years 89.4   
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B6. Weighted score points per dollar 
Method B6 also discards the proposals that didn’t meet the minimum requirements. 

Among the remaining proposals, we have to select the winner. However, B6 doesn't 

calculate the benefit in dollars, but as a weighted sum of score points. We try to 

make the weights reflect economy or the importance of the requirement area. 

Total weighted score points: We start with a copy of the table for minimum 

requirements, but delete the minimum scores. We use the space for a weight for 

each area. We keep the actual scores for each proposal. We add columns where we 

calculate the weighted score for each requirement area and each proposal. The total 

weighted score for a proposal is an indication of the value of the proposal. 

Weights: How do we determine the weights? One possibility is to give each area a 

priority, for instance between 1 and 5. The priority is now the weight. However, this 

is hard to justify from a business point of view. Furthermore it can be hard to make 

a stakeholder agree that his area has priority 1 and another priority 5. 

Instead we could find weights that reflect the importance of the area, for instance 

the number of staff affected, the effect on quality, or the effect on cost. In the 

example we started with the 5-year potential value computed as in B5. We split the 

potential value into the requirements areas. As an example, continuous im-

provement originated mainly from F10, integration with new external systems. 

Finally we disguised the values as a weight by dividing by a factor that made the 

weights add up to 100. This also matches the tradition of using weights that are 

percentages.  

Some areas have no direct relation to business goals. Yet they have got a small 

weight that reflects some subjective or political value. Notice that many areas have 

weight zero. Better support of them has little impact - as long as the minimum 

score is met. 

In the example, C10 has a very high weight because it accounts for almost half of 

the business value. This makes the result very sensitive to the score being one or 

two. For this reason we gave scores with one decimal for C10. The decimals can be 

computed based on scores for the individual tasks or special requirements. 

It is important that the supplier’s points are negative when the proposal in this area 

is worse than what we have today. Otherwise we can get obviously wrong choices. 

See the example below in the section “negative points?” 

Total cost: The cost is computed exactly as for method B5. 

Bottom line: In B5 we subtracted cost from benefit to get the net benefit. We 

cannot do this in B6. It doesn't make sense to subtract cost in dollars from benefits 

in score points. However, it makes sense to divide the two. This gives us the 

number of weighted score points per million dollars.  

The selection criterion is the largest weighted score per million dollars. 

Advantages: The main advantage of B6 is that we don't have to reveal the busi-

ness value to the suppliers or to the government body that funds us. B6 also allows 

us to put weights on quality aspects that cannot be estimated in dollars. Finally, the 

whole procedure is somewhat simpler because we can reuse the scores from the 

minimum requirements. 
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B6. Selection criteria: Most score points per dollar 
With this alternative the customer doesn't have to specify the benefit in $, and he doesn't have to reveal to 
the supplier how much he expects to gain. Risks are not included below, but it could be done. 
 
Scores: The scores are those the customer assessed for the minimum criteria in B4. Since one of the 

areas has a very high weight, the decision is very sensitive to this area getting score 1 or 2. For this 
reason, we give it a score with one decimal here. 
 
Weight: Each requirement area has a weight that reflects the impact of the area. For instance, the number 

of staff affected, the impact on the customer's service quality, or the contribution to the business value. 
The weights add up to 100. 
 

Requirement area Weight Score Weighted score 

Sup 
A 

Sup 
B 

Sup 
C 

Sup 
A 

Sup 
B 

Sup 
C 

C1-C4. Admit patient (considered one area). 5 1   5   

…        

C10. Perform clinical session. 50 1.5   75   

C11-C… Medication (considered one area).  15 2   30   

…        

D. Data. Assessed through the task 
support. 

N/A N/A      

…        

F10. Integration with new external systems. 15 1   15   

H1. Login and access rights for users. 0 0      

H2-H6. Other security (one area). 0 -1      

I. Usability and design. 10 1   10   

J2. User training (training cost below). N/A 0      

J4. Data conversion. 0 1      

K. Acquisition process (project cost 
below). 

N/A       

L1. Response times. 5 0      

…        

Total weight and total weighted score 
points 

100    135   

 
For each proposal the customer computes the total weighted score and the costs of deploying and 
operating the system for a period of 5 years. Finally the score per million $ is computed. 
 
The customer selects the proposal with most score points per million dollars.  
 

Score per million $ Sup 
A 

Sup 
B 

Sup 
C 

Total weighted score points 135.0   

Product cost 20.0   

Customer hardware costs 10.0   

Customer project cost 0.3   

Staff training 5.3   

Operating costs for 5 years 20.0   

Total costs for 5 years 55.6   

Score points per million $ 2.4   
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Variations 

There are many variations on the selection themes above.  

For the minimum criteria, there may be several requirement areas where the cus-

tomer can accept a proposal that is worse than today. It would be foolish to reject 

an otherwise great proposal because it is worse than today in a few areas. How-

ever, it shouldn't be worse in too many areas. We can avoid this by means of an 

additional minimum requirement: 

For B5, net benefit over 5 years: The net benefit must be positive. 

For B6, weighted score points: The total of the weighted score points must be posi-

tive. 

We might add maximum criteria on the cost, e.g. our budget doesn't allow us to 

invest more than 30 million dollars. And add minimum criteria on the benefit, e.g. 

we won't invest in something unless we get at least a 20% return on investment. 

In B5 we could change the 5-year period to for instance 10 years. This will make 

the selection less sensitive to the development time and the initial costs. 

In B5 we could select the winner according to the financial benefit per invested 

dollar. This corresponds to the managerial situation where we have a limited 

amount of money to invest and choose the projects that give the largest return on 

investment. 

We could also be more precise and calculate the internal rate-of-return (IRR), tak-

ing into account the varying benefits and costs over a period of years. 

For B66 we could include the risk of not getting the full score points. 

In general it is a good idea to test the weights and scales by imagining hypothetical 

proposals with different scores and costs, and check that the selection criteria make 

sense. 

Finally, you should remember that there is a high level of uncertainty and risk in 

large IT projects. Fiddling with details in the calculations will have little impact 

compared to these risks. Fortunately the selection of a winner is often robust: Even 

if we vary the weights and estimates quite a lot, the same winner comes out.  
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Negative points? 

Does it matter which scale you use for measuring score points? With B6 we used 

scale -2 to 2 and A was best. What happens if we use scale 1 to 5 instead? You 

might believe that A is still the winner, but you are wrong. It may become another 

supplier, even one we don’t want at all.  

The table below shows an example. Supplier A has 100 weighted score points when 

we use a scale from -2 to 2. B has zero. However, A is also more expensive. What 

happens if we change the scale to 1 to 5? Now -2 points become 1, and 2 points 

become 5. In other words, we add 3 to all scores. Since the weights add up to 100, 

the total weighted score points increase by 300, as shown in the table below.  

The costs of A and B are the same as before. Before, A got 2.5 score points per 

million, B got zero. A was the winner. Now A gets 10.0 score points per million, B 

gets 15.0. B will be the winner because he is cheaper and with this scale he earns 

almost the same number of score points as A. 

How can this happen and what is right? 

The cause is that scale 1 to 5 doesn’t reflect business value. It looks as if proposal B 

adds value. It doesn’t. With scale -2 to 2, we can see that B is “as today”. Why pay 

100 million for this? 

The conclusion is that when you use score points, they must reflect the 

business value. Positive score points must reflect added value, negative lost 

value. If they don’t, you may end up spending money on a system that makes 

things worse. 

What do you think most customers do? They use positive scores only! 

 

Scale effect scale -2, -1, 0, 1, 2 scale 1, 2, 3, 4, 5 

 A B A B 

Total weighted score points 100 0 400 300 

Cost, millions 40 20 40 20 

Scores per million 2.5 0 10.0 15.0 
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C. Tasks to support 
This chapter describes the user tasks to be supported. The requirement is that all 

tasks must be supported to some degree. 

A user task is something user and computer do together from start to end without 

essential interruptions. A good starting point is something that happens in the 

user's world, for instance that a client calls. A good end point is that nothing more 

can be done for the client right now - the user deserves a "coffee break" (task 

closure). 

The first task in the template is C1. It starts when the secretary receives a message 

about a patient. It ends when the patient has been admitted and got a meeting 

time - or put on the waiting list - or the call has been parked because some 

information is missing.  

The table lists the sub-tasks involved. As far as possible, the user decides which 

subtasks to carry out and in which sequence. 

Subtask 1 records the patient. We don't specify whether user or computer does it. 

Initially we don't know how much the computer is doing; it depends on the sup-

plier's solution. Good support is that the computer does most of it, for instance 

copies the patient data automatically when the message is electronic. 

Subtask 1a is a variant, i.e. another way to do subtask 1. Either 1 or 1a is done. 

In a task you can specify that something is a problem to be eliminated. You don't 

have to specify how. In the example it is a problem that some of the electronic 

messages don't observe the MedCom format. 

Strictly speaking, we must distinguish between task description and task execu-

tion. The secretary executes C1 many times a day. The first time it is about patient 

A, the next time it is about patient B who lacks information and is parked. At the 

end of the day the secretary receives another message about patient B, this time 

with the missing information. Now the secretary can do more for B than the first 

time. Each time it is a new task execution but it follows the same task description. 

Programmers would say that C1 is a class and execution of C1 is an instance or an 

object of this class. 

Work area 1: Patient management 
In order to assess how well a task is supported, we have to know what kind of users 

we deal with, the environment where the task is carried out, etc. We might specify 

this for each task, but we often have to repeat the specification. So it is convenient 

to bundle tasks according to user kind and environment. Such a bundle is called a 

work area. 

In the template we describe each work area as an introduction to the bundle of 

tasks. We describe the user profiles (roles) and maybe the environment. The user 

profiles explain the user's IT experience, domain experience, motivation, etc. Some 

users may work in several work areas, possibly with different roles in different 

areas. 

User profiles are a short version of personas. Tasks are related to use cases and 

user stories, but are problem oriented. See more below.  
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 C. Tasks to support 
The system must support all user tasks in this chapter, including all subtasks and variants, and mitigate 
the problems. Column 1 of the tables describe what user and system will do together. Who does what 
depends on the chosen solution. 
 

A task is carried out from start to end without essential interruptions. If necessary, the case must be 
parked and resumed later. Although subtasks are numbered, they don't have to be carried out in this 
sequence, and many of them are optional. The user decides what to do and in which sequence. A subtask 
may also be repeated during the same task. 
 

Some subtasks may be performed in alternative ways. It is shown with a, b, etc. Letters p, q, etc. indicate 
something that today is a problem with this subtask. 
 

Work area 1: Patient management 
This work area comprises calling in patients, monitoring waiting lists … 
 

User profile:  Doctor's secretaries. Most of them are experienced IT users with good domain 

knowledge. They communicate easily with medical staff. 
User profile:  Clerical staff …  
Environment: Office … 
 

C1. Admit patient before arrival 
This task creates an admission or continues a parked admission. Most admissions can be handled as one 
piece of work. The rest have to be parked, e.g. because some information is missing. It is important that 
the system ensure that parked admissions are not forgotten (see E1-1) 
 

Users: Initially a doctor's secretary, but the case may be transferred to someone else.  
Start:  Message from medical practitioner, message from another hospital … message with 

missing data, or a reminder about a parked admission. 
End:  When the patient has been admitted or recorded on the waiting list, or when the admission 

has been parked while the missing data is on its way. 
Frequency: In total: Around 600 admissions per day. Per user: A maximum of 40 per day. 
Difficult: (never) 
 

Subtasks and variants: Example solutions: Code: 

1. Record the patient. (See data description D5).   

1a. The patient is in the system. Update data.   

2. Admit also a healthy companion.   

3. Record the admission, including the initial 
diagnosis. (See data description D1 and D6). 

  

3a. Transfer data from medical practitioner, etc.  The system uses the MedCom 
formats. 

 

3p. Problem: Some electronic messages don't 

follow the MedCom format. 
The system allows manual editing of 
the transferred message. 

 

3q. Problem: The patient may have several 

admissions at the same time at different 
hospitals and departments. It is hard to see 
who is responsible for nursing and where the 
bed is.  

  

4. Find a meeting time for the patient and send 
an admission letter or a confidential email. 

  

4a. Put the patient on the waiting list.   

4b. Essential data is missing. Park the case with 
time monitoring. 

  

4c. Transfer the case to someone else, possibly 
with time monitoring. 

  

4d. Maybe reject the case.   

5. Request an interpreter for the meeting time.    
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C1. Task rules (Admit patient before arrival) 
The task description consists of these parts: 

ID: Tasks are numbered C1, C2, etc. To avoid too much renumbering during 

requirements elicitation, we group tasks according to work area and start each area 

with a round figure. In the template, C10 is the first task in the next work area, 

patient treatment. 

Name: A task must have a name in imperative, e.g. Admit patient. Names like The 

user admits the patient or patient admission don't start with a verb in imperative. 

Imperative hides who does what - user or computer. During elicitation we don't yet 

know who will do what. 

Introduction: Help the reader understand what the task is about. 

Users: The users who carry out the task. 

Start: A task should be something that is carried out by one user from start (trig-

ger) to end (coffee break) without essential interruptions. Notice that a task may 

start for more than one reason and end in more than one way. 

The start signal (the trigger) should be something that happens in the user's 

world. In the example it is that a secretary receives a message about a patient. 

Avoid out-of-the-blue triggers such as the user wants to record an admission. This 

reveals that we haven't understood when this happens and whether the system 

could support it better, for instance through automatic receipt of MedCom 

messages.  

End: A task ends when the user deserves a "coffee break", either because the user 

has done what is needed or because nothing more can be done right now. Task C1 

may be parked because some data are missing (subtask 4b). Although the task isn't 

completed in a logical sense yet, it is completed physically for now. The user starts 

doing something else. This pattern is very common and it is important that the 

system supports it well, for instance through warnings about overdue, parked tasks. 

Why do we define tasks this way? Because it is the observable period of time where 

the system must support the user - without essential interruptions. We must check 

that the system provides efficient support for the entire period. 

Frequency: The task frequency for the entire organization and for the user. The 

frequency for the entire organization helps the supplier estimate the necessary 

computer capacity. The frequency for the user indicates the importance of an effi-

cient user interface. These figures are outside the table, meaning that they are not 

requirements, but assumptions the supplier can make. The corresponding quality 

requirements are in other sections: response times (L1) and usability (I1).  

Difficult: Situations where the task is particularly difficult to carry out, for instance 

because it is done under stress or requires high precision. Note that task C1 has no 

difficult situations while task C10 has one.  

You cannot readily observe difficult situations but have to ask users about them. 

Difficult is outside the table and thus not a requirement. Early in the requirement 

process you may write difficult, but try to move it into other sections later. Often we 

can describe it as a problem with one of the subtasks. Then it is easy to check 
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whether the supplier has a good solution. We can also describe a difficult situation 

as a separate task. This helps us check that the supplier supports it well.  

Subtasks and variants: The requirements are in the table. Column 1 is a list of 

subtasks, variants and problems. This is what the system must support. Subtasks 

are numbered in a logical sequence, but this is for reference only. Subtasks are 

basically optional (need not be carried out), some of them are repeatable and they 

may be carried out in many sequences. The user decides as far as possible what to 

do. 

Notice that we use imperative language also for subtasks (record the patient). You 

may write several lines to describe a subtask or a problem. C1-3q and C10-2 are 

good examples. If you need more space, write a requirement note below the table.  

Variants of a subtask are indicated by letters a, b, etc. A variant means that the 

subtask may be carried out in more than one way. As an example, we may either 

C1. Admit patient before arrival 
This task creates an admission or continues a parked admission. Most admissions can be handled as one 
piece of work. The rest have to be parked, e.g. because some information is missing. It is important that 
the system ensures that parked admissions are not forgotten (see E1-1). 
 

Users: Initially a doctor's secretary, but the case may be transferred to someone else.  
Start:  Message from medical practitioner, message from another hospital … message with 

missing data, or a reminder about a parked admission. 
End:  When the patient has been admitted or recorded on the waiting list, or when the admission 

has been parked while the missing data is on its way. 
Frequency: In total: Around 600 admissions per day. Per user: A maximum of 40 per day. 
Difficult: (never) 
 

Subtasks and variants: Example solutions: Code: 

1. Record the patient. (See data description D5).   

1a. The patient is in the system. Update data.   

2. Admit also a healthy companion.   

3. Record the admission, including the initial 
diagnosis. (See data description D1 and D6). 

  

3a. Transfer data from medical practitioner, etc.  The system uses the MedCom 
formats. 

 

3p. Problem: Some electronic messages don't 

follow the MedCom format. 
The system allows manual editing of 
the transferred message. 

 

3q. Problem: The patient may have several 

admissions at the same time at different 
hospitals and departments. It is hard to see 
who is responsible for nursing and where the 
bed is.  

  

4. Find a meeting time for the patient and send 
an admission letter or a confidential email. 

  

4a. Put the patient on the waiting list.   

4b. Essential data is missing. Park the case with 
time monitoring. 

  

4c. Transfer the case to someone else, possibly 
with time monitoring. 

  

4d. Maybe reject the case.   

5. Request an interpreter for the meeting time.    
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record the patient (subtask 1) or find the patient in the system (1a). Problems 

relating to the subtask are indicated by letters p, q, etc. 

Many subtasks consist of recording or using data, but some subtasks comprise 

more, for instance advising other people (subtask 5), dispensing medicine, paying 

an amount. It is important to include this even if it is done manually today. The 

supplier may have a solution that the customer hasn't imagined. 

Problem = current problem: Column 1 also lists problems. A problem must be 

something that troubles the user in the present way of doing things. Problem 3q is 

a good example. The customer wants the supplier to eliminate the problem. We 

often see analysts stating an imagined future problem, for instance that it will be 

difficult to provide overview of the data. This is not the intention with "problem". If 

you want to mention such issues, do it in column 2 (solutions), which deals with the 

future. 

Solutions: The customer may write example solutions in column 2. Later the sup-

plier writes his proposed solution here. 

As a customer, write sample solutions sparingly. Don't force yourself to write some-

thing "clever" here. Only write something if it is a non-trivial solution. Solutions are 

not in imperative. They should explicitly state who does what, e.g. The system 

shows or The user selects.  

What are the requirements? Right after heading C in the template, you see that 

the requirements are to support all user tasks, including all subtasks and variants, 

and mitigate the problems. This means that column 1 of the tables are the require-

ments (the customer's demand).  Column 2 may contain a solution example, but 

the solution is not a requirement. Things outside the tables are assumptions the 

supplier can make or help to the reader.  Requirements or solution examples that 

are too long to fit in the table, may be written outside the table, but must have the 

heading requirement note or solution note. 

C2. Similar tasks (Admit immediately) 
Task C2 handles patients who arrive in an emergency without notice. Although the 

task resembles C1 there are differences, and C2 may need different support.  

Don't worry about the same subtasks appearing in C1 and C2.We need to check 

that they are supported well in all contexts. A programmer will try to reuse code - 

great, but the analyst doesn't program. The analyst should ensure that all use 

contexts are supported properly. 

C10. A complex task (Perform clinical session) 
The most important activity in a hospital is examining and treating the patient. How 

many tasks are involved? Is examination one task and treatment another task? If 

we study what actually goes on, examination, treatment, and other activities are 

often carried out within the same short period of time without essential interrup-

tions. This period of time is a task, which we call a clinical session. It is important 

that the computer supports the whole session well.  

Many patients have several diagnoses (diseases) and during the clinical session the 

clinicians may try to deal with all of them. They may for instance follow up on a 

treatment of one disease and plan treatment of another one. 
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So task C10 starts when the clinician starts dealing with the patient and it ends 

when he cannot do more for the patient right now. The task contains many kinds of 

subtasks. The clinician decides what to do and in which sequence. 

 

C2. Admit immediately 
This task creates an admission for a patient who arrives in an emergency without prior notice … 
 

Work area 2: Patient treatment 
This work area comprises … 
 

C10. Perform clinical session 
A clinical session may comprise diagnosis, planning, treatment, evaluation, etc. Usually several of these 
are carried out, but it may also happen that only planning, for instance, is carried out.  
 
Users: … 
Start:  Contact with the patient or a conference about the patient. 
End:  When nothing else is to be done about the patient right now. 
Frequency:  In total: Around 15,000 per day. Per user: A maximum of 20 per day. 
Difficult: Disaster with many injured. (Better describe it as a separate task. See the guide booklet.) 

 

Subtasks and variants: Example solutions: Code: 

1. Identify the patient. The system can read an electronic 
bracelet, e.g. for unconscious 
patients. 

 

2. Assess the state of the patient. See open 
diagnoses and related indications. See notes. 
See results of services ordered earlier and 
compare them with expectations. The data to 
overview comprises D0 … 

The system shows an overview of 
everything on one screen, e.g. with a 
Gantt-like time dimension. The user 
can drill down to details from the 
overview.  

 

2p. Problem: Today clinicians have to log in an out 

of several systems to see all relevant data. 
  

3. Provide services that can be given on the spot, 
e.g. blood pressure and SAT. 

The system makes it easy to record 
the results on the spot. 

 

4. Follow up on planned services and results. 
Check for violated deadlines. 

The overview shows ordered services 
and their state, e.g. deadline violation.  

 

5. Adjust diagnoses (modify, add, delete, 
prioritize). Check against standard 
recommendations. Write notes.  

  

5p. Problem: Cumbersome to see standard 

recommendations. 
The system can show recommenda-
tions and checklists based on a 
selected diagnosis. 

 

6. Plan and order new services. Check against 
available time for all parties - including the 
patient. (See the long subtasks C11, C12 … for 
order medicine, booking …).  

For bookings, the system shows 
available dates and times for all 
parties. 

 

6p. Problem: Parts of the request are forgotten. The system can book standard 
packages of services. 

 

6q. Problem: Errors when data are written on paper 

and recorded later. 
The system makes it easy to record 
on the spot. 

 

7. Maybe discharge the patient. (See task C6).   
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C11. A long subtask (Order medicine) 
Sometimes there are so many subtasks in a task that the description becomes hard 

to overview.  

One solution is to bundle the subtasks into logical groups with headings. We have 

seen this work fine with 50 subtasks divided into 10 groups. The purpose of the 

bundling is only to help the reader. The subtasks may still be carried out in almost 

any sequence.  

Another solution is to make each bundle a long subtask with a separate C-num-

ber. As an example, subtask C10-6, plan and order new services, refers to several 

long subtasks: C11, order medicine, C12, booking, etc.  

C11 is shown in detail. Notice that a long subtask doesn't have its own start and 

end description. It is simply a part of the main task, C10. However, it makes sense 

to specify the frequency because only some clinical sessions order medicine or 

bookings. 

Subtask 6, Calculate dose, shows how business rules can be embedded in a task. 

We might split subtask 6 into several subtasks, each of which checks one thing. Or 

write the details as a requirement note.  

C20. Another environment (Perform clinical session, mobile) 
It may happen that a task is carried out in different environments with different 

needs for IT support. One example is the clinical session when the clinician moves 

around from patient to patient. The customer would like to support it through PDA's 

or Smartphones. In theory all we need is to state in the introduction to C10 that it 

may also be a mobile environment.  

However, where should the supplier specify his solution, which is probably different 

from the normal PC support of C10? And how will the customer assess the solution? 

We suggest that you repeat the task for each environment:  

C10: Perform clinical session, stationary. 

C20: Perform clinical session, mobile. 

What about the long subtask C11, order medicine? To make sure that it too is 

supported well in both environments, we should repeat it. 

As for C2, admit immediately, don't worry about the same subtasks appearing in 

several tasks. We need to check the support of them in all contexts.  

Why not user stories or use cases? 
User stories 
Like tasks, user stories try to describe what the user will use the system for. We see 

User Stories being used more and more in requirements. They come in many ver-

sions. Here are three typical examples: 

A. As the patient's doctor I want to see an overview of the patient's diagnoses. 

B. As the patient's doctor I want to see an overview of the patient's diagnoses. 

(Followed by a screen with an outline of the overview – a wireframe). 

C. In order to see the patient's diagnoses, I right click the patient's name and 

chose See diagnoses. 
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All three examples are unsuitable as requirements. You cannot see what the over-

view is to be used for. Is it to find a treatment, to explain a new symptom, or to 

write a discharge letter? You may get support for these user stories, yet fail to get 

adequate support for the full task from trigger to coffee break. In the worst case, 

the user may have to write the diagnoses on paper in order to execute the next 

steps of the task.  

Examples B and C are furthermore on a wrong level (design level) and prescribe a 

specific solution. This is not suitable if you want to get an almost finished system. 

C11. Order medicine for the patient (long subtask) 
This is not a separate task but a long subtask carried out during a clinical session. For this reason "start", 
"end", and "user" are unnecessary. 
 
Frequency: In total: Around 30,000 times per day. Per user: A maximum of 20 times per day. 

 

Subtasks and variants: Example solutions: Code: 

1. Assess the entire medication pattern of the 
patient, in this admission as well as other 
admissions. 

The system shows an overview of all 
medications, CAVE and diagnoses. 

 

1p. Problem: Cumbersome to see standard 

recommendations 
The system can show recommenda-
tions and checklists based on 
diagnosis and drug type. 

 

…   

6. Calculate dose. Check that it is reasonable. 
Check for interaction with other drugs. 

The system offers a calculation based 
on body weight retrieved from the 
health record.  

 

6p. Problem: Translation between various units. 

There may be a difference between the unit of 
ordering (e.g. mg) and the unit of dose (e.g. 
number of tablets). 

The system shows the dose in order 
units as well as dose units.  

 

…   

… 

C20. Perform clinical session, mobile 
Clinical sessions may be performed when medical staff is moving around from patient to patient, e.g. with 
a PDA or mobile phone. In principle, we have the same subtasks as in C10, but they cannot be supported 
in the same way. In order to allow the supplier to specify his solution for the mobile situation, we repeat the 
clinical session task here. 
 
Users: … 
Start:  When … 
End:  When …  
Frequency:  … 
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Use cases 

Use cases also try to describe what the user will use the system for, but are also 

very solution oriented. They have a short time span and rarely stretch from the true 

trigger to the deserved coffee break. 

In use cases you don't mention problems. Some use case authors become upset if 

you do it: You haven't done your work properly. (Not my duty! I expect the supplier 

to solve the problems.) 

If you use the task concept correctly, there will be rather few tasks to describe. 

Many large systems can be described with just 10-30 tasks. This is an advantage 

because you get a better overview and have much less to write. 

We often see requirement specifications where 10 tasks have been expanded to 

around 100 use cases, each of which takes up one or more pages, although little 

happens in each of them. The cause is usually that each subtask has been specified 

as if it was a separate task with start and end, frequency, etc. In real life these use 

cases are not separate but done in combination with other use cases until "coffee 

break". When described in the use-case way, the supplier gets no feel for how the 

use cases relate to each other, and as a consequence he cannot support them well.  

Here is a scaring real-life example from the hospital world: 

A harmful specification from a real EHR project - 3 pages in total 
Use case 2.1. Show diagnoses 

The clinical user wants to obtain an overview of the patient's diagnoses and their relationships. 

Start: The user wants to inform himself of the development in the patient's state of health. 

End:  … 

Precondition: The user is logged in. The patient is recorded and selected. 

Step: Example solution: 

1. Show the hierarchy of diagnoses.  

2. Select display mode. E.g. a hierarchy or a Gantt diagram. 

3. Select the level of detail.  E.g. expand or collapse with plus and 

minus. 

4. Show notes about a selected diagnosis.  

5. Show date and author for the note.  

6. Show possible external causes of the diagno-

sis. 

 

. . .    

 

This is not a true task because it isn't closed in the coffee-break sense. It will be 

part of a larger task, for instance a clinical session. Furthermore it has so many 

details that it prescribes a specific user dialog. Notice the out-of-the-blue trigger: 

The user wants to . . . It is an indication that we don't know when this is done. 

As for user stories, we cannot see the purpose of this use case. 
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Don't describe data as subtasks 

The use case above is 3 pages in total. One reason is that the analyst has tried to 

describe data as steps. Notes, dates and external causes are handled as separate 

steps. The real specification also had use cases such as Create diagnosis (4 pages) 

and Change diagnosis (3 pages). They referred to almost the same data. It was 

hard to use the data names consistently in all the use cases. The original specifica-

tion had also a log-in use case and a select patient use case. 

With SL-07 you describe data separately in Chapter D. From the subtasks you may 

briefly refer to the data that are relevant in this subtask. The template shows 

examples in C1-3 and C10-2.  

Sometimes it is useful to list the necessary data more precisely, for instance in a 

single subtask or as a requirement note below the task. 

Tasks have no preconditions 

The use case above has two preconditions: The user must be logged in, and the 

patient recorded and selected. This enforces a flow between use cases. The user 

must first carry out the login use case, next the select patient use case, then the 

show diagnoses use case. 

Tasks don't have preconditions, but the subtasks may have, although we rarely 

need to write them. The clinician can start a clinical session at any time without any 

precondition. It is part of the task to identify and select the patient (subtask 1). It is 

an implicit precondition for the remaining subtasks that this has been done. Since 

the context is clearly visible, there is little reason to write an explicit precondition 

for all of these subtasks. 

What about the login precondition? In a problem-oriented perspective this is not a 

demand but a solution to a problem: who is the user and what is he allowed to do? 

Login is only a cumbersome way to do this. The template deals with these issues in 

section H, security, and doesn't mention them in the tasks. 

Lauesen & Kuhail, 2012, give a detailed comparison of use cases and tasks. It is 

based on requirements specifications from 15 professional teams in 5 different 

countries. They all tried to specify requirements for the same system. Eight used 

Use Cases and seven used Tasks. 

It turned out that the use cases covered the customer’s needs poorly in areas 

where improvement was important, but difficult. The customer’s problems simply 

disappeared when the analyst couldn’t see a solution. The difference was significant 

on the 1% level (ANOVA, p = 0.6%). 
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D. Data to record 
This chapter describes the data to be stored in the system. Data may be described 

in many ways. The template shows five ways:  

1. a short explanation of each of the data classes (tables) 

2. a data model (also called E/R diagram or Entity/Relationship model) 

3. a data dictionary with details of each field, data volume, etc. 

4. the contents of some existing tables 

5. the contents of existing screens 

Unfortunately there is no ideal way to describe data. Some are easy to understand 

for stakeholders, but hard to make precise and consistent. Others are opposite. 

Chapter D of the template starts with a short explanation of the data classes 

followed by a graphical data model. Next there is a detailed data description (a data 

dictionary) and finally examples of using tables and screens as requirements. 

Data model – E/R – Entity/Relation 
Data models are great to give overview and consistency. Domain experts can often 

understand them, but ordinary users find them hard to understand. 

Figure 3 in the example is a data model or E/R diagram. Each box is a class of data. 

Imagine that there is a pile of file cards behind the box. As an example, behind the 

Person box there is a file card for each person the system deals with. The box 

symbolizes a card for one single person. For this reason the name on the box 

should be singular, i.e. Person rather than Persons. 

Next to the box we list the fields on the card. A card for a person contains the 

person ID, the name and other simple fields. There should not be repeating fields 

on the card, such as a list of the person's hospital admissions (in database terms: 

first normal form). Data about an admission must be on one card in the Admission 

box and should not be replicated on the Person card. On a user screen we can show 

a person plus all his admissions, but not on a file card in the data model. 

There are relationships between the boxes, shown as crow's feet. A crow's foot 

shows that a card relates to one or more cards in another pile. As an example, a 

person's file card is related to several admission cards (strictly speaking to zero or 

more admission cards). Reading the crow's foot the other way, one admission card 

is connected to only one person card. 

A dotted box shows that the data in that pile are shared or partly shared with an 

external IT system. 

When the data are in a relational database, a class corresponds to a table. Each file 

card corresponds to a record or row in the table. However, E/R diagrams are also 

very useful when data are not in a relational database.  

The diagram lists the fields (attributes) outside each box to save space and improve 

overview. In many cases we show only some of the fields and indicate with … that 

there are more. Notice that we don't show the tables' foreign keys. It is database 

technology and confuses the users. The crow's feet show what is needed. 

A UML class model is very similar to an E/R model, but fields are shown inside the 

boxes, so boxes become very large. Connectors are lines with cardinality shown as 
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0:1, 1:*, etc. When a line cannot be straight, it is not a smooth curve, but a broken 

line. These seemingly small differences make a huge difference when you try to get 

an overview of a large diagram. Our brain can much easier perceive an E/R diagram 

than a UML diagram. Further, a UML diagram often needs five times as much space. 

 

D. Data to record 
The system must record the data described in this chapter. The user can create, view, and change the 
data through the tasks described in Chapter C. In many cases data has to be exchanged with external 
systems as specified in Chapter F. 
 
Figure 3 is a data model (an Entity/Relationship diagram, E/R) that gives an overview of the data. Each 
box is a class of data. Imagine a pile of file cards behind the box (also called Records or Rows). The box 
symbolizes one of the cards. As an example, D5 is a pile that holds a card for each person the system 
deals with. Next to the box is a list of the fields on the card.  
 
There are relationships between the boxes, shown as crow's feet. A crow's foot shows that a card relates 
to one or many cards in another pile. As an example, a person can have many admissions, but an 
admission relates to only one person. Data need not be structured this way in the system, but it must be 
handled in some way.  
 

The dotted boxes show data that are (partly) shared with external systems.  
 

D1. Diagnosis: Each record contains data about one of the patient's diseases. It corresponds to the 

National Health Classification (SKS), but there is also a need for recording diseases that are not in SKS or 
cannot be classified until later. 
 

D2. Diagnosis type: Each record contains data about a type of diagnosis - independent of the patient: the 

diagnosis name and SKS code (where possible), recommendation, standard treatment packages (through 
the relationship to the catalogue of service types) … The clinicians will choose diagnoses from this 
catalogue of diagnosis types.  
… 
 
D5. Person: Each record holds data about a person: name, address … A person may be a clinician, a 

patient, or a relative. 
 

D6. Admission: Each record holds data about an admission: start time, related person … 

Figure 3. Data model for the system
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D6. 

Admission

D3. Service

D2. Diagnosis

Type

D4. Service

Type

Start time, state ( . . .),

. . .

name, start time, registration time,

state (obs | valid | canceled | closed),

. . . recommendation

diagnosis code, name, 

state (considered | . . .), 

description, recommendation

Consists of

Hierarchy

person ID, name . . .

state, start, 

end, name

Hierarchy
service code, name,

state (. . .), . . .

Plus 12 more 

boxes

Dotted box: Shared 

with external system
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D0. Common fields 
In many systems we need to keep track of the data history, i.e. who created or 

changed data and when. It is fields that all tables must have. Old versions of the 

"file cards" are kept. Technically it can be done in various ways, but they are solu-

tions the customer doesn't have to care about. The important part is the require-

ments in D0. 

D1. Data dictionary (Diagnosis) 
This section is the data dictionary for the diagnosis class. It consists of these parts: 

1. The number and name of the class. Classes are numbered D1, D2, etc. To avoid 

too much renumbering during analysis, you may bundle the classes and start 

each bundle with a round number. 

2. Examples of what a file card may represent. Show typical as well as unusual 

examples. For the diagnosis class, a file card represents a diagnosis for a spe-

cific patient. A diagnosis may for instance be "cholera" or "coughing". 

3. The source of the data. Where does it come from? It might be entered during a 

task, collected by the system, or imported from another system. In many cases 

you can describe it for all fields at the same time; in other cases some fields 

need a description of their own. In the example, the diagnosis name is usually 

retrieved from a diagnosis type-card, but it may also be entered by the clinician. 

4. The use of the data. It may be used in tasks or exported to other systems. 

Again there may be a common description for all the fields or separate descrip-

tions for some fields. 

5. The data volume. This is in the table and thus a requirement. The system must 

be able to store this amount of data. Section L3 specifies for how long time the 

data must be kept and how fast archived data must be retrieved. 

In the example, the data volume is given as the number of new diagnoses per year. 

This also gives us the number of create-transactions per day, and an indication of 

the number of create-transactions in peak load periods. This is important for stating 

response time requirements in L1. 

6. A table with details for each field. Attributes are numbered sequentially. 

Problems associated with an attribute are numbered p, q, etc. The list has three 

columns, similar to tasks. Notice that we describe the crow's feet (relations) as 

a kind of field, e.g. D1-2 and 3. 

ID/keys: Notice that we don’t describe the many ID-codes (keys and foreign keys) 

that we find in a typical database. It is because they are technical details that are 

not on domain level. But we describe the relations and give them a name, e.g. 

Admission. However, we describe Diagnosis Code, because users know them. 

The example is written without details of the data format (e.g. whether it is text or 

numbers). In some cases details such as date format and text lengths are useful, 

for instance in the solution column as shown for D1-4. If a specific format is neces-

sary, it must be a requirement in column 1. Use it sparingly; it reduces the chance 

of finding a COTS system that matches the requirement. 
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D0. Common fields  
Each data class records history, i.e. each change creates a new version of the "file card" and preserves 
the old one. It is recorded in these fields: 
 

Fields and relationships: Example solutions: Code: 

1. Change Time: The date and time when the "file 
card" was created or changed. 

  

2. Source: The person who created or changed 
the "file card". 

  

3. History: Relation to earlier versions of the "file 
card" (not shown in the diagram). 

  

 
  

D1. Diagnosis 
A diagnosis is a disease or a symptom for a specific patient. 
 
Examples: There is a fuzzy distinction between diseases and symptoms. As an example, cholera as 

well as coughing are "diagnoses".  
Data source: Diagnoses are recorded during clinical sessions (C10) and often during admission (C1). 
Data use: Diagnoses are shown in patient overviews, for billing and for government reporting. 

 

Data volume: Example solutions: Code: 

1. Around 800,000 diagnoses are recorded a year.     

 

Fields and relationships: Example solutions: Code: 

2. Diagnosis Code: Relation to Diagnosis Type. 
The patient's primary diagnosis may change 
during the admission. The primary diagnosis 
type is used for billing and government 
reporting. 

  

2p. Problem: Very hard to select the right SKS code 
from the 20,000 possible ones. 

See solution notes below.  

3. Admission: Relation to the Admission, which in 
turn refers to the patient (Person). 

The system records it automatically 
based on the currently selected 
patient. 

 

4. Name: Usually the name from Diagnosis Type, 
but may be a name entered for this specific 
patient. 

Field length: 100 characters.  

5. State: A diagnosis may be in these states: Obs, 
valid, canceled, closed. 

  

6. Start Time: The date and time from which the 
diagnosis is in this state. Usually it is the same 
as the Change Time, but not always, e.g. if you 
record that the patient started coughing 
yesterday. 

The system makes it easy to choose 
the Recording Time as the Start Time. 

 

…   

17. Recommendation: The recommendation valid at 
the time of creating the diagnosis.  

  

 
Solution notes 
The user might for instance select a diagnosis code in these ways:  
a. Browsing a hierarchy (corresponding to the SKS super and subclasses) 
b. A reduced hierarchy so that the department as a default see only the diagnoses relevant for them. 
c. "Live search" where the user enters part of the diagnosis name, and the system shows possible 

matches keystroke by keystroke. 
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D2. A type class (Diagnosis type) 
The diagnosis table D1 holds the actual diagnoses for the patients. In contrast, D2 

is an example of a type class. The file cards behind the D2-box make up a catalogue 

of all possible diagnoses. 

It is usually important to specify also the type tables, particularly when the system 

must be able to add a type, change it, and maybe keep track of the history of each 

type. The EHR system gets the diagnosis types from the web site of the National 

Health Organization (SKS), see F1. 

Notice how D2-5 mentions an example in column 1 (Cholera DA00). This is a good 

way to explain what the field may contain. We often see people write such an 

example in column 2. This is wrong - column 2 is for example solutions - DA00 is 

not a solution. 

Notice how D2-6 deals with the length of the description field. It should be around 

two lines, but the exact number is not important. For this reason the customer has 

written a suggested length in the solution column. The supplier may adjust it to 

what is convenient for him, for instance 255 characters. 

In the EHR example, there is also a Service Type class (D4 in the model). It corre-

sponds to a catalogue of all possible services, e.g. "Blood pressure measurement" 

and "Hearth bypass surgery". In some cases there may be several levels of type 

classes. As an example, doctors don't just order Aspirin. They order the service type 

"Aspirin, 12 tablet package". This service type belongs to a Drug medicament type 

that is "Aspirin, 500 mg tablets". The Drug medicament type belongs to a Drug 

preparation type that is "Aspirin, tablets", which corresponds to an Active ingredient 

type that is "Acetylsalicylic acid".  

The Drug medicament type, the Drug preparation type and the Active ingredient 

type are separate data classes (separate boxes) not shown in the template 

diagram.   
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D2. Diagnosis Type 
The collection of diagnosis types makes up the diagnosis catalogue.  
 
Examples: DA001: Cholera vibrio eltor; DR059: Coughing.  
Data source: Imported from the SKS web site. 
Data use: The user selects a diagnosis type when recording a patient diagnosis. 

 

Data volume: Example solutions: Code: 

1. There will be around 30,000 diagnosis types. 
SKS has presently around 20,000 types. 

  

 

Fields and relationships: Example solutions: Code: 

2. Diagnosis code: SKS code or a temporary code.   

3. Name: The full name of the diagnosis, e.g. 
"Cholera without specification". 

  

4. State: A diagnosis type can be in one of these 
states: Considered, valid, outdated. 

  

5. Parent: Relation to a more general diagnosis 
type, e.g. "Cholera, DA00". 

Example: "Cholera, DA00". 

WRONG - not a solution example. 

 

6. Description: A longer text, but not more than 
one or two lines. Even longer descriptions may 
be found in the "Recommendation". 

Field length: 160 characters.  

7. Service types: Relation to service types that 
may be used to treat this diagnosis. 

The system may extract the informa-
tion from the Recommendations. 

 

…   

10. Recommendation: A long text describing 
indications, medical practice, etc.  

Might be a URL.  
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D3. Using existing tables and screens (Service) 
In this section we show some other ways of specifying data: Existing tables and 

existing screens. 

There are many kinds of service in an EHR system. It is hard for the customer to 

specify all of them. In the first part of D3, the customer has specified the common 

fields and relations that all services should have. 

D3-4 is the state of the service. When the clinician requests a service, it starts in 

state ordered, then becomes confirmed by the service provider, then started and 

completed, and it should end up as assessed by a clinician. Keeping track of the 

state and when it changes, is important for taking action when things don't proceed 

as expected. It also allows the system to issue warnings when something is forgot-

ten. The rules for changing state and issue warnings can be complex. You may write 

the rules as requirement notes below the table or as business rules in Chapter E. 

Section D3.1 specifies the services that are clinical measurements. In principle, the 

special fields for a clinical measurement should be written in table D3.1, but D3.1-2 

just refers to a screen taken from the existing database system. The screen lists the 

existing fields. This gives the supplier an idea about what is needed, but the details 

may have to be sorted out during development. 

Section D3.2 specifies the services that are surgery. They are specified in the same 

way as the measurements. 

  

D3. Service 
A service is something measured or given to the patient. There are many subclasses of service, e.g. 
measurements, surgery and medication. At present they are stored in separate tables or even in external 
systems to be integrated. 

 

Fields and relationships common for all services: Sample solutions: Code: 

1.     Service code: Relation to Service Type.   

2. Admission: Relation to the Admission, which in 
turn refers to the patient (Person). 

The system records it automatically 
based on the currently selected 
patient. 

 

3. Start time: The date and time the service was 
given. 

  

4. State: In the normal flow a service may be in 
these states: Ordered, confirmed (by the service 
provider), started (e.g. sample taken), comple- 
ted, assessed (by the clinician). Exceptionally, 
the state may be: Canceled, changed. 

  

5. Consists of: Relation to services that are part of 
this service, e.g. surgery that consists of several 
services. 
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D3.1. Patient measurement 
 

Examples:       Blood pressure; Body Weight; B-glucose; Gamma globulin; X-ray. 
Data source:   Some are recorded during a clinical session; others are imported from an external system, 

e.g. lab results. 
Data use:         Used in patient overview and detail view to support diagnosing and treatment. 

 

Data volume: Example solutions: Code: 

1. Around 100,000 measurements are recorded a 
day. Of these 5,000 are pictures. 

  

 

Fields: Example solutions: Code: 

2. A patient measurement should include the data 
from the present table, see Figure 4, tblPatient- 
Measurement. Notice that the present table 
doesn't have these common service fields: 
admissionID and state. 

  

 

 

D3.2. Patient surgery 
 

Examples:       Heart Bypass Operation; Photodynamic Therapy (PDT). 
Data source:   Recorded during and after surgery. 
Data use:         Used in patient overview and detail view to support diagnosing and treatment. 

 

Data volume: Example solutions: Code: 

1.     Around 100 surgeries are recorded a day.   

 

Fields: Example solutions: Code: 

2. A patient surgery record should include the data 
from the present table, see Figure 4, 
tblPatientSurgery. Notice that the present table 
doesn't have the common service fields: 
admissionID and state. 

  

 

  igure     resent ser ice 
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Section D3.3 specifies the services that are patient medication. In this case, the 

customer didn't have the table formats, but used screen cuts from his existing 

medication system. This also gives the supplier an idea about what is needed, but 

again the details may have to be sorted out during development. 

 

D3.3. Patient medication 
 
Examples: Ibumetin, 400 mg*3; Furix, 40 mg*2. 
Data source: Recorded as medicine orders during clinical sessions. 
Data use: Used in patient overview and detail view to support diagnosing and treatment. 

 

Data volume: Example solutions: Code: 

1. Around 30,000 medicine orders are recorded a 
day. 

  

 

Fields: Example solutions: Code: 

2. A patient medication record should include the 
data that the present system shows. See Figure 
5, screen shot from the present medication 
system. 

  

 

 
 

Figure 5. Present medication data
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D4. CREDO check 
A CREDO check is a classical method for matching functions and data. Some 

functions use data, some functions change data, and some do both. In an SL-07 

context, tasks are the most important functions, but “Other functional 

requirements” (E) and integrations (F) are functions too.   

CREDO means Create, Read, Edit, Delete and Overview. Each row (record) in a 

table must in principle through a task or another function, be Creatable, Readable, 

Editable, Deleteable and visible in an Overview/list, etc. 

The table shows the connection between 4 tables in the EHR system and 5 tasks 

plus an integration. If you “total” each column, you can see what is missing, i.e. 

what you cannot do through tasks, etc.  

In a large system with 100 tables and 100 tasks, it is an overwhelming job. 

However, in some cases I have been able to reduce 100 tables to 20 and 100 tasks 

to 20. And then it was simple. It required a few hours focused work but was worth 

it. We detected gaps in tasks as well as data, dubious work allocation in 

administration, lack of access rights, etc.  

 

D4. CREDO check 
This section is not requirements, but a check to see that tasks and data match and nothing is missing. 
CREDO means Create, Read, Edit, Delete and Overview. For each row (record) in a table, it must through 
some task be possible to Create it, Read it, Edit it, Delete it and see it in some Overview/list.   
 

CREDO check D5. 
Person 

D6. Admission D1. Diagnosis D2. DiagnosisType . . . 

C1. Admit C---O C---- -R--- -R--O  

C2. AdmitImmed. C---- C---- -R--- -R—-O  

C6. Discharge -RE-- -RE-- -RE-O -R---  

. . .      

C10. ClinicalSession -RE-O -RE-O CRE-O -R—-O  

C11. . . .      

F1. SKS integration ----- ----- ----- C-ED-  

Missing ---D- ---D- ---D- -----  

 
As you can see, no task can Delete Person, Diagnosis and Admission. It is because these data are kept 
for 20 years, and then deleted automatically. Requirements about this are missing. DiagnosisType will be 
created, changed and deleted automatically as part of the SKS-integration F1. 
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E. Other functional requirements 
Most of the system functionality is simple data creations, deletions, edits and que-

ries that are implicitly required to support the tasks, system integrations, etc. This 

chapter describes functionality that is more complex. 

E1. System generated events 
The system may do things on its own, for instance collect data from the environ-

ment or send reminders to users when time limits are exceeded.  

Requirement E1-1 asks for a reminder when an admission has been "forgotten". 

There must be a task that handles this reminder. In the example, task C1 Admit 

patient deals with it as one of the possible triggers. 

Requirement E1-2 asks for a reminder when a LabSys service has been lost. Here 

too there must be a task that handles this reminder. This task is not mentioned in 

the template. It is carried out by a department secretary or the chief nurse. 

E2. Reports 
Often the existing system can print heaps of reports, but for most of them the 

customer doesn't know whether they are used and for what. The template shows 

how to transform this lack of knowledge into requirements. 

Report 1 has a well-defined purpose and we can describe the format precisely, for 

instance through a sample print. 

Report 2 has a well-defined purpose, but no specific format. It is useful to refer to 

the task or tasks where this report is used to help the supplier understand what is 

convenient. 

Report requirement 3 deals with the lack of knowledge by asking the supplier to 

offer a fixed price per report. In this way the customer can delay the decision on 

which reports are needed. The fixed price prevents the supplier from abusing the 

de-facto monopoly he has got after signing the contract. The supplier must specify 

the price, and maybe how it depends on the complexity of the report. He might for 

instance use a price per Function Point (see L5-7). 

Requirement 4 deals with the problem in another way by asking for a report gen-

erator that can combine data from all classes of the data model. It will allow the 

customer to develop his own reports. The example asks the supplier to specify how 

easy it is to develop the reports, for instance by stating how many super users can 

do it. 

Requirement 5 states that all reports must be available on screen and in print, and 

stored as a file. 

Requirement 6 attacks a related problem: The user doesn’t really want a report, but 

wants to explore data.   
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E. Other functional requirements 
Most system functions are simple creations, deletions, edits, and queries that need no further specification. 
They are implicitly given by the task descriptions (Chapter C), system integrations (Chapter F), etc. In 
addition, the system must be able to perform the functions specified in this chapter. 
 

E1. System generated events 
 

The system must generate these reminders: Example solutions: Code: 

1. If an admission has been parked for X days, the 
doctor's secretary must be reminded. System 
administration must be able to define X. 

X is typically 4 days, but may vary 
between departments. 

 

2. If a LabSys service has been ordered but not 
completed within 24 hours, the clinicians must 
be reminded. 

  

 
 

E2. Reports 
Some reports are needed in connection with the tasks described in Chapter C. The report formats are not 
essential as long as the tasks are supported well. These reports are not described in this chapter. There is 
also a need for reports with ad hoc purposes, cross-task purposes, and reports with a precise format. They 
are specified here. 
 

Report requirements: Example solutions: Code: 

1. Checks must be printed on preprinted forms 
with the format shown in  … 

  

2. The system can show an overview and a 
forecast of the bed occupation (used for 
instance in task …). 

Figure … shows an example of 
such a report. 

 

3. The supplier can develop up to 100 new reports 
at a fixed price as part of the maintenance. 

See appendix 2. (The price may 
depend on the complexity.) 

 

4. The system has a report generator that is easy 
to use. It can combine data from all classes in 
the data model. 

__% of super users can develop 
reports like those in appendix X. 
The customer expects 50%. 

 

5. The system can show all reports on the screen 
as well as on print, and save them as a file. 

  

6. Super users can explore data in an ad-hoc way.  The system can transfer data to a 
spreadsheet. 

 

…    
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E3. Business rules and complex calculations 
Rules and computations may be described in several ways. Some fit nicely into task 

descriptions, for instance this subtask in C11, Order medicine: 

 Check that the medicine doesn't interact with other drugs the patient takes. 

The supplier can specify that his system automatically does this and how. 

Other rules are part of the data requirements (e.g. possible states of a service) or 

security rules (e.g. who has the right to do what?). This section specifies additional 

complex rules. 

E3-1 in the example requires a computation that is described in a separate appen-

dix (waiting list calculation). The appendix may for instance contain an algorithm 

described as a small program, a flow chart, or a table of the possibilities. 

E3-2 refers to a public document where the rules are described (salary agree-

ments). In order to translate this into a solution, the supplier needs a lot of exper-

tise in the salary domain. 

You may also indirectly specify a function through an accuracy requirement, for 

instance that the system must be able to recognize human speech with a back-

ground noise of 30 dB. Or that the system must be able to calculate a duty roster 

that is at most 3% more expensive than the optimal plan. 

E3-3 requires a rule expressed as the state-transition diagram in Figure 6. A diag-

nosis for a specific patient can be in one of these states: obs, valid, canceled, 

closed. Officially, it can only change state as shown by the arrows. User actions can 

cause all these state transitions, except deletion of the diagnosis. Deletion is done 

automatically after 20 years. As requirement E3-3 explains, users should be able to 

make any state change anyway. 

E3-4 requires a more complex rule expressed as the state-transition diagram in 

Figure 7. It shows the states of a LabSys service request as recorded in the EHR 

system. The possible states are shown as boxes with round corners. It corresponds 

to the service states mentioned in D3-4. The diagram shows how the state changes. 

The clinician creates the service in the EHR system, which sets the state to Ordered. 

At the same time the EHR system sends a LabRequest to LabSys. LabSys sends a 

LabConfirm message to the EHR system, which sets the service state to Confirmed. 

Next the clinician sends the physical sample and marks it in the EHR system, which 

sets the state to Started. Later LabSys sends a message with the result to the EHR 

system, which set the state to Completed. When the doctor later sees the result in 

the EHR system, the system sets the state to Assessed. 

Diagrams such as these can be detailed further with activity diagrams (from UML) 

or SDL (from the telecommunication industry). Sometimes this level of detail is 

important, but in most cases it specifies a solution rather than a user demand. In 

the example, the user doesn't really care about these LabSys details, but it is im-

portant to him that he can see how far the LabSys request has come. This could be 

stated as the real requirement.  
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E3. Business rules and complex calculations 
Some business rules are specified in the task steps, e.g. Check that … (example in C11-6). Other 

business rules are specified in the data descriptions (example in D3-4), and some are specified as access 
rights (section H1). Here are additional business rules and complex functions: 

 

Function: Example solutions: Code: 

1. Waiting list priority must be calculated as 
described in  … 

  

2. Salary calculations must at any time follow the 
collective agreements (see also the 
maintenance requirements in …). 

  

3. Normally, a diagnosis may only change state as 
described in Figure 6. In case of mistakes, the 
user must be able to deviate from the rules (see 
also H4-2). 

A user who tries to deviate from the 
rules will be asked whether it is 
intentional. If so, the change is made 
and logged in … 

 

4.     Inside the system, a service requested from 
LabSys changes state as described in Figure 7. 

  

 

Requirement note: State-transition diagrams 

Figure 6 shows that a clinician creates the diagnosis. It is created in either state Obs or state Valid. 

Clinicians can change the state according to the diagram. The diagnosis disappears when the system 
automatically cleans up the data after 20 years. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 shows how the state of a LabSys service changes inside the system. A clinician creates a LabSys 
service in state Ordered. During the creation, the system sends a LabRequest to LabSys. When LabSys 
sends a LabConfirm message to the system, it changes the service state to Confirmed. A clinician takes a 
sample from the patient, sends it to the lab and tells the system, which changes the service state to 
Started. The service can change state in other ways as specified in the diagram. 

 

Figure 6. Diagnosis states
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E4. Expansion of the system 
In some cases the customer needs to be able to expand the system himself in some 

areas. He may for instance want to experiment with new screens to improve usabil-

ity, or he may fear that the supplier will charge an unreasonable price for expan-

sions. 

This section asks for functionality that will make some kinds of expansion possible 

without involving the supplier. Some years ago, suppliers were reluctant to allow 

such things, because they feared for the correctness and stability of the system. 

This has changed and even ERP systems such as SAP and Axapta provide better and 

better possibilities for expanding the system.  

In the EHR example there is a significant demand because there are more than 

20,000 types of patient service, each with their own data fields; and the number 

grows steadily. It is not acceptable that the supplier is needed for changing the 

system whenever a new type of service is introduced. Similarly, many medical 

specialties have their own needs for data visualization. 

There is also a demand for future integration with external systems. This is handled 

in section F10. 

Notice that the template not only asks for expansion functionality, but also for the 

rights to use it (E4-8). This is based on bad experiences with suppliers who provide 

the functionality but keep the rights for using it and for extracting the data stored in 

the system. 
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E4. Expansion of the system 
The system shows and maintains data through the user screens. In this section, "customer" means the 
customer's own IT staff or a third party authorized by him. The customer expects to be able to modify the 
screens and add new ones in order to create overview for medical specialties, new work procedures, etc. 

 
The system handles many types of medical services, often with special combinations of data. The 
customer expects to be able to add new types of services. The requirements below state the demands. 

 

Expansion requirements: Example solutions: Code: 

1. The customer can define new types of services 
based on data in Chapter D. 

  

2. The customer can define screens that combine 
data from the entire data model in Chapter D 
(arbitrary views of data). 

  

3. A screen can activate functionality in the EHR 
system and in external systems integrated with 
the EHR system. E.g. request of a service, 
notification, print of a report. 

  

4. A screen can be composed of many types of 
components (controls) and their color can reflect 
data values. E.g. text boxes, tables, buttons, 
graphs, pictures. 

  

5. The customer can add new types of 
components for use in the screens. 

  

6. Screens can be defined for several kinds of 
equipment, e.g. PC, PDA, Smartphone. 

  

 

Documentation and rights: Example solutions: Code: 

7. The tools for composing screens, adding new 
component types, etc. must be documented in 
such a way that the customer's IT staff or a third 
party can understand them and use them for the 
intended purpose. 

A course of        days is necessary to 
use the tools. 

 

8. The customer must have the right to use the 
tools and the data stored in the system. 
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F. Integration with external systems 
Integration means that two systems shall communicate. Usually it is a matter of 

transferring data from one system to the other. The trend is that new systems must 

integrate with more and more other systems - external systems. More than ten 

external systems are quite common.  

In some cases we can avoid explicit integration requirements because full support 

of the tasks requires integration. We did so in C1-3a (use of MedCom for data 

transfer). Usually, however, integration is a complex affair, and it will be hard to 

evaluate a supplier's integration solution by trying to carry out the tasks. It is par-

ticularly difficult if we want to make an early POC (B3). So usually we need explicit 

integration requirements. 

The template starts with a verbal overview of the external systems and a graphical 

overview in form of a context diagram. It is similar to the context diagram in sec-

tion A1, but will usually contain more details. 

Show the system to be delivered as a box with double-line borders. Show the inte-

grations to be performed by the supplier as double-line arrows. Let the arrows point 

in the direction data move. Label each arrow to indicate the data that flow. 

In the example, the supplier has to integrate with the existing SKS system and 

LabSys. He may deliver a new medication system (F3) or integrate with the existing 

one. Note that he is not required to integrate with new external systems. Someone 

else may do it. 

Which system should initiate the data transfer? It depends on what is possible with 

the existing systems. And the customer shouldn't care. He should only ensure that 

his demands are met. So what are the real demands? A study of many system 

integrations shows that several aspects are involved: 

A. Access rights to data. Who is allowed to transfer what? 

B. Protection of data: Avoid data loss, duplication, and corruption. 

C. Documentation and means: What to document? Who may use it for what? How 

to test the integration, e.g. creating test data in the external system and 

retrieve it again. J6 mentions other needs for testing. 

D. Responsibility: Who will make and test the integration and how will the "other 

end" help?  

E. Task support: Can the user tasks be supported well with this integration? 

F. Data to import from the external system: Which data? 

G. Data recency: How old is the data that the customer's system shows? This is the 

key concern in integration. With the ideal SOA architecture (see below), the 

data on the screen will be only a few seconds old. With a batch-wise transfer it 

may be hours or weeks old, but this may be sufficient, e.g. for the SKS integra-

tion. 

H. Response time at import: When the system requests import of data, how fast 

should it be transferred? 

I. Data to export: Which data and when? 

J. Response time at export: When the system requests export of data, how fast 

should it be transferred? 

K. Other functionality: Can the system order other functions in the external sys-

tem, for instance remind users or print data? Does it offer functions itself? 
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The template has sections and examples for each of these aspects. 

 

F. Integration with external systems 
The system must integrate more or less closely with the external systems shown in Figure 8 (context 
diagram). The integration comprises data sharing or replication, and the ability for the user to activate 
functionality in the external systems.  
 

In this Chapter, "customer" means the customer's own IT staff or a third party authorized by him. 
 

S-Data (System data) are the integrated data stored locally in the EHR system, S. 
E-Data (External data) are the integrated data stored in the external system, E. 
 

Here is a short explanation of the external systems: 
F1.  SKS: The National Health Classification system. The National Health Organization updates it 

regularly. 
F2.  LabSys: The customer's present lab system for …  
F3.  A medication system. It may be the customer’s present medication system or a new one delivered 

as part of the EHR system (the description is omitted below). 
F10.  An external system that the customer will buy later and integrate. 

Requirement note: Response times 
The response times specified in this chapter must be interpreted in the same way as in L1, i.e. with L1's 
fractile, measured in peak load periods, etc. 
 

Integration aspects 
For each integration there are many aspects to consider: 
A. Access rights to data. 
B. Protection against loss of data. 
C. Documentation and means for integrating the system with other systems, including testing the 

integration and migrating data. See also testing in J6. 
 

D. Integration responsibility, e.g. the supplier, or the customer with support from the supplier. 
E. Tasks the integration must support. 
F. Data import from E (the external system). Which data to import. 
G. Data recency (how old may the local copy of the data be). 
H. Response time at import. 
I. Data export to E. Which data to export. 
J. Response time at export. 
K. Other functions, e.g. warnings to the user or E. 
 

For practical reasons the requirements in group A, B and C are written as common integration 
requirements, which means that they are valid for all integrations where relevant.   

Figure 8. Context diagram
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What should the requirements say about the external systems that the supplier has 

to integrate with. The systems exist and the supplier has to know about their tech-

nical interfaces (API's or XML services) in order to estimate his own integration 

costs. Yet the customer rarely has this information. 

The customer can refer to the supplier of the external system, but often he is not 

willing to help. He sees the new supplier as a competitor. The customer should 

ensure that the old supplier will help, for instance by buying the necessary rights.  

This is an important assumption for the supplier. It must be stated above the 

requirements table, in the same way as other assumptions the supplier can make. 

To avoid that the new supplier later causes similar troubles, he must accept 

requirements F0-6 to 10. As a result, the customer doesn't have to negotiate with 

him the next time something has to be integrated. 

SOA or data replication? 
Some customers listen to the IT gurus and ask for a Service Oriented Architecture 

(SOA) where systems connect with XML services, and data are stored only in their 

source system. Other systems must retrieve it from there. In principle it is a great 

idea, but the customer doesn't realize that this requires 10-50 times more computer 

time than traditional approaches. It also makes it impossible for the supplier to 

ensure fast response times and high operational availability, because his system 

depends on other system's response times and availability. 

When the supplier offers a COTS-based system, SOA may become a really expen-

sive solution for other reasons too. The COTS system retrieves data from its own 

database, but now data must be retrieved through SOA from another system. The 

supplier must change his system in hundreds of places - even if it is nicely made 

with a multi-layer architecture. A system that has been changed in so many places 

cannot be maintained as part of maintaining the COTS system. So maintenance will 

also be very costly. 

An alternative solution is to replicate data across systems, and synchronize data 

periodically (batch transfer). This is usually much easier to add to a COTS system. 

F0. Common integration requirements 
This section covers requirements that apply for all the integrations where relevant 

and unless something else is stated. 

F0-1 requires that data may only be transferred to the user's PC if he is allowed to 

see them. So data confidentiality doesn't depend on only special PC programs show-

ing the permitted data. It would be too easy to install a spy program that lets the 

user peek at the forbidden data. This requirement could also be considered a securi-

ty requirement and placed in section H1. 

F0-2 to 3 require the system to protect against technical problems with lost or 

duplicated data. This could also be considered a security requirement and placed in 

section H3. 

F0-4 recognizes that it may be necessary to analyze the actual data transfers, and 

asks for ways to do it.  
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F0-5 specifies that it must be easy to add new technical interfaces to the system, 

e.g. SOA services. Although some customers believe they can define the necessary 

services in the requirements, experience shows that new services are often needed. 

If you need a new service, it is very expensive because the suppliers of the two 

systems have to agree and test their systems together. An alternative is to use an 

OData interface (Open Data Protocol) where the client to a large extent can define 

on his own what he wants to retrieve (like an SQL statement). 

F0-6 specifies that the customer (or a third party) must be able to migrate the data 

to another system. This is a key requirement for being able to switch supplier later. 

Surprisingly many customers forget this and the supplier gets a monopoly. 

F0. Common integration requirements 
The requirements in this chapter apply for all the integrations unless explicitly stated.  
 

A. Access rights to data: May be moved to H1 Example solutions: Code: 

1. The system may only transfer E-data to the 
user's PC when the user has the right to see it 
according to H1.  

  

 

B. Protection of data: May be moved to H3 Example solutions: Code: 

2. The system must protect against loss or 
duplication of data transferred between the 
systems, e.g. because one or both systems 
have been off-line or closed down.  

  

3. The system must protect against concurrency 
problems, e.g. that user A sees and then 
updates E-data, while user B does the same. 
Neither A nor B will notice that the data may 
become inconsistent. 

  

4. The system must support error tracing at data 
transfers. 

Logging all transfer errors.  

 

C. Documentation and rights: Example solutions: Code: 

5. It must be easy to add new interfaces, e.g. SOA 
services, database queries, or API's. 

The system provides an OData 
interface that allows the client to 
define services. 
Or: The supplier can do it at a fixed 
price. 

 

6. The customer needs to test the integration, e.g. 
creating and changing test data in the system. 
See also J6. 

  

7. The customer must have the means and rights 
to extract and use all data described in Chapter 
D, e.g. for converting the data to another 
system. 

  

8. The technical interfaces to S must be 
documented. The documentation must be 
understandable to a typical software house and 
found suited for integration and data retrieval. 

A course of ___ days is necessary to 
use the documentation and make the 
integration. Documentation samples 
must be delivered early (see B3-4). 

 

9. The customer must have the right to use the 
documentation and the interfaces themselves. 

  

10. The supplier must loyally support the customer 
in the integration or migration effort with 
qualified staff at a fair price.  
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F0-7 to 9 specify that the customer must be able to integrate the system with other 

systems. He must have the means, documentation, and rights to do so, and the 

supplier is obliged to support the work. If all the existing external systems had met 

similar requirements, integration would be much simpler. 

Notice how it is possible to verify the quality of the documentation by asking a 

typical third party software house to try out the documentation. This should be 

done early in order to make it likely that the supplier's way of documenting will 

suffice for third party integration with the EHR system (see section B3). 

F1. Simple one-way integration (SKS) 
This section is an example of a very loose integration with an existing system, SKS, 

the National Health Organization's classification codes. SKS has code files that 

anyone may download. 

The introduction above the tables gives the assumptions for the requirements, 

similar to the assumptions for tasks descriptions.  

Tasks:  Which tasks utilize the integration? 

E-support:  Who has the rights to integrate? How to get the documentation of 

the external interface? Who can provide support? 

E- updates:  How frequently are SKS codes updated inside the SKS system? 

Data volume:  How much data to transfer?  

The template shows two versions of the requirements table for F1. One where we 

carefully have considered all points from D to K, and one where we only write the 

strictly necessary requirements. 

All points considered 
F1-1 specifies that the supplier has to make the integration. It is assumed that he 

doesn't need support from someone else to do it (a reasonable assumption in this 

case). 

There are no special requirements for task support. The introduction says that the 

data are used in most tasks. It is sufficient in this case. 

F1-2 specifies the data to be transferred from SKS. 

F1-3 shows that the recency of data is not urgent. If the system has the data one 

week after they have been released by SKS, everything is okay. The example solu-

tion mentions that a periodic transfer is sufficient. The transfer might also be start-

ed manually by IT support when the health authorities announce the changes.  

F1-3p mentions an existing problem about conflicts between local codes and new 

official codes, and suggests two solutions. 

F1-4 mentions that more recent data are needed sometimes. 

There are no requirements for a specific response time (how fast the transfer is). 

The system is not required to use other functions in SKS or transfer data to SKS.  

The short version 

Here we can do with just two requirements: (1) The supplier is responsible. (2) The 

new SKS tables must be used by the system shortly after having been released. 
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F1. SKS 
E-data (external data): The SKS tables comprise codes and corresponding names for diagnoses, services, 

health departments, etc. 
Tasks:  The codes and names are used in most of the tasks. However, the department codes 

are retrieved from another system. 
E-support:  The tables are publicly available from the web site of the National Health 

Organization. They are zip text files with fixed field spacing. They are documented on 
the same web site. 

E-updates:  The department data are updated on a monthly basis, the other codes every three 

months. 
Data volume: The SKS tables comprise around 100,000 records, each around 100 characters. 

 

Alternative 1: All points considered 
D. Integration responsibility: Example solutions: Code: 

1. The supplier must integrate the system with the 
SKS tables. 

  

 

E. Task support: No special requirements. Example solutions: Code: 

 

F. Data import:  Example solutions: Code: 

2. All codes and names are needed, except the 
department data. 

  

 

G. Data recency: Example solutions: Code: 

3. S-data should not be older than a week. The system imports E-data every __ 
days. 
Or: IT support starts a transfer when 
the Health authorities announce that 
data are available. 

 

3p. Sometimes new SKS codes conflict with local 
codes or cause other problems. 

IT support can roll SKS data back to 
the previous version. 
Or: Local codes may have a tag so 
that they don't conflict. 

 

4. In special cases, there may be demand for more 
recent data. 

IT support can start a data transfer.  

 

H. Response time at import: No requirements. Example solutions: Code: 

 

I. Data export: None. Example solutions: Code: 

 

J. Response time at export: N/A. Example solutions: Code: 

 

K. Other functions: No requirements. Example solutions: Code: 

 

Alternative 2: The short version 
Integration requirements: Example solutions: Code: 

1. The supplier must integrate the system with the 
relevant SKS tables. 

  

2. The system must use the new codes and 
names shortly after their release. 

The system or the maintenance staff 
transfer the tables within a week after 
their release. 
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F2. Two-way integration (LabSys) 
This section is an example of a close integration with an existing system. Data are 

transferred both ways: requests to LabSys and replies the other way. The introduc-

tion explains what LabSys can do from a user perspective. Only task C10 uses 

LabSys. 

Tasks:  Which tasks utilize the integration? 

E-support:  The customer refers to a technical document and promises that 

a specific company, MediData, can provide support (see the 

introduction to Chapter F). The customer has contracted the 

necessary rights. 

E-data updates:  Each update corresponds to LabSys generating a reply. 

S-data updates:  S is the EHR system. S-data are the requests. An update corre-

sponds to sending a request. 

Data volume:  A reply consists of around 500 characters per result.  

F2-1 specifies that the EHR supplier has to make the integration. He can assume 

support from MediData as promised under E-support. 

F2-2 says that support of task C10 must be efficient. This requirement seems a bit 

unnecessary since the introduction mentioned C10. However, stating it as an ex-

plicit requirement makes it easier to assess the solution. It also allows the supplier 

to explain what he considers a good solution. 

F2-3 specifies the data to import. The data correspond to Service records in the 

data model (section D3). 

F2-4 and 5 specify that LabSys results must be in the EHR system (S) within 3 

hours, but sometimes better recency is needed. The customer mentions a couple of 

solutions. They assume that the supplier can work out a solution with MediData, 

since electronic data at present are transferred over night. 

F2-6 specifies the response time for data import (getting the test reply). The exam-

ple solution allows time for LabSys to send the reply. In general the supplier will 

have troubles meeting a response time that includes time for external system re-

quests. So a fair requirement allows the time needed by the external system. 

As mentioned in the requirement note at the introduction to Chapter F, response 

times must be interpreted in the same way as in section L1, e.g. with fractiles and 

peak load periods. 

F2-7 specifies that the user can send LabSys requests by means of S. This is con-

sidered a kind of data transfer. It might also be called a function and be specified in 

"other functions" (F2-K). 

F2-8 specifies the response time for data export (sending the request). There are 

actually two times involved: The time until the user can continue typing or clicking, 

and the time until the user can see the LabSys confirmation. 

F2-9 and 10 specify that the EHR system can notify its own users and LabSys about 

new and missing replies. 
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 F2. LabSys 
E-data (external data): LabSys version yyy. Users can request lab tests from LabSys. The sample itself is 

delivered by … and the reply comes on fax and electronically. One reply may contain 
several results. 

Tasks:  LabSys is used in connection with task C10, Perform clinical session. 
E-support:  The technical interface to LabSys is described in … MediData supports LabSys in 

Denmark and can provide integration support. The customer has contracted the 
rights with MediData. 

E-data updates:  LabSys generates replies continuously by fax, but at present the electronic replies 

are only sent as a batch over night. 
S-data updates: The entire hospital requests around 8000 tests a day, mainly between 8:00 and 

16:30. 
Data volume: Each reply consists of one or more results, each of around 500 characters. 

 

D. Integration responsibility: Example solutions: Code: 

1. The supplier must integrate with LabSys.   

 

E. Task support:  Example solutions: Code: 

2. The integration must support C10 in an efficient 
manner. 

Requests and replies are handled in 
the same way as other services - 
without retyping patient ID. 

 

 

F. Data import: Example solutions: Code: 

3. All E-data that can match the data in section D3.   

 

G. Data recency: Example solutions: Code: 

4. S-data should not be older than 3 hours. The system imports E-data every __ 
hours. 
Or: Data is imported at E request when 
they are available. 
Or: Data is always retrieved from E. 

 

5. Sometimes the latest results are needed for 
a specific patient, e.g. during surgery. 

The system retrieves data on the user's 
request. 
Or: Data is always retrieved from E. 

 

 

H. Response time at import: Example solutions: Code: 

6. When the user requests a lab reply, it must be 
so fast that the user doesn't lose patience. 

The result is visible within __ s plus 
the time LabSys needs to send the 
reply. (The customer expects 3 s.) 

 

 

I. Data export:  Example solutions: Code: 

7. The user can send LabSys requests through the 
EHR system (S). 

  

 

J. Response time at export:  Example solutions: Code: 

8. A lab request can be sent and the user continue 
typing within the mental switching time (around 
1.3 s). The confirmation from LabSys should be 
visible a bit later. 

Typing is possible within __ s. (The 
customer expects 1.3 s.) 
The confirmation from LabSys 
appears __ s after LabSys has sent it. 
(The customer expects 3 s.) 

 

 

K. Other functions:  Example solutions: Code: 

9. S can notify the user about new or missing 
LabSys replies. 

  

10. S can notify LabSys (E) about missing LabSys 
replies (reminders). 
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F10. Integration with new external systems 
Once the customer has acquired the system, it can become very expensive to inte-

grate it with new external systems because the supplier usually has a monopoly on 

carrying out such changes. Section F0 (requirements 5 to 9) avoids the monopoly 

by requiring that the customer (or a third party) is able to implement such integra-

tions. In section F10 the customer tries to get information about what kind of inte-

grations he can make himself. 

E-support explains that it is the customer's responsibility to get documentation for 

the external system (of course). 

F10-1 says that the customer (or a third party) is responsible for the integration, 

but the supplier of the EHR system must assist him according to F0-10. 

F10-2 specifies that the EHR system should allow an integrated system to work off-

line for a period and reconnect gracefully later. 

F10-3 to 6 specify features that the EHR system should provide for data import 

from the external system: Being able to transfer data on request or periodically; 

transferring only data younger than a certain point in time; transferring only data 

about a specific patient. The customer imagines that he can configure the EHR 

system to do these things. 

F10-7 asks for response times. However, it is not possible for the EHR supplier to 

promise response times unless he knows the load of the EHR system and the kind 

of transfer. If the customer integrates the EHR system heavily with other systems, 

the EHR system can become overloaded and respond slowly.  

How can we make a fair requirement about this? One way is to ask for additional 

capacity so that the EHR system can carry a load x times as high as the load speci-

fied in L1, and still provide the response times specified in L1. The customer can 

then use the additional capacity for data transfers. This is what F10-7 asks for. 

F10-7p mentions a known problem in this kind of integrations: An unusually long 

data transfer may block the system and ordinary small transfers. 

F10-8 to 11 are similar to F10-3 to 6, but specify features for data export to the 

external system. 

F10-12 and 13 ask for a list of the functionalities the EHR system can use in an 

external system and a list of those it offers to external systems. 
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F10. Integration with new external systems 
The customer expects that he can integrate new external systems (E) with S - with little or no help from the 
supplier of S. This section lists the demands such integrations might have and asks for the supplier's 
suggestion for what he can deliver to meet the needs. 
 

External system:  In principle any system. Examples: X-ray system, mobile applications, specialist 
system for intensive care. 

Tasks:  Defined later. 
E-support:  The customer's responsibility. 
E-data updates:  Defined later. 
Data volume: Defined later.  
 

D. Integration responsibility: Example solutions: Code: 

1. The customer is responsible for the integration. 
The supplier must assist as specified in F0-10. 

  

 

E. Task support:  Example solutions: Code: 

1. For mobile applications E may in some periods 
be off-line. When E connects to S again, data 
synchronization is needed.  

The customer can configure S to 
automatically synchronize data at 
reconnect. 

 

 

F+G. Data import and data recency: Example solutions: Code: 

3. S can import data from E assuming that they fit 
into S's existing data tables. 

The customer can configure S to 
import at S's request or E's request. 

 

4. S can periodically import data from E. The customer can configure S to do 
this. 

 

5. S can optimize the import by asking only for 
data younger than a certain point in time. 

The customer can configure S to do 
this. 

 

6. S can optimize the import by asking for data 
about a specific patient only. 

  

 

H+J. Response time at import and export:  Example solutions: Code: 

7. S can scale up to carry a significantly higher 
load than specified in L1 with the response 
times specified in L1. The customer may use 
this additional load for data transfers. 

The system can scale up to handle a 
load ___ times as high as required in 
L1. (The customer expects 2 times.) 

 

7p. When a long transfer is in progress, it may block 
for shorter transfers so that they have a very 
long response time. 

The system can handle several 
concurrent transfers. 

 

 

I. Data export:  Example solutions: Code: 

8. S can export data to E assuming that the data 
exist in S's existing data tables. 

The customer can configure S to 
export at S's request or E's request. 

 

9. S can periodically export data to E. The customer can configure S to do 
this. 

 

10. S can optimize the export by sending only data 
younger than a certain point in time. 

The customer can configure S to do 
this. 

 

11. S can optimize the export by sending data about 
a specific patient only. 

  

 

K. Other functions:  Example solutions: Code: 

12. S can use functionality in E, e.g. request 
services or warn about missing requests. 

The supplier is asked to specify the 
functionality S can use. 

 

13. E can use functionality in S, e.g. notifying the 
user or printing on printers managed by S. 

The supplier is asked to specify the 
functionality S provides. 
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G. Technical IT architecture 
The term IT architecture has over the years come to mean two different things. The 

classical meaning is the configuration of hardware, software, data communication, 

etc. This is the technical architecture. The new meaning is the technical architecture 

in addition to data model, usability, operation, support, etc. The template deals with 

this in other chapters. 

Requirements to the technical architecture depend on the situation. Does the cus-

tomer already have equipment that he wants to use? Or will he buy it? Or does he 

leave it to the supplier because the supplier is going to operate the system anyway? 

The template shows an example for each of these three situations. Choose the one 

that fits your situation, modify it as needed, and delete the other two. 

G1. Existing hardware and software 
This section describes the customer's existing equipment. It also explains that other 

applications may run on the equipment at the same time, but they leave a certain 

amount of resources for the new system. Notice that free resources must be avail-

able for any 1 second period. Without this limit, the supplier cannot guarantee 

response times in the one-second range. 

The supplier needs this information to estimate whether his system requires addi-

tional resources. 

G1-1 asks the supplier to specify how many users the proposed system can serve 

on the existing equipment. "Serve" means meeting the response time, availability 

and storage requirements of Chapter L. 

G1-2 asks the supplier to specify any additional equipment needed to handle the full 

nominal load. 

Often some parts of a system are executed in an internet browser, e.g. parts 

intended for the public. G1-3 requires that these parts can execute on common 

browsers. The solution column lists the browsers the customer considers. 

Many IT gurus claim that everything should be web-based, in order that it can be 

used everywhere. Unfortunately this is not correct. Simple web pages, okay, but 

when things get complex, they are browser dependent. Short-cut keys, database 

connections and security settings vary from browser to browser. In practice the 

supplier must include tests in the program to see whether things must be done one 

way or another. And it has to be tested on all browsers - also when a new browser 

version is released. 

G2. New hardware and software 
This section asks the supplier to specify which equipment the customer must pur-

chase, and how it scales up according to the number of users. 

G2-3 states that only equipment from the customer's favorite list should be used. 

This may be important if the customer has expertise in this equipment or has a 

purchase agreement with specific suppliers. 

Here too we need requirements for browser support. 
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G3. The supplier operates the system 
This section simply states that since the supplier operates the system, he decides  

which equipment to use.  

Here too we need requirements for browser support. 

  

G. Technical IT architecture 
G1. Existing hardware and software Alternative 1: Use what we have 
At present, the customer has the following IT equipment, which is intended for operating the new system: 
1. 2 servers of type …  
2. 300 PCs with Windows XP and at least 100 GB disks. 
3. Optical fiber net …  
4. Oracle database … 
 
The equipment is used by other applications at the same time, but within these limits:  
5. Within any 1 second period, servers leave 50% of the speed capacity for the EHR system. 
6. Within any 1 second period, the optical fiber net leaves 50% of the capacity for the EHR system. 
7.  No other applications run on a PC when it runs the EHR system. 
 

Platform requirements: Example solutions: Code: 

1. Initially the system must run on the existing 
equipment and meet the requirements in L1, L2 
and L3 for a limited number of users. 

On these conditions the system can 
serve ___ users.  
The customer expects 20 users. 

 

2. In order to reach the full peak load (see L1) the 
system must be expanded to meet the 
requirements in L1, L2 and L3. 

The customer has to add this 
equipment ____. 

 

3. The browser-based parts must be able to run on 
common browsers. 

MS-Internet Explorer, Chrome, Safari  

 
 

G2. New hardware and software Alternative 2: Supplier suggests 
The customer intends to buy new equipment to operate the system.  
 

Platform requirements: Example solutions: Code: 

1. In order to meet the requirements in L1, L2 and 
L3 the customer needs new IT equipment. 

The customer needs this equipment 
_____. 

 

2. When the peak load grows by a factor of two, 
the system must be expanded to meet the 
requirements in L1, L2 and L3. 

The customer has to add this 
equipment ____. 

 

3. As far as possible, only equipment from the list 
in appendix X should be used.  

  

4. The browser-based parts must be able to run on 
common browsers. 

MS-Internet Explorer, Chrome, Safari  

 
 

G3. The supplier operates the system Alternative 3: Supplier's problem 
 

Platform requirements: Example solutions: Code: 

1. The supplier operates the system and uses the 
necessary equipment to meet L1, L2 and L3.  

  

2. The browser-based parts must be able to run on 
common browsers. 

MS-Internet Explorer, Chrome, Safari  
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H. Security 
The purpose of security requirements is to guard the security factors (CIA+A): 

Confidentiality of data, Integrity (correctness) of data, Availability (of data and 

processor capacity), and Authenticity (that the user is the person he claims to be). 

H1. Login and access rights for users 
This section describes the situations where the user's access rights must be 

checked. The system must guard Confidentiality, Integrity and Authenticity. The 

requirements are expressed as subtasks to be supported and problems to be re-

moved. The template shows two alternatives: (1) The new system must do as our 

other systems. (2) The new system should provide better or more convenient secu-

rity.  

Alternative 1: Login as today 

H1-1 says that the user must be identified with the existing method and what this 

method is. 

H1-2 says that access is only allowed to users with the proper rights. The example 

solution mentions two ways to do it. 

Alternative 2: Better security wanted 

H1-1 again says that the user must be identified. The example solution suggests 

the traditional approach but also an alternative identification. 

This requirement doesn't say anything about the length of passwords. The length is 

considered a protection against intruders and is handled in section H6-3.  

H1-2 asks for support of the situation where user 1 has been away from the system 

for some time and another user may access the system with user 1's rights. The 

traditional solution is time out, but it causes problems that need support. 

H1-3 says that the rights must be checked and mentions the existing problem with 

a password for each system. A solution is mentioned: single sign-on. (This is only 

part of a solution because the customer's other applications must be changed to 

follow the same scheme. This is not the EHR supplier's responsibility.) 

H1-4 mentions a threat to protect for, e.g. by changing passwords. 

Possible access rights and their granularity 

For alternative 1 as well as 2, it is important to specify the possible access rights. 

They are shown as a requirement note below the requirements table. In the EHR 

system there are separate rights for ordering drugs and seeing patient data. A 

crucial point is the granularity of the rights. Does the user get the right to order 

medicine in general or only medicine in a specific department? In the example, the 

granularity is a department and in some cases a patient. Notice that a person can 

have multiple rights. 

Many customers neglect the list of rights although it is important for the supplier's 

assessment of the solution complexity. Assigning the proper rights to the users is 

not technically difficult, but checking the rights with the proper granularity is often 

complex and has to be handled deep down in the system.  
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H. Security 
H1. Login and access rights for users 
Login is not a separate user task, but subtasks that occur in many tasks. The system must support the 
following subtasks relating to the user's access rights.  
 

Alternative 1: Login as today 
 Subtasks for user access:  Example solutions: Code: 

1. Identify the user with the existing user 
identification, login method, and time-out 
method, which is LDAP and LA … 

  

2. Check that only authorized users get access to 
systems and data. (See the requirement note 
below.) 

The database system checks the 
rights. 
Or: The user screens show only the 
authorized functions and data. 

 

 

Alternative 2: Better and more convenient security wanted 
Subtasks for user access: Example solutions: Code: 

1. Identify the user. 
(See section H6-3 about the length of 
passwords.) 

A user identifies himself with a user 
name and a password; preferably 
also an alternative identification 
such as voice or finger print 
recognition. 

 

2. The user has been away from the system for 
some time. 

  

2p. Problem: Another user may access the system 
with the rights of the first user. 

The system times out after 10 
minutes of non-use. 

 

2q. Problem: If the system logs out automatically, it 
is cumbersome to log on again. 

The system requires password only. 
The timeout period may depend on 
the physical location, for instance a 
long timeout in the operating room. 

 

2r. Problem: If the system logs out automatically, 
entered data may be lost. 

  

3. Check that only authorized users get access to 
system and data. (See the requirement note 
below.) 

The database system checks the 
rights. 
Or: The user screens show only the 
functions and data he is allowed to 
use. 

 

3p. Problem: Today the users have a password for 
each system. It is cumbersome to switch 
between systems and hard to change 
passwords regularly. As a result, users tend to 
post passwords where everyone can see them.  

Each user has only one user name 
and one password (single sign-on). 

 

4. Stolen passwords are often traded by criminals. 
Limit the possibility. 

Users must change passwords 
regularly. If a leak has been 
detected, all passwords can quickly 
be blocked. 

 

  
Requirement note: Possible access rights 
1. Right to order drugs in department M. 
2. Right to see patient data in department M. 
3. Right to record clinical data (diagnoses and services) in department M. 
4. Right to see data according to patient permission (see H5-4). 
… 

A physician in department M might for instance have rights 1, 2, and 3, while a supervising physician for 
department M has rights 2 and 3 only. 
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H2. Security management 
Security management assigns and removes user rights, defines new roles, etc. An 

organization may have central security management or delegate it to departments. 

This is specified as an assumption before the table.  

The template describes security management as subtasks to be supported and 

problems to be removed. The template shows two alternatives. 

Alternative 1 covers the case where security rules are handled by the customer's 

existing security management. The EHR system should ask the existing system 

when checking user passwords and rights. 

Alternative 2 covers the case where the new system may have its own security 

system for creating users, changing rights, etc. 

One of the problems is to assign rights to many users when they start working at 

the beginning of the month. 

Some of the solutions are well-known techniques such as role-based rights and 

time-limited rights. They are not requirements, but example solutions. 
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H2. Security management 
Each department has its own security management. 
Or: Security management is centralized for the entire hospital. 
The work in security management includes the following subtasks.  
 

Alternative 1: Use the existing security management 
 
The customer uses LDAP and AD and wants to manage all rights in this way. 
 

Subtasks for security management: Example solutions: Code: 

1. Create and remove users. Leave it to the existing security 
management. 

 

2. Assign or remove rights for a user. Leave it to the existing security 
management. 

 

3. Check that the user has the necessary rights. 
(Strictly speaking, this is a subtask in H1). 

The EHR system retrieves the rights 
data from the customer's existing 
system. 

 

 
 

Alternative 2: The new system has its own security management 
 

Subtasks for security management: Example solutions: Code: 

1. Assign or remove rights for a user.   

1a. First, create the user.   

1p. Problem: A lot of users need access rights when 
they start the first day in the month. 

The system transfers data from the 
personnel system once a month. 

 

1q. Problem: A temporary employee has been 
appointed in a hurry and is not yet in the 
personnel system. Needs access rights anyway. 

Possibility for temporary registration 
in the department, bypassing the 
central department. 

 

1r. Problem: Security management must keep track 
of the relationship between 4000 users and 300 
rights. 

Each user is assigned one or more 
roles, e.g. physician in department M 
and supervising in department N. 
Each role has one or more rights, e.g. 
order medicine and diagnosing.  

 

1s. Problem: Security management forgets to 
assign and remove rights on the right dates, e.g. 
in connection with hiring and resigning. 

Rights and roles can be defined 
ahead of time and be valid for a 
certain period, e.g. from the day the 
person is employed. 

 

2. Create new roles with new combinations of 
rights. 

  

3. Get an overview of who has which rights and 
whether some rights have not been assigned to 
anyone. 
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H3. Protection against data loss 
The template mentions typical risks of losing data, and the supplier is asked to 

describe his solution. For disk crashes and fire, the template suggests the tradi-

tional solutions. F0-2 and F0-3 mention risks of losing data during system integra-

tion. 

These requirements guard Availability and Integrity of data. 

With the help of a security expert, the customer may ask for protection against 

many other sources of data loss. The template shows an example where the suppli-

er let a subcontractor operate the system (in the cloud). The subcontractor didn't 

store data properly. As an example, he stored the backup version of the database at 

the same disk as the primary database. The day when the disk collapsed, database 

as well as backup disappeared. 

In the template this experience is treated as a threat similar to other threats. The 

customer has suggested some solutions. 

 

H4. Protection against unintended user actions 
This section mentions typical risks caused by users unintentionally doing something 

with unexpected results.  

H4-1 says that no user action may cause the system to break down. This is a tacit 

requirement to all systems and if not written it might still hold in court. Writing it, 

however, removes any doubt. The example solution mentions a way the customer 

could be convinced. 

H4-2 and 3 specify protections against simple mistakes and use of undo at unex-

pected system response. 

H4-4 recognizes that not all functions are undoable, but asks for ways to prevent 

that they are used by mistake. 

H4-5 asks for a way to stop a function that turns out to take a long time.  

These requirements guard Integrity of data, and for H4-5 also Availability. 

Threat handling 

You should guard against all threats in three ways. We will use H4 as an example: 

1. Prevent the threat (H4-1 and 4) 

2. Detect that it has happened anyway (H4-2) 

3. Compensate the damage if it happens (H4-3 and 5). 

We have not systematically used these principles below. 
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H3. Protection against data loss 
Data may unintentionally be lost or misinterpreted in many ways. 
 

The system must protect against: Example solutions: Code: 

1.  (See F0-2 for protection of data against loss or 
replication during transfer between systems.) 

  

2.  (See F0-3 for protection against concurrency 
problems with external systems.)  

  

3. Local concurrency problems, for instance that 
user A orders medicine, but before the system 
has recorded it, user B orders something that 
interacts. Neither A nor B will notice the conflict. 

  

4. Disk crash Periodic backup or RAID disks.  

5. Fire and sabotage Remote backup at least 10 km away 
… 

 

6. Disc full Capacity management.  

6p. Problem. The system operator doesn't store the 
data properly, as an example stores the backup 
data on the same drive as the database. 
Doesn’t detect that the disk is running full.  
Often observed for subcontractors. 

The main contractor regularly audits 
whether it is done properly. 
 
Or: The customer gets a weekly 
backup of all his data for his own 
storage. 

 

 
 

H4. Protection against unintended user actions 
An unintended user action means that the user happened to do something he didn't intend to do, e.g. 
hitting the wrong key or using a command that does something he didn't expect. 
 

Requirements: Example solutions: Code: 

1. Unintended user actions may not cause the 
system to close down, neither on the client nor 
on the server.  

May be hard to test at delivery, but 
the supplier's issue log and a 
description of the supplier's test 
methods indicate the test coverage. 

 

2. Check all data entered, for format, consistency 
and validity. In case of doubt, the user must be 
warned and asked what to do. 

  

3. The user must be able to correct mistakes 
easily. 

The system provides extensive use of 
undo. 

 

4. Prevent mistaken use of undo-able functions.  Position the button so that it is not hit 
accidentally - or ask for confirmation. 

 

5. The user must be able to interrupt functions that 
take a long time, e.g. a long data transfer, 
without compromising data integrity. 
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H5. Privacy requirements, e.g. GDPR 
This section gives examples of requirements that guard against abuse of personal 

data, which is one way of losing Confidentiality.  

The General Data Protection Regulation (GDPR) is the European Union’s regulation 

to protect data privacy. It requires all European companies and government organi-

zations to follow the rules (with certain exceptions). The Union can impose huge 

fines if they violate the rules. 

The regulation covers organizational rules such as nominating a data protection 

officer (DPO) and reporting accidental privacy breaches. It also covers rules that 

require IT support, such as the right of erasure of all data about a specific person, 

and the right of being informed of what the data is used for. For small companies 

and organizations it is a nightmare to deal with this.  

H5-1, 2 and 3 cover the needs of small companies when they want an experienced 

supplier to help them. H5-1 asks for the IT parts, H5-2 for the documentation, and 

H5-3 for organizational advice. H5-4 is relevant when the supplier operates the 

system and a data breach happens. When the customer operates the system 

himself, he handles the breach himself. 

Some organizations have special rules for privacy protection in their area of busi-

ness. Here are some of the requirements for a hospital. 

H5-5 and 6 specify protection of patient privacy in a hospital. During hospital 

admission, doctors may want to see data about the patient from the general practi-

tioner or other hospital departments. The system must support that the doctor can 

see it only when the patient has permitted it. 
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H5. Privacy requirements 
The customer must meet the European Union’s privacy rules (GDPR, General Data Protection 
Regulation). The customer has little idea what is involved, but expects that the supplier knows and 
provides the necessary functionality and advice. 
 

Requirements: Example solutions: Code: 

1. The system provides functionality that enables 
the customer to meet GDPR, e.g. deletion of a 
client’s personal data on request, sending 
personal data in electronic form on request, and 
automatically deleting personal data when they 
have served their purpose. 

  

2. In case of a GDPR dispute, the customer must 
be able to document which personal data the 
system uses and for what. 

The supplier provides the necessary 
documentation. 

 

3. The customer doesn’t know what to do about 
GDPR. 

The supplier advices the customer 
about administrative measures to 
take. 

 

4. When the supplier operates the system, and a 
security breach occurs, the supplier informs the 
controllers, and in cooperation with the 
customer, informs the persons concerned. 

  

 
Patients have the right to decide who will see their diagnoses and other clinical data. This is done during 
the clinical sessions C10 and C20.  
 

Subtasks in C10 and C20: Example solutions: Code: 

5. Ask the patient for permission to see his clinical 
data from other organizations, e.g. the patient’s 
general practitioner. Record the permission.  

  

6. The system shows only data that the patient has 
permitted. See also access rights in H1, 
requirement note. 
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H6. Protection against threats 
This section deals with threats caused by viruses, hacking, SQL injection, Trojan 

Horses, etc. They can threaten all the security factors (Confidentiality, etc.). In 

order to identify the most important ones, you should make a risk assessment. 

During a security risk assessment, you look at the potential threats one by one, 

estimate the frequency of their occurrence and the consequence when they occur 

(preferably in money terms). Then you calculate the "average" damage per year for 

each threat. Based on this, you deal with the most serious threats. 

In practice, protection against threats is the weakest part of security requirements, 

and proper security risk assessments are rarely made. Customer as well as supplier 

believes that following standards is sufficient (e.g. H6-7).  

To make things worse, the list of potential threats keeps growing as attackers 

become smarter. To predict all threats is as hard as predicting human inventions. A 

good supplier follows development (see H6-8). 

Alternative 1: The customer knows the risks 
The customer has made a security risk assessment and has listed the serious 

threats. He then asks the supplier to suggest a protection. The template shows only 

a few examples of threats. 

We often see security requirements that specify a solution rather than a need. As 

an example, we see requirements like this: 

 The password must be at least 9 characters with at least one capital letter. 

This is cumbersome to the user, so let us ask the security specialist why this is 

necessary. Well, he says, an intruder might try all possible passwords with a special 

program. If the system handles login attempts at full speed, it is possible to break 

eight-character passwords in around a month. 

H6-3 handles this as a threat. We can now see that there are other solutions. The 

solution column mentions two that are far more convenient. 

H6-6, preventing unauthorized persons from accessing personal data, sounds easy, 

but it comprises a lot of independent threats, such as wire tapping and IT staff 

looking at the data on the disk. The supplier's proposal can easily become a long 

novel - and it is hard to compare two suppliers' novels. We suggest omitting this 

requirement and ensuring that the risk assessment covers all the threats in this 

area and includes the serious ones as requirements in H6. 

H6-7 tries to solve the problem by referring to two ISO standards. This often 

creates an interesting game. The customer hasn't read these standards, but imagi-

nes that it covers the threats (it only partly does so). He reasons that if he requires 

the supplier to follow the standards, then the supplier has the responsibility for 

adequate protection. 

Most likely, the supplier knows the standards and knows that they don't cover 

adequately. He also knows that the purpose of the customer's requirement is to 

renounce the responsibility, and that the standards will not be verified at delivery 

time. Why should he point this out to the customer? The result is that the real 

protection demand isn't covered.  
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H6-7 may be a useful addition to the security requirements. However, it should not 

be considered a replacement for the risk assessment and the specific threat 

requirements. 

H6-8 asks the supplier to follow development of new threats and deal with them. 

Alternative 2: No risk analysis has been made 
There is only one requirement: The supplier is asked to list the important risks and 

propose safeguards. Notice that we don't ask him to make a risk assessment but 

only list typical threats for this kind of project. If we talk about simple applications 

such as web shops, and the supplier has expertise in the area, this is sufficient.  

However, in unusual projects the customer should ask the supplier to make a spe-

cific assessment with the customer's profile. This is costly to both parties, so it 

should be made during the project, maybe during the early proof-of-concept (B3). 

 
H6. Protection against threats 
Alternative 1:  
A risk assessment has shown that the following threats are the most serious. The system must protect 
against them. 
 

The system must protect against: Example solutions: Code: 

1. Unauthorized persons obtaining manager rights 
through the internet (hacking). 

The rights can only be used on the 
internal network. 

 

2. Wire-tapping of passwords or data. Encryption.  

3. An intruder tries all possible passwords with a 
special program. 

Passwords must be at least 9 
characters, Caps as well as … 
Or: at least 5 seconds between 
login attempts. 
Or: Block access after 3 attempts.  

 

4. SQL injection (the intruder types a database 
command where the system expects e.g. a 
person name; as a result the system carries out 
the database command). 

  

5. DoS attack (Denial of Service). An attacker 
sends so many requests to the system that it is 
paralyzed. 

  

6. Unauthorized persons getting access to 
personal data. Too open-ended, see the guide 
booklet. 

  

7. The system meets ISO 15408 (Common 
Criteria) and ISO 17799. Okay, but check that 
all risks are covered. See the guide booklet. 

  

8. The supplier follows developments in the 
security area and delivers safeguards. 

  

. . .   

 

Alternative 2:  
The customer has not made a security risk assessment. 
 

Threat protection: Example solutions: Code: 

1. The supplier shall list the threats that are most 
serious for this kind of system and specify the 
safeguards he proposes. 
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I. Usability and design 
Usability means that the system is easy to learn, efficient for the frequent user, 

easy to remember for occasional users, easy to understand - also in unusual situa-

tions, and pleasant to use. These usability factors are not equally important. Im-

portance depends on the kind of system we specify. 

When talking about lack of usability, we assume that the system from a technical 

point of view works correctly, replies fast, and actually can support the tasks. 

Nevertheless the users have troubles using the system. 

Many developers, designers and expert users believe they can scrutinize the 

screens and see whether the system has adequate usability. It has been proven 

over and over that this is not possible. Nor is it sufficient to follow guidelines. 

Usability has to be tested and measured with real, potential users. 

Usability can be measured in many ways. The most important is that we observe 

users carry out some realistic tasks by means of the system or a simple mockup of 

it. We log events where the user needs help, spends too much time finding the 

solution, etc. This is called a usability test. The problems we log are called usabil-

ity problems.  

The first time you test a medium-sized system for usability, you identify 20-50 

usability problems. You may need 1-3 redesigns to get an acceptable result.  

We may ask the user to think aloud during the test. This gives us far better possibil-

ities for understanding why the user encountered the problems, and the developers 

get a better chance of removing the problems. 

We can rather objectively classify the problems as critical, serious or less serious. 

See the requirement note below the table. We may then express the usability 

requirements as the allowed number of critical problems. Notice that a problem is 

critical only when two or more users have experienced it. The reason is that many 

usability problems are observed only once (singular problems). Usually it doesn't 

pay to deal with them. 

I1. Ease-of-learning and task efficiency 
Often the new system is almost finished and it is little you can change in the user 

interface. If the customer complains about the cumbersomeness of the interface, he 

is told that it is a COTS system that cannot be changed, or that he has seen it 

before he bought it. However, the supplier is willing to repair technical errors, such 

as wrong database updates. 

When the user interface has been developed specifically for this project, the 

customer is in much the same situation. The supplier may reject the problems.  

Requirement I1-1 deals with this situation. Critical usability problems are to be 

treated as other errors, i.e. being prioritized and repaired according to how serious 

they are for the customer (see L5). 
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Parts of the user interface will be developed 
When all or parts of the user interface will be developed, it is important that the 

user interface (the user screens) are designed early. 

Experience shows that usability problems must be detected and removed before 

programming. Later on it is too expensive to remove the many problems that re-

quire program changes. To achieve this, we make early prototypes of the screens 

with paper and pencil or simple computer tools. We use the mockups for think-

aloud usability tests. Most usability problems can actually be detected this way. 

Next we modify the mockups to remove the problems, test again, and so on. This 

approach is the basis for the early proof of usability in B3-2 (POC). 

User interface parts designed after POC, must follow the same principle with early 

usability tests (see also K1). 

Experience shows that it isn’t a waste of time. The total development is much faster 

when a detailed, usability-tested user interface is designed early.   

I1-2 states the usability requirements in such a way that we at POC can assess 

whether the supplier has the necessary competences, and whether the system can 

get the needed usability. 

I. Usability and design 
I1. Ease-of-learning and task efficiency 
 
Although the system has a finished user interface, it may turn out to give the users considerable trouble in 
some places. The customer wants to avoid the situation where the supplier rejects the problem with 
reference to that the customer has approved the system or it being a COTS system. 
 

Requirements for handling usability problems: Example solutions: Code: 

1. Critical usability problems (see definition in the 
requirement note below) must be handled as 
system errors in the same way as other errors in 
the system. 

The error is handled by the support 
organization and eventually 
transferred to maintenance.  

 

 
Requirement note: Serious and critical usability problem 
A serious usability problem is a situation where the user: 

a. is unable to complete the task on his own, 
b. or believes it is completed when it is not, 
c. or complains that it is really cumbersome, 

d. or experts observe that the user doesn't use the system efficiently. 
 
A critical usability problem is a serious usability problem that is observed for more than one user. 
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Before POC it may be hard to specify the exact way of measuring the usability, and 

the customer may easily state unrealistic usability requirements. As an example, 

imagine that we deleted I1-2 in the template and kept I1-3 to 7. We would thus 

require that users were able to carry out all tasks with few critical usability 

problems, were able to understand all error messages, etc. 

In his proposal, the supplier would have to specify the allowed number of usability 

problems, misunderstandings, etc. This is close to impossible for system parts that 

don't exist yet. One purpose of I1-2 is to find some reasonable usability require-

ments early in the project. 

I1-3 to 7 are outlines of usability requirements that have to be defined in detail 

during the proof of concept. For instance the precise test tasks have to be defined 

and the numbers in column 2 must be defined. 

As an alternative, we can in I1-3 agree that all important usability problems are 

treated as system errors, assessed and prioritized (see K3).  

I1-3 checks that after the planned introduction, users can carry out their tasks with 

minimal support from others. 

I1-4 checks that error messages are usable. Why is this necessary when we have 

checked that users can carry out their tasks? Because users only encounter a few 

error messages during the test tasks. I1-4 makes it possible to test more mes-

sages, also those that rarely occur. 

I1-5 says that it must be possible to operate the system without a mouse, and 

users must learn it on their own. This requirement is obviously often irrelevant, e.g. 

on a web-site for the public or in a mobile application. 

I1-6 deals with large systems that typical users cannot learn on their own. Tradi-

tionally, customers ask for courses that all users must take, but it is often an ex-

pensive and inefficient approach. Instead we ask for ways the super-users can learn 

the system and then train other users. One way is to provide courses for the super 

users. In J2-1 we ask the supplier to run such courses. 

I1-7 deals with efficiency for the frequent user. During the early usability tests, we 

may get a feeling for how fast users should be able to work, but we cannot measure 

it until the system is almost ready. 

Web systems used occasionally 

The template shows requirements suited for production systems that are used on a 

daily basis. However, I1-3, 6 and 7 are usually irrelevant for websites used occa-

sionally by the public. There are no super users around, and efficiency is unimpor-

tant. 

Test tasks 
The basic idea in section I1 is to do usability testing to detect and remove usability 

problems. A crucial part of this is how you define the test tasks that users will carry 

out. The template suggests that you write some test tasks in a requirement note 

before asking suppliers for proposals. This will give the supplier an idea what you 

ask for. The parties can revise the test tasks during the early proof of concept. 
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The template gives an example of a good test task and one with "hidden help", but 

there are other things to consider, for instance how well the test tasks cover the 

most important aspects of the system. See for instance Lauesen (2005), Chapter 

13. 

 

 

 

 

Relevant when essential parts of the user interface have to be developed: 
It is important that the system obtains adequate usability. This is best done through early, iterative design 
and usability test of the user interface (before any programming). It takes place in two stages: Essential 
parts of the user interface at the early proof (POC), and the rest early in the main development. 
 
If the parties cannot agree on the detailed requirements, they may terminate the contract (section B3-2). 
 

Requirements for early proof of concept (POC): Example solutions: Code: 

2. The parties must test essential parts of the 
user interface for usability soon after signing 
the contract. The critical usability problems 
(see the requirement note above) must be 
corrected until usability testing gives 
acceptable results. In addition, the parties 
must agree on the detailed usability 
requirements for later use. 

Usability testing (think-aloud testing) 
is carried out for existing parts of the 
system in a suitable setup. For parts 
that don't exist yet, essential parts of 
the user interface are designed and 
usability-tested (with prototypes). 
Three new users participate in each 
round of testing. 

 

 

Examples of requirements to be agreed in detail 
during POC, and verified before delivery: 

  

3. After a short instruction by super users, the 
ordinary users must be able to carry out all 
tasks in Chapter C within their own work areas 
with few critical usability problems. 

Within each work area, thinking-aloud 
testing is done with three randomly 
selected users. 
Either: A maximum of __ critical 
usability problems may be observed. 
Or: All essential usability problems 
are handled as system defects. 

 

4. Error messages must be understandable and 
helpful. 

During the usability test, a selection of 
error messages is shown to the user, 
who tries to explain what the message 
means and what to do about it.  
__% of the explanations must be 
acceptable. 

 

5. It must be possible to operate the system with 
keyboard only. Users must be able to learn it 
on their own.  

Late in the usability test, the user is 
asked to use keyboard only. __% of 
the users must be able to do so.  

 

6. Super users must be able to learn the system 
quickly so they can train other users (cf. J2-1).  

Training of a super user takes ___ 
days. (The customer expects 3 days). 

 

7. A user who has used the system for a week, 
must be able to quickly order 5 services for a 
patient, e.g. lab test, scanning …  

A typical user is able to order these 5 
services in __ minutes. 

 

 

Requirement note: Test tasks 

A good test task corresponds to something a real user would do. It must be presented in such a way that it 
doesn't guide the user. Here is a good and a bad example: 
 

Test task 1 (good): Order medicine: The patient complains about pain. Use the system to treat the 

problem. 
(When the user carries out the task, notice whether he checks the existing medication situation before he 
orders something.) 
 

Test task 2 (bad - guides the user): Order medicine: The patient complains about pain. Enter the 

patient ID and choose the medication screen. Look at the other medications and decide what to order. 
Close the medication screen and open the order screen …  
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I2. Accessibility and Look-and-Feel 
Some usability aspects are hard to express through usability tests. Rules and stan-

dards may be better. 

I2-1 says that the user interface must follow the MS-Windows guidelines.  Notice 

that the reason is stated: Most users are familiar with Windows, and the guidelines 

will make the system easier to learn. If you don't have a good reason, there is no 

need to follow a guideline. Many people believe that a guideline ensures usability. It 

does not. At most it contributes a bit, and in some cases it may even be harmful. 

Following a guideline is not free. It is amazingly difficult to check that the guideline 

is followed - and correct the mistakes. 

I2-2 says that the user interface must be suited for blind and visually impaired 

users. One solution is to follow the HTML principles, which were developed for this 

purpose (and many other purposes). As an example, standard heading tags should 

be used rather than self-defined, visually impressive styles. Heading tags allow 

screen reader programs to use intonation for "highlighting" the headings. In the 

same way, fixed column widths and font sizes should be avoided so that visually 

impaired users can enlarge the text many times. 

Some requirements specifications replace I2-2 with a requirement that the web 

pages must pass a W3C Markup validation test (http://validator.w3.org). This test 

analyzes the web pages and finds errors. This is yet another example of analysts 

prescribing a standard in the belief that it covers the demands. The test finds only 

formal errors, for instance missing end tags or missing quotes. It doesn't say any-

thing about suitability for the blind. The guidelines in WCAG 2.1, however, have 

rules for supporting the blind, but they can be verified only partly by a computer. 

Further, they cannot ensure that the system is intuitive and efficient to use.  

I2-3 is an example where the language must be specified. 

I2-4 is a simple way to repair some of the usability problems that are detected 

when the system is in operation. However, many usability problems, for instance a 

cumbersome user interface, cannot be cured in this way. 
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I2. Accessibility and Look-and-Feel 

Requirements: Example solutions: Code: 

1. The user interface must follow the MS-Windows 
guidelines, which most users are familiar with. 

  

2. Web pages must be suited for screen readers, 
scaling for visually impaired users, and utilizing 
the full screen size on small as well as large 
screens. 

The pages follow the HTML 
guidelines for Accessibility (WCAG 
2.1 from W3C). 

 

3. The user interface must be in Danish. The 
pages with opening hours, phone numbers, and 
addresses must be available in Danish, English, 
Turkish, and Urdu. 

  

4. The customer is able to define help texts – also 
after delivery. 

Simple popup texts that the 
customer can create and change. 
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J. Other requirements and deliverables 
This chapter contains requirements that don't fit into the other chapters.  

J1. Other standards to obey 
Most required standards belong to other chapters, for instance security and usabil-

ity. The rest may be stated here. 

In practice we see customers write a long list of standards and laws, often without 

knowing what they cover. Usually it is cumbersome to check whether a standard or 

law is met. As a result a careful supplier must increase the price, while a less care-

ful supplier assumes that the customer doesn't check whether the standards/laws 

are met. (See the examples in H6 and I2.) 

The template shows only a single example, the law on accounting. It mentions for 

instance transaction traceability, i.e. that being able to trace a financial transaction 

to its source. The supplier is required to obtain certification or approval, i.e. an 

independent check that the system meets the law. This relieves the customer of the 

need to check for himself. 

 

J2. User training 
User training is often forgotten - or an unrealistic amount of training is requested. 

Often the training takes place at the wrong point in time, for instance so early that 

users have forgotten all of it when the product finally arrives. 

J2-1 is an example where the customer realizes that only super users need training 

from the supplier. We ask the supplier to train 50 super users at the hospital. The 

training must enable them to train other users. This is in recognition of the fact that 

most supplier courses are too far from the user's real tasks. The idea is to use super 

users as mediators. It is specified what the super users must be able to do after the 

training (see also I1-6). 

J2-2 specifies similar requirements for training the customer's IT staff. 

J2-3 specifies when the training must take place relative to system delivery.  
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J. Other requirements and deliverables 
J1. Other standards to obey 
 

Requirements: Example solutions: Code: 

1. The system must follow the law on accounting 
2017.  

The supplier obtains the necessary 
auditor approval or certification. 

 

2. …    

 
 

J2. User training 
The customer wants to deliver a large part of the training himself. The idea is to train super users first and 
then let them train others. 
 

Requirements: Example solutions: Code: 

1. The supplier must train 50 super users, making 
them able to train other users. The training must 
enable the super users to carry out all tasks in 
Chapter C, including variants, within their own 
work areas. 

Training of a super user takes __ 
days. (The customer expects 3 
days). 

 

2. The supplier must train 10 IT staff, making them 
able to handle the customer's part of system 
operation and support. 

Training of IT staff takes ___ days. 
(The customer expects 10 days). 

 

3. The training must be carried out within the last 
month before system delivery in order that users 
and IT staff can use the system immediately 
and haven't forgotten what they learned. If 
necessary, the training must be repeated and 
the delivery delayed. 

  

4. …    
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J3. Documentation 
User and system documentation are often forgotten. The example points out that 

full documentation isn't needed for everybody. This is in recognition of the fact that 

few users read the documentation or on-line help, even if it is available and rea-

sonably useful. This recognition may save many expenses and frustrations for both 

parties. 

J3-1 and 6 specify that course material must be available to super users when they 

train other users, i.e. before system delivery. It must be available in a form that 

allows the super users to adapt it, for instance with examples from the customer's 

world. J3-2 specifies that full documentation for super users must be available 

shortly after system delivery.  

J3-3 specifies in the same way the documentation for the customer's IT staff. 

J3-4 specifies documentation for specially developed software and technical inter-

faces. The criterion is that the documentation must be sufficient for third party to 

maintain these parts and to transfer data to another system. To ensure that the 

supplier can actually deliver the necessary documentation quality, you can ask for 

an early proof as in section B3. 

J3-5 asks for documentation of data. Many customers ask for documentation in 

UML-notation, in the belief that everything will be fine. First, there are around 20 

different kinds of diagrams in UML. The customer probably means a diagram like 

the E/R in Chapter D. Second, the diagram is no guarantee that third party can 

understand it. In particular, there are rarely good explanations of the fields. 

Instead, we have written a problem-oriented requirement. What do we want to 

achieve? That other developers can understand the documentation! And we can 

actually verify it during delivery. 

Be aware that some suppliers refuse to deliver a description of data. It is a trade 

secret! If you accept such a proposal, it severely limits the customer’s ability to 

develop his own reports, let third-party integrate with other systems, and transfer 

data to another system. 

J4. Data conversion 
Data conversion from previous systems to the new system often makes up a signifi-

cant part of the supplier's price. This section specifies what to convert. It is impor-

tant that the customer documents the data formats since the supplier must other-

wise obtain the information from other sources in order to calculate the correct 

cost. This may scare good suppliers from bidding. 

Validation of the conversion is a big issue that suppliers usually know much more 

about than the customer. For this reason, requirement J4-3 asks the supplier to 

explain how he will do the validation. 

J5. Installation 
This section specifies who installs what. If the customer wants to install the system 

himself, he may ask for the necessary documentation and an estimate of the time it 

will take. 
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J3. Documentation 
The customer expects that only super users, IT support staff, and systems developers will read the 
documentation. Thus there is no need for beginner's documentation, except for course material. 
 

Requirements: Example solutions: Code: 

1. Before system delivery, course material must be 
available for super users to use when teaching 
other users. (The customer contributes with 
documentation of the future work processes, 
see K4-12.) 

  

2. A month after system delivery, user-oriented 
documentation of all system functions must be 
available. The documentation must be suited for 
super users. 

  

3. Before system delivery, sufficient 
documentation must be available for the 
customer to handle his part of IT operation and 
support.  

  

4. For specially developed software and technical 
interfaces for third-party development, sufficient 
documentation for further development must be 
available two months after system delivery.  

  

5. Documentation of all tables and fields in a way 
that third-party developers understand, must be 
available two months after system delivery. 

  

6. All documentation must be delivered in 
electronic form. The customer may freely modify 
it and copy it for his own use.  

  

 

J4. Data conversion 
 

The supplier must convert the following data from the 
existing systems: 

Example solutions: Code: 

1. Those data from the patient management 
system that the EHR system will handle in the 
future. The format is described in …  

  

2. Those data from the old EHR system that the 
EHR system will handle in the future. Data must 
be transferred through IBM 3270 emulation. See 
the screen format in …  

  

3. All converted data must be validated. The supplier is asked to describe 
how. 

 

4. …    

 

J5. Installation 
 

Requirements: Example solutions: Code: 

1. The supplier must install all parts of the delivery, 
hardware as well as software.  

  

2. The supplier must install all converted data.    

3. …    
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J6. Testing the system 
The supplier must do system testing himself (see section K1), so in principle the 

customer need not care about it. However, experience shows that many suppliers 

are very bad at testing, so there is a good reason to look for what they do. It is 

particularly important to be able to retest the system after changes (regression 

testing). 

J6-1 and J6-2 specify the needs and outline some solutions. 

In addition the customer needs to do his own testing, e.g. the deployment test in 

connection with the acceptance test (section K1). Many customers have been per-

suaded to test on a system that is already in operation with real users and real 

data. This can leave strange data in the database and disturb the operation in other 

ways. Should be avoided. 

J6-3 to 5 specify the needs and outline some solutions.  

 

J7. Phasing out 
At some point in the future, the customer wants to phase out the old system and 

migrate to a new one. Then new problems turn up. Which data are in the old 

system? How can we convert them to the new system? Will the supplier help us - 

also when we want to get rid of him? 

J7 specifies the supplier's assistance, and the tools and documentation needed by 

the customer.  

It is important to have these agreements in place when the contract is signed and 

the parties are on good terms.  
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J6. Testing the system 
 

Requirements for the supplier's test: Example solutions: Code: 

1. The customer wants to audit which tests the 
supplier makes and how well they cover.  

The supplier makes his test cases 
and test methods available to the 
customer.  

 

2. There is a need for repeating large parts of the 
tests after changes.  

The supplier uses regression testing.  

 

Requirements for the customer's own testing: Example solutions: Code: 

3. The customer needs to test the system before 
accepting the delivery.  

The supplier makes a test version 
available to the customer. 

 

4. Special situations must be tested.  The customer can insert special test 
data. 

 

5. There is also a need for testing with realistic 
data. 

The supplier converts parts of the 
customer's existing data and inserts 
them in the test version.  

 

 
 
 

J7. Phasing out 
In this section "customer" means the customer's own staff or third party authorized by the customer. 
 

Requirements: Example solutions: Code: 

1. On request, the supplier must extract all data 
described in Chapter D in a format that is 
suited for import in other systems.  

  

2. The customer must be able to extract all data 
described in Chapter D in a format that is 
suited for import in other systems. 

  

3. At phasing out, the supplier must provide or 
update the descriptions of all tables and fields, 
cf. J3-5. 

  

4. The supplier must loyally assist with phasing 
out the system and transferring it to another 
supplier. 

  

5. The supplier must carry out the work at a fair 
price that covers time and material. 
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K. The acquisition process 
 

K1. Acquisition plan 
The customer is willing to follow the supplier's recommendations on the acquisition process, but wants to 
ensure that the essentials are covered. The customer imagines the activities below during the process. 
They are a solution example. Many activities may be done concurrently, e.g. numbers 7 to 11. The plan 
contains many tests, but the experience is that even with great care, there are surprises at deployment. 
For this reason, it is important for the customer to deploy gradually, e.g. one specialty at a time, learn from 
experience and gradually deploy more specialties.  
 
The supplier is asked to comment on the plan and/or state the plan he proposes, based on his own 
experiences. He is asked to state the expected end time as the number of work days after signing the 
contract. For test activities, it is when the customer has had reasonable time to check and approve the test 
results. As in the rest of the requirements, everything written by the supplier must be in red. 
 

Activities and participants: 
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1. Market dialog. v v v  N/A 

2. Revise requirements and send for tender.  v   -80 

3. Write and send proposal.   (v) v  -40 

4. Supplier selection. v v v  -20 

5. Signing the contract.  v v  0 

6. POC (Proof-Of-Concept, see B3). v v v   

7. Design and usability-test of user interface (see req. note). v v v   

8. Development.  v v   

9. Data conversion (see J4).  v v   

10. Integration with other systems (see Chapter F).  v v v  

11. Documentation (see J3). v v v   

12. Installation test (see req. note below).  v v   

13. System test (see req. note below).  v v   

14. Deployment test (see req. note below). v v v   

15. Training super-users who can train others (see J2). v v v   

16. Training the customer's supporters.  v v   

17. Pilot test for one specialty. Observe actual usage. v v v   

18. Gradual adaptation and deployment of the other specialties. v v v   

19. Operational test (see Chapter L and req. note below).  v v   

20. Evaluate the business results. v v    

21. Warranty period (one year, see req. note below)  v v   

22. Operation and maintenance (see Chapter L).  v v   

 
Requirement notes 
Market dialog: As part of the dialog, the customer sends the requirements to selected suppliers and have 
an informal meeting with each of them. At the meeting, the supplier should show how his system can meet 
the requirements. The supplier is not expected to deliver anything in writing. The customer welcomes 
comments on the requirements, e.g. unsuitable or missing requirements. The customer stresses that the 
supplier not just presents his own solution, but shows how it can be used for the customer's purpose.  
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K. The acquisition process 
Requirements to the development process are traditionally in the contract. In SL-07 

we have moved them to Chapter K of the requirements, and written them in a way 

where they can be used during the project by the customer’s as well as the suppli-

er’s IT staff and project managers. 

K1. Acquisition plan 
The plan starts with activities before the customer’s selection of a supplier. This is 

because suppliers may see the requirements and the plan before they consider 

writing a proposal. 

The main parts of the plan are activities that produce a result that is visible and 

understandable to customer staff. Many activities are tests that the customer has 

to approve. Approval is important because payments to the supplier usually require 

an approved test. It is important that the plan includes time for the customer’s 

check and approval. 

There is no acceptance test in the plan, because acceptance consists of approval of 

several tests, as explained in the requirements note. 

As for other requirements, the supplier may change and add in red. 

 

  

Supplier selection: When the customer compares the proposals, there is a need to see the system in 

operation, get answers to questions, talk to references, etc. The supplier is expected to support this.  
 
Design of user interface: Experience shows that usability problems must be detected and corrected 

before programming. Later it is too expensive to correct problems that need program changes. The 
remedy is to make early screen prototypes, usability-test them and repeat until the result is acceptable.  
Some of this can be done at POC, the rest is made early during development. Experience shows that it 
speeds up development significantly. See also requirement I1. 
 
Installation test: The purpose of the installation test is to ensure that the system has basic functionality for 

carrying out the following tests. 
 
System test: The purpose of the system test is to check that requirements are met, screens work 

correctly, etc. Special test data and database contents are used to allow testing all the special situations 
(see also J6). 
 
Deployment test: The purpose of the deployment test is to check that the product can work satisfactorily 

in daily operation with production data and real users. At this point you will normally not carry out real work 
with the system.  
 
Pilot test: A pilot test is real work being done, but with a small number of users and/or limited functionality. 

You can better overcome helping a few users and then improve the process for the next users. The 
customer wants the supplier's experts to observe the users and see whether they use the system as 
planned. The parties assess how much support the users need, and scale up to full operation. 
 
Acceptance test: The customer hasn't indicated an acceptance test in the plan. The accept consists of an 

approved system test, an approved deployment test and an approved pilot test. 
 
Operational test: Starts after acceptance test of the full system. The purpose of the operational test is to 

check those requirements that can be verified only after a period of daily operation. It might be the 
response time under real load, availability (breakdown frequency), user's task time, the supplier's hotline 
quality, etc. See the requirements in Chapter L. 
 
Warranty period: The warranty period starts when the first (partial) delivery is approved and ends one 

year after delivery of the entire system. The supplier must remedy all significant defects detected in the 
warranty period.  After the warranty period, defect correction is covered by the maintenance requirements 
(L5). 
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K2. Project management 
It is important that the customer at any time can see how far the acquisition 

process is, what the open issues are, and based on this decide what to do if all isn’t 

ok. 

This is described as a task, "project management", which may be a project 

management meeting with IT-staff and/or the supplier, a meeting in the steering 

committee, or a participant preparing for such a meeting. The task comprises 

getting information and making decisions. 

Experience shows that it varies a lot how good information the supplier's project 

management system provides. The customer should see what the supplier does in 

this area and include it in the supplier selection. 

Subtask K2-8 lists what we can do in case the project encounters large problems. 

Here are the possibilities. They may be combined: 

1. Have we found the root cause? Projects are often closed without anybody 

knowing the root cause. A famous example is the baggage transport system in 

Denver airport, 1994. It was closed because all the connected conveyor loops 

were a “too large and complex system”. Nobody listened to a technical 

investigation showing that the problem existed even on an isolated conveyor 

loop. As another example, the new case management system of the Danish 

police was closed, partly because it was too slow. Login took several minutes. 

Later it turned out that login looked for staff data on four URL’s that didn’t exist, 

before using the correct URL.  

2. Re-plan? Don’t trust that we can just “speed up”.  

3. Change staffing? Do we lack competences or manpower? 

4. Change organization and decision authority? Is the project stuck because 

nobody dares accept something? 

5. Get help from outside? What cannot we do ourselves? 

6. Increase funding? How much progress do we actually have? If we have little 

progress, additional funding doesn’t help.  

7. Change scope? What is the smallest project that can give a benefit? 

8. Close the project? What is cost/benefit of the remaining project? 
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K2. Project management 
During the acquisition process, the customer's project management must at all times know how far the 
process is, what is missing, and maybe where we can change something. It is important for the customer 
to get good support for this, but often the supplier’s reports are insufficient or obscure. We can describe 
project management's needs with this task: 
 
Users:  Customer's project managers and members of the steering committee. 
Start:  When project management need an overview of the project status, e.g. before and during 

meetings with the supplier, project team meetings, or steering committee meetings. 
End:  When there is nothing more to do right now. 
Frequency:  Weekly or monthly. 
 

Subtasks and variants: Example solution: Code: 

1. How far are we in the schedule? What is 
missing? 

The supplier maintains a Gantt 
diagram that the customer can 
access.  

 

2. How many hours has the supplier spent on each 
activity and how many are needed to complete 
it? 

The supplier has a system that shows 
estimated hours per activity, how 
much is spent and how much is still 
needed. The customer has access to 
this system. 

 

3. Which visible results do we have, e.g. user 
screens, integrations that work, test reports?  

Each activity is terminated with a 
result that is visible to the customer. 
In particular, it is important to make 
sub-activities during the main 
development visible. 

 

4. How much do the test cases cover? See J6.  

5. Which open issues do we have and what 
happens to them? 

The system can show overviews of 
the issues and what has changed 
since a specific date. 

 

5p. Problem: The supplier uses an issue tracking 
system with poor overview for the customer, so 
he has to make his own. 

See the supplier's system and assess 
how well it supports the customer. 

 

6. Maybe update the issue list.   

7. Can we approve the tests? Can we deploy the 
system, maybe as a partial delivery? (See the 
requirement note below). 

  

8. In case of serious troubles: What can we do? 
Have we found the root cause? Replan? 
Change staffing? Change organization and 
decision authority? Get help from outside? 
Increase funding? Change scope? Close the 
project? 

  

9. Is the business case still valid?   

10. What are the most important risks? The 
probability? The consequence if it happens 
anyway? 

Joint risk analysis for customer and 
supplier. 

 

 
Requirement notes 
Approve the tests and deploy the system 
The customer may reject a test although no serious issues were found. It may for instance happen if the 
test doesn't sufficiently cover all situations that may occur. 
 
However, the parties may define a partial delivery that the customer can approve and deploy. As an 
example, some user groups may use the system, while others have to wait. In this case, the delivery 
payment is reduced accordingly.  
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K3. Update issue list 
During the entire acquisition process, issues arise that cannot be handled immedi-

ately. Maybe they will be resolved later, or be deleted because they are unim-

portant or recorded already. You must also decide whether the issue is a request for 

change (the customer has to pay), or an error (the supplier has to pay). All of this 

is described as a task, update issue list, to be supported. 

It is important that the supplier has an efficient tool for this, and that the customer 

can see and comprehend it. Otherwise the customer has to build his own. Here too, 

there is a big difference between what suppliers do. The customer should include it 

in the supplier selection. 

As an example, some suppliers maintain a separate decision log, while others 

extract the log from the issue list. 

 

 

  

K3. Update issue list 
Large projects may have more than thousand issues, requests for change as well as defects, i.e. 
something not working as expected. The parties can spend lots of time discussing what to do with them, 
and it delays the development process. The customer wants efficient management of the issues. What to 
do now, what can wait, what to ignore, who pays? This can be handled by recording the issues when they 
turn up, and maybe not deal with them until later. We can describe it as this task: 
 
Users:  The customer's project team and the supplier's developers. 
Start:  When an issue turns up and it cannot be dealt with immediately. Or when issues change 

state (e.g. after test). Or at meetings between supplier and customer, where the parties 
review the list of open issues and decide what to do. 

End:  When nothing more needs to be done with the issues right now. 
Frequency:  Weekly. In the test periods often daily. 
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Subtasks and variants: Example solution: Code: 

1. New issues: Record the problem with date, 
source, a short description, maybe screen 
dumps, etc. Often you don't have to do more 
right now and can park the issue. 

See the supplier's system, e.g. in an 
appendix with screen shots, and 
assess how well it supports the 
customer. 

 

1a. Find a specific issue and update its data.   

1b. Find the next issue to deal with.   

2. Is it duplicate, i.e. something we have recorded 
already? 

  

3. Analyse the issue. How important for the 
customer? How expensive to rectify? How 
urgent? Is there a work-around for the 
customer? 

   

4. Is it a defect (the supplier has to rectify it) or a 
request for change (the customer has to pay)? 
This may be hard to determine (see the 
requirement note below). For minor changes, 
you can make the change and postpone the 
decision on payment until later.  

  

5. What is the consequence of the change on 
price, delivery time, documentation and 
maintenance?  

  

6. Maybe reject the issue or postpone it with a 
deadline. 

  

7. Maybe add your own notes.   

8. When the change has to be made: Sometimes it 
is necessary to change the requirements 
specification, but often it is a matter of details 
that are not mentioned in the requirements. If 
so, it is sufficient to record the decision in the 
issue tracking system. 

   

9. For changes to be made: Is it done? Tested? 
Deployed? 

  

10. Maybe inform the parties.   

 
Requirement notes 
Defect or request for change? 
a. When a programmer can see that the system doesn't work as intended, it is a defect, and the supplier 

covers the cost. Most issues are of this kind. 
b. When the system doesn't meet the requirements or the proposed solution description, it is also a 

defect and the supplier covers the costs. 
c. When the system can do what the user wants, but the user cannot figure out how, it is a usability 

issue. Whether to rectify it and who pays, depends on the requirements in I1.  
d. If the system doesn't meet the customer's reasonable expectations, it is also a defect. A reasonable 

expectation means that the supplier knew or should have known that this would become a problem for 
the customer. 

e. In other cases it is a request for change and the customer has to pay. 
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K4. Workplace and the customer’s deli erables 
Most of the requirements specify what the supplier must deliver. However, an IT 

system isn't something that the supplier just rolls in and plugs into the power out-

let. The customer's employees have to contribute in various ways, and the sup-

plier's employees may need office space and other facilities during development and 

deployment. 

This is described on a high level in §3.4 and 3.5 of the contract. The details are in 

requirement K4. The supplier may in column 2 specify what he expects the custom-

er to deliver. He may also add new points to the list. 

In many acquisitions, system integration is a big issue because the supplier of the 

external system to be integrated, must help. K4-13 specifies that the customer 

must provide the necessary rights, for instance buy them from the supplier of the 

external system. This could also be stated in Chapter F, as assumptions the supplier 

can make, but make sure it is somewhere. 

Like other sections of the template, the requirements in this chapter are only exam-

ples and not an exhaustive list. So, take care: In many countries legal practice is 

that the contract must specify everything the customer has to deliver. After signing 

the contract, the supplier cannot expect office facilities or expertise in some cus-

tomer area unless it is specified in the contract or its appendices.  
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K4. Work place and the customer's deliverables 
 

Work place: Example solution: Code: 

1. Physical meetings between customer staff and 
supplier staff improve the process.  

The supplier's staff work in the 
customer's offices. 

 

 
The following list of the customer's deliverables and services must be complete. The supplier cannot 
expect more from the customer. If necessary, the supplier must add to the list in his proposal. 
 

The customer delivers: Supplier comments: Code: 

2. Hardware, software, and external systems that 
the new system requires (see the details in 
Chapters F and  G). The equipment must be 
available when the installation test starts. 

 N/A 

3. Office with three IT work places from one month 
before the planned installation test to one month 
after system delivery. 

 N/A 

4. Samples of production data for testing purposes 
and the full data set for conversion. 

 N/A 

5. Test cases for deployment testing.  N/A 

6. Expertise in the application area corresponding to 
a half-time employee during the entire project. 

 N/A 

7. Test subjects for usability tests.  N/A 

8. A half-time project manager and a half-time 
secretary. 

  N/A 

9. Super users/instructors who learn the system in 
order to train ordinary users. 

 N/A 

10. IT staff who will support the system at the 
customer site. 

  

11. Expertise for validation of converted data.  N/A 

12. Contribution to the course material on future work 
processes (cf. J3-1). 

 N/A 

13. Rights to integrate with the systems mentioned in 
Chapter F and get the support mentioned. 
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L. Operation, support, and maintenance 
This chapter specifies the supplier's responsibilities after delivery of the system 

itself. These requirements can only partly be verified (tested) at the deployment 

test. We may for instance set up a simulation of 2000 users and measure response 

times, or we may test that the support organization works, but we cannot test that 

it also works well when 2000 real people work with the system. 

The full verification takes place after delivery, for instance at the operational test 

and through investigation of logs and statistics. 

The template corresponds to the situation where the supplier is responsible for 

operation, support, and maintenance. If the supplier for instance isn't responsible 

for support, the corresponding section should be empty (but keep the heading). In 

this case the customer may need courses and documentation that allows him to 

support the system. Requirements for this are stated in Chapter J. 

If the supplier isn't responsible for operations, we cannot just delete sections L1 

(response times) and L2 (availability). The supplier is still responsible for the re-

sponse time - assuming that the system runs on the configuration described in 

Chapter G. Similarly the supplier is responsible for part of the availability. If the 

system breaks down due to errors in his software, he is responsible for the corre-

sponding lack of availability. This is explicitly stated in section L2. 

 

L1. Response times 
The introduction specifies the nominal load of the system. The nominal load may 

be specified as the number of users or the number of transactions the system must 

be able to handle per second, with the response times specified in the table below 

the introduction. The actual number should be well below the nominal load. If the 

actual numbers are larger than the nominal load, the system need not respond as 

specified. 

Based on the nominal load, the supplier can estimate the necessary hardware. 

In alternative 2, the nominal load is specified as the number of transactions of 

various kinds. Experience shows that this often creates conflicts late in the project, 

because transactions are of many sizes. As an example, the supplier assumed that 

all transactions were quite small, but in reality some of them are huge, but rare. 

The customer insists on measuring these too. The advice is to specify the trans-

actions in the nominal load more precisely, maybe during the early proof of con-

cept. 

The system is expected to be most busy in certain periods, the peak load periods. 

They are not important for the requirements, because the system must be able to 

handle the nominal load in any period, but the customer wants to measure the 

actual load and response time in these peak load periods. 

The solution note describes a way to measure the response times in practice. This is 

not a requirement, and the supplier can specify his way of measuring the response 

times in L1-2. 
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L. Operation, support, and maintenance 
This chapter specifies the supplier's responsibilities after delivery of the system itself. The requirements 
can only partly be verified (tested) at the deployment test. The full verification takes place later, at the 
operational test. Some of the requirements are only relevant when the supplier is operating the system, 
others only when he has support responsibility, etc. See the guide booklet. 
 

L1. Response times 
It is important that response is so fast that users are not delayed. Response time is particularly important 
during the busiest hours, the peak load periods, which are morning 9-11 and … 

 
The system must be able handle the load specified below, with the response time specified in the table. 
The figures are the nominal load, i.e. the supplier is not responsible for response time if the actual load 

exceeds the nominal load. 
 
Nominal load 

Alternative 1: Suitable when the supplier is familiar with the work area. 
1. 2000 users work with clinical session (C10) 
2. 1000 users work with administrative tasks (C1 to C4) 
3. 100 external users look at opening hours, maps, etc. 
 
Alternative 2: Suitable when the supplier is not familiar with the work area. 
The system must be able to handle this concurrently: 
1. Simple queries in clinical sessions (C10): 10 per second. 
2. Updates in clinical sessions (C10): 2 per second. 
3. Public web access: 5 pages loaded per second. 
4. … 
 
Solution note: Measuring response time 

The response time is the period from the user sends his command to the result is visible and the user can 
send a new command. A command means a key press or a mouse click. All measurements are made in a 
sample period of 60 seconds. If for instance, the number of simple queries in the sample period exceeds 

10 * 60 or the number of updates exceeds 2 *60, the nominal load is exceeded and the sample period is 
discarded. The transactions must be randomly distributed in the sample period. E.g., the 600 queries of 
the period may not start within the same second.  
 
Production work: Measurements are made with a setup according to Chapter G. 

 
The public web part: Measurements are made on a PC connected to the Internet through a 20 Mbit 

down/2 Mbit up connection with low traffic on the route to the servers. 
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L1-1 specifies that the required response times must be valid for a certain fractile 

of the cases. The example solution says that the customer expects 98%, but the 

supplier can specify another fractile. We could also expect 99%. Why not ask for 

100% of the cases? Because it is unrealistic in a multi-user system. Transactions 

arrive randomly, and by coincidence, a lot may arrive within the same second. In 

this case the last ones get a very long response time. Although this is very rare, we 

cannot guarantee a good response time in 100% of the cases. See more in Lauesen 

(2002), section 6.5. 

L1-2 says that there is a need to measure regularly - and in the peak load periods. 

In column 2 the customer has given examples of how it might be done. The supplier 

will specify his solution according to what is feasible for him. 

L1-3 to 9 specify the required response times. They are based on ergonomic meas-

urements of how people work at computers (the keystroke-level model, Card et al., 

1980). A fast user types 5-10 characters per second, so 0.2 seconds to move from 

one field to the next on the screen, will barely slow down the work. 

A user spends around 1.3 seconds to change focus from one "mental chunk" to 

another, for instance from entering client data to entering the client's request. If the 

screens are structured accordingly, 1.3 seconds to switch screen will not slow down 

the user. This principle applies to L1-4, 5 and 6. 

In practice there will be cases where the system needs more time to reply, and 

where the user expects it. Here we meet an ergonomic constant of 20 seconds. 

Even when the user knows that it takes time, he will unconsciously wait around 20 

seconds and then start working on something else. Switching from one task to 

another takes time - wasted time. For complex tasks the mental switch time might 

be as long as 10-20 minutes. L1-7 is an example where 20 seconds are acceptable. 

Finally there may be functions where we for technical reasons expect response 

times above the ideal. L1-8 and 9 (login) are examples of this. Ideally, login should 

take place within 1.3 seconds, but present experience shows that we might have to 

accept a slower response.  

The supplier may in column 2 specify functions that don't follow the common re-

sponse time rules, for instance an overview screen that may take 3 minutes to 

display. 

Notice that L1-3 to 9 are stated as “open target”. It allows the supplier to specify 

other figures than the customer’s. See more in A2. 

Web systems used occasionally 

The response times in the example are for production work through a local area 

network. For websites used occasionally, these requirements are much too strong, 

and meeting them might be unnecessary and costly. 
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Response time requirements: Example solutions: Code: 

1. Fractile. The times specified below must 

apply in almost all cases. 
In any sample period, __% of the 
response times must be within the 
limits. (The customer expects 98%.) 

 

2. Response time measurements must be made 
regularly in the peak load periods. 

Measurements are made once a 
week with a stop watch. 
Or: The system measures all the time. 

 

3. When moving from one field to the next, the 
user's typing speed must not be reduced. 

Typing is possible within ___ s. 
(The customer expects 0.2 s.) 

 

4. When moving from one screen to the next, 
data must be visible and typing possible within 
the mental switching time (around 1.3 s). 

Data is visible and typing possible 
within ___ s. 
(The customer expects 1.3 s.) 

 

5. Lookup in drop-down lists must allow selection 
from the list within the mental switching time. 

Selection is possible within ___ s. 
(The customer expects 1.3 s.) 

 

6. Reports used frequently must be visible within 
the mental switching time. 

The report must be visible within ___ 
s. (The customer expects 1.3 s.) 

 

7. Reports used occasionally must be visible 
before the user loses patience. 

The report must be visible within ___ 
s. (The customer expects 20 s.) 

 

8. Login must be completed before the user 
loses patience. 

The user can start working within ___ 
s. in addition to the time he spends 
typing name and password. (The 
customer expects 10 s or better.)  

 

9. Repeated login when the user temporarily has 
left the system must be completed before the 
user loses patience. 

The user can start working within  
___ s in addition to the time he 
spends typing his password. (The 
customer expects 4 s.) 
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L2. Availability 
Availability is the fraction of time where the system must be operational from the 

user's perspective. We have to define more precisely what it means that the system 

is out of operation, and how we deal with cases where some users can access the 

system but others cannot. If only one user cannot access the system, we would 

hardly call it a system breakdown. 

A breakdown can have many causes and the template mentions 5. Not all of them 

are the supplier's responsibility. When the supplier isn't responsible for operation, 

he will still be responsible for breakdowns with cause 3 (errors in software or con-

figuration). When the supplier is responsible for the operation, also power failure, 

hardware breakdown, capacity problems, etc. are his responsibility. 

In principle the customer can state all kinds of requirements for calculating the 

availability, but in practice he must accept the possibilities the supplier can offer - 

as long as they cover his real needs.  

The solution note suggests one way to calculate a breakdown period: A breakdown 

is always calculated as at least 20 minutes. An operational period must last at least 

60 minutes. The reason is that users don't resume their interrupted tasks until 

around 20 minutes after the breakdown, and they cannot produce much in an op-

erational period less than an hour. 

The template also suggests a way to calculate the availability when only some of 

the users are affected by the breakdown. 

L2-1 says that the availability must be calculated periodically. This means that 

excess availability cannot be transferred from one period to the next. In column 2 

the customer has suggested that availability is calculated as described in the solu-

tion note above the table. The supplier may propose his own way of calculating the 

availability, for instance by referring to an appendix. 

L2-2 and 3 state the required availability in two different operational periods. Take 

care not to ask for too much. It may be very expensive. As an example, operating a 

large system with 99% availability may cost 0.5 million USD a year, while 99.8% 

may cost 2 million USD a year. Is it worth it? An availability of 99% in the normal 

work hours means that the system may be out of operation 16 hours a year in 

these hours. An availability of 99.8% means 3.2 hours a year. 

 

L3. Data storage 
This section specifies the amount of data to be stored. The example distinguishes 

between data with immediate access and archived data with slower access. Certain 

kinds of pictures are stored for a shorter time. 

The example refers to the detailed data volumes in Chapter D, where each table has 

a total size and sometimes a yearly growth. We might also specify all table sizes 

here in section L3 and remove them from Chapter D. Keeping them in both places 

would be convenient, but easily creates inconsistencies. 
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L2. Availability 
The system is out of operation when it doesn't support some of the users as usual. The cause of the 
breakdown may be:  
 
1. The customer's issues, e.g. errors in the customer's equipment. 
2. External errors, e.g. power failure. 
3. The supplier's issues, e.g. errors in software or configuration. 
4. Planned maintenance. 
5. Insufficient hardware capacity. 
 
Solution note: Measuring availability 

A breakdown is counted as at least 20 minutes, even if normal operation is resumed before. If the following 
period of normal operation is less than 60 minutes, it is considered part of the breakdown period. 
 
When the supplier is not responsible for operations, only breakdowns with cause 3 are included in the 
availability statements. When the supplier is responsible for operations too, he is also responsible for 
causes 2, 4, and 5. 
 
The operational time in a period is calculated as the total length of the period minus the total length of the 
breakdowns for which the supplier is responsible. The availability is calculated as the operational time 

divided by the total length of the period. When only some of the users experience a breakdown, the 
availability may be adjusted. One way is to calculate the availability for each user and take the average for 
all users.  
 

Availability requirements: Example solutions: Code: 

1. The availability must be calculated periodically. 
The calculation should compensate for the 
number of users experiencing breakdowns.  

The availability is stated monthly 
and calculated as described above. 

 

2. In the period from 8:00 to 18:00 on weekdays, 
the system must have high availability. 

In these periods the total availability 
is at least ___%.  
(The customer expects 99.5%) 

 

3. In other periods, the availability may be lower. In these periods the total availability 
is at least ___%.  
(The customer expects 99%) 

 

 
 

L3. Data storage 
The data volume is specified in Chapter D. Data must be stored as follows: 
 

Data storage requirements: Example solutions: Code: 

1. The system must give access to data for the last 
5 years with the response times specified in L1. 

  

2. MR scans and … are only kept for 60 days.   

3. The system must give access to archived data 
for the last 20 years with response times as for 
occasionally used reports (L1-7). 
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L4. Support 
This section specifies the supplier's support services, for instance helping users 

(hotline), changing the system configuration, and monitoring operations. (ITIL has 

specific terms for this. Hotline is for instance called Service Desk. See Bon, 2004.) 

The introduction states as an assumption that super users are the first point of 

contact. If they cannot remedy the problem, the super user or the ordinary user 

may contact hotline. We might allow ordinary users to contact hotline directly, but 

in most organizations it would be much more expensive, and less effective. 

L4-1 specifies that the required response times for hotline must be valid for a 

certain fractile of the cases. The example solution says that the customer expects 

95%. Don't specify a maximal time for a reply (valid for 100%). The worst case, 

where everybody asks for help at the same time, will be excessively expensive to 

handle. 

L4-3 and 4 specify in which periods users can contact the hotline by phone or in 

person (direct contact), and that the supporter must try to resolve the problem on 

the spot. 

L4-4 asks for on-the-spot handling of direct contacts. Many SLA's (Service Level 

Agreements) specify that a certain fraction of the requests must be resolved on the 

spot. Experience shows that this makes the supplier interested in getting a lot of 

trivial requests. He is not motivated to prevent them, for instance by broadcasting 

how certain problems can be avoided. 

For this reason L4-4 only asks the supporter to spend a few minutes on the spot. 

Whether the support quality is adequate in general is hard to measure. L4-11 sug-

gests that the parties discuss this at regular meetings. 

L4-5 specifies that for indirect contacts the user must get a first reply within a few 

hours.  

L4-6 to 7 asks for specific services such as remote diagnostics and sending a sup-

port person to the customer's site. As for other requirements, the supplier may 

respond that he doesn't provide this. In many projects there is no need at all for 

this, since the customer does it himself already. 

The requirement note after the table explains what it means to handle a request for 

help (an incident in ITIL terminology). It is described as a list of optional subtasks. 

After most of the subtasks, the user gets a first reply. A reply means that the user 

has got help in solving or circumventing the problem, or that a technical problem 

has been remedied, or that the problem has been transferred to another organiza-

tion. It is not a valid reply that the request has been received by the hotline or 

transferred to another supporter in the support organization. The user may often 

get a first reply and later additional replies as supporters investigate the case.  

Like other sections of the template, the support requirements are only examples 

and not an exhaustive list. The ITIL specifications may be used for creating a longer 

list of support processes. As with other standards, don't just use them blindly. You 

may end up paying for more than you need or asking for inconvenient processes, 

such as always send the reply back to the user through the first point of contact. 
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L4. Support 
Support comprises help to users, configuration changes, and monitoring of the operation. In this chapter, 
"supplier" means the supplier's operational organization. A "supporter" means a qualified supplier 
employee. The support covers all hardware and software delivered under this contract. 

 
Super users are the ordinary user's first point of contact. The supplier only has to help when the super 
users cannot remedy the problem. 

 

Support requirements: Example solutions: Code: 

1. Fractile. The response times specified below 

must apply in almost all cases. 
__% of the response times must be 
within the limits. 
(The customer expects 95%.) 

 

2.     The supplier must handle user requests for 
help. See the requirement note below. 

  

2p.   Problem: Even super users find it hard to decide 
which product a specific problem relates to. It is 
even harder to mediate between several 
suppliers. 

The supplier involves the necessary 
other parties on his own initiative. 

 

3.     Direct contact: In the period from 8:00 to 18:00 
on weekdays, users can quickly contact a 
supporter by phone or in person. 

In this period, contact is available 
within      minutes. (The customer 
expects 10 minutes.) 

 

4.     For a direct contact, the supporter handles the 
request on the spot as far as possible. 

On the spot means what can be done 
within 5 minutes. 

 

5.     Indirect contact: Requests sent by email, sent 
by web, or escalated from the direct contact. 
The user gets a reply within a few hours. 

The supplier replies within     work 
hours (8:00 to 18:00 on weekdays). 
(The customer expects 3 hours.) 

 

6.     The supplier sends a supporter when this is 
necessary to remedy the problem. 

  

7.     The supplier can perform remote diagnostics to 
remedy the problem. 

  

8.     The supplier monitors request handling to see 
that requests are closed and response times 
met. 

  

9.     The supplier records data for computation of 
support response time, and identification and 
prevention of frequent problems. 

The supplier keeps a log of all steps 
in the request handling and the cause 
of the problem. 

 

10.   The supplier monitors the operation in order to 
foresee availability problems, and changes the 
technical configuration so that availability is 
maintained. 

  

11.   Customer and supplier meet regularly to review 
response times and discuss prevention of 
problems. 

The parties meet every     month. 
(The customer expects monthly 
meetings.) 

 

 

Requirement note: Handle a request 

When a supporter receives a request, he can perform one or more of the following subtasks. All subtasks 
except e (escalation) end with a reply to the user. The request is closed when nothing more can be done 

about the request (subtask f). 
a. Help user: Assist the user in solving the problem or circumventing it. If needed contact the user for 

clarification. Assistance is considered a valid reply. 
b.    Change configuration: E.g. start servers, change settings, replace printer cartridges, install software. 

Reply to the user when it has been done. 
c.    Order equipment or help from another organization: Reply to the user about the expected delay. 
d.    Defect: The support organization cannot solve the problem. Report it to the maintenance organization. 

Reply to the user that it has been done. 
e. Escalate request: The supporter cannot fully solve the problem himself. Pass the request on to 

another supporter. This person may again perform one or more of the subtasks. 
f.     Close the request: Nothing more can be done about the request. This may happen at the first point of 

contact. The request may also escalate several times, wait for external delivery or wait for a reply from 
maintenance before it can be closed. Reply to the user that the request has been closed.
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L5. Maintenance 
This section shows examples of typical maintenance requirements, including defect 

removal, system updates, and system changes. 

L5-1 specifies that the required response times must be valid for a certain fractile 

of the cases. The example solution says that the customer expects 95%. 

L5-2 makes the supplier responsible for keeping a log of the maintenance requests. 

L5-4 says that business-critical errors must be handled quickly, e.g. within 24 

hours. But who decides whether a reported defect is urgent (business critical)? Is it 

the user who reported it or the supplier? The answer depends on the kind of system 

and customer we deal with. Usually it is not the user because ordinary users tend to 

consider everything urgent. On the other hand, the supplier prefers to deny that it 

is urgent. 

L5-3 suggests that the supplier decides and that his decisions are reviewed regular-

ly (L5-5). Alternative 1 is that the local super user decides and alternative 2 that 

the customer's IT department decides. 

L5-6 deals with a common problem: The system depends on somebody else’s soft-

ware, for instance Microsoft Windows or the Google’s Browser (Chrome). When one 

of these systems change, the supplier’s system may not work correctly anymore. 

L5-6 specifies that the supplier has to deal with it as fast as possible. 

When the system is to be modified or expanded, the supplier has a de-facto 

monopoly and can charge the customer accordingly. L5-7 shows three ways around 

it: (1) The supplier gives a proposal based on an estimated number of work hours. 

However, since he has a monopoly, he may give a high estimate. (2) The size of the 

change is estimated as a number of Function Points, and the supplier has specified 

a fixed price per Function Point. (3) A third-party or the customer himself can make 

the changes. 

Function Points (FP) are a technology-independent way to measure the size of a 

development project or the size of a change. It is based on experience data from 

thousands of projects all over the world. 

The measurement can for instance be based on the number of classes in the E/R 

model and their complexity, plus the number of user screens and their complexity. 

FP experts can use tasks to give reasonable estimates of the number of screens. A 

medium complex class requires 10 FP and a medium complex screen requires also 

10 FP. In addition, there is an adjustment factor of 0.3 to 1.6 for the project organi-

zation, etc. Changes to a system can be estimated in a similar way.  

Without something like E/R and task/use cases you cannot estimate the project 

size.  

Depending on the supplier's skills and technology, he can quote a higher or lower 

price per Function Point. A typical price for a FP in Denmark is 2,000 to 4,000 USD. 

Expertise is needed to estimate Function Points. FP experts claim they agree very 

precisely when they independently estimate the same project. In case the parties 

cannot agree on the number of FP, you can have your local FP group decide. 
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Unfortunately, the Function Point group of Denmark is closed. You might try the 

home organization: www.ifpug.org 

 

  
L5. Maintenance 
Maintenance includes defect removal, system updates and system changes.  
 
 

Requirements for defect removal: Example solutions: Code: 

1. Fractile. The response times specified below 
must apply in almost all cases. 

__% of the response times must be 
within the limits.  
(The customer expects 95%.) 

 

2. The supplier keeps a log of reported defects as 
well as change requests.  

  

3. For all reported defects, the supplier quickly 
decides whether the defect is business critical, 
possible to circumvent temporarily, or possible 
to circumvent permanently (i.e. reject).  

Alternative 1: The local super user decides. 
Alternative 2: The customer's IT department decides. 

In the period from 8:00 to 18:00 on 
weekdays, the supplier completes the 
assessment within __ hours.  
(The customer expects 3 hours.) 

 

4. Business-critical issues are rectified quickly.  Business-critical issues are rectified 
within __hours.  
(The customer expects 24 hours.) 

 

5. Customer and supplier meet regularly to check 
the defect assessments, and to decide what to 
rectify or change, and what it will cost. 

The parties meet every __ months. 
(The customer expects monthly 
meetings.) 

 

 
 

Requirements for system improvement: Example solutions: Code: 

6. When third-party software on which the system 
depends, is changed, the supplier must if 
needed, adapt and install new versions of the 
system without unduly delay.  

Installation takes place within ___ 
days after release of the third-party 
software in Denmark. (The customer 
expects 30 days.) 

 

7. Within the duration of the contract, the supplier 
shall on request give quotations for changes 

Alternative 1: based on estimated work hours. 
Alternative 2: based on a fixed price per Function 

Point. Disagreement on the Function Point 
calculation must be resolved by … 

Alternative 3: Third-party authorized by the customer 
makes the changes. 

  

 

http://www.ifpug.org/
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6. SL-07 contract 
This chapter shows the entire SL-07 contract and comments on the difficult parts. 

When the system is developed in-house, a formal contract is rare. The requirements 

specify what is to be delivered. Changes in requirements are discussed during 

development, and there are no financial penalties between the parties. 

However, when customer and supplier are two different companies, there will usu-

ally be a contract and a requirements specification. The requirements specify what 

the supplier must deliver, and the contract specifies what to do when things don't 

proceed as expected. For instance what to do if the supplier doesn't deliver on time 

or delivers a faulty product; or if the customer forgot an important requirement. 

Lawyers specializing in IT contracts cleverly deal with all kinds of things that may 

happen during the project, in much the same way as programmers cleverly deal 

with all kinds of cases that may occur in the system at run time. Newer contracts 

also try to define the development process. 

In traditional contracts, the requirements are several appendices to the contract. 

For example, the requirements for response time and support are separate attach-

ments, whereas in SL-07 they are sections L1 and L4 of Appendix 1 (the require-

ments specification). Other appendices traditionally contain the supplier's solution 

description, price of deliveries, project schedule, project management, test, etc. 

The SL-07 contract has been developed specifically for the SL-07 requirements. The 

principle has been to move as many topics as possible from contract to requirement 

specification. It is an advantage to make a topic a requirement, because the SL-07 

format is suitable for the supplier writing responses or comments to the require-

ments, e.g. to the requirements for the development process. The supplier's 

response is included in the evaluation of the proposal. The requirements are also 

what IT staff use every day, while the contract is scary and guarded by another 

department. 

Finally, the requirements on response time and other "service goals" in traditional 

contracts, are extremely inadequate from an IT professional point of view. For 

instance, contracts don’t specify the nominal load under which the response times 

have to be met. Without this information, the supplier's response is guesswork and 

cause disputes when the system is put into operation. It corresponds to ordering a 

crane to lift 20 meters, but without specifying how many tons to lift. Oh, must it be 

100 tons? I thought it was 10 as usual. 

In total, the SL-07 contract, including its appendices, cover the same subjects as 

the traditional contracts PLS, K02 and K03. Many of the formulations are taken from 

these contracts. Other rules have become problem-oriented instead of being many 

paragraphs about what you must and must not. 

As a result, the SL-07 contract is only 8 pages with 4 appendices, while for instance 

K03 is 58 pages with 16 appendices. In return, the SL-07 requirements have grown 

by 3½ pages. It is the requirements in Chapter K that have grown. 
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Prevention of project damages 
Lauesen has investigated 5 large public IT procurements that suffered major 

“damages”, e.g. cost overrun, time overrun or lost business goals. He has identified 

37 damage causes. See Lauesen: Damages in large IT projects, Soren Lauesen. If 

you follow the SL-07 requirements and the SL-07 contract, you should be able to 

prevent 24 of the 37 causes with the requirements mentioned below: 

Cause A1:  Doesn't identify user needs and win-win (requirements B1, B2, C) 

Cause A2:  Requirements don't cover customer needs (requirements B1, B2, C, D, etc.) 

Cause A3:  Describes the solution in detail. No freedom to the supplier (requirements C, D, etc.) 

Cause A4:  Makes heavy demands and believes it is for free (requirements C, D, etc.) 

Cause A7:  Wants everything at once, e.g. the whole country, or all medical specialties (requirement 
K1, pilot test) 

Cause A8:  Does not plan the new work processes (requirements B1, C) 

Cause B1:  Supplier too optimistic – you must lie to win (requirement B3 - POC)  

Cause B2:  Wrong selection criteria (requirements B3, B4, B5, B6) 

Cause C1:  Does not ensure usability, even when they know how (requirements I1, K1) 

Cause C2:  Designs user screens too late (requirements I1, K1) 

Cause C3:  Accepts the solution description without understanding it (requirement K2) 

Cause C4:  Cannot see how far the supplier is (requirements K2, K3) 

Cause C5:  My way without looking at the supplier's way (requirements C, D, etc.) 

Cause D2:  System Integration Surprises (requirement B3 - POC) 

Cause E1:  Deploys the system with insufficient testing (requirement K3) 

Cause F1:  Deploys the system with insufficient support and training (requirement K1, pilot test) 

Cause F2:  Doesn’t check whether the system is used as intended (requirement K1-17) 

Cause G1:  No business goals - or forgets them on the way (requirements B2, K2-9) 

Cause G2:  Doesn’t reschedule, but assumes the rest can be compressed (requirement K2) 

Cause G3:  The project grows without anyone noticing (requirement K2) 

Cause G4:  Doesn’t face the danger. The risk assessment downplays it (requirement K2-10) 

Cause G5:  Money runs out and the financial incentive disappears (K2-7) 

Cause G12: Insufficient staffing (K2-2, K2-8). 

Cause G13: Doesn’t find the root cause (K2-8). 

 

Damage causes not covered by the contract 
Cause A5:  Oversells technology, e.g. SOA, web-based, workflow engine 

Cause A6:  Multi-vendor strategy – Makes us supplier independent (No, on the contrary). 

Cause A9:  Is there a solution, e.g. does the necessary data exist? Are acceptable response times 
possible? 

Cause A10:  Surprising rule complexity 

Cause B3:  Forgets or ignores important costs 

Cause D1: Supplier accepts an expensive requirements interpretation, although it is unreasonable. 

Cause F3:  Wrong estimate of human performance 

Cause G6:  Cashes the benefit before it is harvested, e.g. sacks too early 

Cause G7:  Lack of management or expert involvement 

Cause G8:  Excessive management or expert involvement 

Cause G9:  Too large steering committees/work groups without competencies 

Cause G10:  Excessive user involvement 

Cause G11:  Believes law blocks sound approaches, e.g. talking to suppliers or pilot test 

  

http://www.itu.dk/people/slauesen/SorenDamages.html
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re 1. Definitions 

Definitions explain concepts that are not readily understandable to both parties. For 

instance, some concepts have different names in the law profession and in the IT 

profession.   

 

  

1. Definitions 
Acceptance Test: The tests the Customer must approve before the Customer takes over the delivery. 
Acceptance test is also called acquisition test. 
 
COTS software: Commercial-Off-The-Shelf. Software delivered as a commodity (in Danish: Standard 
software). It may be customized for specific purposes. 
 
Defect: The delivery does not meet the requirements or the Customer's reasonable expectations. A 
reasonable expectation means that the supplier knew or should have known that it would be a problem to 
the customer. The defect may be that the system does not have the expected functionality or that the 
functionality does not work as expected.  
 
Issue: A generic term for defects and requests for change. It may often be useful to remedy the issue and 
later clarify whether it was a defect or a change request. Issues are also called problems. 
 
Option: A partial delivery that the Customer can select or deselect. 
 
Partial delivery: A part of the total delivery. Can be defined in advance or decided during the project. 
 
Pilot Test: Operation of the system with real users and real work as part of the acceptance test. 
 
POC: Proof-Of-Concept. A test that checks whether the delivery can meet requirements that are hard to 
meet late in the project, e.g. response time with many users, user-friendliness, understandable technical 
documentation. 
 
Problem: The same as "issue". 
 
RFC: Request-For-Change. The Customer's request to change the system or the requirements, e.g. 
because the parties have discovered a demand that is not specified in the requirements. 
 
System: The part of the delivery that is not services. The system comprises hardware, database and 
software, including customized software. 
 
Test: A check of the system or parts of it, in order to find defects. Often the test also reveals requests for 
change. 
 
Working day: Monday to Friday excluding holidays, Christmas Eve, New Year's Eve and Constitution 
Day. 
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re 2. The supplier's obligations 
re 2.1. Partial delivery 
You often find out late in the project that you cannot deliver what was planned, but 

you can deploy a part-delivery that is useful. The contract allows it. The require-

ment note at K2 gives the details. One thing to remember is to reduce the related 

payment accordingly. 

re 2.3. Supplier's employees 

Often contracts require that the supplier's staff must be certified in various disci-

plines. Unfortunately, experience is that certification does not make much differ-

ence. There are highly competent developers who are not certified and certified 

developers who are useless. The argument is that it does not hurt to require certifi-

cation. Well, it may give the supplier additional costs and the customer a false 

security. With the SL-07 contract formulation, you can argue in a dispute, that the 

supplier's employees did not have the necessary qualifications. 

re 2.6. Options 

The customer can define options. For example, the customer may wonder whether 

he wants a data warehouse as part of the delivery. It depends on the price. So he 

asks for it as an option with a separate price. 

It is important that the supplier can define options too. Often the customer unin-

tentionally writes requirements that are much more expensive to meet than he 

expected. Perhaps the supplier has a cheaper solution that does not fully meet the 

requirements, but is probably sufficient. The supplier can then offer the cheap 

solution, and the expensive solution as an option. Section A2 (supplier guide) shows 

an example where the customer had to pay many millions more than necessary, 

because the supplier was not allowed to offer options. 

If there are many options, it may be difficult for the customer to choose which ones 

he wants. Section A5 in the guide shows how the customer rationally can decide 

which options to accept. 

re 2.7. Deployment, etc. 

Normally, deployment occurs when the customer has approved the system test and 

application test, thus taking over the system. Experience is that even after careful 

testing, many problems are not detected until the system is used for real work. So 

there is a need for deploying the system and use it for real work, before the 

customer accepts the system and takes it over. This is called a pilot test. 

 

However, if significant deficiencies are detected during the pilot test, the contract 

may be terminated. In this situation it is important that the customer can get out of 

the operation in a reasonable manner, e.g. extracting the collected data. The 

contract provides for this. 
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2. The Supplier's obligations 
The Supplier's deliveries are specified in Appendix 1, the requirements specification. The specification is 
based on Problem-Oriented Requirements SL-07. Problem-oriented requirements do not describe what 
the system shall do, but what the system shall be used for. It gives the Supplier freedom to use what he 
already has, and it allows the Customer to assess how well his problems/demands are covered by the 
Supplier's proposal. 
 

(2) SL-07 comprises functional requirements, quality requirements, operational requirements, development 
process requirements, the Customer's deliveries, the Supplier’s proposed solution, including the options 
the Customer wants, as well as additional options offered by the Supplier. 
 

2.1. Partial delivery 
The parties may agree to divide the total delivery into partial deliveries that can be deployed one at a time. 
This can be done at contract negotiation or during the project. See requirement K2. 
 

2.2. Subcontractors 
The Supplier is responsible for subcontractors’ deliveries and services in the same way as for his own 
matters. In all matters, the Customer may contact the Supplier instead of the subcontractor. 
 

2.3. Supplier's employees 
The Supplier must provide sufficient and qualified personnel to ensure progress and quality in the project.  
 

(2) The Customer may state a motivated request for replacing staff in the Supplier's project organization, 
which the Supplier as far as possible must accept.  
 

2.4. Change before delivery 
If the parties discover a need that is not covered by the requirements specification or the Customer's 
reasonable expectations, it is a Request For Change. For major changes, the Customer may ask the 
Supplier for a proposal, which in addition to the price, must also state the consequences for schedule, etc. 
(see requirement K3). The Supplier may provide a motivated refusal to make the change. 
 

(2) If it is dubious whether the need is a defect or a Request For Change, and it is a minor change, the 
Customer can approve that the change is made immediately with registration of spent hours and later 
decision on who pays. 
 

(3) Accepted changes are part of the delivery. 
 

2.5. Change after delivery 
Requests For Change after delivery of the entire system are governed by the maintenance agreement 
(requirement L5). 
 

2.6. Options 
The agreed options are specified in requirements A3 and A5. An option gives the Customer a right, but not 
a duty, to get the option within the duration of the contract. If the Customer's right to get the option is 
limited to certain periods, this must be stated in the description of that option. 
 

2.7. Deployment, operational test and warranty period 
Normally, deployment starts when the Customer takes over the delivery, but it may be necessary to deploy 
earlier, for example to perform a pilot test as part of the acceptance test. 
 

(2) The operational test starts after deploying the entire delivery. The warranty period starts when the first 
(partial) delivery is deployed. See requirement K1. 
 

(3) In case of contract termination for any reason during pilot test, operational test or the warranty period, 
the Customer can transfer production data to another system (see requirement J7). 
 

2.8. Source code 
If the delivery includes specially developed software for which the Customer has ownership or a right to 
use, the Supplier must at regular intervals, and at the latest immediately after the Customer's acceptance 
of delivery of the software in question, take measures that make the source code available to the 
Customer in case of the Supplier’s breach of contract. 
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re 3. The Customer’s obligations 
re 3.4. Customer employees 

As for the supplier's employees, the SL-07 contract does not set detailed require-

ments for the customer's project participants. They just have to be sufficient for the 

purpose. For comparison, we can look at the corresponding rules in contract K03: 

The client's project manager, other key employees and other employees par-

ticipating in the Project must possess the necessary skills and qualifications, 

including the necessary knowledge and understanding of the Customer's 

business activities and business goals and needs, as well as the necessary 

decision-making ability to manage their roles in connection with the project's 

implementation.  

The customer is obliged to maintain relevant and necessary capacity and 

knowledge throughout the project, for fulfillment of the Customer's obliga-

tions under the Contract, including sufficient and necessary employee 

resources at the relevant levels of the Customer's organization.  

8.4.3 Replacement of employees  

For the sake of progress and quality of work, and for the sake of close coop-

eration between the parties, the Parties shall, as far as possible, avoid the re-

placement of employees on the Project.  

The parties may not reduce the number of employees involved in the 

Delivery, if this brings Quality of Delivery or Completion of the Project in 

accordance with the Time Schedule at risk. 

Each Party shall, without undue delay, inform the other Party in writing in 

case of the resignation or absence of key project participants. In such cases, 

the informing Party shall nominate a successor or temporary substitute with 

at least the same or equivalent competencies and qualifications, cf. Annex 8 

and Annex 9. 

Each Party shall, at request from the other party, within [20] working days, 

replace a participant, including a key participant, if the other Party's request 

is substantial and reasonably justified, for instance in case of significant 

collaboration difficulties or the participant's lack of competencies and qualifi-

cations. 

The parties shall ensure that new employees comply with the qualification 

requirements, cf. points 8.4.1 and 8.4.3 as well as Annex 8 and Annex 9, and 

that they have at least the same or equivalent competences and qualifications 

as the replaced employees. The replacement must not affect the Parties' 

ability to perform the tasks of the Project, including delaying the delivery.  

These many details reflect lawyers' experiences with what may go wrong. Then they 

try to guard against each experience. But the list grows and grows. In addition, the 

many rules easily create a time-consuming bureaucracy. For instance, many project 

managers complain that they spend 80% of their time on bureaucracy, and only 

20% on governing the project. 

With the problem-oriented approach, we ask: What is the basic problem and what 

will we ensure? The answer is: 
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The Customer must provide sufficient staff with the application knowledge, 

business knowledge and decision authority, needed for the project. See 

details in requirement K4. 

In requirement K4, the supplier can specify details, for instance what kind of 

employees he expects from the customer, and how many test participants are 

needed for usability tests.  

  

3. The Customer’s obligations 
3.1. Payment 
Payment and payment plan are stated in Appendix 2. Basically, payment is subject to approved tests of 
the delivery or a partial delivery. 
 

3.2. Approval 
Requirement K1 (acquisition plan) contains several tests. Each test must end with the Customer's written 
approval. If the Customer can only partially approve a test, the parties may define a partial delivery that the 
Customer can approve. 
 
(2) An acceptance test consists of several tests as stated in requirement K1, Requirement Note. The 
acceptance test is approved when all of these tests are approved for this delivery or part-delivery. 
 
(3) Although the Customer has approved a test, the Supplier is still responsible for any defects discovered 
later, until expiration of the warranty period. 
   

3.3. Delivery and risk 
Once the Customer has approved the acceptance test for the delivery or part-delivery, the Customer has 
taken over this part of the system and delivery has taken place. 
 
(2) The Supplier carries the risk of accidental destruction or damage to the delivery until the Customer has 
taken over the entire system. 
 
(3) However, for physical deliveries of items received and signed by the Customer, the Customer takes 
over the risk and insurance obligation at the date of delivery. 
  
(4) The Supplier continues to bear the risk and insurance obligation for those parts of the system that 
remain in the Supplier's custody. 
 

3.4. Customer’s employees 
The Customer must provide sufficient staff with the application knowledge, business knowledge and 
decision authority, necessary for the project. See details in requirement K4. 
 
(2) The Supplier may state a motivated request for replacing staff in the Customer's project organization, 
which the Customer as far as possible must accept.  
 

3.5. Other Customer deliveries 
The Customer must also provide premises, data, etc. as described in requirement K4. 
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4. Cooperation 
The Customer is prepared to follow the Supplier's recommendations regarding the acquisition process and 
the development method, but wants to ensure that essential aspects are covered. This is specified in 
Chapter K of the requirements, which are problem-oriented requirements for the acquisition process. 
 
(2) The Supplier has the obligation of taking the initiative in the cooperation between the parties, but the 
Customer is assumed to have an active role in managing his own project participants.  
 
(3) The Supplier must cooperate with the Customer's other Suppliers to the extent necessary for the 
project. 
 
(4) The parties must cooperate with a positive, professional and responsible attitude and each make 
significant efforts to achieve a good result. The parties must show the flexibility considered reasonable and 
usual in implementing a complicated project. 
 
(5) The parties have a mutual obligation to point out, without undue delay, any errors in material prepared 
by the other party, as well as other matters that may affect the proper implementation of the project. 
 

4.1. Confidentiality 
Only persons authorized to do so must have access to the system and to Customer data.  
 
(2) At the request of each of the parties, a party is required to document which persons are authorized and 
what measures the party observes regarding physical and personnel safety.  
 
(3) Unless the character of the information or other circumstances entail otherwise, the parties must 
observe confidentiality about the counterpart's circumstances that they may get to know about in the 
performance of this contract. 
 
(4) The Supplier is obliged to impose on his employees and subcontractors a corresponding obligation of 
confidentiality.  
 
(5) Consultants and others who assist the Customer are subject to similar obligations regarding Supplier 
information.  
 
(6) This confidentiality also applies after the termination of the contract, regardless of the cause of 
termination. 
 
(7) The Supplier may include the Customer on his reference list, but may not, without the prior written 
consent of the Customer, use the Customer's name for marketing purposes. 
 

4.2. Audit 
The Customer is entitled to check the Supplier's work and documentation for the duration of the contract in 
order to identify risks of quality breaches or schedule delay.  
 
(2) The Supplier is entitled to check for the entire duration of the contract whether the Customer's 
participation is of the required amount and quality. 
 

4.3. Termination 
Regardless of the reason for termination of the contract, the Customer is entitled to the services stated in 
requirement J7 (extraction and documentation of data, etc.).  
 
(2) Further, the customer may choose the next supplier in the priority sequence without a new tender (see 
requirement B3-10). 
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re 4.4. Termination at POC 
The SL-07 contract recommends an early proof (POC, Proof-Of-Concept) to ensure 

that the supplier is able to meet requirements that by experience cannot be imple-

mented late in the process. These requirements are specified in B3. It is for 

instance usability and response time with many users. In case the customer cannot 

approve the result, the supplier is paid for the POC work (up to a certain limit). 

However, a supplier may abuse this possibility by sending a cheap proposal, 

pretending to make the proof, and collect the fee when the customer rejects the 

result. To avoid this, the SL-07 contract states that he will not be paid if he knew or 

should have known that he could not honor the requirements. 

It may also occur that the supplier experiences that the customer is difficult to 

cooperate with, or realizes that he has misjudged the project. He therefore also has 

an opportunity to terminate, receives no remuneration, nor shall he pay compensa-

tion. 

Experience shows that a customer is reluctant to reject suppliers after POC, because 

he has to start the tender process all over. The requirements specification handles it 

by asking the suppliers to abide by their proposal for a certain period. See 

requirements B3. 

Suppliers are actually happy with this opportunity, because they know that the 

winner often lies in order to win. And then they get a chance themselves.  

4.4. Termination at POC 
Until approval of POC, the Customer may terminate this contract at any time. The motivation for the 
termination must be stated. 
 
(2) If the Customer terminates the contract, the Customer will pay for the work performed by the Supplier 
until the date of notice, unless the Supplier knew or should have known that he would not be able to meet 
the POC. The price is calculated according to the Supplier's usual tariffs and terms, but the total price 
cannot exceed the price stated in Appendix 2. Only if it is specifically agreed, will the Customer pay for 
more than the Supplier's work. 
 
(3) The Supplier may, until POC is approved by the Customer, terminate this contract. The motivation for 
the termination must be stated. The Supplier can not claim payment and does not pay compensation to the 
Customer. 
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5. Breach of contract 
Breach of contract occurs if one of the parties fails to comply with the terms of the contract, e.g. significant 
defects that the Supplier cannot remedy, deliveries or partial deliveries that cannot be approved on time, or 
one of the parties not providing adequate staffing. 
 
(2) The parties must notify each other in writing as soon as they find that a breach has occurred or will 
occur. The counterpart must have the opportunity to rectify the issue within a reasonable period. 
 

5.1. Other breaches 
In the event that the Supplier in any other way endangers the timely completion of the contract, e.g. due to 
the Supplier's or a subcontractor's suspension of payments, bankruptcy, termination of business or 
equivalent, the Customer can terminate the contract or demand the necessary warranty. 
 

5.2. The Customer’s issues 
The Supplier is not responsible for any issues caused by the Customer or a third party for whom the 
Customer carries the risk, or that the Customer has used the system in violation of the enclosed 
documentation. 
 
(2) If payment is delayed due to the Customer only, the Supplier is entitled to interest on the payment in 
accordance with the Interest Act until payment is made. 
 

5.3. Expected breach 
In accordance with Danish law, the parties may apply defaulting actions when it becomes clear that a 
breach is inevitable. 
 

5.4. Customer's rights at breach 
If the Supplier is unable to meet the agreed service targets, the Supplier must pay a penalty calculated as 
described in Appendix 2. 
 
(2) If the breach is so severe that the value of the delivery to the Customer is significantly reduced, the 
Customer may terminate the contract completely or in part. However, partial termination can only be 
carried out if the canceled part of the delivery is not necessary for the remaining delivery. 
 
(3) As an alternative to cancellation, the Customer may require a proportional discount in the contract 
amount as well as in the maintenance fee, according to the impaired value of the system to the Customer. 
 

5.5. Termination at breach of contract 
Upon termination of the contract, the party whose breach is the reason for termination, shall replace the 
counterpart his documented and direct loss. 
 

5.5.1. In case of the Supplier’s breach 
In case of breach by the Supplier, the Supplier shall reimburse the full contract amount less deduction for 
the Customer's use of the product until termination. The Customer must return the hardware, information-
carrying media and documentation given to the Customer. 
 
(2) The Customer is entitled to continue to use the system for up to 180 working days, in return for a 
reasonable remuneration for the benefit that the Customer has had of the system during the period.  
 

5.5.2. In case of the Customer’s breach 
In case of breach by the Customer, the Supplier is entitled to terminate the work directly affected by the 
Customer's breach until the issue has been remedied. The schedule may be delayed accordingly. 
 
(2) The Supplier is also entitled to terminate the contract completely or in part. 
 
(3) The Customer is liable for the Supplier's documented loss caused by the Customer's breach of 
contract. 
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5.6. Liability and disclaimer 
The parties are liable for damages under the general rules of Danish law. However, the parties are not 
liable for operational loss, loss of profit and other indirect losses. Loss of data is considered a direct loss, 
however, the Supplier is only responsible for protecting data in accordance with requirement H3. 
  
(2) For conditions that trigger penalties, the Customer may only claim compensation in so far as the 
Customer documents a loss beyond the penalty. 
 
(3) The parties' liability cannot exceed an amount corresponding to the contract amount. If the reason for 
the Customer’s loss primarily is the Supplier's breach of the maintenance agreement, the Supplier's liability 
cannot exceed three times the annual maintenance fee. 
 

6. Intellectual Property Rights 
6.1. Third-party rights 
The Supplier guarantees that the delivery does not infringe the rights of others, including patents or 
copyrights. 
 

6.2. The Customer’s rights 
Upon delivery of COTS software, including customized COTS software, the Customer obtains an unlimited 
right of use for the software in accordance with the Supplier’s license terms or standard terms in Appendix 
4. 
 
(2) The Customer is obliged to ensure that the Customer's employees are informed of and comply with 
these terms and conditions, as well as respecting the Supplier and manufacturer's copyrights. 
 
(3) The Customer acquires an unlimited right of use to all material provided by the Supplier as part of the 
delivery, unless expressly agreed otherwise. 
 

7. Force majeure 
Neither the Supplier nor the Customer shall be held liable to the other party in so far as the liability is due 
to circumstances beyond the control of the party, including strike, internal strike and lockout, which the 
party could not have predicted nor should have avoided or overcome. Relationship with a subcontractor is 
considered force majeure only if there is a barrier to the subcontractor covered by the first sentence. 
 
(2) Force majeure at delay, applies for at most the number of working days of the force majeure situation. 
If a deadline for the Supplier is postponed due to force majeure, the related payments will be delayed 
accordingly. 
 
(3) Force majeure may be claimed only if the party concerned has notified the other party in writing no later 
than 10 working days after the force majeure became known to him. 
 
(4) The party not affected by the force majeure is entitled to terminate the contract for non-delivered parts 
of the delivery if the agreed delivery date is exceeded by 60 working days due to the force majeure. In the 
event of such termination, the termination rules above still apply. 
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re 9.1. Interpretation 

What happens if it appears that the supplier’s proposed solution does not meet the 

customer's needs? Who should pay for an improved solution? In many countries, it 

is the customer's problem - he accepted the solution by signing the contract. In 

other countries, the rule is to protect the weak party - the one who finds it hardest 

to understand the technicalities - in this case the customer. 

Danish standard contracts avoid the doubt by stating that the customer’s needs 

take precedence (have higher priority). The supplier is responsible for ensuring that 

his solution is sufficient to meet the customer's needs. 

  

8. Transfer of obligations 
The Supplier may only transfer his rights and obligations to third parties with the Customer's written 
consent. However, the Customer is obliged to accept transfer to a third party against whom the Customer 
has no legitimate objections of economic or other nature. 
 
(2) The Supplier must respect the Customer's entire or partial transfer of ownership, rights of use or 
administration of the system to third parties (such as outsourcing, facility management, etc.), if this does 
not cause significant additional costs or risks to the Supplier. 
 
(3) Restrictions in this right may be contained in the license terms in Appendix 4. 
 

9. Interpretation and conflicts 
9.1. Precedence 
In the event of any discrepancy between the contract and its annexes, the following precedence shall be 
used: 
 
1. Requirements (needs) in Appendix 1 
2. Solution description in Appendix 1 
3. Contract 
 
(2)  As an example, this means that if the delivery corresponds to the solution description, but does not 
cover the specified requirements, the requirements have precedence. 
 

9.2. Nomination of an expert 
In case of disputes about the existence of defects, including whether the conditions for acceptance of tests 
and service targets are met, a party may request the Danish IT Society to appoint an independent expert. 
The expert will make a final and binding decision regarding the matter. The expert's fee is paid by the 
requester. Disputes concerning the interpretation of the contract and other legal issues can not be settled 
by the independent expert. 
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9.3. Disputes, law and jurisdiction 
The contract is governed by Danish law, and the general rules of Danish law apply to the relation between 
the parties. Copenhagen has been appointed as jurisdiction for all disputes that may arise from this 
contract. 
 
(2) Disputes must be resolved by mediation. The parties jointly choose a mediator, or ask a recognized 
institution to suggest one. If disputes are not settled by negotiation or mediation within 6 weeks from the 
start of the dispute, each party may initiate legal proceedings. This deadline does not apply when the 
purpose of a legal action can be lost. 
 
(3) Disputes between the parties in connection with this contract can not be brought before the ordinary 
courts if one of the parties opposes it. 
 
(4) Each party may settle a dispute definitively by arbitration in Copenhagen. The party seeking the court 
of arbitration must notify the counterpart by registered letter. 
 
(5) Unless there is agreement between the parties to allow the arbitration court to consist of only one 
member, the arbitration court shall have three members appointed by the President of the Eastern High 
Court. The chairperson must meet the conditions for being a judge and have proper experience with 
disputes regarding IT deliveries. The parties may suggest the other two members, nominated with due 
regard to the special expertise considered desirable in the assessment of the dispute. 
 
(6) The arbitration court shall determine its own procedure and decide on the allocation of costs to the 
parties, taking into account the outcome of the decision. The ruling of the arbitration court should be stated 
as soon as possible and within six months of the nomination of the arbitration court. 
 

10. Change of Contract 
This contract, including the requirements specification and other appendices, can be changed only with 
written acceptance from authorized persons from the Customer and the Supplier, respectively. 
 
(2) Changes are specified in additional appendices to the contract, numbered consecutively. 
 
(3) Unless otherwise agreed, the terms of this contract will apply to all additional deliveries from the 
Supplier to the Customer. 
 

11. Commencement and duration 
This contract will enter into force when it is signed by both parties. 
 
(2) The contract expires 4 years from the 1st of the month after the Customer’s accept of the full delivery. If 
the parties so agree in writing, the duration of the contract may be extended by up to 24 months. 
 
Alternative: The contract does not terminate, but can be terminated by one of the parties with 12 months' 
written notice.  
 

12. Signatures 
 
 
 
______________________________  ______________________________ 
For the Supplier  For the Customer 
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Appendix 1: Requirements specification 
The specification is based on Problem-Oriented Requirements SL-07. It includes functional requirements, 
quality requirements, service targets, development process requirements, and the Supplier’s proposed 
solution and options. 
  

Appendix 2: Prices and payment plan 
Prices must comprise all the requirements, including price for each option, price for licenses, hourly rate for 
development during and after delivery of the system. The payment plan should be based on approval of 
the tests stated in the acquisition plan (requirement K1). 
 
Any warranties must be stated in this Appendix. 
 
Example of a price list: 

Contribution Amount Payment date 

1. POC rejected by the Customer. Maximum payment to the 
Supplier: 

  

2. Acceptance test approved for partial delivery 1:   

3. Acceptance test approved for partial delivery 2:   

4. Operating test approved:   

5. End of warranty period:   

6. Operation, license and maintenance (all requirements in 
Chapter L). Quarterly forward from approved operational test: 

  

7. Option A3-1: Integration with two older MR scanners:   

8. Option A5-1: Higher Availability. Pr. quarter as point 6:   

9. Option A5-2: Ultra Availability. Pr. quarter as point 6:   

10. Option A5-3: Integration with DNA Registry:   

11. Hourly rate for support exceeding maintenance, or changes:   

12. Report, simple (E2-3):   

13. Report, complex (E2-3):   

14. Price per. function point (L5-7):   

  

Penalty for failure to meet operational targets Amount Payment date 

. . .   

 

 

Appendix 3: Contacts 
This appendix must contain data for the parties' contact persons. 
At the Customer side: 
(name, role, email, telephone) 
 
At the Supplier side: 
(name, role, email, telephone) 
 

Appendix 4: License terms and other rights 
The annex must contain the license terms for the software included in the delivery, the Customer's 
property rights to custom-made software, etc.  
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Lauesen, Soren (2017): Problem-oriented requirements in practice: The Y-

Foundation. The full requirements specification and the supplier’s proposal for 

the Y-Foundation’s case management system. There is also the note to the 

board about supplier selection, list of issues/errors, etc. See: 

http://www.itu.dk/people/slauesen/Y-foundation.html 

 

Lauesen, Soren: Problem-Oriented Requirements in Practice - a Case Study. In: E. 

Kamsties et al. (Eds.): REFSQ 2018, LNCS 10753, pp. 3–19, 2018, Springer, 

https://doi.org/10.1007/978-3-319-77243-1_1. Recognized at the REFSQ 

conference as the world’s first scientific publication of a real-life requirements 

specification, even including the supplier’s reply, disputes, etc.  

http://www.itu.dk/people/slauesen/SorenReqs.html
http://www.itu.dk/people/slauesen/SorenUID.html
http://www.itu.dk/people/slauesen/Y-foundation.html
http://www.itu.dk/people/slauesen/Papers/ProblemOrientedReqs5.pdf


128 

Lauesen, Soren & Kuhail, Mohammad (2012): Task descriptions versus use cases. 

In Requirements Engineering (a Springer Journal): ISSN 0947-3602 

Requirements Eng (2012) 17:3-18, DOI 10.1007/s00766-011-0140-1. Shows 

with experimental results why use cases aren't suited for requirements and 

how the task approach solves the problems. See: 

 http://www.itu.dk/people/slauesen/SorenReqs.html#UseCases 

Patton, Ron (2006): Software testing. Sams Publishing, Indiana. ISBN 0-672-

32798-8. Covers many kinds of test such as white box test, black box test, 

compatibility test, foreign-language test, and security test.  

Robertson, Suzanne & Robertson, James (2012): Mastering the Requirements 

Process. Addison-Wesley. Explains the author's Volere approach by means of a 

specific example, a system for managing roads in winter time. It mainly covers 

systems to be developed from scratch. Includes more types of non-functional 

requirements than SL-07. 

 

Technology Group International: Software Selection Requirements Template (ac-

cessed May 2011). A template for comparing business systems (ERP systems) 

according to around 1250 functional requirements on "system level". You have 

to register, but then the template is free. 

http://www.tgiltd.com/erp-software-selection/erp-requirements-template.html 

 

Wiegers, Karl E. (2003): Software Requirements, 2nd Edition. Microsoft Press, ISBN 

0-7356-1879-8. Covers many aspects of requirements from rights and obliga-

tions to tools, notations and processes. Illustrated with good and bad require-

ments, and dialogues from the elicitation process. 

Withall, Stephen (2007): Software Requirement Patterns. Microsoft Press, ISBN-0-

7356-2398-8. A comprehensive set of things to consider and examples of re-

quirements in many areas. All requirements are on product level, i.e. solutions 

rather than true demands. Usability, for instance is absent. 

 

http://www.itu.dk/people/slauesen/SorenReqs.html#UseCases
http://www.tgiltd.com/erp-software-selection/erp-requirements-template.html

	CoverSL-07v8 Online
	RequirementsGuideSL-07v8-online
	1. The purpose of the template
	1.1. Beware of template blindness
	1.2. The major requirements dangers
	1.3. The right requirement level
	1.4. Precise (verifiable) requirements
	1.5. Cover the customer's needs
	1.6. Early mitigation of major risks

	2. Gathering the requirements
	2.1. Centralize the work
	2.2. Involve the stakeholders and maybe the suppliers
	2.3. Early change control

	3. Request proposals and assess them
	4. Testing the system
	5. Guide to the template sections
	A. Background and supplier guide
	A1. Background and vision
	A2. Supplier guide
	A3. Customer options
	A4. Overall solution
	A5. Supplier options

	B. High-level demands
	B1. Flows
	B2. Business goals
	B3. Early proof of concept
	B4. Minimum requirements and selection criteria
	B5. Net benefit in 5 years
	B6. Weighted score points per dollar

	C. Tasks to support
	Work area 1: Patient management
	C1. Task rules (Admit patient before arrival)
	C2. Similar tasks (Admit immediately)
	C10. A complex task (Perform clinical session)
	C11. A long subtask (Order medicine)
	C20. Another environment (Perform clinical session, mobile)
	Why not user stories or use cases?

	D. Data to record
	Data model – E/R – Entity/Relation
	D0. Common fields
	D1. Data dictionary (Diagnosis)
	D2. A type class (Diagnosis type)
	D3. Using existing tables and screens (Service)
	D4.  CREDO check

	E. Other functional requirements
	E1. System generated events
	E2. Reports
	E3. Business rules and complex calculations
	E4. Expansion of the system

	F. Integration with external systems
	SOA or data replication?
	F0. Common integration requirements
	F1. Simple one-way integration (SKS)
	F2. Two-way integration (LabSys)
	F10. Integration with new external systems

	G. Technical IT architecture
	G1. Existing hardware and software
	G2. New hardware and software
	G3. The supplier operates the system

	H. Security
	H1. Login and access rights for users
	H2. Security management
	H3. Protection against data loss
	H4. Protection against unintended user actions
	H5. Privacy requirements, e.g. GDPR
	H6. Protection against threats

	I. Usability and design
	I1. Ease-of-learning and task efficiency
	I2. Accessibility and Look-and-Feel

	J. Other requirements and deliverables
	J1. Other standards to obey
	J2. User training
	J3. Documentation
	J4. Data conversion
	J5. Installation
	J6. Testing the system
	J7. Phasing out

	K. The acquisition process
	K1. Acquisition plan
	K2. Project management
	K3. Update issue list
	K4. Workplace and the customer’s deliverables

	L. Operation, support, and maintenance
	L1. Response times
	L2. Availability
	L3. Data storage
	L4. Support
	L5. Maintenance

	6. SL-07 contract
	Prevention of project damages
	re 2. The supplier's obligations
	re 3. The Customer’s obligations
	re 4.4. Termination at POC

	7. Literature and other templates




