
Proceedings of the 16th IRIS. 
J.P. Bansler, K. Bødker, F. Kensing, 
J. N0rbjerg, and J. Pries-Heje (Eds.). 
Department of Computer Science, 
University of Copenhagen, 1993 

Embedded Software: 
Industry versus Research 

Søren Lauesen, Jan Pries-Heje & Bodil Schrøder 
Copenhagen Business School 

Howitzvej 60, DK-2000 Frederiksberg 
e-mail: sl.iio @ cbs.dk 

Abstract 
This paper summarizes the results from a Danish study of 

d e v e l o p m e n t  methods used for embedded software. It compares the 
needs of industry with the apparent lack of influence from Danish 
research. 

The main conclusions from the study are: (1) Industry have 
---

many problems related to development of embedded software, for 
instance ensuring that essential issues are dealt with early and not 
detected at the end of testing. (2) Only very few research results 
are transferred to industry. The lack of technolQgy transfer is pri-
marily caused by the researchers' lack of appreciation of the real 
problems in industry. (3) Even very good and very relevant results 
usually fail to be taken into regular use in industry. Many different 
barriers cause this failure. 

Finally the paper suggests h o w t h e s e  technology transfer pro- 
blems could be overcome. 

1. Introduction 
In the Danish electronic equipment industry, software development is 

becoming more and more important. Often more than 50% of the development 
costs are used for software development. Therefore, improved methods are 
essential, and research could be a source for that. 

This paper reports some of the results from a Danish interview study 
conducted during the winter 1992-93. Fifty persons from 17 Danish organisa-
tions were interviewed using a structured interview guide. Each interview, 
with one or more persons, lasted about three hours. The 17 organisations wete 
carefully chosen such that all major Danish computer science departments 

-451-



(DTH, DIKU, DAIMI, AUC), all major intermediary organisations (The Da-
nish Technological Institute, ElektronikCentralen, Institute of Applied Compu-
ter Science (IFAD), private consultants), and major parts of the electronic 
eqnipment industry (telecommunication, electronics, measurement) were repre-
sented. 

Each interview involved two or three researchers. One researcher conduc-
ted the structured interview, while the others directly observed the interview 
and recorded everything. Furthermore every interview was tape-recorded to 
support the written records. In addition, we occasionally studied selected deve-
lopment documents. 

All the written records from the interviews were then analyzed using 
analytic induction [Miles & Huberman, 1984], and a full report of the results 
was produced [Schrøder et al., 1993]. In addition we have drawn on our own 
working experience from many projects in several companies. 

2. Problems in practice 
A major part of our observations was about the problems companies 

experienced in practice. B e l o w  we have categorized the main problems accor-
ding to the typical phases of software development. A general conclusion is 
that most of the problems occur in the initial phases, but they show up in the 
late testing phases, where they are very expensive to repair. 

2.1. Product definition phase 
Defining the product concept and the requirements for new systems was 

a problem in all the companies we interviewed. We found no systematic way 
to link customer needs to the specification of requirements and further on to 
estimates for development time and cost. 

The typical requirements specification we saw was unprecise and lacked 
important requirements such as performance, portability and maintainability. 
Furthermore, the requirements specification was often written in such a way 
that the marketing department and/or the customer could not fully understand 
it. As a result, important requirements were discovered late in the develop-
ment process, making them very expensive to fulfill. 

Also, implicit requirements like cost and deadline for delivery were not 
written down explicitly. At the same time, product development is so risky 
and so expensive that new products are seldom initiated. So when a new 
product is initiated, it has to provide a lot of new functionality. Together 
these two things cause a high risk. The obvious solution is to prioritize re-
quirements instead of making a shopping list of requirements, but such priori-
ties are not established. In the end, the project runs short of time and resour-

-452-



ces, and emergency priorities have to be used, but in an unplanned manner. 

2.2. Design phase 
Early in the system design, hardware parts and software parts are defi-

ned. This definition is seldom done systematically. Usually, all the vague 
requirements end up in the software part - a major reason for the huge sche-
dule delays caused by software development. This also gives software develo-
pers a bad reputation compared to hardware developers. 

The software design process is often not documented. Major parts of the 
design exists only in the heads of the developers. Typically, the input and 
output of each module is specified, but not how they relate. Even if the de-
sign is documented, for instance as dataflow diagrams or module specifica-
tions, the rationale behind the design decisions cannot be found in the docu-
ments. Furthermore it is impossible to trace the design to requirements, thus 
making it difficult to check whether the design is complete or whether parts 
of the design are superfluous. 

Often real-time issues like resource sharing, deadlocks, or performance 
bottlenecks are only considered for single modules, but not for the system as 
a whole. One reason is that very few persons in the project can overlook the 
entire. system. The result is that the problems turn up in integration testing or 
later, and they are extremely difficult to repair then. 

We have not seen anyone trying to estimate performance using simple 
mathematics or simulation. The result of this lack of insight into where per-
formance problems may occur is that the problems are detected late, so that 
only. local optimization can be used to improve the situation. 

User interface design is also causing problems. In the closed system 
parts (typically using dedicated hardware), the technical designers also take 
care of the user interface. They often know how to make prototypes and 
involve users in the design process, but they rarely do it in practice. In the 
open system parts (with screens and keyboard), the companies seem to rely 
heavily on Graphical User Interfaces, hoping that the use of standardized 
windows, icons, menus etc. automatically will lead to increased usability. It is 
well known that this is no guarantee for usability, but user involvement and 
user testing is needed too. Again, this rarely takes place. 

2.3. Programming phase 
The programming phase has fewer problems than the other phases. The 

programming language C dominates completely and has even wiped out most 
Assembler programming. Many companies are looking into C++ and object 
oriented programming, but we did not find any completed projects based on 

-453-_ 



C++. 
The most serious problem we found was a lack of traceability, this time 

from design to program. For instance, we found cases where the program 
modules did not at all look like the modules from the design: In effect, all 
the design decisions had been remade. 

2.4. Testing phase 
The different kinds of testing (module, integration, and acceptance test-

ing) take too much time, because the problems from the earlier phases show 
up now. Things missing in the requirements specification appear now: The 
performance is not good enough. Important customer needs are not covered. 
The dedicated hardware parts of the system do not work as expected. 

All these problems come on top of the deadline problem. This means 
that the project is running short of time and resources exactly at the time 
when these serious problems are identified. 

2.5. Maintenance phase 
Maintenance seems to be plagued with a lot of problems. Old systems 

are often quite chaotic because: (1) The people who made the system have 
left. (2) The documentation is not up-to-date, or was never made. (3) The 
original design has been violated again and again, for instance with special 
modifications for important customers. ( 4) The hardware platform on which 
the product was based is dead, so that you cannot get spare parts, and testing 
can only take place at customer sites. (5) Earlier maintenance was often done 
in panic by people without sufficient knowledge of the entire system. 

In recognition of the maintenance problems, some companies now put 
more emphasis on documentation. However, it is rarely done while develop-
ment takes place, but attempted after delivery of the final system. (When 
other tasks become urgent, the documentation is stopped, of course). For in-
stance, we have seen cases where the project manager claimed that they follo-
wed a certain method with full documentation of the design. When we asked 
to see the design document, we got the answer that it was not made yet, but 
when they had finished programming, they would do it! 

Behind the documentation problem is a more basic problem: It is unclear 
what documentation would be useful. We saw several meters of documenta-
tion collecting dust on the shelves - it was simply not useful. The only docu-
mentation that always seems to work is thorough comments in the actual 
code. 

-454-



3. Lack of relevant research to transfer 
A lot of software related research is taking place in Denmark. Unfor-

tunately, most of the research seems to have little relevance to the electronic 
equipment industry. This lack of relevant software research seems to be direct-
ly linked to the researchers' lack of industrial knowledge, which seems to be 
caused mainly by the position of the researcher: 

(1) A researcher earns his merits primarily from publishing in international 
journals. That means that the researcher has to come up with something 
new and publish it to other researchers. Industrial relevance is seldom 
taken into account. Searching for good solutions to industry problems is 
of little interest to the researcher, because there is no credit for applying 
research results to industry. 

(2) A researcher's environment consists of other researchers, possibly supple-
mented by sporadic industry contact. Furthermore, a researcher often h a s
rio experience other than being a researcher. This leads to fatal misjud-
gements. For instance we found researchers who believed that they knew 
what is going on in industry. But from our interviews we could see that 
their beliefes were based on prejudices. 

(3) A researcher can indulge in a very limited problem area and dig very 
deeply into it. Most industrial problems involve solving many interrelated 
problems at the same time. So a narrow solution, no matter how good it 
is, will often fall short of the needs in industry. 

4. Three examples of relevant research 
During our interviews, we encountered two very prorrusmg research 

projects: Mjølner and KAITS. Despite their promises, both projects failed to 
gain regular use in the industry due to a number of reasons. 

We also encountered a methodology called SPU, which seems to have 
gained wide-spread use in the Danish electronic equipment industry. The me-
thodology was not invented by Danish researchers but was constructed by four 
practitioners based primarily on their own experiences. 

4.1. Mjølner 
Mjølner was developed by researchers at DAIMI (University of Arhus). 

The Mjølner BETA system is a software development environment supporting 
object oriented programming in the BETA programming language. Mjølner 
seemed to be a very good solution for at least two important problems in the 
electronic equipment industry: Traceability and maintenance of design docu-

-455-



ments. However, Mjølner has not been well received. Our interviews point to 
two main reasons for that: 

(1) Risk aversion. Companies were afraid of trying something new. The 
advantages seemed far too doubtful and long-termed compared to the 
expenses. Furthermore, you become dependent on a small development 
team for support. A key point is that companies doubted that the BETA 
language could be supported in the future on new processors. 

(2) The new techniques were not compatible with existing techniques and 
tools. This created a special kind of risk. Customers could not return to 
the old techniques without losing all work based on the new tool. In 
contrast, C++ is acceptable for object oriented design, 'because you can 
always return to plain C again. But Mjølner forces you to change every-
thing in your development process and gives you no easy way to return. 

4.2. KAITS 
KAITS was made as a cooperation between DTH (the Danish Technical 

University) and a large Danish company that sells measurement instruments 
worldwide. KAITS is a method developed especially for the design of real-
time systems. KAITS provides a technique and a notation for identifying 
parallel processes, thereby deriving the task structure in a systematic manner. 
Today, KAITS is marketed as a tool called CEDER or CEDAR [Elmstrøm, 
1989; Rischel et. al., 1987]. 

KAITS seemed to be a good solution for some common industry pro-
blems: (a) It guarantees optimal concurrency. (b) It allows the calculation of 
performance in advance. (c) It features very compact documentation which is 
easy to maintain. (d) It provides good traceability from design to program. 
However, KAITS was not transferred due to a number of reasons: 

(1) The method was probably oversold as a solution for all problems in 
industry, even though it only supported a small part of the design pro-
cess. 

(2) Several companies heard about KAITS, but hesitated to use it until other 
companies demonstrated its success. This hesitation was also linked to 
the fact that industry products typically have a 10-year life cycle. And a 
product is typically bound to the same methods and tools as long as it is 
maintained. 

(3) KAITS h a s a high learning threshold. Therefore it was considered too 

-456-



risky to use. 

(4) Practitioners were unable to read complex scientific papers on new tech-
niques, in particular papers with mathematical notations as found in 
KAITS. 

(5) In its present state, KAITS has weaknesses handling complex data struc-
tures. 

4.3. SPU 
In 1985 four practitioners wrote a book based on their experiences called 

Handbook -on Structured Program Development, in short SPU [Biering-Søren-
sen et. al., 1988]. The SPU method includes all phases of program develop-
ment: Requirements specification, design, coding, test and maintenance. In 
addition, SPU covers more traversing issues like project management, review, 
configuration management, and documentation. 

The four practitioners inventing the method collected what they knew 
had worked in practice. None of it seems based on Danish research, but parts 
are based on North-American research. The chapter on reviews, for instance, 

-is based on Michael Pagans work [Fagan, 1976 and 1986]. 
The SPU method is well known and often used in industry. The reason 

is that SPU gives a good framework for development without forcing you to 
give up the techniques you know from earlier projects. Most of the develo-
pers we interviewed admitted that they did not follow the SPU phase model 
strictly. The method was merely used as common basis for defining a project 
specific development method. 

However, the SPU method does not offer much of a solution to many 
serious problems found in industry. For example: (1) SPU does not help en-
hancing traceability. (2) SPU does not help you define requirements, although 
it gives you checklists to evealuate a requirements specification once you have 
defined it. (3) SPU does not help you identifying parallel processes or de-
riving the task structure in a real-time system. With SPU, tasks are merely the 
highest level of module decomposition, thus linking it to functionality rather 
than concurrency. 

In one large company they had implemented an extended SPU-model 
with the help of a consultant. They tried to follow the extended model strict-
ly, but realized later that they now produced so many specifications and re-
ports that they were quite sure nobody would ever read them. They asked a 
question we could not answer: How can we use a well-defined and rigid 
methodology for development without producing several meters of binders 

-457-



with documentation every time we make a minor revision of a product? 
The extended SPU method gave a very bureaucratic development where 

trivial things tended to obscure the more important issues. Real projects need-
ed much more flexibility than the method allowed. 

5. Other barriers 

Education, new employees, supplier courses, seminars etc. are often men-
tioned as sources of knowledge and technology transfer. The interviews 
showed that these are very ineffective ways of transfer: 

(1) Newly educated computer scientists, may know a lot, but it is difficult 
for them to apply it on real projects, and it takes time for their know-
ledge to spread in the company where they get a job. 

(2) Education is given a low priority by employees and management due to 
time pressures. Education only takes place on employee initiative. Formal 
initiatives, like career planning or education planning, are non-existent. 

(4) Courses succeed when they deal with specific techniques that are imme-
diately useful. But when one person from an organization attends a more 
general course, it does not work very well. This is because the person 
cannot use what has learned, and cannot talk to other employees about it. 
The newly gathered knowledge will just be left on the book-shelf upon 
return - no matter how good this knowledge may be. The intermediaries 
mention a typical cycle of 2 years for the introduction of a new tech-
nique. First, the companies send out a few technology-scouts, and if they 
decide to seriously adopt the technique, they either have a company-
class set up, or they send off all the developers. 

6. Suggestions for improved technology transfer 
There are several players involved in the software technology transfer. 

Each could do something to improve the transfer, either alone or together with 
other players. 

6.1. Researchers 
The researchers could establish study groups which follow industrial 

projects, partly to learn more about practice and partly to get better inspiration 
for new relevant research. 

The researchers could also try to link existing research more closely with 
specific problems in the electronic equipment industry. For instance, a lot of 
good Danish research in object orientation lack examples of protocol specifica-

-458-



tion, multi-tasking, process control etc. Industry will not consider using this 
research without such examples. 

6.2. Industry 
Companies must try to overcome the risk aversion if they are to perform 

better than competitors. At present they tend to believe that the ideal method 
will turn up some day. If this should really happen, they will see proofs, 
meaning that many other companies would have used the method for years 
before the method is taken into use in the Danish company. 

A more realistic approach is to analyze the existing problems in depth 
and then take steps to remedy them one by one. At present, companies have 
a surprising lack of in-depth understanding of their own development pro-
blems. 

Industry could also make more use of two transfer techniques which we 
have seen succeeding in other technical disciplines: 

(a) Industrial Ph.D.-students paid half by the company and half by the 
government. The Ph.D.-student is expected to do research corresponding to a 
normal dissertation, and at the same solve a specific problem in the company. 
Industrial Ph.D.-students are used with considerable success in the develop-
ment of electronic hardware, whereas we have only met very few examples 
within software technology. 

(b) Bring in researchers to help solve specific problems. Some resear-
chers in other t t e c h n i c a l  areas are occasionaly contacted by companies who 
want advice within the researcher's area. Examples of this have been assistan-
ce in connection with control algorithms and assistance in estimating whether 
a design is satisfactory. Both parties express their satisfaction with this kind 
of requested assistance. However, industry claims that very few researchers in 
computer science are able to render this kind of assistance. 

6.3. Intermediaries 
Some intermediaries have a lot of success running so called ERFA-

groups ("Experience Working Groups"). For example ElectronikCentralen is 
running a Data Technical Forum with, at present, 8 ERFA-groups. The parti-
cipants in the groups are employees from the 50 member-companies represen-
ting all major electronic equipment companies in Denmark. The Forum may 
include lectures or company-visits. There is a widespread belief that the 
ERFA-groups are a good idea, allthough the results achieved in the groups 
vary a lot. Surprisingly, no researchers are members of the ERFA-groups. An 
obvious idea would be to offer researchers free or very inexpensive member-
ship. 

-459-



6.4. Education 
The educational system today fails to teach state-of-the-art in software 

technology. For example, requirements specification, quality assurance, and 
performance calculation are not taught in sufficient depth to be practiced. 

6.5. Government 
The government could change the way researchers merit themselves. 

Today mentation is primarily linked to publishing scientific papers. Instead, 
government could make a point of rewarding industrial application of research 
results. The government could also support cooperation between industry and 
research such that researchers could apply their research ideas, and industry 
could reduce the risk of using such innovation. Finally, the government could 
encourage researchers to take a sabbatical year or two in industry. 

Acknowledgements 
We greatly appreciate the support from the Danish Scientific-Technical 

Research Council, which persuaded us to conduct the study. Richard Basker-
ville (from SUNY Binghamton) has provided many comments that helped us 
clarify the paper substantially. 

References 

Bak, Lars, et.al.: An overview of the Mjølner BETA system. In: F. Long 
(ed.): Software Engineering Environments, vol 3, Ellis Horwood Ltd, 
Chichester, England, 1991. 

Biering-Sørensen, S. & F.O. Hansen & S. Klim & P.T. Madsen (1988): Hånd-
bog i Struktureret Program-Udvikling. Teknisk forlag, 1988. 

Elmstrøm, René (1989): A taximeter design project using CEDER. IFAD, 
Odense, November 1989. 

Fagan. M.E. (1976): Design and Code Inspections to Reduce Errors in Pro-
gram Development. IBM Systems Journal, no. 3, 1976. 

Fagan, M.E. (1986): Advances in Software Inspections. IEEE Transactions on 
Software Engineering, vol. SE-12, no. 7, july 1986. 

Madsen, O. Lehrmann & B. Møller-Pedersen & Kristen Nygaard: Object-ori-
ented programming in the BET A programming language. Addison 



Wesley, June 1993. 

Miles, M.B. & M. Huberman (1984): Qualitative Data Analysis: A sourcebook 
of new methods. Sage Publications, Newbury Park, California, 1984. 

Rischel, H. & B. Graff Mortensen & A.P. Ravn (1987): Konstruktion af for-
målsbundne systemer. Teknisk Forlag, 1987. 

Scrøder, B. & S. Lauesen & J. Pries-Heje (1993): Software til Apparater: 
lndustri kontra Forskning. Department of Informatics and Management 
Accounting, Copenhagen Business School, ISSN 0903-6571 93/1. 

-461-




