Heuristic Evaluation of User Interfaces
versus Usability Testing

Soren Lauesen and Mimi Pave Musgrove

This is Chapter 14 from Soren Lauesen: User Interface Design - A Software
Engineering Perspective, Addison-Wesley 2005, reprint 2007.

The chapter contains original research, but was never published in a journal or a
conference proceeding. To make it widely available and promote the textbook,
Soren Lauesen has published it on his web-site.

Section 14.4 is particularly interesting. It compares 17 evaluations of the same user
interface, a hotel booking system for Hotel Pennsylvania, New York. The evaluations
were made by 17 top-level usability teams in an experiment conducted by Rolf
Molich and Robin Jeffries. Eight teams used heuristic evaluation and nine teams
usability tests. The teams performed very differently, for instance in the number of
problems they identified. Molich and Jeffries made various subjective comparisons,
but never concluded anything about the basic question.

In contrast, Lauesen and Musgrove made a careful statistical comparison. It turned
out that there were no significant differences between the two groups. The
differences have other causes than the technique used.

The comparison uses statistics that is intuitive and rather easy to understand. It
shows the numbers behind the calculations, how randomness works (the statistical
model) and how the calculations were made in Excel.

14

Heuristic evaluation

Highlights

B Various kinds of heuristic evaluation.

B Cheaper than usability testing? Not necessarily.
B Missed problems and false positives? It depends.
B Users are different and randomness is inevitable.

B A precise statistical comparison of 8 expert teams against 9 usability teams (CUE-4).

Heuristic evaluation and usability testing are two different techniques for finding
usability problems. With heuristic evaluation, someone looks at the user interface
and identifies the problems. With usability testing, potential users try out the user
interface with real tasks. The problems found with usability testing are true problems
in the sense that at least one user encountered each problem. The problems found
with heuristic evaluation are potential problems — the evaluator suspects that
something may be a problem to users. Early in development, heuristic evaluation has
a hit-rate of around 50% and reports around 50% false problems. This is the first ‘law’
of usability (section 1.5).

In the world of programming there are similar techniques. During a program review,
someone looks at the program text to identify bugs. This corresponds to heuristic
evaluation. During a program test, the program is run on the computer and the
programmer checks the results. This corresponds to usability testing. Good program
reviewers can identify around 90% of the bugs and they report few false bugs.

14.1 Variants of heuristic evaluation 443

14.1

Variants of heuristic evaluation

Heuristic evaluation may vary according to the way the system is introduced to the
evaluators, the way the evaluators look at the system, the evaluator’s background, etc.

Introducing the system

Method

Explain the screens. The designer may explain each of the screens to the evaluator
before the evaluation. This of course helps the evaluator so that he may miss some of
the problems that real users might encounter. If the designer explains a lot, the
exercise may turn into a design review where designer and evaluator discuss
problems and alternative designs.

Explain nothing except the purpose of the system. If the designer doesn’t explain the
screens but only the purpose of the system, the evaluator will be on his own in a way
similar to a user. This approach is suited for systems to be used without introduction
or training. However, if the system is reasonably complex, the evaluators need some
introduction to the system. As a result the evaluator may miss some problems.
Experienced developers try to strike a balance by giving only a brief introduction to
each screen.

Heuristic rules. The evaluators may use a list of rules (guidelines) for identifying
potential problems. They look at the screens one by one, trying to determine where
the rules are violated. No doubt, rules help identify potential problems that otherwise
would have been overlooked. However, if the list of rules is long, evaluators are
unable to check all the rules carefully. We will look at some examples in section 14.2.

Subjective judgement. The evaluators may look at the screens one by one using their
subjective judgement and earlier experience. This is the typical approach,
particularly if the evaluators are potential users. Even if the evaluators use heuristic
rules, they cannot suppress their subjective judgement, so it is hard to isolate the
effect of the heuristic rules.

Task-based evaluation. The evaluators may be asked to check how various tasks are
carried out — or they may define such tasks on their own initiative. With this
approach, the exercise becomes quite similar to a usability test. The main difference
is that the test subject (the evaluator) also records the problems. This variant may
have a hit-rate close to usability testing as we will see in section 14.4.

Unfortunately, the task-based evaluation assumes that the system is operational. If
the system is still a mock-up, the evaluator doesn’t know how the system will react
(the human ‘computer’ is not there). As a result, the evaluator may believe it works
in one way and he will not realize that it is intended to do something else.

444

Heuristic evaluation 14

Evaluators

Usability specialist. The evaluator may be a usability specialist — a person with
knowledge of usability principles and experience in using them. However, the
specialist has no expertise in the application domain. Usability specialists tend to
report more potential problems than other kinds of evaluators. However, they still
miss around 50% of the true problems when using heuristic rules or subjective
evaluation.

Fellow developers. Developers without specific usability expertise can serve as
evaluators, but most of the results I have seen are not good. Fellow developers tend
to focus on technical details and deviations from the user interfaces they develop
themselves. They tend to suggest changes rather than pointing out the usability
problems. If they discuss their findings with the designer, they easily end up in
technical debates about what is possible and what should be done. (I often hear about
usability courses for developers where participants review each other’s designs.
Usually it ends in a disaster, particularly if they all try to design the same system.)

Potential users. Ordinary users may be so confused about all the screens that they
cannot express the problems they have. This doesn’t help the designer improve the
user interface. Expert users that have been involved in the development tend to look
for the system’s ability to handle special situations, and they cannot see the problems
that novices will encounter.

Number of evaluators

One at a time. Evaluators may work in isolation. Each evaluator writes down his
own list of problems. With several evaluators, this gives the designer a heavy job
trying to combine all the problem lists.

Combined list. Evaluators may be asked to come up with a combined list where each
problem is mentioned only once. Also, problems mentioned by only one evaluator
must be on the list. This gives the evaluators a heavy job reviewing each other’s lists.

Common list. Evaluators may be asked to come up with a common list of problems —
the problems that they all agree on as potential problems. In practice, this means that
some evaluators have to realize that they have missed some problems that others
detected. Other evaluators have to realize that a problem they pointed out may not
be a problem after all. All of this requires time-consuming negotiations, and for this
reason it is rarely done in practice.

Early evaluation

Early evaluation is highly important, and at this time only a mock-up is available.
The typical heuristic approach will be as follows:

14.1 Variants of heuristic evaluation 445

m Introduction: A developer briefly explains the screens.

®m Method: Subjective judgement supplemented with heuristic rules. Screens are
largely assessed one by one. (Task-based evaluation is not suitable.)

m Evaluators: Usability specialists if available. Sometimes fellow developers with a
good sense of usability.

® Number of evaluators: Two. Developers combine the lists into one.

This is the approach we assume in the first law of usability. It has a 50% hit-rate and
reports 50% false problems, primarily because developers explain the screens and because
evaluation is done screen by screen rather than task-wise.

446

Heuristic evaluation 14

14.2 Heuristic rules and guidelines

Heuristic rules can serve several purposes:

® Guide the designer during the design process (the design rules for virtual
windows are examples).

m Help evaluators identify problems in the user interface (checking that the rules
are followed).

m Explain observed usability problems (why did the user make this mistake).

Many authors have published heuristic rules for user interfaces. Already in 1986,
Shneiderman published the ‘eight golden rules’ of dialogue design (also in
Shneiderman 1998). The rules are as follows (with shortened explanations).

Eight golden rules of dialogue design (Shneiderman 1986)

1 Strive for consistency. (Use the same terminology and procedures in all parts of
the user interface.)

2 Enable frequent users to use short cuts. (Examples are short-cut keys,
abbreviations and macros.)

3 Offer informative feedback. (The system should indicate what it is doing and
which state it is in.)

4 Design dialogues to yield closure. (A dialogue should give the user the sense of
having completed his task.)

5 Offer simple error handling. (The system should detect errors and inform the
user of how to handle the situation. As far as possible, the system should prevent
the user from making errors.)

6 Permit easy reversal of actions. (Provide Undo as far as possible.)

7 Support internal locus of control. (Make the user feel that he is in control — not the
system.)

8 Reduce short-term memory load. (Users should not have to remember
information from one screen to another, they should choose from lists rather than
type commands, etc.)

These rules are still valid today. Shneiderman thought of the rules as design guidelines to be
used by the developer while he designs the user interface. They can of course also be used by
heuristic evaluators to identify usability problems.

Around 1990, Jakob Nielsen and Rolf Molich developed a list of heuristic rules,
specifically aimed at heuristic evaluation (Molich and Nielsen 1990). The authors
also used the rules to explain observed problems. The list is rather similar to
Shneiderman’s golden rules. The list has later been modified, extended to 10 rules

14.2 Heuristic rules and guidelines 447

and published in other places. Here is the original list, illustrated with problems
encountered in the hotel system.

Molich and Nielsen (1990)

1

Simple and natural dialogue. (Avoid irrelevant information and do things in a
natural and logical order.) This rule has no counterpart in Shneiderman’s golden
rules. It is a very broad rule that can vaguely explain many problems. In the hotel
system, we might for instance claim that the rule explains why many users didn’t
find the menu that helped them print a booking confirmation: the menu was not
in a natural order relative to the fields filled in by the user.

Speak the user’s language. (Use words familiar to the user. Avoid computer and
system jargon.) This rule too has no counterpart in Shneiderman’s golden rules.
In the hotel system, the term Stay was unfamiliar to most users. Yet most users
soon guessed what it meant. Surprisingly, hotel people had no term that covered
the system concept of a stay, so the problem was not easy to repair. Users
sometimes said guest, sometimes booking, but none of these correctly reflected the
stay concept, which users praised once they understood it.

Minimize the user’s memory load. (Users should not have to remember
information from one screen to another, they should choose from lists rather than
type commands, etc.) None of the hotel system problems related to this rule,
thanks to the use of combo boxes and a minimal set of windows.

Be consistent. (Use the same terminology and procedures in all parts of the user
interface. Follow platform conventions.) None of the hotel system problems
directly relate to this rule. Actually, some problems were caused by an attempt to
follow the platform conventions. The Microsoft Windows guidelines said that a
window had to have a File menu. In the hotel system there was no natural use for
a File menu, so the designers twisted their mind to put something in it. The users
didn’t buy the solution.

Provide feedback. (The system should indicate what it is doing and which state it
is in.) This rule can explain some of the problems in the hotel system, for instance
that users couldn’t see whether they had completed the check-in task. There was
no visible feedback.

Provide clearly marked exits. (Users should always see the way back, for instance
when they by mistake have entered a wrong screen.) You have to stress your
imagination, however, to make the rule cover undo. The rule partly matches
Shneiderman’s rule of Easy reversal of actions, which clearly covers undo.

Provide short cuts. (Intended for experienced users, unseen by the novice.) The
hotel system tried to follow this guideline, but in a few places it didn’t. However,
we couldn’t observe the problem because we didn’t try with experienced users.
This is a good example of a guideline that exceeds what we can easily find with
usability tests.

448

Heuristic evaluation 14

8 Provide good error messages. (Error messages should be friendly, precise and
constructive.) The hotel system tried to follow this rule, but sometimes missed.
One example is that the user wanted to extend a booking with one more day. In
the room grid, the user marked the entire period including the nights booked
already and clicked Book. The system replied that the room wasn’t free in the
entire period and suggested that the user choose another room. The user was
bewildered because the room was already partially booked by the guest and free
the next night. Although the system formally was right in its statement, it should
have recognized that the guest had the room already.

9 Error prevention. (Prevent users from starting erroneous actions.) This rule is
part of Shneiderman’s rule of simple error handling. In the hotel system, the
error mentioned under point 8 could have been prevented if the user was only
allowed to select free rooms. In general, the use of combo boxes and lists to
choose from, prevented a lot of errors. At the same time, it reduced the user’s
memory load.

Example: an error message from Microsoft Word

Let us try to use the heuristic rules on the situation shown in Figure 14.2. The
example is from an old version of Microsoft Word. The user tries to set the line
spacing so that there is half a line empty after the text. The system responds as
shown in the figure, and even offers help. When the user tries the help, the result is
as shown. It should be obvious that the dialogue is ridiculous and almost insulting.
The problem is that the user should have typed 0.5 Ii rather than 0.5 lines. Now, what
do the Molich—Nielsen rules tell us about it?

1 Simple and natural dialogue? Not quite. It is not obvious what Before and After
mean. Before what?

2 Speak the user’s language? Not quite. The user tries to write lines, the system
insists on [i.

3 Minimize the user’s memory load? Even if the user figures out what to type, it is
hard to remember the next time.

4 Be consistent? No problem. Or will the user miss an OK button in the Help
box?

5 Provide feedback? No problem. If the user succeeds, the system will give visual
feedback in the form of the new line spacing.

6 Provide clearly marked exits? No problem. Or will the user miss an OK button in
the Help box?

7 Provide short cuts? No problem. There are shortcuts in the standard way.

8 Provide good error messages? (Error messages should be friendly, precise and
constructive.) No, definitely not. Telling the user that he has done something
invalid is not friendly. The message is not precise because it doesn’t say which

14.2 Heuristic rules and guidelines 449

Fig 14.2 Heuristic rules

Spacing

Before: II:I pt 5 Line spacing: At
After: ID.SIines 5‘ IDoubIe j | =

Heuristic rules
(Molich and Nielsen1990):

1. Simple and natural dialogue

Speak the user’s language
& Thiz iz not & walid measurement

Help |

Minimize the user’'s memory load

Be consistent

Provide feedback

Provide clearly marked exits

Provide shortcuts

© N o o~ 0D

Provide good error messages:
5 Word Help friendly, precise, constructive

: 9. Error prevention
Invalid measurement.

*fou wrote text that iz nat recognized az a measure. Lauesen:

10. Explain by examples
How to comrect the ermor: V

b Wiite a walid measurement,

field is wrong. Finally, it is definitely not constructive because it doesn’t really tell
the user what to do — it only pretends to do so.

9 Error prevention? No, definitely not. A solution would be to allow the user to
select the measurement unit from a list.

What is the result of this rule-based evaluation? Several potential problems and
suggested solutions, from explaining what Before and After mean, to adding a Close
button on the Help box. As evaluators, we might report all of these problems and
suggestions. Imagine that we used the heuristic rules in the same systematic way on
every detail of the user interface. It would take a long time and the designer would
be flooded by potential problems and suggestions.

If we look for a simple and fast solution to the line-spacing dialogue, I would use an
additional heuristic rule of my own.

Lauesen

10 Explain by means of examples.

450 Heuristic evaluation 14

This rule would tell the designer to change the error message to, for instance:
Write the spacing as 0.5 li, 0.5 pt or 0.5 mm.
How can it happen?

This example from Word is quite scaring, but also very common. In Office 2000, the
error message is still the same, except that there is no Help button in the message
anymore.

Most of us often see nonsense messages and help texts similar to the one here. How
can it happen? The reason is that error messages and help texts are made by technical
writers — often at the last moment before release. The technical writer may master the
English language but doesn’t understand what the system does. Imagine that you
were a technical writer. You got this message box to fill in —among a hundred others.
You have to write something but haven’t got the time to find out when the message
occurs, what a measure is and what the user is allowed to write. Under these
circumstances you end up writing something that pretends to give an answer but is
sheer nonsense.

14.2 Heuristic rules and guidelines 451

Cost comparison

Is heuristic evaluation cheaper than usability tests? Sometimes — it depends on how
the techniques are carried out. Let us look at low-cost approaches early during
design — the most critical point in user interface development. At this point in time, it
doesn’t make sense to test with a lot of users. We know that there will be serious
problems that most users encounter, and we want to find them early. We may run a
usability test with three users, one by one. We assume that we have developers with
some usability background. They will run the tests, one as a facilitator and one as a
log keeper. In the low-cost version, this should take a total of 11 work hours,
including writing the test report (see details in section 13.2):

Work hours
Series of three users Facilitator Log keeper
Total for one user 80 min 80 min
Total for three users 240 min 240 min
Writing the test report 180 min
Total work hours 660 min (11 hours)

Let us compare it with a low-cost heuristic evaluation with two independent
evaluators. We assume that each evaluator uses his subjective judgement and lists
the problems he finds. Then he meets with a developer to explain his findings. (This
approach corresponds to inspection techniques used for program reviews. The
alternative is to write a detailed report. It will take much longer, and the developers
will most likely misunderstand it anyway.)

The time needed for the evaluation depends on the number of screens and their
complexity. We assume that the system at this stage has around 8 screens of medium
complexity. The total time used will be around this.

Work hours
Two evaluators, subjective
judgement Clock hours Evaluators Developer
Introduction to the system 0.5 1.0 0.5
Evaluating the system 2.0 4.0
Listing the problems 1.0 2.0
Explaining them to developer 1.0 2.0 2.0
Total 4.5 9.0 2.5

452

Heuristic evaluation 14

In this case, heuristic evaluation is a bit more expensive, 11.5 hours against 11. The
figures change of course, if we use fewer or more test persons and evaluators, or if
we vary the reporting approach. If evaluators check against heuristic rules, time for
heuristic evaluation will rise.

However, there are additional costs that we haven’t mentioned. One is the time it
takes to prepare a mock-up for early usability testing. Making the basic screens is
much the same whether the screens are to be used for usability testing or heuristic
evaluation. However, to prepare for usability testing, we have to make screen copies
and fill them with realistic data. Depending on the kind of system, this can take
several hours.

Another factor is the time it takes to find test persons versus heuristic evaluators.
This again depends on the kind of system and the developer environment.
Sometimes finding test users takes much time; in other cases it is harder to find the
right kind of evaluators.

14.3 Cost comparison 453

14.4 Effect comparison (CUE-4)

Early evaluation

Let us ignore the cost for a moment and look only at the effectiveness: the number of
problems found. When used early in development with paper mock-ups, heuristic
evaluation is less effective. It finds only around 50% of the problems that real users
encounter. Also serious task failures may be overlooked by evaluators. The main
reason seems to be that evaluators at this point in development cannot experiment
with the system. They need a bit of introduction from the developer and tend to
evaluate the system screen by screen, rather than task-wise.

Heuristic evaluation also reports a lot of false problems — problems that real users
don’t encounter, or only very few users. Trying to correct all of these false problems
is much more costly than any time saved by using heuristic evaluation rather than
usability testing.

Properly used, heuristic evaluation is valuable anyway. The trick is to consider
heuristic evaluation a help similar to when you have someone read and comment on
a paper you have written. Many of the comments are obvious when you hear them —
why did I overlook this, the author wonders. Other comments are more dubious, and
you may decide not to deal with them — particularly if it hard to do so. However, the
difference between writing a paper and designing a user interface is that if a reader
gets stuck, he can most likely just skip a small part of the paper. But if users get stuck,
the problem is real.

Effectiveness is not only a matter of precision: finding all the true problems and no
false ones. It is also about coverage — how many screens can we deal with. Here,
heuristic evaluation is more effective than usability testing. While users get
exhausted after about an hour and may have used only a few screens, evaluators can
keep going for several hours and can cover a lot of screens in that time.

Late evaluation (CUE-4)

When the system is operational, heuristic evaluation may work more like usability
testing. The evaluators can experiment with the system and use themselves as test
users. We will look closer at an ambitious comparison project in this area.

At the CHI 2003 Workshop, Rolf Molich and Robin Jeffries had arranged the CUE-4
experiment (Molich 2003). They had persuaded 17 of the world’s best usability teams
to evaluate the same public Web site, www.hotelpenn.com. This site offers on-line
booking on New York’s Hotel Pennsylvania. It had been used daily for around a year.

Eight of the usability teams were requested to use heuristic evaluation (expert
evaluation) and the remaining nine teams to use usability tests. Apart from this, the
teams could choose the evaluation approach (variant) they preferred. The result of

454

Heuristic evaluation 14

Making

their evaluation should be a list of the problems they had identified and the degree of
seriousness (category) for each problem. They were instructed to report not more
than 50 problems per team. The data is available for download (see Molich 2003).

Six teams reported 50 problems: one team 49 problems and the remaining teams
between 20 and 36 problems. Apparently, the limit of 50 had an influence on what
seven of the teams did. There was no apparent correlation between the number of
problems and whether the teams used heuristic evaluation or usability testing.

My Masters student Mimi Pave Musgrove studied all the problem reports to see
whether there was any significant difference between E-teams (expert/heuristic
evaluation) and U-teams (usability test). I helped with the statistics.

a list of distinct problems

The first task was to make a list of distinct problems, with each problem mentioned
only once. This was an immense task. First of all there were around 600 problem
reports. For each of these, Musgrove had to see whether the problem was on the
distinct list already or whether it had to be added to the list. This was usually quite
hard since teams reported in different styles and used different terms to report
essentially the same problem.

In many cases it was not clear whether two problem reports were the same problem
or two different ones. As an example, when one report pointed out an unreadable
black text on dark-green background in screen B, and another report pointed out a
similar text in screen C, do we then have one or two distinct problems? In this case
Mimi decided that it was the same problem. A careful developer would correct both
problems if directed to just one of them.

In some cases a single report contained two essentially distinct problems, and in
other cases a team reported essentially the same problem twice. Sometimes the
problems were reported as suggestions for change rather than a problem. And
sometimes a positive finding was reported, for instance the user liked the one-screen
approach, together with a negative one from another team, for instance the one-screen
approach is annoying.

Problem counts

The end of this hard work was a list of 145 distinct problems with an indication of the
teams that had reported each problem. Figure 14.4A shows the first problems on this
list. The teams were identified as A, B, C ... In the figure they are arranged so that
the E-teams are shown first, and the U-teams last. As an example, problem 3 was
detected by four E-teams (teams B, D, G and R) and by six U-teams (teams A, H, K, L,
N and S). In total, it was detected by 10 teams (hit-rate = 10). Problem 3 was that it
was difficult to compare promotion price and normal price. Users had to look at
different screens to see the two prices.

14.4 Effect comparison (CUE-4) 455

The seriousness of the problem is in most cases stated as the code P, Q or R, roughly
corresponding to minor problem, medium problem and task failure. Codes A, C and
T show good ideas, positive remarks and program errors (bugs). Note that different
teams may report the same problem with different degrees of seriousness. Problem 3
is a good example of this. Many teams report that it is a serious problem, and many
report that it is a minor problem. Team R, however, doesn’t explain the problem, but
gives a suggestion for a change in the user interface.

The middle part of Figure 14.4A gives an overview of the hit-rates for all 145
problems. No problem was reported by all 17 teams, but one problem was reported
by 16 teams. Two problems were reported by 10 teams, one of them being

problem 3 as we explained above. There were 54 singular problems — reported only
once.

Compared to the similar statistics for early problems (Figure 13.4), we have few
high-hit problems but still a lot of singular problems. Most of the high-hit problems
had probably been removed during development.

If we ignore all reports that are not task-failures (degree R), there are only 49
problems left. Their hit-rates are shown on the lower part of Figure 14.4A. The
remaining 96 problems never showed up as something serious. The top-hit was
problem 25, which nine teams found serious. There are still a surprising number of
singular problems among the R-problems. All of them looked serious to the teams
that reported them.

The bar graphs only tell us how many times each problem was reported in total. We
cannot see how many times it was reported by E-teams versus U-teams. If we look at
the raw data in the list, problem 3, for instance, was reported roughly the same
number of times by E- and U-teams. In contrast, problem 6 was reported once by
E-teams and four times by U-teams. Does this mean that U-teams were better at
detecting this particular problem? The short answer is yes, but it is a coincidence. We
will now look closer at this question.

First, we need a better overview of E- versus U-problems. Figure 14.4B shows a
matrix with all problems according to their E- and U-hit-rates. As an example, look at
the top row of the matrix. It shows all the problems that were not reported by any
E-team. Of these, 24 problems were reported by a single U-team. Seven were
reported by two U-teams, another seven by three U-teams, and one problem by four
U-teams.

Similarly, the first column shows the problems that were not reported by any
U-team. Of these, 30 problems were reported by a single E-team, three by two
E-teams and one by four E-teams. All other problems were reported by E-teams as
well as U-teams. As an example, three problems were observed by seven U-teams
and six E-teams.

456

Heuristic evaluation 14

Fig 14.4A Problems reported by 17 top-level HCI teams
CUE-4 hits per distinct problem

ProblemiD|B|C|D|E|F|G|P|R|A|H|J|K|L|M|N|O| S| Hit-rate
1 R R Q[Q|Q|R|Q| [Q]|Q|Q|Q|R|R 13
2 Q|Q R 3
3 Q Q R A|Q|R P|P Q Q 10
4 Q 1
5 Q Q R R Q 5
6 Q P|R PlQ 5
7 C|R Q|R[Q|P|Q|C|Q|R[P|Q|Q 13
8 R Q R 4
9 Q|R|R R|IQ|R|P|Q Q|Q|R|R Q 13

E-teams U-teams

60

wSOh_

5

%40*

o Total:

ug' 30 145 problems

2 04

g

< 10 1
O L Y|_|Y YDTDYDYDYDY:Y:YDY:TDT:Y 1
i 2 383 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Hit-rate, all problem reports

60

» 90

§

5 40

o

2 30 -

S)

S 20

€

>

Z 10 A
O T \D\EI\:I\:I\ T \:I\ T T T T T T T 1
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Hit-rate, only serious problem reports (R-degree)

14.4 Effect comparison (CUE-4) 457

In summary, we have these figures:

Count Percentage of U-problems
Problems observed by E but not by U 34 31% (false problems)
Problems observed by U but not by E 39 35% (missed problems)
Problems observed by E as well as U 72
Problems in total 145

These figures are somewhat better than predicted by the first ‘law” of usability. The
first law claims that heuristic evaluation misses 50% of the problems detected by
usability tests. In our case heuristic evaluation missed only 35%. The first law also
claims that heuristic evaluation predicts 50% false problems. In our case it predicted
only 31% false problems. And even so, are these ‘mistakes’ really mistakes or only
coincidences? In order to answer this question we need a statistical analysis.

Statistical analysis

If E- and U-teams are equally good at detecting problems, the number of E-hits and
the number of U-hits would be almost the same for a given problem. As a result, we
would expect the problems in Figure 14.4B to lie in the white band around the
diagonal from top-left to bottom-right. To some extent they do so, but it is not too
clear.

Let us state our expectation as a statistical hypothesis:
Hypothesis A: E- and U-teams detect a given problem with the same probability

What would this mean in practice? Assume that we have a problem that is observed
five times because of its nature. The middle of Figure 14.4B shows these five
observations as five balls. According to the hypothesis, they fall at random into the
17 bowls representing the 17 teams. However, in our case each team can receive at
most one ball because they were asked to report the problem at most once.

What are the possible outcomes of this? Well, the U-teams can together get either
zero, one, two, three, four or five balls. The E-teams will get the remaining of the five
balls. We can compute the exact probability of each of these outcomes, given our
hypothesis. The figure shows these probabilities. As an example, the chance of four
U-teams getting a ball is 16.3%. This is exactly what happened to problem 6 above. It
was observed five times, four of them by U-teams. So this outcome is quite probable.

Note that the probabilities are not symmetrical. The chance of zero U-hits is smaller
than the chance of zero E-hits. This is because there are more U-teams, so the chance
of them getting nothing is smaller.

458

Heuristic evaluation 14

Fig 14.4B Problems according to E-hits and U-hits

All problems
U-hits
Ehts|] o | 1 | 2 | 3 4 5 6 | 7 | 8 | 9
0 24 7 7 1
1 30 9 6 3 2 2
2 3 5 1 3 2 1
3 3 4 1 1 3 2 1
4 1 1 1 1 2 2 1
5 3 1 1
6 3 2
7 1 2 1
8 1

Five observations
dropped at random f/. .\

[BICIDIE[FIGIPIR[A[H[J[K[LIM][N]O[S]

E-teams U-teams
U-hits: 0 1 2 3 4 5
E-hits 5 4 3 2 1 0
Probability: 0.9%| 102%| 32.6%| 38.0%| 16.3%| 2.0%

Probability of a problem observed N times having
E expert observations and U usability observations
U-hits
Ehis|] o | 1+ | 2 | 3 | 4 5 6 | 7 | 8 | o
52.9% 26.5% 124%| 53% 2.0% 0.7% 0.2% 0.0% 0.0%

471% 529% 424% 282%|(163%) 81% 85% 1.2% 08% 0.0%

20.6% 371% 424%| 38.0%| 285% 18.1% 9.7% 4.1% 1.3% 0.2%
82% 212%| 32.6%| 38.0% 36.3% 29.0% 19.4% 10.4% 4.1% 0.9%
2.9%| 10.2%| 204% 30.2% 36.3%| 36.3% 30.2%| 204% 102% 29%
0.9% 41% 104% 19.4% 29.0% 36.3% 38.0%| 32.6% 21.2% 8.2%
02% 13% 41% 97% 18.1%| 285% 38.0%| 424% 37.1% 20.6%
00% 03% 12% 35% 8.1% 16.3% 282%| 424% 529% 47.1%
0.0% 0.0% 0.2% 0.7% 2.0% 53% 124% 26.5%| 52.9% 100.0%

0 N OO O D WN = O

14.4 Effect comparison (CUE-4)

How do we compute the probabilities? In principle, we compute the total number of
ways that five balls can fall into 17 bowls. Then we compute how many of these
ways give zero U-balls, one U-ball, etc. The probability is the number of ‘good” ways
divided by the total number of ways.

Technically speaking, the probabilities are a hypergeometric distribution. In
Microsoft Excel, we can compute the probability of getting x out of five balls with
this formula:

Probability(x U-hits) = HypGeomDist(x, 9, 5, 9+8)
when there are 9 U-teams, 8 E-teams and 5 hits in total

In the same way, we can compute the probabilities when there are 6, 7 and other hits
in total. In the lower part of Figure 14.4B, we have shown these computed
probabilities in a matrix. You find our 5-ball probabilities in the skew band of framed
cells. The circle shows where problem 6 belongs.

We have coloured all cells that are unlikely as outcome. The colour is dark if there is
less than 5% probability of a problem ending up here or in cells further away from
the diagonal. The colour is light if there is between 5 and 10% probability of a
problem ending up here or further away from the diagonal.

As an example, a 5-hit problem with zero E-hits has a probability of 2% and is thus in
dark colour. A 6-hit problem with one E-hit has a probability of 8.1%. With zero
E-hits it has a probability of 0.7%. In total, it has an 8.8% probability of being this far
away from the diagonal. Thus, it has a light colour.

These light and dark colours are the ones you also see at the top of the figure. Notice
that there are a few problems in the unlikely, coloured areas. In the upper right-hand
area there are five unlikely problems. In the lower left area there are two unlikely
problems. All other problems are in very likely positions.

Can we say that the odd problems are unlikely and that they prove a difference
between E- and U-teams? No, because the unlikely, coloured areas cover cells with
probabilities below 10%. Some problems should by chance end up there. Our first
guess might be that 10% of all problems should end up in the upper right-hand area.
We would thus expect 14.5 problems there. There are only five! Something must be
wrong. Maybe some teams have made a secret agreement on sharing the problems
more evenly than chance?

Fortunately, our guess of 10% was wrong. It would be right if the outcomes had been
distributed over a continuous scale, for instance according to a normal distribution,
but in our case they are not. Our observations are only yes or no, and we count the
yeses.

Figure 14.4C shows a precise calculation of the expected number of ‘unlikely”
problems. Let us as an example look at the circled cell with four U-hits and one E-hit.
A problem observed five times would end up in this cell with a probability of 16.3%.

460

Heuristic evaluation 14

Fig 14.4C Observed problems: predicted hits on average

Probability in this cell: 16.3%

Problems observed 5 times: 10 problems
Expected number in this cell: 1.63 problems

U-hits
Ehits| o [1 2 | 3 [\4 | 5 | 6 [7 | 8 | 9

0 28.59 5.03 222 0.48 0.20 0.04 0.01 0.00 0.00
1] 2541 10.06 7.62 254 0.49 0.10 0.07 0.01 0.00
2 3.91 6.67 3.81 3.80 1.71 0.54 0.58 0.21 0.03 0.00
3 1.48 1.91 3.26 2.28 1.09 1.74 0.97 0.21 0.04 0.01
4 0.26 1.02 1.22 0.91 2.18 1.81 0.60 0.20 0.10 0.15
5 0.09 0.24 0.31 1.16 1.45 0.73 0.38 0.33 1.06 0.08
6 0.01 0.04 0.25 0.48 0.36 0.29 0.38 2.12 0.37 0.82
7 0.00 0.02 0.06 0.07 0.08 0.16 1.41 0.42 2.12 0.47
8 0.00 0.00 0.00 0.01 0.02 0.26 0.12 1.06 0.53 0.00
High E Expected Actual High U Expected Actual
Total dark: 1.08 2 Total dark: 0.88 2
Total light: 1.83 0 Total light: 1.05 3
Total high E: 2.91 2 Total high U: 1.92 5
Serious problems (R-class)
U-hits
Ehis| o | 1+ | 2 | 3 [4 | 5 | 6 | 7 | 8 | o
0 11
1 20 7 2 1
2 3 1 1
3 1
4 1 1
5
6
7
8
\

Unlikely. Probability that singular U-hits <= 11 is 3.8%

There are ten 5-hit problems in the data. As a result we would expect 16.3% of the ten
problems to end up here, in other words 1.63 problems on ‘average’.

The figure shows the expected problems in every cell. We have computed the total
expected problems in the unlikely areas. For instance in the dark-coloured high-U
area, we would expect 0.88 problems. Actually two problems are observed in this
area. In the entire high-U area we would expect 1.92 problems, but actually there are
5. There is a small difference.

14.4 Effect comparison (CUE-4) 461

Similarly, in the high-E area we would expect 2.91 problems, and 2 are observed. We
cannot get much closer.

Conclusion A

Narrow

Our hypothesis was that E- and U-teams detected a given problem with the same
probability. This has been confirmed with high accuracy. Maybe U-teams are slightly
better at finding problems, but they have at most done it for two out of the five high
U-problems. (We cannot say which of these five.)

Does this disprove the first law of usability, that E-teams should find only 50% of the
U-team problems and produce 50% false problems? Yes it does, but only for the
conditions that this project dealt with:

m Late evaluations where E-teams can experiment with the product and use
themselves as test subjects

m Top-level HCI people
m Very few high-hit problems

® A dedicated effort by U-teams as well as E-teams to find unusual domain
situations

The last condition is not documented in the numbers involved, but it is obvious when you
read the test reports. It means that creativity in identifying domain situations has a large
influence on the problems reported. This creativity is much the same for all top-level HCI
teams, whether they use heuristic evaluation or not.

down to serious problems

The analysis above dealt with all problems. Are there differences when we look at
only the serious problems (degree R)? The bottom part of Figure 14.4C shows the
E-U matrix when we only include problem reports of degree R. The singular
problems dominate and there are very few other problems. No problem at all is in
the unlikely areas. There are simply too few problems for any to hit the unlikely cells.

However, there is a suspicious thing in the matrix. The singular problems are wryly
distributed: 11 for the U-teams and 20 for the E-teams. In the first matrix they were
more evenly distributed: 24 U-reports and 30 E-reports. Are these distributions
unlikely?

Let us test this statistical hypothesis:

Hypothesis B: E- and U-teams detect a given singular problem with the same
probability

This hypothesis is only slightly different from the first one, but the statistical model is
different because each problem is observed only once. We now imagine each singular

462

Heuristic evaluation 14

problem as a ball being dropped at random into one of the bowls — meaning that it is
observed by one of the teams. Contrary to our first hypothesis, each bowl may in this
case end up with several balls.

Since 9 of the 17 teams are U-teams, a ball will end up in a U-bowl with a probability
of 9/17, assuming that our hypothesis is true. We can compute the exact probability
that the U-bowls end up with x out of N balls. Technically speaking we have a binary
distribution with p = 9/17. In Excel, we can compute the probability with this
formula:

Probability(x singular U-problems) = BinomDist(x, N, 9/17, False)
when there are N singular problems in total, 9 U-teams and 17 teams in total

In our case, N is 31. The probability of x being 11 comes out as 2.2%. We want to
find the probability that x < 11. We can do this by computing the probabilities for
x=11,10,9, ..., 0 and adding them. Excel can do this for us when we let the last
parameter be True. The result is

Probability(x < 11) = 3.8% when we look only at serious, singular problems

Or as the statisticians say, this wryness is significant on the 3.8% level. When we
compute the same for all problems — not just the serious ones — we get

Probability(x < 24) = 13.3% when we look at all singular problems

According to statistical tradition, this would not be considered a significant wryness.

Conclusion B

E-teams report significantly more serious, singular problems than U-teams. If we
look at all the singular problems, there is no significant difference between U and E.
The reason seems to be that heuristic evaluators judge the singular problems as more
serious.

This is not so surprising after all. It is hard for an expert to judge how serious a
usability problem is to an ordinary user. It is more surprising that a similar difference
doesn’t show up for non-singular problems. Unfortunately, there are much too few
serious problems to reveal any difference.

14.4 Effect comparison (CUE-4) 463

