DamageCaseStories12.docx
Sgren Lauesen 24-06-2024

Damages and damage causes in

large government IT projects
Version 12

Soren Lauesen

slauesen@itu.dk

© Soren Lauesen, 2022

O 1Yo Vo I Y=Y -1 PRSPPI 6
2. Travel card, RK ..o 16
3. Police case management, POISAgcccceviiiiiiiiiiiiii e 22
L 0 T<Y o) oo]| =Tt o o TR = = 28
5. Health record system, EPICccuiiiiiiiiie e 36
6. CUres fOr @aCh CAUSE......iiiiiiii ettt 44
2 S0 < OO PP RO PR PP 52
8. REFEIENCES ... 59

This report is intended for discussion and idea generation in a large audience. There
may be errors in various places. Please send me a mail if you encounter errors or have
ideas for preventing the damages.

The report consists of this document and a spreadsheet that gives overview. The latest
versions are available at http://www.itu.dk/people/slauesen/SorenDamages.html
Earlier versions are available from the author.

Large IT projects are damaged in many ways, for instance large cost or schedule
overruns, unsatisfied users, or disappointing business results. In spite of the damage,
the new IT system is often deployed, but we would consider it more successful if it
had avoided the damage. In some cases the project is closed because of the damages.

There are many reports on failed projects and suggestions on why this happens. Some
causes are on a high level, for instance bad project management or bad cost
estimation. Causes on such a high level don't really help us preventing the damage in
the future. We might reason that since we have bad project management, we should
educate better project managers. But such educations or certifications exist already.

mailto:slauesen@itu.dk
http://www.itu.dk/people/slauesen/SorenDamages.html

Apparently they don't help. What do we have to add to these educations to make the
participants successful?

Bad project management in itself doesn't kill a project. It is killed for technical or
organizational reasons such as trusting new technologies too much, developing the
user screens too late, or not noticing that the business results are about to disappear.
Bad project management is when the project manager isn't aware of these factors and
doesn't deal with them when they arise.

This report looks at 5 large, public Danish IT projects. For each project it summarizes
the observed damages and the present state of the project. Next it identifies the
observed causes of the damage. A troubled project has one to five observed damages
and more than ten observed causes, each of which contributes to one or more of the
damages. A project may have additional damages and causes that we haven't
observed.

In this report, monetary amounts are specified in Danish kroner (DKK). Seven DKK
are roughly one US$ or one Euro. Denmark has almost 6 million inhabitants.

The report identifies 37 damage causes, mostly observed in more than one project. It
shows which project suffered from which causes and how the causes materialized in
practice. Some of the causes correspond to well known recommendations. As an
example, 13 of the causes were mentioned in a Danish report: Bonnerup/Teknologi-
radet (2001) [1]: Experiences from government IT projects - how to do it better.

For each damage cause, the report gives suggestions for what could have been done
(the cures), for instance writing requirements in a different way, running pilot tests,
monitoring the business aspects, etc. There is a list of 22 cures with a short
description.

Sometimes a project encounters a damage cause that harmed other projects, but it
caused no damage in this project. As an example, a project may have bad
requirements, but the chosen supplier had a proven solution to the customer's
problems - also to the problems the customer didn't mention in the requirements. In
these cases we record the damage cause and explain why it had no consequences in
this case.

The author has knowledge of the projects from many sources: published reports; his
own experience in industry; work as a consultant for the National Auditors; reading
piles of project documents; discussions with project participants; a broad professional
network; supervision of students who come from a troubled organization and write a
thesis about it; whistle blowers who tell facts that the National Auditors missed.

In its present stage, the findings and suggestions have been validated by managers
and/or project staff from the specific project. This has taken place at meetings,
seminars with many participants and in writing. After the first release of the report, I
got several new facts and included them in the next version. One great surprise was
that one of the projects (EFI) had been claimed closed by the press, but actually
operated, although in a restricted form.

The purpose of this report is not to blame somebody. It is all too easy to look back
and say why didn't they notice? - they should have . . . But in the real situation, people
did their best, yet it ended with small or large damages. The purpose of this report is
to learn from past damages in order to avoid them in the future.

The report consists of:

1. This paper, which gives the story behind each project and how the damage causes
happened. It also lists all the 37 causes and the 22 suggested cures.

2. An Excel file with three spreadsheets: Type-cure with a row for each of the 37
damage causes. A column for each project; who failed; damage caused; cure type
and suggested cures (if known). Cures with a row for each damage cause; a
column for each potential cure and indications of which causes it would cure (at
least partly). VisibleDamages1, 2 . . . with a row for each damage cause. Each
project has several columns, one for each visible damage: The column indicates
which cause contributed to this damage. The spreadsheets will print nicely on A3
or A4 portrait sheets.

Damages

We have classified the observed damages in this way:

Time: The project was significantly delayed. Sometimes this means added internal
costs or lost profit.

Cost: The amount paid to the supplier and/or internal costs grew significantly.

Business results: The business case became worse than planned. This can be less
profit. It can also be other business factors, such as increased waiting time for
patients, wrong medicine orders, or low stakeholder satisfaction.

User satisfaction: The usability of the system became bad.

Supplier loss: The supplier lost money due to project issues. Although the customer
formally doesn't care about this, good practice should be win-win for customer
and supplier. Below we have two projects where the supplier decided to pay
significant amounts for something he hadn't expected to pay for (Travel Card
and Police Case management).

Feasibility doubts: There was significant doubt whether the project was feasible, i.e.
whether it could be realized in the planned way. This happened in two of the
projects (Police Case management and Debt collection) and was one of the
reasons for closing them fully or partly.

Cure types

In the spreadsheets, we distinguish between these cure types:

Familiar: The cure is widely known in development communities. However, it may
be ignored and in this way cause damages.

Unfamiliar: The cure is not widely known.

Misinformed: The project used a “cure”, which actually made things worse.

Change log
Version 2: 05-05-2017. First published version.

Version 3: 21-05-2017 and minor changes 27-05-2017.
a. PolSag: Cause A2 The 1:1 requirement and the use of use cases are explained.
b. PolSag: Cause G9 deleted and G10 modified.

Version 4: 30-06-2017, 13-11-2017.

a. EFI: Several corrections to reflect that EFI wasn't closed as the public believed,
but continued with partly manual debt collection. Also explanations of how debt
was handled after close down, and of the system to replace EFI. Cause A5
explains more about system integration.

b. Minor changes to align the text with the spreadsheet.

c. EPIC: Trial operation described in introduction. Cause F3 now explains why the
low human performance wasn't detected early on.

d. The old cause B1 (believes law blocks sound approaches) is moved to G11, since
it also occurs when a project is closed down.

e. Renumbering B2-B5 to B1-B4, and C5-C6 to C4-C5.

Version 5: 20-07-2017.

a. Land registry: The references are moved to the end of the Land Registry chapter
and are now not only references to papers but also a description of what we did
during the investigation. The plan is to do the same for all the projects.

b. Some cause names have changed a bit.

c. EFI and EPIC: Some statements were wrong (e.g. 1000 employees dismissed).
Now changed.

d. Many details in the spreadsheets have been changed.

Version 6: 23-07-2017.

a. Cures were described under damages, which made it hard to find cures that
worked for many damages. Now damages and cures are split into two chapters.
Damages are numbered as before and they refer to the appropriate cures. Cures are
numbered in a way similar to damages.

Version 7: 02-10-2017

a. This version is no longer a draft. The organizations involved have had the
opportunity to comment on it, and several did. New versions may be released.

b. Various editorial changes in many places.

c. Cure CG1 has got one more advice: Re-planning can also involve re-scoping.

Version 8: 21-12-2017
a. This version has many updates about the health record system, EPIC.

Version 9: 14-04-1018

a. This version has a new cause definition for B4: Wrong selection criteria (earlier:
Forgets costly items).

b. New facts about EPIC: It used wrong selection criteria. Although much needed, it
wasn’t rescheduled because of heavy pressure from management as well as
supplier.

Version 10: 23-04-2019 (DamageCaseStories10.pdf, by mistake it had the heading
“Version 97)

a.
b.

C.
d.

The definition of familiar and unfamiliar cures has changed.

The description of cure CA1 (problem-oriented requirements SL-07) is new and
includes a short comparison with user stories.

Reference chapter added.

Minor editorial improvements.

Version 11: 25-01-2020
There are now 37 causes of damage: two new and two combined to one. Two cures
are added:

hD OO o

References for the Land Registry had disappeared. Now moved back.

Cause B2 and B4 have been combined to a new B2: Wrong selection criteria.
Cause G5 has been renamed to: The financial incentive disappears.

Cause G12, insufficient staffing, has been added. Observed twice.

Cause G13, doesn’t find the root cause, has been added. Observed twice.

Two new cures have been added: CG7 (Ask expert developers) and CG8
(Problem-oriented contract).

In 2011 the Land Registry was charged in High Court for causing losses to
citizens. The case was escalated to the Supreme Court in 2019. Details are added
in the method for data collection section at the end of the Land Registry chapter.
Explanation added of why 30% of the registrations were treated manually.

The state of the Health record system EPIC, hasn’t changed much since its
deployment in 2017 and no benefit has been reported. Details are added in the
introduction to the EPIC chapter.

Version 12: 24-06-2024

a.
b.

P14. Ruling in the supreme court about low usability is now available.
Various misprints.

Land Registry

1. Land Registry

Denmark has around 24 court districts, each of which had a paper-based land registry.
The idea behind the electronic land registry was to have only one land registry, which
could handle most of the registrations on-line, in that way saving around 220 staff in
total. In September 2009 the new system was deployed and overnight it became the
only way to register ownership of land and mortgage deeds. All registrations had to be
recorded online or through system-to-system interfaces to financial IT systems. It was
planned that 30% of the registrations would be selected for manual checking, either
because they were complex or as a check of randomly picked registrations.

Observed damages

a. Time: Development time was estimated to 1.2 years. Became 2.7 years. Due to
the delay, the savings became around 120 M DKK less than planned. This is a
major damage.

b. Cost: SW cost was estimated to 76 M DKK. Became 85 M DKK. Internal costs
including scanning old paper documents was estimated to 190 M DKK. Became
233 M. We consider this minor damages.

c. Business results: The first 7 months after deployment, registry took 50 days for
30% of the registrations. The rules said that registration had to be within 10 days.
Caused financial problems for a large number of citizens.

d. User satisfaction: The system was very hard to use and getting through to hotline
took weeks in the first 7 months.

State today

Today the system is a success, not for the Land Registry only, but also for the
financial sector. The planned benefit was met: 220 staff were dismissed. It is
estimated that society further saves 200+ M DKK per year in handling costs. At the
time of writing (2017), the system is still cumbersome and hard to use for ordinary
citizens.

References

1. Lauesen (2012): Why the electronic land registry failed, 15 pages. In Proceedings
of REFSQ 12, Springer Verlag. Also available at:
http://www.itu.dk/people/slauesen/

2. Rigsrevisionen (National Auditors), August 2010: Beretning til Statsrevisorerne
om det digitale tinglysningsprojekt (Report to the State Auditors on the Electronic
Land Registry), 74 pages (in Danish).

Damage causes
Below we explain the observed causes of the damages in the Land Registry project.

Analysis

Cause Al. Doesn't identify user needs and win-win

In the old way of registering ownership, “users™ sent paper documents to the registry
and got papers back after some days. Now users had to do it on-line. Users were
lawyers, real-estate agents, financial institutions, but also ordinary citizens. In order to
serve them well, it is important to know their context of use, for instance how you get

Land Registry
7

two parties to sign, how you present the ownership at a board meeting, how you relate
the registration to a loan application, how you review and correct errors, etc.
Apparently there was little effort to investigate this. The Land Registry looked at it as
a matter of filling in a form, signing it, and sending it with attachments. This was the
"interface™ they had in the old days.

In the requirements, ordinary citizens were also considered users, but early in the
project is was decided to ignore them - it was too hard to deal with them. The project
owners claimed that it had never been a goal to consider them. Requirements as well
as other early documents say otherwise.

The financial sector planned for integration with their own systems. This too was not
investigated, but 12 person months were set off for it. It turned out that 40 months
were needed.

The result was that user needs were not addressed and it was unclear what the system
should do from a user point of view.

Effects on damages: Business results, User satisfaction.

The registry project also included registration of car loans based on a new web-based
car registration system. This was much simpler and the plan was to implement it first.
But as the land registry was delayed and the new car registration system was in
trouble, it was decided to implement car loans later. When "later" arrived,
implementation of the car-loan system was painless. Asked why, the project owners
explained that they had learned the lesson from the land registry: We started by
finding out what the users actually needed. Then the rest was easy.

Cause A2. Requirements don’t cover customer needs

Compared to other requirements in large, public IT projects, the land registry
requirements were remarkably short: 406 pages with 413 requirements. But like most
projects, the requirements failed to address the basic question: who is going to use this
system? when? and for what?

The Land Registry requirements try to deal with it in two ways: user stories and use
cases. In those days, user stories were quite long, around 5 pages for a single user
story. They described the user dialog in detail, what the user would see on the screen,
what he clicked, etc.

There were 7 user stories for the public user interface and 11 for the internal,
employee user interface. The requirements said that the user stories were not
requirements, but for inspiration only. This "inspiration™ is probably one reason that
the final public user interface for recording ownership of a house takes the user
through 22 screens.

The use cases were opposite. Each of them described a simple functionality the
system should have. If a user wanted to register ownership, he would have to carry
out many use cases: login, fill in registration, attach file, sign digitally, etc. Use cases
don't show the context of use, and if you try to implement them literally, you will get
a very inconvenient user interface. In total there were 24 use cases for the public part

Land Registry

and 31 for the internal. The requirements said that this was not a full list of the use
cases to be supported.

Because there were no useful requirements to the user interface, it was hard to
develop a user interface (user screens). Only in the last few months was this done -
with disastrous results.

There were many other problems with the requirements that caused cost and
development time to grow.

Effects on damages: Time, Cost, Business results, User satisfaction.

Cause A4. Makes heavy demands and believes it is for free
The customer (or rather his consultant) had suggested an advanced service-oriented
architecture (SOA), and this was what the requirements asked for.

The system had to consist of modules connected with XML-services and a service
broker. Each possible check of a registration had to be a separate service. The system
also had to connect to around eight external systems with XML-services. Data had to
be retrieved from the external source always, and not stored as a local copy. A note
added that all the external systems were stable and had well-defined XML interfaces.

These requirements sounded okay, but they caused many costly and time consuming
problems. SOA eats computer power. Using an XML-interface requires 10-50 times
more computer power (CPU time) than traditional approaches. With the high demand
at peek load (2 registrations per second), this would become a problem. The supplier
knew about this, but if he made reservations in his proposal, he ran a risk of being
deemed non-compliant. He ended up saying that he could make it as the customer
asked for, but that he strongly suggested the traditional approach being used for the
internal interfaces. (In the final system, the traditional approach is used internally.)

Always getting data from the external system degrades availability and response time.
If the external system is out of service, the Land Registry system will essentially be
out of service too. A similar argument holds for response times.

In this case the supplier made reservations in his proposal. The availability and
response times in the external systems had to be "deducted"” from the availability and
response times of the Land Registry system. The supplier also explained that he
would construct the system so that it would be easy to change each external
connection to a local copy with over-night synchronization.

Not surprisingly, the final system has a local copy of all the external data with over-
night synchronization of changes. The only exception is the digital signatures in
DanlID.

In spite of the promise, the external systems were not stable. All of these systems
(except the civil registration system, CPR) were under major revision. Furthermore,
all of the systems had to accommodate changes made specifically for the Land
Registry system. These issues were very costly and time consuming to deal with for
the supplier.

Land Registry

The ambitious SOA requirements were not really the customer's needs, but an
idealistic concept enforced by the customer's consultant's IT architect. It took a long
time to replace these ideals with something pragmatic, and it increased cost and time.

As another example, the customer (and his consultant) had specified that the system
had to be available 99.8% of the time. It is easy to ask for this, but customers don't
realize the cost. In the Land Registry case, the cost of operating the system with
99.5% availability is around 5 M DKK per year. A 99.9% availability costs around 15
M DKK per year. Is it worth it? The basic issue is that the customer may unknowingly
ask for something that is much more costly than necessary.

This contributed with an added cost of 10 M DKK per year.

Effects on damages: Time, Cost.

Cause A5. Oversells technology
As explained under cause A4, SOA was costly and time consuming, thus contributing
to the observed damages.

Effects on damages: Time, Cost.

Cause A7. Wants everything at once

The Land Registry system was deployed as a big bang with the entire country
covered. The supplier had warned against it, but the customer insisted because
citizens had to be treated equally. Otherwise it would be against the law. As it
developed, the big bang caused a much larger inequality: 30% of the citizens got
financial problems because recording had to be manual, which took 50 days instead of
10. Part of the 30% were records picked at random for checking.

A pilot operation, for instance for one of the 24 Danish court districts, would have
allowed the parties to assess the load on hotline, the effect of usability issues, and the
need for authorization of lawyers to register on behalf of their clients.

We have seen systems that tried to cover all the complexities of the domain (for
instance EFI), but here the Land Registry was pragmatic. Complex registry cases were
to be handled manually.

Effects on damages: Business results, User satisfaction.

Acquisition
No damage observations.

Design

Cause C1. Doesn't ensure usability, even when they know how

Usability means that users are able to use the system efficiently without someone to
guide them. What did the requirements say about usability? The main requirement
was this:

Land Registry
10

Req. 153: The supplier must during development test the usability of the
external portal. The supplier must describe how.
This is actually a great usability requirement, compared to what most requirements
say about usability. The supplier's reply to this requirement is also great:
[We will test with] Rolf Molich's principles from his book . . .
Molich is a Danish usability specialist and - like other usability specialists - he
recommends thinking-aloud tests with early prototypes and only the guidance that
would be available in real life. However, the supplier's reply to appendix 21 about
quality assurance interprets Molich's approach in a different way:
Reply to app. 21, quality assurance: . . . this means that the test manager
guides the test participants through the tasks, asks explorative questions, and
helps as needed.
This is not a usability test but what developers often call a "user test". It doesn't
ensure usability because in real life nobody is available for guiding the user and
helping as needed.

Usability tests were not carried out in the project. Five months before the big bang,
we find this change note among several others:
Change 32, 30-03-2009: Usability tests are replaced by a very close dialog
between [a supplier expert and a land registry expert]
This means that a domain expert (the land registry judge) and the supplier's graphical
designer developed the user screens, but didn't do any usability testing. Usability
experts know that a user interface designed in this way is understandable to a domain
expert only. And this turned out to be the case in this project too. Even the lawyers
and real-estate agents didn't understand the user interface and had to call hotline -
which became overloaded.

In the National Auditor's interview with ten key participants on the supplier's team,
they admitted that they didn't know what usability testing was and hadn't done any.
They had made some user testing, however.

We have seen this confusion about user testing versus usability testing over and over.
Even the Danish government body in this area (Digitaliseringsstyrelsen), requires user
testing, probably in the belief that it means usability testing.

Effects on damages: Business results, User satisfaction.

Cause C2. Designs user screens too late

Usability specialists agree that it is important to make early prototypes (mockups) of
the user screens, make usability tests of them, improve them and test again until the
result is satisfactory. Usually two or three iterations suffice. Research shows that any
programming made at this stage, will make it hard to improve the user interface
because it seems too costly to throw away programs. Research also shows that if you
follow the specialist advice, total development will be faster and cheaper.

It should be obvious that the Land Registry designed user screens far too late. The
direct consequences were low usability and an overloaded hotline.

Effects on damages: Time, Cost, Business results, User satisfaction.

Land Registry
11

Cause C4. Cannot see how far the supplier is

The supplier had planned to build the system with a team led by two very experienced
developers in Aarhus (Denmark). However, Google set up a department there and
hired the two developers. This slowed down the project and the customer didn't
notice.

It is not easy for a customer to see how far the supplier is. What should he ask for?
Hours spent or technical descriptions? Don't say much. However, if the user screens
were developed early - as recommended in cause C2 - he could see them and verify
that they had passed the usability test. Later he could check progress by seeing how
many of the screens worked.

Effects on damages: Time.

Programming

Cause D2. Surprises with system integration
System integration caused many problems. See cause A4.

Effects on damages: Time, Cost.

Test
No damage observations.

Deployment

Cause F1. Deploys the system with insufficient support or training
This was obviously an important cause of damage in the Land Registry.

Effects on damages: Business results, User satisfaction.

Cause F3. Wrong estimate of human performance

It turned out that registry staff worked much slower than expected. It was also a
surprise that so many lawyers and real-estate agents asked for authorization to register
on behalf of their clients. This was partly due to few citizens having got an electronic
signature from the government, a process that was very hard for citizens with modest
IT experience.

Effects on damages: Business results.
Management

Cause G2. Doesn't reschedule, but assumes the rest can be compressed

Many events on the way indicated that the project would be delayed, e.g. that the key
supplier staff left early, the unexpected integration complexity, the delayed user
interfaces, and several items in the risk analysis. As a result, registry staff left before
the system was deployed, and temporary staff introduced registry errors. This could
have been remedied with early rescheduling.

Effects on damages: Business results.

Land Registry
12

Cause G4. Doesn't face the danger, risk assessment downplays the danger
During the project the parties made regular risk analyses, but they were used mainly
for arguing that the risk wasn't important. Most of the bad things that actually
happened had been identified as risks, but no action was taken. As an example, we
find these risks early 2007 (abbreviated):

ID | Risk Level: Con- Status/comment
5 highest | sequence
1 | SOA is immature 1 Tax dept. uses SOA
2 | Has the customer low 1 Has much experience
IT experience?
3 | Supplier staff leaves 3 Less time Tight project management
for test
4 | Interfaces to many sys- 3 The systems are stable
tems
Comments:

Risk 1: The Tax department actually used SOA, but the large projects were not suc-
cessful or not yet completed. The risk analysis suggests that there is no problem.

Risk 2: The customer (the Danish Courts) had experience with IT systems for internal
use, but had never made a system for public use. With internal systems, they could
easily support the users, but a system for large-scale public use was very different.
The risk analysis just downplays the danger.

Risk 3: As explained in cause C4, the supplier had planned to use a team led by two
very experienced developers. However, they were bought by Google. The risk
analysis suggests that it can be remedied by a "tight project management".

Risk 4: As explained above, the systems were not stable.

Five days before the big bang, this risk analysis was made:

ID | Risk Level: Con- Status/comment
5 highest | sequence
5 | Low usability shows [none Lack of The case is closed.
up at deployment stated] usability Probability reduced.
6 | Lack of staff at 4 Long delays | The customer assesses the
customer site situation.
Comments:

Risk 5: The status "the case is closed" refers to the agreement four months earlier about
usability being replaced with a close dialog between the domain expert and the
supplier's graphical designer. It is scaring that the consequence of low usability
wasn't understood: high load on hotline and low productivity in the Registry
office, causing further delay.

Risk 6: This is a clear statement that the risk is high, but the supplier will not take
responsibility for the consequences. Earlier the supplier had recommended a pilot
test and on-line help, but the customer claimed it was impossible or undesirable.

It should be obvious that the risk analysis was not made correctly. There were no safe-

guards and nobody took action for the high risks.

Effects on damages: Time, Cost, Business results, User satisfaction.

Land Registry
13

Cause G6. Cashes the benefit before it is harvested

The 220 registry staff knew they were going to be dismissed, but not quite when.
Many of them left early. Later, the rest were dismissed with the standard notice of
around 6 months, which was planned to be around three months after deployment of
the system. But the schedule slipped once more, and these employees had left before
the system was deployed. As a result, many registrations were made by temporary
staff, who made many mistakes. After the big bang, many of these mistakes were
revealed for the 30% of registrations that were handled manually. This caused further
delays.

Effects on damages: Business results.

Cause G8. Excessive management or expert involvement

Often development is driven by domain experts or enthusiastic managers, but they
cannot see the system from an ordinary user perspective. If they have a dominating
influence, the result can be a system with low usability.

The land registry judge was a domain expert and had a dominating influence. He
designed the user interface together with a graphical designer, and insisted on a law
language that even lawyers and real-estate agents didn't understand. As an example,
these users couldn't find out how to register a condominium deed. There were several
options in the menu: Single-family housing, cooperative apartment, farm — but no
condominiums. After weeks of waiting to get through to hotline, they learned that
they had to select "Single-family housing". Land Registry staff had often heard this
problem and suggested to add "condominium” to the menu, but the judge refused. The
law said "Single-family housing" and so it be.

Effects on damages: Business results, User satisfaction.

Cause G11. Believes law blocks sound approaches

As explained in cause A7, the customer used as an excuse against running a pilot
operation, that it was against the law. (Even if it had been against the law, the Land
Registry could have asked for an exemption.)

Effects on damages: Business results, User satisfaction.

Cause G12. Insufficient staffing

The supplier had planned to build the system with a team led by two very experienced
developers in Aarhus (Denmark). However, Google set up a department there and
hired the two developers. This slowed down the project. See C4.

Effects on damages: Time.

Method for data collection

Late 2009, the Danish State Auditors (Statsrevisorerne, members of the parliament)
asked the National Auditors (Rigsrevisionen) to audit the project. They contracted
with Lauesen to help them with the IT aspects. The team agreed that an important
aspect of the audit was to identify issues that other IT projects could learn from.
The team gathered information in several ways.

Land Registry
14

We read the existing documents about the system. From an IT perspective, the most
interesting ones were:

1.

2.
3.
4.

The requirements specification (406 pages with 413 requirements).

The supplier's proposal (600 pages).

The contract (32 pages plus requirements and proposal as attachments).
Design specification, change specifications, risk assessments, etc. (more than
2000 pages).

We conducted interviews, sent drafts for review, etc.:

5.

10.

11.

12.

13.

We interviewed real-estate staff and lawyer staff to learn about the system and the
problems it caused. They also showed us how the system worked and how they
used it.

We conducted a focus group with senior representatives for the stakeholders: the
financial sector, the land surveyors, the lawyers, the real-estate agents, the
customer (the Land Registry) and the customer's consultant. We asked about good
and bad points in the system, and the stakeholders' priorities for improvements.
We had expected that the ordinary staff member's opinion differed from the senior
representative's opinion, and that stakeholders disagreed with each other. This
turned out to be wrong. Everybody agreed on good and bad points, although they
gave them somewhat different priorities.

We met with experts from the financial institutions to hear about their experiences
with the system-to-system integration, and with senior representatives for the cus-
tomer and his consultant.

Later we met with the supplier's senior staff and developers to discuss our findings
and the relationship between supplier, customer, and the customer's consultant.
This brought a quite different perspective to what had happened and why.

We wrote our findings as a preliminary report and submitted it to the customer for
review, discussed disagreements, and published the final report [8].

Later, Lauesen interviewed and exchanged mails with the president of the Danish
Courts and the supplier in order to get further insight into the overload and related
issues. As a result Lauesen published the scientific paper Why the electronic land
registry failed [4].

As part of publishing this working paper (Damage and damage causes), Lauesen
sent the first draft to the (now former) president of the Danish Courts. At that time
Lauesen used the term "disaster", which is commonly used in this field. The
former president was concerned that this gave a wrong impression, since the
project actually became a success. Lauesen discussed several alternatives with
colleagues and ended up using the term Damage instead. The former president
was also concerned about the way costs were specified. Costs can be defined in
many ways and Lauesen reverted to using the figures from the National Auditor's
report.

In August 2011 a group of citizens and a group of companies charged the Danish
Courts for losses caused by long delays in the Land Registry. The courts had
given the parties a no-pay exemption, since it was a milestone case. The case was
handled by the High Court.

In May 2019 the court ruled that the Land Registry was not accountable for the
losses. The plaintiffs got permission to escalate the case to the Supreme Court,
still without pay. As part of this, the plaintiff’s lawyer consulted Lauesen about
the usability requirements, how usability was defined and how high-usability
systems could be implemented in practice. As part of our discussion, the lawyer

Land Registry
15

explained that the land registry judge had admitted that some of the delays in the
registration were caused by registration cases being picked at random for manual
checking, which due to the overloaded office caused several weeks of delay. The
land registry judge had denied this earlier.

14. The supreme court ruled that since usability testing was not common practice at
the start of the project, damages caused by low usability was not the responsibility
of the Land Registry.

Travel Card
16

2. Travel card, RK

In 2002 Denmark had around 20 public transport operators comprising bus, train and
ferries. Each company had their own ticket systems and fare calculations. It was
suggested to establish a shared electronic travel card system for the entire country.
The company RK (Rejsekortet - Travel Card) was established in 2003. It had many of
the transport operators as shareholders and DSB (Danish State Railroads) as the
largest. In 2003 RK sent out a request for proposal. The delivery comprised card
scanners in busses and on stations, driver screens in busses, cabling, servers, networks
and software, as well as operation and maintenance for 10+ years. Software
comprised software in the cards, scanners, driver screens, servers and back-office. In
2005 RK signed a contract with EW (East-West, owned by Thales) for pilot operation
in 2007 and full operation in 2009. But many delays occurred and real operation
started late 2011, full operation in 2013.

Below we will focus on the software part, including integration to other systems. In a
few places we may mention other issues.

Observed damages

a. Time: The development time was estimated to 3.5 years. It became 7.5 years.

b. Cost: Hardware and cabling was 500 M DKK. The estimated SW cost was 585 M
DKK. It became 600 M DKK. We do not consider this a damage. The internal
costs until deployment were around 100 M DKK. This was much higher than
planned, due to the long development time.

c. Business results: The system operates successfully and gives the planned modest
income. It was expected that the transport operators could save costs by phasing
out their old ticket systems and optimizing time tables. Little of this has taken
place at the time of writing (Feb. 2017).

d. User satisfaction: Initially users were dissatisfied with usability of the back office
systems (buying cards, changing the related bank account, etc.), strange fare
calculations (different for travelling one way or the other, rules differed from
paper tickets, etc.).

e. Supplier loss: The supplier probably lost 500+ M DKK, primarily because he
hadn't considered the cost of back office.

State today
The system is heavily used. Usability problems have gradually been removed and
people get used to the rest. Travelers say they travel more when they have the card.

References

1. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om
rejsekortprojektet (Report to the State Auditors on the Travel Card project), 47
pages (in Danish) (June 2011).

Analysis

Cause Al. Doesn't identify user needs and win-win

The customer (RK) didn't know how to operate such a system. Which back office and
web features had to be provided? How would travelers buy the card on the web and
later fill it, how would RK monitor the operation, how would accounting work, how

Travel Card
17

would fare rates be changed, etc. They assumed that the supplier delivered all of this
and didn't study how back office worked in cities where Thales operated, e.g.
Amsterdam.

It turned out that the supplier had never delivered back office systems. They provided
technical interfaces (API's) to their system that could return data on travels per card,
record paid amounts on the card, block stolen cards, etc. The back-office systems
were developed by local transport operators. These systems accessed card data by
means of the technical interfaces. The supplier expected RK to develop back office
systems in the same way.

Effects on damages: Time, Internal costs, Supplier loss.

Cause A2. Requirements don’t cover customer needs

The customer's requirements specification was written by many independent
engineers, each of whom covered a narrow technical area. The result was 60 files each
around 15 pages, all starting with requirement 1.

Here, we look at the SW issues only, particularly the back office. The requirements
used the style recommended by IEEE 830 (American engineering standard for
requirements, 1993): Specify the functions to be provided by the system. Here is an
example from the RK case:

K30 There shall be facilities for reporting fraud. The reports shall show the
number of times fraud was registered for each of the types of fraud known in
the System.

K 119 Being able to answer questions from customers. Supplying information about
products, prices, conditions, etc. (not timetables).

This kind of requirements fails to address the basic question: Who is going to use
these functions, when and for what? To answer this question, it is necessary to know
what back office is supposed to do and what travelers have to do through the web. As
explained for cause A1, neither supplier, nor customer had this knowledge.

The supplier tried to argue that the requirements didn't specify that he had to develop
back office support and web site, but he ended up accepting that it was his
responsibility and covered the costs himself. He contracted with the Danish company
Accenture to develop it.

The requirements were more successful about usability. They specified that early
mockups of the screens had to be made and usability tested. However, they didn't
specify that the supplier had to remedy the usability problems. This is taken for
granted in a Danish context, but not internationally. It was further complicated by
conflicts between supplier and the subcontractor.

Effects on damages: Time, Internal costs, User satisfaction, Supplier loss.

Cause A8. Doesn't plan the new work processes
As explained for cause Al and A2, the customer didn't know how to run a back
office, etc. He believed the supplier knew.

Travel Card
18

Effects on damages: Time, Internal costs, User satisfaction, Supplier loss.

Cause A10. Surprising rule complexity

The basic idea with the travel card was to pay for the end-to-end geographical
distance. However, this was not acceptable to the Danish transport operators. They
divided their districts into zones, and travelers paid for the number of zones they
visited. Fare rules also varied, for instance whether you could break the journey and
for how long. Further, trains and busses could serve the same district, but have
different zones.

With a different fare system, some operators would earn more than today, others
would go bankrupt. And it was impossible to tell in advance who would do what.

These issues ended up with a complex set of fare rules: 65 pages of rules and 100
pages with examples of how to compute the fare. Amazingly, the supplier handled all
of this without problems. This was his business - not the back office.

Effects on damages: None
Acquisition

Cause B1. Supplier too optimistic - you must lie to win

You must lie to win is a quotation from the supplier's CEO, but many suppliers
recognize it. They hope they can sort it out after the contract, for instance by claiming
that something is a change request rather than a defect.

The supplier probably saw the risk with the back office, but wanted to give a price
low enough to get the contract. How can the customer deal with this? He can ask for
an early proof of concept (POC), in this case a mockup of the back office screens. If
the POC fails, the customer can terminate the contract and select another supplier.
Honest suppliers favor such a rule in the contract, because it allows them to win when
a too optimistic supplier fails the POC.

Effects on damages: Time, Internal costs, Supplier loss.

Cause B2. Wrong selection criteria

The proposal was hard to assess. As an example, the reply to K30 above about
reporting fraud was this:

Reply: Operator through a dedicated user interface enters the criteria used for report
generation.

How would this work in practice?

In many cases the requirement was obscure. The supplier replied with a slight
reformulation of the requirement. Here is an example:

Req 276: Presentation of information on the screens must be clear and stable.

Reply: Screens will be designed in such a manner that information is clear and stable.

Although the supplier had delivered solutions to many cities, the customer didn’t
assess what the supplier had actually delivered. So selection was done on the price
only.

Travel Card
19

Cause B3. Wrong cost estimates
The supplier more or less consciously forgot the back office system. Even when he
accepted to deliver it, he much underestimated the effort needed.

Effects on damages: Time, Internal costs, Supplier loss.
Design

Cause C2. Designs user screens too late

The user screens should have been part of the solution description (System
Specification). They were not, and this was a strong indication that the supplier didn't
know what to do about the back office. See also C3.

Effects on damages: Time, Internal costs, Supplier loss.

Cause C3. Accepts the solution description without understanding it

In 2006 the supplier submitted a solution description (System Specification). It
comprised 248 files, but was mainly a description of cables, servers and other
hardware. There was very little on software, and what was written was hard to
understand. As an example, there was a 500 page data model with names of all fields
in the database, but nothing about what the fields were used for. There were a few
user screens. They showed the list of hardware components and their state as it
appeared to the technical maintenance staff.

The customer didn't understand all of this, and didn't know what to expect. His
reaction was: EW has promised to deliver, so we wait and see. As a result, the
customer accepted the description with a few comments on some detail.

There were several early warnings that something was all wrong, but management
ignored them (see G4).

In 2007 the supplier (and Accenture) developed the back office system. According to
the contract, they ran usability tests. The tests showed lots of usability problems, but
the supplier refused to do anything about them. The contract didn't explicitly require
him to do it. It was further complicated by conflicts between supplier and the
subcontractor.

In 2008 a pilot test was made in West Zealand with 50 travelers who used the system
for free. The back office system turned out to be of little use. In 2009 accountants
refused to accept the system. There was no audit trail, so they couldn't relate the
payments to the travel transactions. The supplier pointed out that nothing was stated
about this in the requirements. The customer referred to a requirement that said that
the system shall comply with all Danish laws and regulations, and this included the
law on accounting, which required audit trails.

In 2010 the parties wildly disagreed on what to do. They tried use cases, but soon
agreed that they didn't work. (It was the kind of use cases that describe what the
system does, technically speaking.)

Travel Card
20

They ended up agreeing to make a task force consisting of two experts from the
supplier, one from DSB (the main stakeholder in RK), one from Movia (a bus
operator) and one from RK. They got full authority to do what they found necessary.

In 2011 the back office and web were ready and had been usability tested. True
operation of the system started end of 2011.

Effects on damages: Time, Internal costs, Supplier loss.

Cause C4. Cannot see how far the supplier is
See cause C3.

Effects on damages: Time, Internal costs, Supplier loss.

Programming

Cause D1. Supplier accepts the expensive requirements interpretation

Considering the very obscure customer requirements, it is remarkable that the supplier
accepted to cover the full costs of the back office system himself. One reason he
accepted, is probably that he wanted to prove that Thales could serve a whole country
with many transport operators. Denmark would be a showpiece in that direction.

Effects on damages: Supplier loss.

Test
No causes.

Deployment
No causes.

Management

Cause G1. No business goals - or forgets them on the way

The business goals were quite weak:

a. The travel card would give 2% more travels. If the card got only one percent more
travels, the business case would be negative. 2% is not measurable in light of all
the other changes that take place in society. However, in questionnaires travelers
say that they travel more when they have the card. Earlier some transport
operators had observed a similar behavior with other ticket media. So we trust that
this goal is met.

b. Transport operators could save costs by phasing out other ticket systems. At the
time of writing (March 2017), very little has been done in this area.

c. Time tables could be optimized based on data from the travel cards. The author
doesn't know how much has happened in this direction.

Points b and c are not the responsibility of RK but of their stakeholders. However, in

the view of society, it is questionable to spend so much money without a measurable

benefit.

Effects on damages: Business results.

Travel Card
21

Cause G4. Doesn't face the danger, risk assessment downplays the danger

Most of the risks the author has seen where about internal details or reports being late.
However an early risk assessment said that the experience from Holland was that
Thales couldn't document systems and gave unrealistic promises. This turned out to
be true in Denmark too. The customer didn't face the danger. He should have used the
risk assessment to check the customer’s proposal better and make an early proof of
concept, including documentation.

At the time of accepting the solution description (C3), the customer's IT specialists
warned management that something was all wrong. This too was ignored.

Effects on damages: Time, Internal costs, Supplier loss.

Cause G5. The financial incentive disappears and the parties fight instead of
cooperate

This is what happened in the long period where the parties didn't agree (2007 to
2010). There were many contract additions in this period, but they were about new
deadlines and payments. Nobody asked what the basic problem was.

Fighting ended when a small task force was given authority to do whatever they found
necessary (see cause C3). Later a Dispute Resolution Board with three external
persons was established to mediate in conflicts.

Effects on damages: Time, Internal costs, Supplier loss.

Cause G9. Too large steering committees/working groups without competencies
RK was based on the idea that the supplier shouldn't discuss with all the transport
operators, but with RK only. However, in practice all operators participated in
meetings and it was very hard to agree on anything. As the supplier's CEO said:

In Denmark everybody can say no, but nobody can say yes.
Real progress started when a small task force was given authority to do whatever they
found necessary (see cause C3).

Effects on damages: Time, Internal costs, Supplier loss.

Cause G13. Doesn’t find the root cause
As explained under G5, there was a long period with fights about new deadlines and
payments (2007 to 2010). Nobody asked what the basic problem was.

Method for data collection
(Not available)

Police case management, PolSag
22

3. Police case management, PolSag

The Danish police had an old, partly paper-based system to keep track of offences and
related documents. Each police district had their own archives. They decided to
acquire a more modern system to be shared between all 12 districts. After 6 years, the
new system was deployed in a pilot test. It was not successful and soon after the
project was closed.

Observed damages

a. Time: The development time was estimated to 3.7 years from project funding
(Jan. 2005). The project was closed in 2012 after 7 years.

b. Cost: The estimated software cost in 2005 was 173 M DKK. When the project
was closed, 354 M DKK had been spent on software, 68 on operation and 145 on
internal costs (salaries). Much more investment would be needed to complete the
system.

c. Business results: Negative. Nobody could explain what the benefits would be, but
the yearly operating costs would be 5 times the present ones.

d. Supplier loss: The subcontractor lost 50+ M DKK.

e. Feasibility doubts: Performance was never proved, the system seemed faulty and
with bad code quality.

State today
Project closed. The supplier paid 160 M DKK in compensation. The police (RP) still
don't know what to do about case management.

References

1. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om politiets it-
system POLSAG (Report to the State Auditors on the police IT system POLSAG),
56 pages (in Danish) (March 2013).

Analysis

Cause Al. Doesn't identify user needs and win-win

The plan was to use a commercial case management and document handling system
(ESDH) and extend it a bit to deal with special police issues. Captia from Scanjour
was selected. The present supplier (CSC) became the main contractor with Scanjour
as a subcontractor. In order to support the police, Scanjour would look at the present
work processes of the police to see how they could be supported with Captia. This
was the way Scanjour normally worked.

At the first workshop with the Police, 40 policemen turned up. They couldn't tell what
their work processes were. They were confidential, they said. As the Police admits
today, they didn't know their work processes and had never tried to describe them.
The confidentiality was just an excuse. The supplier's developers had been security
cleared, so confidentiality wasn't an issue anyway.

In this situation, the parties tried to figure out how the existing user screens worked
and then make similar ones in Captia. There were 100 screens in the present system,
but nobody quite knew what they did. They had developed over time and much of the
old supplier's staff had retired. Much of the functionality was quite complex, e.g.

Police case management, PolSag
23

automatically dealing with changes when a suspect was believed to be above 18, but
turned out to be 17 at the time of the crime, and as a result had to be handled
according to different rules.

So the screens were to a large extent reinvented. During this, the police came up with
many things that also would be nice to have. It ended up with around 210 screens plus
500 database tables to be added to Captia's 300 tables, e.g. dealing with automatic
speed trap data (ATKS), the list of football banned citizens, the list of animal
transports to be checked, etc.

Effects on damages: Time, Cost, Business results, Supplier loss, Feasibility doubts.

Cause A2. Requirements don’t cover customer needs

Initially there were no real requirements. The early decision was to buy a commercial
case management system that the government already had contracted on, and then
work out the requirements in cooperation with the supplier.

The requirements didn't specify who would use the system, when and for what.
Instead there were long lists of functionality, e.g. search criteria to be supported.
Further, this requirement tried to cover the rest (called the 1:1 requirement):

All existing functionality [in the old system] must be provided in a user-friendly
way in the new system. Providing similar functionality means establishing
functionality - based on the Captia-solution [the supplier's proposal] - that
supports the same business processes and solves the same problems as the
existing system does today.

This would be a useful requirement if the existing work processes and problems had
been specified, but as explained for A1, this was not possible.

As a result, the requirements later became "design-level requirements” that specified
the technical solution in detail, e.g. what each button on the screens would do. This
was done as "use cases" that described details of the screens and how they interacted
with other parts of the system. This means that the real user needs were not visible, so
it was impossible to see what could have been done with the built-in screens.

In this world of technical specification, usability is not an issue and no usability
requirements where specified.

Effects on damages: Time, Cost, Business results.

Cause A3. Describes the solution in detail. No freedom to the supplier

As explained in cause A2, the requirements became very detailed (technical level). So
the supplier had little freedom. It helped that the supplier was part of the design team,
but he had no way to twist the work processes so that built-in screens would suffice.

Effects on damages: Time, Cost, Supplier loss.

Police case management, PolSag
24

Cause A5. Oversells technology

The main technology in this project was case and document handling systems
(ESDH). The government applied such systems in many departments, and they
considered police cases just more of the same. However, the police had so many
special tables (500, see cause Al), that it was more of an ERP system than a case
handling system.

SOA was promoted in this project too. The Police had several feeding systems
(Randsystemer) that provided structured data, e.g. speed trap data (ATKS). The idea
was to add SOA services to them, but it ended up as costly additions to all of them.
ATKS was changed to run in two versions, one with and one without SOA.

Total cost of changing the feeding systems was 55 M DKK.

Effects on damages: Time, Cost, Supplier loss, Feasibility doubts.

Cause A7. Wants everything at once

The Police wanted to include all feeding systems, instead of starting with plain case
and document handling (ESDH) and then adding feeding systems when there was a
positive business case. They had planned to deploy the system district by district,
which was fine.

Effects on damages: Time, Cost, Business results.

Cause A8. Doesn't plan the new work processes
The Police didn't know their present work processes, and planning new ones were
beyond the horizon. This also meant that nobody cared about the expected benefits.

Effects on damages: Time, Cost, Business results.

Cause A9. No feasible solution

Consultants involved in the first stages of the project, had warned that Captia had
never handled that many users at the same time, and that the very architecture of
Capture might be a bottleneck causing long response times. They strongly suggested
to make a feasibility test before starting the project. This feasibility test was never
made.

In the last months before the project was closed, performance testing was attempted.
At this point in time, money ran out and the parties fought instead of cooperate. CSC
made their test, Scanjour their, and they didn't agree on the results. Globeteam was
called in as an external consultant and made one measurement. It showed an
incredible number of database calls. Everybody could see that this was all wrong, but
nobody had the time to look at it. Scanjour suggested that Globeteam might have used
a test version that logged every little system action in the database. This would
explain the huge figures. A whistleblower told us that the Police had forbidden
Globeteam to clarify the issue, because the lawyers wanted to prove a breach-of-
contract.

Effects on damages: Feasibility doubts.

Police case management, PolSag
25

Acquisition

Cause B3. Wrong cost estimates

Scanjour had estimated their price based on the 100 existing screens that had to be
redesigned in the Scanjour way. They ended up with 210 screens. They couldn't see
how much special functionality was behind each screen. Also the high costs of SOA
were a surprise.

The customer forgot to include the cost of operating the new system during
development (68 M DKK), the cost of training the users, and the cost of operation and
maintenance after deployment. The contract stated that the yearly fee for maintaining
the system was 25% of the entire development cost. So lifetime costs grew wildly as
development costs grew.

Effects on damages: Time, Cost, Business results, Supplier loss.
Design

Cause C5. My way without considering the supplier's way
As explained under cause Al, it was impossible to see whether the supplier's user
screens were sufficient, maybe with small changes.

Effects on damages: Time, Cost.

Programming

Cause D1. Supplier accepts the expensive requirements interpretation

Scanjour management didn't notice the growing costs during development. When
80% of the funds were used, they realized that only 40% of the work had been done.
They told us that they didn't understand how this could happen. They accepted to
cover the additional costs themselves.

A better understanding of how the project had changed, might have given them
arguments for renegotiating the contract. And they should of course have done so
early in the project.

Effects on damages: Supplier loss.

Cause D2. Surprises with system integration
System integration caused many problems. See cause A5.

Effects on damages: Time, Cost, Feasibility doubts.

Test

No damage observations. During testing, a lot of problems were detected, but most of
them were easy to fix, e.g. many misprints in the forms that the police used for
sending documents to the courts. The root problem was not difficulty of testing, but
the parties not agreeing on who should detect and repair the defects. This is covered
by cause G5, the financial incentive disappearing.

Police case management, PolSag
26

Deployment

Cause F1. Deploys the system with insufficient support or training

There was a pilot test in a small, remote police district in Denmark, Bornholm. CSC
was in charge of the deployment, and the subcontractor (Scanjour) wasn't directly
involved. A lot of problems came up and rumors were that the system was slow,
faulty, stopped working, etc. Apparently bad code quality.

However, many problems were not bad code, but wrong configuration, the customer's
insistence on harmful requirements, etc. As an example, the system took two minutes
to log on. The reason was that the Police had provided a list of five URL-addresses
for user directories (AD's). The system had to try them one by one until it found the
user. But the first AD didn't exist. The system waited 30 seconds, then tried the next -
which also didn't exist. Only the last one existed.

CSC thought Scanjour's system was slow, but didn't inform Scanjour. When Scanjour
heard about the problems weeks later, they located the problem immediately, but were
not allowed to change anything.

Effects on damages: Feasibility doubts.

Cause F2. Doesn't check whether the system is used as intended

At the pilot test nobody checked that the system was used as intended. As a result,
rumors spread about low technical quality, when it actually was user misunder-
standings.

Effects on damages: Feasibility doubts.

Management

Cause G1. No business goals - or forgets them on the way

The Police had some old goals about benefits and cost saving, but when the National
Auditors investigated the project, nobody knew the goals. Nobody had paid attention
to them during the project. Supplier as well as subcontractor had asked the customer
what the purpose of the system was, but never got an answer.

Further, nobody had paid attention to the growing cost of maintenance (see cause B3).
As a result, nobody could come up with a reason to continue the project.

Effects on damages: Business results.

Cause G3. The project grows without anybody noticing
As explained under cause D1, Scanjour management didn't notice the growing costs.

Effects on damages: Time, Cost, Supplier loss, Feasibility doubts.

Cause G5. The financial incentive disappears and parties fight instead of cooperate
The reason Scanjour didn't support the Bornholm pilot test was that money had run
out. It was also the reason the performance issue and other issues weren't settled.

Police case management, PolSag
27

Effects on damages: Time, Feasibility doubts.

Cause G7. Lack of management involvement

The Police changed project management several times, and for a long period had
external consultants as managers. Apparently the managers didn't understand the real
problems and didn't know what to do.

Effects on damages: Business results, Feasibility doubts.

Cause G10. Excessive user involvement
Having 40 policemen participate in the initial analysis, didn't work out. However, this
soon stopped.

Effects on damages: None.

Cause G13. Doesn’t find the root cause
As explained under A9 and F1, there were many rumors about errors and low
performance, but the parties didn’t look for the causes.

Method for data collection
(Not available)

Debt collection, EFI
28

4., Debt collection, EFI

When citizens don't pay their tax or other debts to authorities, the bailiff (Danish:
pantefoged) will take action. He can hold back part of the debtor's salary, sell his
property, arrange a payment scheme, etc.

In Denmark each authority had their own bailiffs and ways of collecting the debt.
Authorities included the tax department, the state railroads (travelling without a valid
ticket), electricity suppliers (not paying the electricity bill), municipalities (not paying
child allowance), public schools (not paying the fine for hitting a window with the
football), etc. In total around 12 million debts are recorded every year, a surprising
number considering that Denmark has barely 6 million citizens.

The government decided that all debt collection for municipalities and the
government had to be centralized and handled by the tax authorities, who handled the
largest amount of debts anyway. Initially (2005) all bailiffs and other specialists were
organizationally moved to the tax department.

The idea was that a new IT system (EFI) would automate debt collection and spare
around 300 jobs. EFI could through a datawarehouse get data from many other
systems to find out whether to hold back salary, sell property, etc. Actually, it was a
great idea. However, EFI was delayed. The result was that debt collection decreased
and the total amount of debt increased.

EFI had to be part of the SOA architecture that the tax IT department (Tax) had
created over several years. Only five of the hundreds of tax systems had been
integrated by SOA and it had been very costly (see A5 below). The plan was that the
benefit would be harvested with EFI. However, it turned out that debt collection was
much more complex than anticipated and the rules built into EFI sometimes violated
the law. Further, authorities didn’t report debts correctly to EFI, and EFI didn't check
the data it got.

Observed damages

a. Time: The development time was estimated to 2.5 years. Actually, the first part of
the system was deployed after 8.5 years (2013).

b. Cost: The estimated project cost was 144 M DKK. The actual cost was around
600 M DKK when the first part of the system was deployed.

c. Business results: The plan was that the system should save salaries of 300 bailiffs
and speed up debt collection. The bailiffs were actually dismissed, saving around
150 M DKK per year. However, it turned out that most debts could not be
collected automatically, either because data were wrong or missing, or because
human judgment was needed (ref. 1, page 48). Automatic debt collection was
soon stopped, becoming partly manual. Around 300 case managers were
employed to do this, eliminating the gain of saving the 300 bailiffs. Collection of
70,000 M DKK debt was delayed for years.

d. Feasibility doubts: In September 2015 the feasibility of the IT architecture was
questioned. Accenture wrote a report that clearly said that the programs involved
couldn't be rescued (see A6, multi-vendor strategy). Further the State Lawyer
(Kammeradvokaten) declared that the system in many ways violated the law.

Debt collection, EFI
29

Actually the system did only what human debt collectors had done before (see
G11, believes law blocks sound approaches).

State today

The system was deployed September 2013. There were many errors in EFI and related
systems, but they were gradually removed. The system automatically collected debts,
e.g. by holding back part of the debtor's salary. However, when the architecture and
legality were questioned in September 2015, Tax stopped the automatic debt
collection.

At this point in time, there were 20 M debts, totaling 74,000 M DKK. According to
ref. 1, page 48, it would require 12-25,000 person years to sort out what to do with the
dubious debts. This was clearly unacceptable. Tax took several measures to deal with
the situation: The automatic expiration of debts was put on halt by law. Around 80%
of debts couldn't be collected because the debtor was too poor. Tax/Parliament
cancelled much of it or let it expire.

Case managers were to continue manual debt collection, supported by EFI. At the
time of writing (June 2017) the logs show that 1600 EFI users do this. However, due
to the detected legality issues, the most efficient collection method - holding back
salary - is not even used manually. The system still supports the process, e.g.
recording 12 M new debts and generating around 30 M notes and letters per year. The
press and general public believed that the system had been closed down completely.

Tax has contracted with another supplier to develop a new system based on an ERP
system that supports collection of public debts. It will gradually take over the work of
EFI. The legality issues have been settled and complexity reduced (e.g. 5 types of
debt rather than 400+ types). The system checks debt reports for correctness and
completeness, and expert users are involved a lot in the design process. All of this is
great. It is a pity that it wasn't done a decade ago in EFI.

References

1. Skatteministeriet (Ministry of Tax), September 2015: Redeggrelse om ét feelles
inddrivelsessystem, 58 pages (in Danish).

2. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om SKATSs
systemmodernisering (Report to the State Auditors on Tax’s system renovation),
34 pages (in Danish) (January 2015).

3. Accenture Consulting, September 2015: Overlay Report, Assistance for analysis
of "Et feelles inddrivelsessystem”, 24 pages (in English).

Analysis

Cause Al. Doesn't identify user needs and win-win

Management had a very simplified picture of how debt collection worked. It was all

much of the same, maybe with a few variations. However, bailiffs had many tricks and

concerns in their duty, unknown to management. Examples:

1. A good approach with an arrogant debtor is to locate him at his favorite bar where
he has drinks with his fellows. While they all listen, announce his debt and ask
whether he cannot pay or whether they should set up a payment scheme.
Suddenly, he is willing to pay.

Debt collection, EFI
30

2. A social client and alcoholic is back at normal and has got a job. This is not the
time to collect missing child allowances. Give him a year. The authorities often
did such things.

3. A family has suddenly got an electricity bill that is twice as large as usual. They
cannot pay. The bailiff visits them and finds out that they have installed infrared
heating on the balcony. To their surprise, it consumes as much power as the rest of
the household. They agree on a payment scheme.

Computerized debt collection cannot do things like these. Tax explains that this can

still be done by authorities before reporting the debt to EFI. However, in practice they

don’t because they don’t have the expertise anymore.

Another issue was that existing data on debts had poor quality, as explained above. As
long as debt collection was manual, this wasn't a problem. But when it was
automated, it became a big problem.

Effects on damages: Time, Cost, Business results.

Cause A2. Requirements don’t cover customer needs

Requirements were written as use cases and service definitions. There was nothing
about how to deal with the many business rules and laws. Further, the requirements
failed to address the basic questions: who is going to use this system? when? and for
what?

Effects on damages: Time, Cost, Business results.

Cause A5. Oversells technology

In 2004 Tax decided to base 6 new systems on a service-oriented architecture (SOA).
The first system was the integration platform itself. The last system was EFI, and the
main benefit of SOA was to be harvested here. At that time SOA was praised by
many consultants and recommended by the government. It sounded easy: We can just
develop the systems we want and then connect them by means of services.

It worked, but was very cumbersome and expensive. Development took 6 years longer
than planned. The estimated cost for all six projects were 500 M DKK. The actual
cost became 1,500 M DKK. The integration platform itself cost 120 M DKK.

Developing a new system required that you figured out which systems contained the
data you needed. Next, you had to negotiate services for exchanging data, and when
you had made a mistake renegotiate the service. Typically the cost for a service was
100-200,000 DKK.

The promises were that you could define the services up front in a logical and
business-oriented fashion and reuse them in many projects. This wasn't the case in
practice. The integration platform got 1,600 services. Around 100 of them were
reused once and 20 of them several times. The rest were essentially point-to-point
connections. Further, performance was low and availability vulnerable as a system
would seem down when one of the systems it depended on was down. To provide
sufficient availability, systems replicated data that belonged to other systems.

Debt collection, EFI
31

EFI should use data from other systems than the 5 new ones to find ways to collect
debts, e.g. land registry, car registry, banks and salary systems. It was done through a
data warehouse that all the systems reported to. This was relatively painless.
However, EFI had to integrate with around 20 other systems and this caused the usual
SOA problems.

Effects on damages: Time, Cost, Feasibility doubts.

Cause A6. Multi-vendor strategy - makes us supplier independent

With old IT systems, the government and the municipalities had experienced that the
supplier essentially had a monopoly. The customer's new systems couldn't access
existing data and only the original supplier could modify or extend the system.

SOA was one of the answers. Another was to use several suppliers. The customer
imagined that if he wasn't satisfied with one of the suppliers, he could buy the system
somewhere else and "plug it in". This was never done in practice. Instead the
customer experienced that now he was fighting several monopolies instead of one.

In the case of EFI, Tax had divided claims management between two systems, one
that recorded the tax payer's financial transactions with Skat (DMI), and one that
supported the collection process (EFI). Each of them kept track of data in its own
way, but had to integrate with the other. DMI was developed by CSC and EFI by
KMD, two companies in fierce competition and with different development methods.
This was not a good base for agreeing on services - nor on testing.

Furthermore, the logic behind debt collection was extremely complex and had to be
split between the two suppliers. At the time of deployment, this had been tested in a
few simple cases only. Many errors were detected and repaired later.

Tax had defined the services and components involved. The result was shown in an
overview diagram with around 100 boxes and connection lines all over in "spaghetti"
style.

In 2015 Accenture wrote a report that clearly stated that the programs involved
couldn't be rescued. KMD has later explained that there were many problems right
after deployment, but nearly all of them had been repaired when Accenture wrote the
report. This is supported by the fact that the system worked adequately in 2015, apart
from some legality issues.

Effects on damages: Time, Cost, Feasibility doubts.

Cause A7. Wants everything at once

Analysts knew that there were several types of debt. As an example, the rules and
collection methods for tax debts were different from collecting traffic fines. Probably
there were 10-20 different types of debt? However, closer analysis revealed around
500 types. Bending rules and practice a bit, brought the number down to 400 types,
each with their own rules (see more in A10). The number later grew to 490.

Instead of starting with a few debt types that could collect a large amount, Tax wanted
to cover all types. It would look unfair if some types of debt were not collected, and

Debt collection, EFI
32

manual collection wasn't possible since bailiffs had been dismissed. The result was a
system that was extremely hard to test, amplified by the multi-vendor strategy (A6).

Effects on damages: Time, Cost, Business results.

Cause A9. No feasible solution

During analysis, developers had looked only at simple flows for debt collection. Was
it possible at all to specify the entire logic, e.g. when a debt had several debtors, or
was outdated and the debtor paid it anyway, or claims changed as a result of court
cases?

Tax had experts in these areas, but they wouldn't cooperate and management didn't
interfere. The result was that when the system was deployed, the entire logic turned
out to be incomplete. Testing was incomplete, but couldn't have helped anyway
because developers didn't know what to test against. Requirements were missing.

Another issue was whether it was possible and realistic to transfer debts from old
manual debt files to EFI. This was not carefully investigated and the result was that
most debts needed some manual check or repair before being handled automatically
(see F2).

Effects on damages: Time, Cost, Business results.

Cause A10. Surprising rule complexity

To map some of the complexity, Tax analysts identified 700 rules that could apply for
a specific type of debt. For instance: could the debt be collected from the spouse
instead of the debtor? Would the collected amount go to the state or to a specific
authority, e.g. a school or a transport provider? When would the debt be outdated?

Analysts set up a spreadsheet with 490 rows, one for each type of debt, and 700
columns, one for each rule. In each cell, they tagged whether this rule applied for this
type of debt. This spreadsheet was later split into several spreadsheets and interpreted
by programs that carried out the rules as specified. This was a clever approach and it
put much of the burden of testing on the tax and debt experts.

However, there were many other rules that the spreadsheet didn't cover. One example
was the rule about salary withdrawal that made Tax close down automatic debt
collection in 2015 and announce the whole system dead (see G11).

Effects on damages: Time, Cost, Business results, Feasibility doubts.

Acquisition

Cause B3. Wrong cost estimates

The cost estimates were a factor 4 too optimistic. This is related to lack of true
requirements (A2), optimistic expectations about SOA (A5), multi-vendor strategy
(A6) and surprising rule complexity (A10).

Effects on damages: Time, Cost.

Debt collection, EFI
33

Design
No damage observations.

Programming

Cause D2. Surprises with system integration
As explained in A5 and A6, there were many problems with system integration.

Effects on damages: Time, Cost, Business results.
Test

Cause E1. Deploys the system with insufficient testing

The first part of the system was deployed September 2013 under heavy pressure from
management. It had cost so much already and more was necessary to complete it. The
suppliers had tested EFI and DMI in isolation, but cooperation of the two systems had
been tested in only a few simple cases.

The checkmarks in the huge spreadsheets had not been tested, and this was Tax's
duty. They planned 9,700 test cases. 5,700 of them passed, 3,400 failed and 600
hadn't been tried. Management erroneously concluded that half of the system was
correct and could be deployed. Nobody investigated the test coverage, i.e. whether the
9,700 test cases covered all parts of the code and the 343,000 cells in the spreadsheet.
Developers tried to explain, but management wouldn't listen and later claimed that
they hadn't been informed.

There was a pilot test to check whether deployment would be acceptable, but it didn't
succeed. Nevertheless, Tax decided to deploy the system. There were many errors at

deployment, but they were detected and removed over the next years. Rumors about

them persisted, however.

Effects on damages: Business results.
Deployment

Cause F2. The system is not used as intended

EFI received debts to collect from external claimants, such as municipalities and
transport operators. Tax insisted that it was the claimant's own responsibility to select
the proper debt type (out of the 490 possible) and supply the necessary dates and
documentation.

The result was that many debt records couldn't be used for automatic debt collection.
It also happened that bailiffs met with debtors, but were unable to document the debts.

When the system was deployed in 2013, all debts from existing systems were
converted to EFI/DMI format. The system checked only one thing: That there was a
limitation date (Danish: Forzldelsesfrist). When it was blank, the system had to set it
to April 1st, 2014. Tax imagined that this gave them time to find the correct limitation
date, but later forgot about it. The result was that when April 1st, 2014, arrived, the
system cancelled all these debts.

Debt collection, EFI
34

Effects on damages: Business results.

Management

Cause G1. No business goals - or forgets them on the way

e The business goal for EFI was weak: Efficient debt collection. There was nothing
about how this would be measured.

e The goal for the SOA platform was this: Purchase and deploy a new integration
platform that for instance will improve communication between Tax's IT systems.

There was no indication of how to measure and reach these goals, apart from
dismissing bailiffs. During the project, Tax didn't monitor the goals or change
estimates, except cost estimates.

Effects on damages: Time, Cost, Business results.

Cause G4. Doesn't face the danger. The risk assessment downplays the danger
Developers report that there was little communication between IT staff and
management. The only point of contact was the project manager, who soon became
absorbed by the political game in upper management.

Apparently management didn't understand the real problems behind the continuous
requests for additional funding. Much was blamed on the suppliers, but their job was
hard with the missing requirements and the IT architecture that Tax dictated.

Management didn't interfere when needed, for instance when expert help from
lawyers and debt collection specialists was needed. When deployment was decided,
management ignored the warnings about missing tests and high risks.

Effects on damages: Time, Cost, Business results, Feasibility doubts.

Cause G6. Cashes the benefit before it is harvested
Bailiffs were dismissed before it was sure that the project was feasible.

Effects on damages: Business results.

Cause G7. Lack of management involvement
There was little communication between IT staff and management. See G4 (doesn't
face the danger).

Effects on damages: Time, Cost, Business results.

Cause G11. Believes law blocks sound approaches

The customer closed down the automatic debt collection in 2015 and announced the
whole system dead. The primary cause was that the State Lawyer found some of the
collection procedures dubious or against the law. One example is that in order to
calculate the amount that can be withdrawn in salary without ruining the family, the
authority must use the most recent salary data. The customer (Tax) had manually used
the smallest of the previous two month's salary, and the EFI system did the same.

Debt collection, EFI
35

However, the State lawyer hinted that this was dubious and more recent salary data
might hide in the systems. He mentioned other cases that were dubious too. Nobody
tried to find other solutions, e.g. asking for clarification or law changes.

In the new system (see State today above), legislation has been settled and rules
simplified.

Effects on damages: Business results, Feasibility doubts.

Method for data collection
(Not available)

Health record system, EPIC
36

5. Health record system, EPIC

The hospitals in the Copenhagen and Zealand regions comprise 17 hospitals and
40,000 healthcare workers. (Some of the hospitals are geographically separate, but
organizationally united.) They handle around 4 million out-patient visits per year and
0.6 million in-patients. They used around 30 different systems for health recording
and treatment. Patient visits were cumbersome because the clinicians had to find
paper folders and log in and out of several systems. Usually the doctor dictated text
for the patient record and a secretary later typed it into the electronic patient record
and updated compulsory government systems, e.g. for settling of accounts. This was
convenient for the doctor, but the patient record and government system were often 2-
3 weeks out of date.

The regions decided to replace most of the old systems with one new. Five suppliers
were pre-qualified and three sent a proposal. Each system was tested in a trial hospital
department by three teams of doctors, nurses and secretaries. Each team got one day
of training in the new system, followed by two days of practice. EPIC was clearly
better than the competitors (score 7.9 vs. 5.9 and 4.8). The systems were also
evaluated by 450 clinicians who saw the suppliers' sales demonstrations. EPIC was
number two here, but the differences were small (the best got 7.83, EPIC 7.15). Based
on this, many other factors and to some extent also the cost of the system (see B2
below), the regions chose EPIC and signed the contract in 2013. They decided to
move part of the secretaries' work to the doctors, which would ensure that the patient
record was always up to date and that there were no misunderstandings between
clinicians and secretaries. It would also eliminate around 1/5 of the secretaries. Work
with the new system should be much faster for the clinicians, since it wasn't necessary
to look at papers and log in and out of many systems. It was also expected that doctors
could record notes with a few clicks on predefined phrases.

EPIC comes with support for many medical specialties, but usually customization is
needed. Integration with other systems is also special for each customer. Most of the
around 20 medical specialties needed customized user screens, for instance with
standard treatments. It was planned to let clinicians develop them after some training
and with inspiration from the hundreds of special screens developed by other EPIC
customers.

The system was deployed in the first two hospitals mid 2016, the next 6 in March
2017. The system was in operation in all 17 hospitals at the end of 2017.

Observed damages

a. Time: No damage. The system was deployed 3 years after contract, much on
schedule.

b. Investment cost: No damage. The estimated cost was 2,800 M DKK including
internal costs for education of end users and customization. The SW cost was
around 1,100 M DKK. This was much as estimated.

Operating costs: Operating EPIC for the 17 hospitals costs around 200 M DKK
annually. It was expected that costs would be lower than operating the 30 existing
systems, but it turned out to be almost the same. When choosing EPIC, the high
operating cost was considered balanced with the better user interface. As
explained in B2 below, this is dubious.

Health record system, EPIC
37

c. Business results: The plan was that the system should give a net benefit per year
of around 600 M DKK two years after deployment, but it wasn’t specified how.
At the time of writing (April 2018) it was too early to see any effect. Even
November 2019, no benefit had been reported (see below). One goal was that
clinicians could save 1-2 hours per day by not having to log in and out of many
systems. This goal is met, although management haven't noticed. However,
learning the new system and making custom extensions for all the specialties were
much harder than anticipated. Doctors couldn't serve as many patients as earlier.
Reporting to the government systems was faulty because doctors now had to do it,
and they didn't know how to. Results from lab systems were often lost because
doctors didn't know how to order them. This required much more time than the 1-
2 hours saved by logging in on many systems. The consequence was additional
costs for the hospitals because some departments had to employ more doctors.
Waiting lists grew. Young doctors worked overtime, but didn’t record it, fearing it
would harm their career.

Quality improvements: Fourteen quality factors were expected to improve, for
instance: Better care flow for patients, more successful treatments, and better
patient safety. This has not been proved yet. Initially there were rumors that
patient safety had decreased, but this was not the case.

d. User satisfaction: Job satisfaction was expected to increase, but this has not
materialized at present. Initially, job satisfaction became low. The situation is
slowly improving.

e. Feasibility doubts: No damage.

State at the time of writing (April 2018)

The system is in operation in the 17 hospitals, but doctor's productivity is still not as
high as earlier. The benefits were expected to start two years after deployment, which
would be mid 2018 in this case. This corresponds to experience with EPIC in other
countries. However, today (November 2019) no benefit has been reported.

State November 2019

No benefit has been reported. There is still much dissatisfaction with the system. The
planned customization for each specialty has not been made, except for one doctor in
one hospital. He customized the system for his own use. His result is very convenient
and efficient (see reference 3 below). However, his version hasn’t spread to the rest of
the department.

References

1. Metcalf-Rinaldo, O. and Mosko Jensen, S.: Learnings from the implementation of
Epic, 77 pages (July 2017), http://www.itu.dk/people/slauesen/

2. Region Hovedstaden, September 2013: ITX rapport for vurdering ved anskaffelse
af Sundhedsplatform (in Danish).

3. Sgren Lauesen, December 2017: Valg af EPIC (in Danish):
http://www.itu.dk/people/slauesen/SorenDamages.html

http://www.itu.dk/people/slauesen/SorenDamages.html

Health record system, EPIC
38

Analysis

Cause Al. Doesn't identify user needs and win-win

Analysts knew a lot about current operation and potential benefits, but didn't look
carefully at the varying demands of the different medical specialties and local
practices.

They didn't create a win-win situation for the clinicians. As an example, doctors find
it annoying to record diagnosis codes and other structured data, rather than a verbal
explanation. At the same time they want to be able to make research on the effects of
treatments. It might have been possible to motivate them by showing examples of
research data that would be available if they had structured data.

Effects on damages: Business results, User satisfaction.

Cause A2. Requirements don’t cover customer needs

The requirements specification was around 900 pages with 1800 requirements plus
400 pages with use cases. The requirements looked much like other traditional
requirements with long lists of features the system must have. The use cases were just
an elaborated version of the same but specified also details of data to be seen or
recorded. The problem is that we cannot see the work context in which each feature is
used. The result is often that although the system has these features, it is very
cumbersome to use.

However, requirements played a small role in the EPIC project because EPIC was an
existing system (COTS - commercial off the shelf). The important thing was the
criteria used for selecting the supplier. One criterion was looking at the system in real
work contexts and assessing how well it supported the work. This was done carefully
with each of the three proposals (see the introduction to the EPIC case above and F3
below). However, the evaluation covered only safety aspects, e.g. how sure the doctor
is that he sees the right patient on the screen. It didn’t cover performance issues, such
as time spent on a consultation.

Effects on damages: None.

Cause A3. Describes the solution in detail. No freedom to the supplier

The many requirements can be seen as describing the solution in detail. Large parts of
the requirements described the IT specialist's visions about service oriented
architecture, formal descriptions of data, etc. The IT specialists got none of this,
because the winner was a COTS system with a confidential data model, etc. However,
it didn't cause damages in this case because the winning proposal was selected by
other criteria (see cause A2 and F3).

Effects on damages: None.

Cause A7. Wants everything at once

The customer wanted to start with two hospitals 7 km apart, but recently merged into
one organizational unit. It was called a "pilot test", but actually 8,000 clinicians were
involved. Further the customer wanted to cover all medical specialties and for each
specialty define standard procedures across all the hospitals. At the same time they

Health record system, EPIC
39

wanted to change work practice so that doctors didn't dictate anymore, but recorded
notes themselves. They also had to order lab-tests themselves and record data for
settling accounts. Earlier the secretaries had done it. So the plan was to change many
things in several areas at the same time.

Standard procedures across hospitals had been debated in the medical community for
years, and there were at least two conflicting schools. The customer found the EPIC
project a good opportunity for reconciling these conflicts. They set down a task force
of 300 clinicians (around 15 for each medical specialty) who had to come up with
data (contents) for the clinical work. As departments had to release clinicians for this,
they selected clinicians who were less important. The supplier commented that the
competences of these 300 clinicians were dubious and that the work lasted too long.

Although the plan was that all clinicians should stop dictating, it ended up with 400+
doctors at the national hospital (Rigshospitalet) being allowed to continue dictation.
This makes sense since it is the hospital with the most complex and varied treatments.
It also shows that dictation is possible with the system, and much dissatisfaction could
have been avoided by allowing others to do it too. Transition could then come later,
building on experiences from other departments.

Effects on damages: Business results, User satisfaction.

Cause A8. Doesn't plan the new work processes

The new work was planned, but not in detail. In particular it wasn't analyzed how the
clinician's work would be in the future, how quality would change and how much
time a consultation would take initially and later.

Effects on damages: Business results, User satisfaction.

Cause A10. Surprising rule complexity

Danish health authorities pay hospitals according to diagnoses and patient contacts.
However, the rules are very complex and changing. Earlier the secretaries knew the
rules and recorded everything. Now the doctors had to do it. They had not got the
necessary practice and made many errors.

The health authorities also operate systems that the health record systems have to
integrate with. One example is a central record of each citizen's medications (FMK).
When the doctor starts a patient visit, the system must retrieve the patient's
medication record, and when he closes the session, the system must update the central
record. The technical protocol was cumbersome and slow. Changes were needed, but
it took a long time to implement them.

Effects on damages: Business results, User satisfaction.
Acquisition

Cause B2: Wrong selection criteria

The supplier was selected based on what lawyers call the “economically best
proposal”. This is an excellent approach if done correctly, but in this case (and most
other cases the author has seen) it is done in a way that doesn’t reflect economy.

Health record system, EPIC
40

Each system was used in a trial hospital department by three teams of doctors, nurses
and secretaries. The team got one day of training in the new system, followed by two
days of practice. EPIC was clearly better than the competitors (score 7.9 vs. 5.9 and
4.8). The scores were given on questions such as “it is easy to get overview of the
patient’s data” and “it is clear which patient the data relates to”.

The systems were also evaluated by 450 clinicians who saw the suppliers' sales
demonstrations. EPIC was number two here, but the differences were small (the best
got 7.83, EPIC 7.15).

In addition, scores were given for many other aspects such as clinical functionality
and IT architecture, each of them assessed by a separate committee. All scores were
given on a scale from 0 to 10. Also the cost of the system was transformed into a
score between 0 and 10. All of these scores were then weighted and added to a total
number of scores. EPIC got the highest total and was selected.

The problem is that these scores don’t reflect the economic value of the proposal. In
particular, the areas where the benefit was expected to materialize had no score. As an
example, there were no points for how fast it was to order medicine or type notes, or
how much time would be saved by not logging in and out of many systems. The most
disputed new way of working was that doctors had to write notes for the record
themselves, rather than dictating to the secretary. During trial operation at a hospital,
this was tested in only one case, and coincidentally by a doctor who always had loved
to write long notes himself.

The correct way is to assess the benefit in $ of each proposal and subtract the total
cost of the system. The result is the net benefit. Next, choose the proposal with the
highest net benefit — or the highest net benefit per $.

The way it was done, the winner could be a system that was an economic loss to the
organization. However, we don’t know whether EPIC would have been the winner if
a proper cost-benefit analysis had been made.

Effects on damages: Business results, User satisfaction.
Design

Cause C1. Doesn’t ensure usability

New screens or setups were developed for many medical specialties. Although
clinicians participated, the result was in many cases cumbersome screens. No
usability tests were made.

Programming

Cause D2. Surprises with system integration

Integration with lab systems, with FMK (the government's mandatory database of
who got which medicine), etc. caused many problems. In total EPIC had to integrate
with 20 other systems plus an undefined number of medico-technical systems. The
supplier had given a fixed price per system for this, but ended up spending much more

Health record system, EPIC
41

time than expected. The problems included finding out about the data and the
protocol, but also getting the necessary permissions sufficiently fast.

The customer actually had specialists in these areas, but didn't offer help to the
supplier.

Effects on damages: Initial business results, Initial user satisfaction.
Test

Cause E1. Deploys the system with insufficient testing

Testing of integrations was incomplete. As an example, the technical communication
with FMK (the national medication record) turned out to be very slow and it took a
long time to improve since the FMK organization had to be involved. As another
example, the customizations for each specialty were not tested for medical correctness
and usability, particularly for error handling.

Effects on damages: Business results, User satisfaction.

Deployment

Cause F1. Deploys the system with insufficient support or training

The customer insisted on a big bang for the two, united hospitals. The supplier agreed,
although he would have preferred a single hospital. For administrative reasons, it
would be too cumbersome to deploy the system in one or a few departments only.

The customer had created many change management groups 9-12 months before
deployment. They had followed the development and the planned courses. However,
they didn't know what the new work procedures would be, and the user interfaces
were not ready, so it could be abstract talk only.

Since rescheduling hadn't been done when development and customization was
delayed, deployment became very compressed. As an example, super users couldn't
help other users when the system went live, because they had been trained on an
earlier, incomplete version. Many clinicians reported that they had to use the system
without any training or support.

Effects on damages: Business results, User satisfaction.

Cause F2. Doesn't check whether the system is used as intended

Nobody checked whether the doctor's recordings were correct and whether they used
the system in an efficient manner. In principle, super users could have done this, but
they didn't have the knowledge as explained for F1. Even some months after
deployment, many users would be happy to have an expert watch what they do and
help them improve.

Effects on damages: Business results, User satisfaction.

Health record system, EPIC
42

Cause F3. Wrong estimate of human performance

Many doctors spent vastly more time on typing and clicking than on the previous
dictation to the secretary, who then updated the record. This decreased performance
and user satisfaction. Some doctors even resigned from their job. A small-scale pilot
operation could have revealed how big the problem was.

In principle, the problem could have been detected before the contract was signed.
Each of the three proposals were tested in a trial department, and it should have been
possible to detect the low performance at that point in time. However, according to
the test report (ref. 2 above), only ease-of-learning was assessed, not task efficiency.
The test version didn't include integration with other systems (would have been very
costly to test). Twelve different scenarios were tested, but in just one of them the
doctor wrote complex notes (a psychiatry case). Furthermore this doctor happened to
love writing notes himself and had always done so. Medicine was ordered in only four
of the scenarios, and in two of these it is obscure whether the doctor or the secretary
did it. The doctor didn’t settle accounting in any of the cases. These issues later turned
out to make the work cumbersome.

Effects on damages: Business results, User satisfaction.

Management

Cause G1. No business goals - or forgets them on the way

It had been known for many years that clinicians spent 1-2 hours per day to log in and
out of several systems to see lab results, etc. It would be an obvious goal to save this
time, since EPIC integrated with these systems. However, the goal had been hidden in
the larger goal of task efficiency, so nobody checked on it. Fortunately, the goal was
met. This makes it even more surprising that doctors reported that they couldn't
handle as many patients as earlier.

In general, the original goal of task efficiency had a low priority during acquisition
and deployment (see F3). Other factors dominated.

Adjusting the business case during acquisition, might have changed priorities for
deployment, for instance about customization and standardization, and whether to
allow dictating to the record.

Effects on damages: Business results.

Cause G2. Doesn't reschedule, but assumes the rest can be compressed

Early activities had taken longer than expected, e.g. integration and custom extensions
for the specialties. However, under heavy pressure from management and supplier,
the system was deployed on time and cost. One argument was that if we don’t deploy
on time, we will loose the benefit for that period. However, it was not clear what the
expected benefit was. Instead of a benefit, the result was dissatisfaction, low user
performance and low quality (causes E1, F1 and F2).

Effects on damages: Business results, User satisfaction.

Health record system, EPIC
43

Cause G6. Cashes the benefit before it is harvested

It was planned that 20% of the doctor’s secretaries would be dismissed since doctors
would take over their work. In many hospitals they did it before the system was
deployed, only to realize that doctor’s had troubles doing the secretaries work. In
November 2017, many departments brought back the secretaries to improve
performance.

Effects on damages: Business results, User satisfaction.

Cause G9. Too large steering committees/working groups without competencies
Users with little 1T-knowledge customized the user interface. Much effort was spent
on reaching consensus. Further the result wasn't tested with other clinicians for
medical correctness and usability. See also cause A7, C1, E1 and F1.

Effects on damages: Business results, User satisfaction.

Cause G10. Excessive user involvement

Much time was spent on keeping users informed about the new system and getting
their comments - before there was something real to present. Although some
consultants say it is important to keep users informed, it can easily become a waste of
time.

Effects on damages: No serious damage was observed in this case.

Method for data collection
(Not available)

Cures for each cause
44

6. Cures for each cause

Analysis of the 5 projects has revealed 37 different causes of damage. An early
analysis of 5 other government IT projects (Bonnerup/ Teknologiradet, 2001)
revealed 13 causes. They correspond to the following 13 causes in the present
analysis:

A2, A3, Ad, A7, A8, B1, C5, F1 (partly), G1 (partly), G4, G7, G8 (partly) and G10.

This section looks at the causes one by one and suggests possible solutions, i.e. ways
to prevent the problem. The causes are ordered according to the development activity
where they tend to occur. Causes relating to Analysis are identified with A1, A2 ...,
causes relating to Acquisition are identified with B1, B2 ...

Analysis

Cause Al. Doesn't identify user needs and win-win
The cure is to study what exists today and plan the future work processes (cure CA2).
Describe the findings as problem-oriented requirements (cure CAL).

Cause A2. Requirements don’t cover customer needs
The cure is to use problem-oriented requirements, cure CA1.

Cause A3. Describes the solution in detail. No freedom to the supplier

Traditional requirements specify the solution - what the system shall do. The supplier
has no freedom to do it his way. As a result, the supplier cannot use his existing
system unless he adds a lot of functionality. Often the customer's solution turns out to
be bad, and then he has to pay for changing it. Problem-oriented requirements avoid
these issues. They don’t specify what the system shall do, but what it will be used for
(cure CAL).

Cause A4. Makes heavy demands and believes it is for free

The customer is rarely aware what things cost, and may unknowingly ask for very
expensive solutions. Requirements with open target specify what the customer
roughly wants (e.g. around 99.8% availability), but leaves it to the supplier to specify
what he can offer (e.g. 99.5% at 5 M DKK per year, alternatively 99.9% at 15 M per
year). Open target requirements are part of SL-07 (cure CAL).

Another reason for the heavy demands may be many stakeholders or expert groups,
each of which comes up with all the wishes they can dream of. The result is a
requirement spec of 1000+ pages divided in 20+ documents that don’t match. The
Health record spec is an example. IT-architects wrote their view of the world, security
experts theirs, quality experts theirs, surgeons theirs, etc.

Another cure is scope management, where the customer keeps track of how many
function points he asks for. Function points are a way of measuring the size of the
project in a technology-independent way (cure CA3).

Cures for each cause
45

Cause A5. Oversells technology, e.g. SOA, web-based, workflow engine
New technology is risky for a large project. See cure CA5 (Check technology) and
CGT7 (ask expert developers).

Cause A6. Multi-vendor strategy - avoid monopoly

With old IT systems, the government and the municipalities had experienced that the
supplier essentially had a monopoly. The customer's new systems couldn't get access
to existing data and only the original supplier could modify or extend the system. The
customer couldn't even transfer his own data to a new system.

Using several suppliers seemed to be a way out. Each supplier delivered part of the
big system. The customer imagined that if he wasn't satisfied with one of the
suppliers, he could buy the part somewhere else and "plug it in". This was never done
in practice. Instead the customer experienced that now he was fighting several
monopolies instead of one.

We have two cures here: One about keeping the ownership of data, cure CA6 (Central
database & flex SOA). The other about avoiding monopoly by ensuring that third-
party can add to your new system and that you later can move your data to another
system, cure CA7 (Third-party integrate & exit).

Cause A7. Wants everything at once, e.g. cover the entire country or all types of
debt

Deploying a large or complex system is always risky. Many things can go wrong,
even when we have been very careful with planning and testing. All the projects in
this study had severe problems at deployment. One cure is to reduce the risk by
deploying the system for a small number of users (a pilot test) or without using the
results (a deployment test), see CEL.

If the system has complex functionality, e.g. many rules, the suggestion is to deploy it
part-by-part, initially doing the rare, but complex cases manually (CF1).

Cause A8. Doesn't plan the new work processes

If we don't plan the new work processes and user situations, it is hard to create a
system that efficiently supports the new processes. We won't find out until the system
is deployed - and then we can do little about it. Early planning of the future work
processes helps (cure CA2). Using problem-oriented requirements (CA1) will force
analysts to find out early and describe the new processes and user tasks.

Cause A9. No feasible solution. Data missing, performance dubious, etc.
Sometimes the customer imagines solutions that aren't feasible. For instance it may
not be possible to serve the necessary number of users, the necessary data has low
quality or doesn't exist, or no supplier can deliver what we ask for.

The cures are to carry out an early proof of concept (POC, cure CA8) and involve
domain experts and expert developers in the right way (see cure CA4 and CG7).

Cause A10. Surprising rule complexity
For some systems the customer doesn't know the complex rules, but he can find a
supplier who does. This is for instance the case with payroll systems. In the

Cures for each cause
46

requirements, the customer can just ask the supplier to handle the union salary
agreements. The customer doesn't have to turn them into traditional requirements.

For other systems the customer should know the rules, but cannot specify them as

requirements. There are two ways out:

1. Automate the simple cases. Let the expert users handle the remaining cases. This
was done successfully in the Land Registry project. It might have been done in the
EFI case too (debt collection), but was not attempted (see also CF1, deploy part-
by-part).

2. Carefully analyze the rules and specify them with some of the many techniques
available in software engineering. See cure CA4.

Acquisition

Cause B1. Supplier too optimistic - you must lie to win
The cure is an early proof of concept (POC). See cure CAS.

Cause B2. Wrong selection criteria

Traditional requirements are long lists of functions the system must have. The
supplier replies by ticking off the functions his system has. Usually he ticks off
everything, because his system has something like the desired function (the customer
won't find out until much later). The customer just accepts this and chooses the
winner according to price. We don't have the time to look at the systems, he says. He
doesn't realize that requirements can be met in good and bad ways. Not surprisingly,
he later finds out that the system he got, isn't what he expected.

The advice is to use problem-oriented requirements (cure CA1) and let the supplier
show how his solution meets each requirement. It takes a few days to assess each
solution in this way, but it ensures that the customer knows what he gets.

Often the supplier is selected based on score points rather than money. The health
record system is an example. The problem is that the scores don’t reflect the
economic value of the proposal. Often the areas where the benefit is expected to
materialize get no score at all.

The correct way is to assess the benefit in $ of each proposal and subtract the total
cost of the system. The result is the net benefit. Next, choose the proposal with the
highest net benefit (or the highest net benefit per dollar). If the net benefit is negative,
reconsider whether you need a new system.

Problem-oriented requirements (cure CALl) gives examples of how to make the
assessment and how to make sure requirements suffice for harvesting the benefit.

Cause B3. Wrong cost estimates

Wrong cost estimates are usually related to bad requirements. If the requirements
don't allow the parties to assess the number and complexity of user screens, data
classes and integrations, you cannot estimate the number of function points. And then
it is pure guesswork to estimate the price.

Cures for each cause
47

The advice is to measure function points for the tailor-made parts of the system (cure
CA3). You can measure function points directly from SL-07 requirements (cure
CAl).

Some costs are simply forgotten. In the travel card project, the supplier forgot or
ignored the cost of back-office systems. In the PolSag project, the customer forgot to
include operational costs. A simple checklist for items to include in the business case
could have prevented this (see cure CB1).

Design

Cause C1. Doesn't ensure usability

Usability (ease-of-use) is mostly ignored. Some analysts specify low-level
requirements to the user interface, e.g. the Back key must always work on web pages,
drop-down lists must be used where relevant. Unfortunately, a user interface may
meet all these requirements, yet be completely un-intuitive.

Another approach is to develop the system and at the end have a graphical designer
make it look nice and colorful. However, this doesn't make the system easy to use.
Sometimes the project team makes a few usability tests at the end of development, but
at that point in time only minor things can be changed. As an example, a cumbersome
user interface needs redesign, and it cannot be done at the end. See cure CCL1 for a
better and cheaper way to ensure usability. Sometimes developers know the method,
but don't use it.

Cause C2. Designs user screens too late

Usability specialists agree that it is important to make early prototypes (mockups) of
the user screens, make usability tests of them, improve them and test again until the
result is satisfactory. See cure CCL.

Cause C3. Accepts the solution description without understanding it

After the first part of development, the supplier traditionally delivers a solution
description that the customer has to sign off. However, there is no agreement among
IT-specialists about the contents of a solution description. Often the supplier delivers
a bunch of technical specifications, which the customer doesn't understand. Since the
customer doesn't know what to expect, he signs off.

The advice is to require early prototypes (cure CC1). The solution description should
contain user screens (mockups are okay) and documentation of usability tests. The
customer can relate to this.

Cause C4. Cannot see how far the supplier is

This issue is related to C3. The customer doesn't know what to look for when
assessing progress. Early prototypes make him able to see progress (cure CC1). The
delivered function points are also good indicators (cure CA3). Looking at the
suppliers' records of work hours can give a warning if too few hours are spent, but it
doesn't help when many work hours are spent, but in a wrong way. Monitoring the
remaining work hours can help here (cure CC2), so can talking to expert developers
(CG7)

Cures for each cause
48

Cause C5. My way without considering the supplier's way

The customer may have a solution in mind and insist on this being delivered. This can
make the solution unnecessary expensive. The advice is to use problem-oriented
requirements (CA1) and compare them with the customer's idea and the supplier's
proposal. If the customer's idea isn't significantly better, use the supplier's proposal.
This issue is related to cause A3 (describing the solution in detail).

Programming

Cause D1. Supplier accepts the expensive requirements interpretation

Sometimes requirements are ambiguous and can be met in the cheap way the supplier
expected, or the customer's way, which later turns out to be very costly. This occurred
in the Travel Card project and in PolSag. In both cases the supplier accepted the
costly solution and lost millions. The advice is to always assess the consequences of
such choices in terms of cost and delivery time (see cure CG1, replan).

Problem-oriented requirements (CA1) vastly reduce ambiguity of requirements,
because the parties can see what the solution is to be used for.

Cause D2. Surprises with system integration

System integration is always a high-risk area that can be very costly to deal with late
in the project. The advice is to make a POC (cure CA8). This means trying to
exchange data with the external systems. Sometimes it can take months just to get the
necessary permissions to connect to the external system.

Another issue is how to test the integration. Does the external system provide data
that may be used for testing? And how can your system write data to the foreign
system for testing? You will need permissions for this too.

The customer (and his consultant) should take responsibility for these permissions and
get them before acquisition. All of this is not easy. Cures are needed.

There may still be some surprises at the end, particularly how to handle errors in the
data exchange. Catch them with a deployment test or pilot test (cure CE1).

Test

The test process itself can be a problem, for instance if there is no platform to test on
or no test system to integrate with. As an example, if you are developing software for
trains, you will need a train and a track. However, we haven’t seen testing as a cause
of damage in these 5 projects.

Cause E1. Deploys the system with insufficient testing
Deploying a large system is always risky. How complete is the technical testing? Talk
to expert developers to hear their report on test coverage, stress test, etc. (cure CG7).

Many other things can go wrong, even when we have been very careful with planning
and testing. The advice is to run a pilot test (or deployment test) with real users, real
data and real environments (see cure CE1).

Cures for each cause
49

Deployment

Cause F1. Deploys the system with insufficient support or training

When a system is deployed, a lot of problems turn up and the support organization has

to sort them out. In many cases support becomes overloaded. The advice is to

minimize the problems in these ways:

1. Plan the new work in detail (see CA2).

2. Make early usability tests for eliminating problems and estimating how many
problems will be left for support to handle (see CC1).

3. Make a pilot test or deployment test (see CE1).

4. Deploy part-by-part (see CF1).

Cause F2. The system is not used as intended

Deployment implies that users will work in another way than today. Often they don't
find out on their own and use the system in a cumbersome way, which ruins user
satisfaction and business goals. See cure CE1 (pilot test) and CF2 (follow-up study).

Cause F3. Wrong estimate of human performance

Often users turn out to be unable to work as fast as assumed in the plan. This caused
damages in the Land Registry as well as the Health Record. The solution is to test the
human performance in a POC (cure CA8) and a pilot test/deployment test (cure CE1).

Management

Cause G1. No business goals - or forgets them on the way
Development takes so much attention that managers often forget about the business
goals. The result is that the benefits don't materialize at the end. See cure CG3.

Cause G2. Doesn't reschedule, but assumes the rest can be compressed

When surprises turn up during the project, the time schedule will usually change.
Managers tend to assume that they can just compress the rest of the project and still
meet the deadline. In the health record case (EPIC), deployment was done on time and
cost after heavy pressure from management and supplier. The result was low
productivity and angry users. See cure CGL1.

Cause G3. The project grows without anybody noticing
This happened in PolSag and in many other projects. The problem is that management
doesn't have good measures of progress and of what remains. See cure CA3 and CC2.

Cause G4. Doesn't face the danger. The risk assessment downplays the danger
In some of the projects, the correct risks were identified, but downplayed. The result
was damages. See cure CG4.

Cause G5. The financial incentive disappears and the parties fight instead of
cooperate

Prevent it by observing whether the project grows (see cure CA3 and CC2). If it does,
re-plan before fighting starts (CG1), then look for solutions - or close the project. SL-
07 section K2 shows various actions you can take. SL-07 comes with a problem-
oriented contract. It shows what you can do if you want to close the project. It has an
appendix 2 with a payment plan that ensures there is money left to do the rest.

Cures for each cause
50

In government, closing a project is a disaster. In industry it is common and sound
business.

Cause G6. Cashes the benefit before it is harvested, e.g. sacks employees/experts
too early

This is related to G3 (project growing) and cure CG1 (re-plan) may help. But other
means are needed too. Once employees know they are likely to be dismissed, it is
hard to keep the best. We have no cure to suggest for this damage cause.

Cause G7. Lack of management involvement

Some managers believe they can manage an IT-project without knowing about
development and technicalities. Can a commander-in-chief manage a battle without
knowing what goes on in a battlefield? Hardly. IT projects are similar. Without IT
project knowledge, the manager cannot be involved. He has only two choices: report
delays to his own boss and ask for more money - or suggest that the project is closed
and the battle lost.

The advice is to give management the necessary IT insight. See cure CG6. SL-07
comes with a problem-oriented contract. According to its section 3.4, the supplier
may ask for a replacement of the manager.

Cause G8. Excessive management or expert involvement

Amazingly, a project can also suffer from too much management involvement. The
manager should realize that there are areas where he hasn't the necessary expertise or
facts. User interfaces are a good example. Managers sometimes decide that user
screens must be in his way - in contradiction with what usability tests show.

In some cases management leaves user involvement to an expert user, who then
decides what the requirements are. This often fails because the expert user has little
understanding of other stakeholders' needs. We have no cure to suggest for this
damage cause. The SL-07 contract’s section 3.4 allows the supplier to ask for a
replacement of the manager or expert user, but it will hardly work.

Cause G9. Too large steering committees/working groups without competencies
The solution is to make a small task force and give it the necessary authority. This
was the way the Travel Card finally delivered something. See cure CG2.

Cause G10. Excessive user involvement
Users must be involved, yes, but in the right way. See cure CG2.

Cause G11. Believes law blocks sound approaches, e.g. talking to suppliers or
running pilot tests

There are many rumors about what is allowed and what is not. In the Land Registry
project, management used as an excuse that it was against the law to start with a pilot
test, rather than deploying in the entire country. The result was a chaotic deployment.
Even if it was against the law, they could have asked for an exemption.

Cures for each cause
51

In the debt collection case (EFI), the project owner (Tax) got a warning from the State
Lawyer, that withholding salary in the way they did, was dubious. Instead of getting
clarification or exemption, they closed the most important way of collecting debt.

See cure CG5 (find constructive lawyers and make them part of the team). We believe
something more is needed too, but have no suggestion.

Cause G12. Insufficient staffing

Insufficient staffing can be lack of heads and/or lack of qualifications. In the five
projects and other projects the author has studied, we haven’t seen lack of heads. In
two cases the author has seen lack of experienced people. One was in the Land
Registry, where the two experienced people planned to lead the project, were bought
by another company. This caused an initial project delay of half a year. The other was
a pension project, where the supplier had to deliver a new, cheap system that replaced
his old costly system. He had a financial benefit of delaying delivery.

Part of the cure is to monitor remaining work (CC2). The other is to ensure that the
contract allows the customer to terminate the contract if staffing is insufficient or
internal deadlines violated (SL-07 contract section 2.3 and 3.4).

Cause G13. Doesn’t find the root cause
When the project is in big trouble and management doesn’t understand why, the
consequence may be that the project is closed for being too complex or too ambitious.

A famous case is the Denver International Airport baggage system (1994) [13]. The
system was crucial for fast transfer of passengers and their baggage from one flight to
another. The system never performed and delayed opening the airport for years.
Management closed the project because it was “too complex and too ambitious”.
However, external consultants had tested an isolated loop of the total conveyor
system. This too didn’t work, indicating a simple technical root cause, but nobody
reacted.

Lack of finding the root causes was part of the reason for closing the police case-
management system. It was also the cause of several years of delay in the Travel
Card project (2007 to 2010).

Cure: Ask expert developers (CG7) and give management IT insight (CG6). And
don’t allow complexity or ambition to be damage causes. Find the root cause.

Cures
52

7. Cures

Below is a description of each suggested cure. They are ordered according to the
development activities where they are primarily used. Cures relating to Analysis are
identified with CA1, CA2 ..., cures relating to Acquisition are identified with CB1,
CB2.

Analysis

Cure CA1l. Problem-oriented requirements (SL-07)

Traditional requirements (IEEE 830) are long lists of functions the system must
provide. But we cannot see who will use the system, when and for what. Nor can we
see what problems users and other stakeholders have today and expect the system to
remedy. As a result the customer can get a system that meets all requirements, but
doesn't cover his needs. The system is awfully cumbersome to use, doesn't remedy the
present problems, and doesn't meet business goals.

Problem-oriented requirements don’t describe what the system shall do, but what it
will be used for. User stories claim to do the same, but cover only a small part of the
requirements. It is also rather arbitrary how “big” a user story is. Does it cover a
simple interaction with the system, e.g. seeing the patient’s diagnoses? Or getting an
overview of the patient’ situation, e.g. diagnoses as well as lab results, medication,
and other treatments? Or supporting a full consultation in the clinic? Or supporting
the entire flow of the patient treatment? And which of these are “epics” rather than
user stories?

With SL-07 requirements there is no doubt: It uses task descriptions rather than user
stories or use cases. A task description must cover everything the user can do from
trigger (e.g. start of consultation), without essential interruptions until end (e.g. we
cannot do more for the patient right now). So the correct task is perform a
consultation. The system must support this task, including subtasks such as seeing the
patient’s diagnoses and ordering medicine.

Kuhail & Lauesen [2] have experimentally shown that task descriptions are much
stronger than use cases and much better cover the customer’s problems.

Task descriptions are typically 30% of an SL-07 requirements specification. SL-07
also tracks business goals to solution visions and specific requirements, such as
critical tasks to support well. SL-07 also specifies data needs, system integration,
security, response time, usability, how to select the best supplier, etc. All the
requirements are problem-oriented, i.e. the customer writes his needs, and the supplier
writes the solution he proposes.

From version 7, SL-07 includes a contract and requirements to the acquisition process
(also problem-oriented). Contract as well as the full requirements are available for
free. You may copy and modify them to suit your own project.

The author’s web site http://www.itu.dk/people/slauesen/SorenRegs.html
has several examples of SL-07 in practice. The textbook Lauesen: Problem-oriented
requirements SL-07 — Guide and contract [6] is built on a real-life health record

http://www.itu.dk/people/slauesen/SorenReqs.html

Cures
53

system. The Y-Foundation project [5] is another example: The requirements specify a
web-site for applicants, combined with a system to support case management,
meetings in the assessment board, payment and integration with banks and the tax
authority’s system. The requirements, the supplier’s proposal, supplier selection,
issues and disputes during the project, are available.

Open target requirements. The customer is rarely aware what things cost, and may
unknowingly ask for very expensive solutions. Requirements with open target specify
what the customer roughly wants (e.g. around 99.8% availability), but leaves it to the
supplier to specify what he can offer (e.g. 99.5% at 5 M DKK per year, alternatively
99.9% at 15 M per year). Open target requirements are part of SL-07. They are
another way to write problem-oriented requirements.

Cure CA2. Study as-is, plan to-be

The cure is to do what the books say about the analysis work, but do it carefully:
Study what real users do and make sure to study all the stakeholders, e.g. for a health
record system all the medical specialties as well as nurses, secretaries and various
kinds of patients.

Also plan what users will do in the future with the new system. Try to make all
stakeholders feel they get a benefit with the new system (win-win). This is a good
way to overcome resistance to change.

However, the weak point in the books is how to describe the findings. The findings
must end up as requirements, otherwise they will not be taken into account during
development or selection of a new system. Piles of use cases and user stories are too
vague to serve as requirements. The recommendation is to describe the findings as
problem-oriented requirements (see cure CAl).

Cure CA3. Scope management and function points

Function points are a way of measuring the size of an IT project in a technology-
independent way. As an example, a medium complex user screen is 10 function
points, a medium complex data class is also 10 function points. In Denmark a function
point costs 2,000 to 4,000 $ if the system is developed from scratch. Counting this
way, the customer can keep track of the cost of his wishes.

With scope management you keep track of the function points while defining the
requirements. Whenever you come up with new requirements, you ask yourself how
many function points are involved and whether the benefits match the cost. You can
also use scope management during development to keep track of how many of the
function points have been delivered and how many remain.

Problem-oriented requirements specifications (SL-07) make it easy to estimate the
number of function points (cure CA1). With SL-07 you must have a logical data
model, and thus the number of data classes. You must also describe the user tasks.
Theygive a good indication of how many user screens you need, and how complex
they are.

Cures
54

Cure CA4. Domain expert involvement

Domain experts and expert users often know more about the existing work than the
ordinary users and the project team. They can point out the existing problems, the
complexities and the many special cases the system must deal with. Often they also
have good ideas about what to do in the future.

It is important to involve them early on, for instance to ensure that a proof-of-concept
deals with the real complexities. But don't let them run the project (see damage G8).

IT experts with experience from similar systems can also be important, for instance to
balance the supplier’s sales talks or the consultant’s favorite solutions.

Systems with complex rules need a combination of domain experts and IT experts. In
cooperation they should analyze the rules and specify them with some of the many
techniques available in software engineering, for instance state-transition diagrams,
tables of combinations, mathematical formulas. Expertise and time is needed to do
this. This was done successfully in the travel card project, but only partly in the debt
collection project.

Cure CA5. Check technology

The IT industry creates hype all the time and tries to sell it to consultants, who sell it
to customers. The hype often originates from researchers who have tried the idea in
small scale, where it may seem promising. Sometimes it scales up, but often it turns
out to create disasters when used in full scale or without understanding how to use it.

One example is Service Oriented Architecture (SOA), which postulated that you
could freely define a landscape of systems and connect them by services, and that you
could define these services up front. It turned out that this was very costly and error
prone. See more in CA7.

Another example is workflow engines, where you for instance can define how a loan
application moves from person to person and which data each person needs. It turned
out that there were so many exceptions in real workflows that they were hard to
define and automate.

For the customer it is hard to guard against hype, particularly when his consultant
advocates the hype. The advice is to seek second opinions and closely study
organizations that have solid experience with the new technology.

Cure CA6. Central database + flexible SOA

Splitting a system between two or more suppliers makes you deal with several
monopolies rather than one. So the first advice is not to split an application between
two suppliers unless there is a very good reason, for instance that each system
provides advanced functionality that the other system doesn't have.

The second advice is that the customer takes ownership of data and maintains it in a
central database. Third-party suppliers can integrate with this database using services.
The third-party can access the central database on demand, or maintain a copy of the
central data. He decides.

Cures
55

This approach has been used successfully for 10+ years by STAR (Styrelsen for
Arbejdsmarked og Rekruttering). Their central database integrates with around 50
third-party systems. In fact they use the old Database Management approach from the
80'ies. Their approach is that each third-party negotiates specific services with the
data owner. Any change in the service has to be negotiated again. In other systems,
e.g. the Debt Collection (Tax), there was no central database and a third party had to
negotiate with many other parties. The cost was 100,000 - 300,000 DKK per service.

The third advice is to define flexible services rather than specific ones. It allows third-
party to define a query without having to negotiate with the data owner. This can be
done with Odata services (Open data) that allow (almost) any SQL-query to be made
against the data owner's data. We know of only one supplier in Denmark that uses this
approach (Scanjour, now part of KMD). They report that it dramatically reduces
integration costs and often speeds up data transmission with a factor of 30.

Cure CA7. Third-party can integrate + exit strategy

When you acquire a new system, you will soon want to integrate it with another
system from a third party. The supplier of your new system has to be involved. He has
a monopoly and can charge you accordingly, unless you have contracted on
something else. Your requirements (part of the contract) should specify this:

a. Third parties must be able to integrate with the new system (with the customer's
permission).

b. An exit strategy that allows the customer to transfer his own data at any time. In
this way the customer can buy another system, convert the old data and feed it into
the system.

It is amazing that very few requirements specify this. The consequences are serious,
but don't show up until many years later. SL-07 gives detailed examples of such
requirements.

Cure CA8. Early proof-of-concept (POC)

A proof of concept can be made before signing the contract or early after. The
supplier must prove that he can meet the high-risk requirements, for instance adequate
response times for 4,000 users, integration with other systems, and adequate usability.
The supplier can deliver the proof in many ways, e.g. running his system with 4,000
simulated users or testing usability with a mockup user interface. If he cannot give a
convincing proof, the contract will be cancelled.

Honest suppliers welcome this approach. It eliminates the liars.

Should the proof be before or after signing the contract? The customer prefers before
contract, but this can be quite expensive for the supplier. Writing a proposal for a
large system may cost 1 M DKK. Having to make a POC may cost another million.
He has to spend these amounts without knowing whether he gets the contract. This
scares many good suppliers. Making the POC after the contract, means that the
supplier is sure to get the contract on the condition that he meets the POC. Further, it
allows a close cooperation between the two parties.

The SLO7 contract shows details of how to specify and use a POC.

Cures
56

Acquisition

Cure CB1. Cost checklist

Guidelines and templates for writing business cases often contain checklists for what
to include as cost elements, e.g. product cost, product operation and maintenance,
internal costs for analysis and acquisition, internal costs for testing, internal costs for
user training, costs for related hard- and software. Use them and improve them if they
don’t suffice.

Design

Cure CC1. Early prototypes, usability test and iteration

Usability specialists agree that it is important to make early prototypes (mockups) of
the user screens, make usability tests of them, improve them and test again until the
result is satisfactory. Usually two or three iterations suffice. Research shows that any
programming made at this stage, will make it hard to improve the user interface
because it seems too costly to throw away programs. Research also shows that if you
follow the specialist advice, total development will be faster and cheaper. You spend
a few weeks early, but save months at the end. See Vinter & Lauesen [12].

If analysts have written problem-oriented requirements, they have described the user's
future tasks and the data the system must store (cause A2). Based on this, it is possible
to design mockup screens and test them for usability. See Lauesen [3].

Cure CC2. Monitor remaining work hours

One way to measure progress is to monitor remaining work hours. Developers
typically report per week how much time they have spent on various activities. Make
them also report how much time they believe is left on each of the activities they work
on. At some point in time, the sum of time spent and time remaining starts to increase.
This is a sign of danger. Find out what is wrong.

Programming
No new cures seem necessary.

Test

Cure CE1. Pilot operation / Deployment test

A large system has many users and/or a lot of functionality. Deploying it is risky.

Many things can go wrong, even when we have been very careful with planning and

testing. All the projects in this study had severe problems at deployment or pilot test.

We can address the problems in two ways:

1. Make a deployment test that looks like real production, but the results are not
used.

2. Or make a pilot operation with real work being done, but only a small number of
users. Observe how much support is needed and scale up for full operation. We
can better overcome helping a small number of users and then improve the
process for the next many users. This is not for free, because we somehow have to
keep the old and new system running at the same time. The cost of this should be
matched with the risk-reduction we get.

Cures
57

The difference between deployment test and pilot operation is whether true work is
done. During a deployment test, the work is done in the old way, but also in the new
way. The results of the "new way" are not used, however. The deployment test has
low risk, but is more costly.

Experienced developers warn that the tests must include the complex cases. All too
often only the simple cases are tested. As a result there are severe problems when
complex cases occur in real operation. Cure CF1 gives suggestions.

Deployment

Cure CF1. Deploy part-by-part

Deploying a complex system is risky. It is hard to plan for all the complexities. We

can address the problems in three ways:

1. Deploy only part of the system, for instance a part that gives an immediate and
visible effect. When the situation has settled, deploy more. In the health record
case, the first step could be to save 1-2 hours per day by not logging in and out of
many systems. Later we can try letting some doctors record data rather than
dictate, etc.

2. Automate the simple cases. Let the expert users handle the remaining cases. This
was done successfully in the Land Registry project. It might have been done in the
EFI case too (tax collection), but was not attempted.

3. Deploy the system for only a small user group. We can better recover from errors
that occur a few times and better support few users. This is similar to a pilot test
(see cure CE1).

Cure CF2. Follow-up study

A follow-up study is done after a short period of normal use. It investigates whether
the business goals are met — and why not. Often missing business goals are caused by
users not using the system as intended. The cure is to let expert users observe what the
users do, and then find ways to make them do it right.

Management

Cure CG1. Re-plan

When surprises turn up during the project, the time schedule will usually change.
Managers tend to assume that they can just compress the rest of the project and still
meet the deadline. The result is usually a chaotic deployment. The advice is to re-plan
whenever a surprise turns up. Re-planning involves available resources, dependencies,
cost, schedule and risks. Re-planning may also involve re-scoping the project, e.g.
less functionality or fewer user groups.

Re-planning is hard to do in government projects due to political pressure. In industry
re-planning is common.

Cure CG2. Small task force with authority

Managing a large IT project needs more than one person, although only one of them
will be the responsible manager. The reason is that many expertizes are needed. But a
large task force has little decision power.

Cures
58

A task force (project team) of 3 to 5 persons is ideal. Together they should cover the
business aspects, all user aspects, the IT aspects and preferably the legal aspects. The
task force should listen to all kinds of users and other stakeholders, but should not let
them decide.

Users must be involved, yes, but in the right way. Having lots of users debate and
trying to agree, rarely succeeds. But listening to their needs and complaints is
important. Using them as test subjects in usability tests and deployment tests is
mandatory.

Cure CG3. Monitor business case
Development takes so much attention that managers often forget about the business
goals. The result may be that the benefits don't materialize at the end.

The solution is to monitor the business case regularly during development. As an
example, once you have selected the supplier, the business case may change. Adjust it
and look for new opportunities. In general, review the business goals whenever you
review the risks.

Cure CG4. Correct risk management

Identify the important risks, e.g. by means of check lists and experiences from similar
projects. For each risk find ways to observe whether the risk materializes. As an
example, if the risk is project delay, find ways to measure whether progress is ok.
Next plan what to do in case it happens — compressing the rest is rarely a solution.
Don’t downplay the risk by saying it is unlikely. Plan what to do — just in case.

Cure CG5. Constructive lawyers

Analysts and developers are generally scared of lawyers. Whenever they ask a lawyer,
the answer is usually that what they want to do isn't allowed. To the lawyer, this is the
safe answer, but it can block progress. The advice is to find constructive lawyers (they
exist) and make them part of the project team. The team has joint responsibility for
coming up with a solution.

Cure CG6. Give management IT insight

In order to involve managers in a project, they need to understand what goes on below
the surface. Managers don’t have to learn programming, but they should understand
what a computer system does and how it interacts with the organization. Further they
should be able to detect when problems like the ones in this report turn up, and know
how to prevent them and what to do about them if they turn up. We welcome
suggestions for courses that give managers this insight.

Cure CG7. Ask expert developers

In many cases managers try to resolve problems on their own level, e.g. replacing
staff or asking for schedule extensions. This may be ok if they know the root causes,
but often they don’t. In order to find the root causes, they should ask the supplier’s
expert developers, and if possible, their own. These talks may need patience from
both sides.

59

8. References

References that apply to a specific project are shown after the introduction to that
project. The most important ones are shown below too.

1. Bonnerup/The Technology Advisory Board (March 2001): Experiences from
government IT projects - how to do it better (in Danish).

2. Kuhail, M. and Lauesen, S. (2011): Task descriptions versus use cases.
Requirements Engineering Journal, DOI 10.1007/s00766-011-0140-1.

3. Lauesen, S. (2005): User Interface Design - A Software Engineering Perspective.
Addison-Wesley, 2005.

4. Lauesen, S. (2012): Why the electronic land registry failed. Proceedings of
REFSQ 12, Springer Verlag. Also available at: http://www.itu.dk/people/slauesen/

5. Lauesen, S. (2018a): Problem-Oriented Requirements in Practice - a Case Study.
In: E. Kamsties et al. (Eds.): REFSQ 2018, LNCS 10753, pp. 3-19, 2018,
Springer, https://doi.org/10.1007/978-3-319-77243-1 1.

6. Lauesen, S. (2018b): Problem-oriented requirements SL-07 — Guide and contract
v7, 2019, ISBN: 9781791748906. Also available at:
http://lwww.itu.dk/people/slauesen/SorenRegs.html.

7. Metcalf-Rinaldo, O. and Mosko Jensen, S.: Learnings from the implementation of
Epic, 77 pages (July 2017), http://www.itu.dk/people/slauesen/

8. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om det digitale
tinglysningsprojekt (Report to the State Auditors on the Electronic Land Registry
project), 74 pages (in Danish) (August 2010).

9. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om
rejsekortprojektet (Report to the State Auditors on the Travel Card project), 47
pages (in Danish) (June 2011).

10. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om politiets it-
system POLSAG (Report to the State Auditors on the police IT system POLSAG),
56 pages (in Danish) (March 2013).

11. Rigsrevisionen (National Auditors): Beretning til Statsrevisorerne om SKATS
systemmodernisering (Report to the State Auditors on Tax’s system renovation),
34 pages (in Danish) (January 2015).

12. Vinter, O. and Lauesen, S.: Preventing Requirement Defects: An Experiment in
Process Improvement. Requirements Engineering Journal (2001) 6, pp. 37-50.
Springer Verlag, 2001.

13. Montealegre, R. and Keil, M.: De-escalating information technology projects: Lessons
from the Denver International Airport: MIS Quarterly, Vol. 24, No. 3 (Sep 2000), pp.
417-447.

