
Grammars and parsing with Java1

Peter Sestoft, Department of Mathematics and Physics

Royal Veterinary and Agricultural University, Denmark

E-mail: sestoft@dina.kvl.dk

Version 0.08, 1999-01-18

1The �rst (ML) version of these notes were written in 1992 while at the Technical University of Denmark.

Contents

1 Grammars and Parsing 3

2 Grammars 4

2.1 Grammar notation 4

2.2 Derivation 4

3 Parsing theory 6

3.1 Parsing: reconstruction of a derivation tree 6

3.2 A more machine-oriented view of parsing 8

3.3 Left factorization 9

3.4 Left recursive nonterminals 10

3.5 First-sets, follow-sets and selection sets 11

3.6 Summary of parsing theory 15

4 Parser construction in Java 16

4.1 Java representation of the input 16

4.2 Constructing parsing methods in Java 16

4.3 Parsing methods follow the derivation tree 19

4.4 Summary of parser construction 19

5 Scanners 20

5.1 Scanning
oating-point numerals 22

5.2 Scanning names 22

5.3 Distinguishing names from keywords 23

5.4 Scanning string constants 23

5.5 Summary of scanning: token streams 23

6 Parsers with attributes 24

6.1 Constructing attributed parsers 24

6.2 Building representations of input 28

6.3 Summary of parsers with attributes 30

7 A larger example: arithmetic expressions 31

7.1 A grammar for arithmetic expressions 31

7.2 The parser constructed from the grammar 31

7.3 A scanner for arithmetic expressions 33

7.4 Evaluating arithmetic expressions 34

8 Some background 35

8.1 History and notation 35

8.2 Extended Backus-Naur Form 35

8.3 Classes of languages 36

8.4 Further reading 36

9 Exercises 37

2

1 Grammars and Parsing

Often the input to a program is given as a text, but internally in the program it is better

represented more abstractly: by a Java object, for instance. The program must read the input

text, check that it is well-formed, and convert it to the internal form. This is particularly

challenging when the input is in `free format', with no restrictions on the lay-out.

For example, think of a program for doing symbolic di�erentiation of mathematical expres-

sions. It needs to read an expression involving arithmetic operators, variables, parentheses, etc.

It must check that the parentheses match, it should allow any number of blanks around opera-

tors, and so on, and must build a suitable internal representation of the expression. Doing this

without a systematic approach is very hard.

Example 1 This text �le describes the probable states of a slightly defective gas gauge in a

car, given the state of the car's battery and its gas tank:

probability(GasGauge | BatteryPower, Gas)

{

(0, 0): 100.0, 0.0;

(0, 1): 100.0, 0.0;

(1, 0): 100.0, 0.0;

(1, 1): 0.1, 99.9;

}

These lecture notes explain how to create programs that can read an input text �le such as the

above, check that its format is correct, and build an internal representation (an array or a list)

of the data in the input �le. Here we shall not be concerned with the meaning2 of these data. 2

Thus we provide simple tools to perform these tasks:

� systematic description of the structure of input data, and

� systematic construction of programs for reading and checking the input, and for converting

it to internal form.

The input descriptions are called grammars, and the programs for reading input are called

parsers. We explain grammars and the construction of parsers in Java. The methods shown

here are essentially independent of Java, and can be used with suitable modi�cations in any

language that has recursive procedures (Ada, C, ML, Modula, Pascal, etc.)

The order of presentation is as follows. First we introduce grammars, then we explain parsing,

formulate some requirements on grammars, and show how to construct a parser skeleton from

a grammar which satis�es the requirements. These parsers usually read sequences of symbols

instead of raw texts. So-called scanners are introduced to convert texts to symbol sequences.

Then we show how to extend the parsers to build an internal representation of the input while

reading and checking it.

Throughout we illustrate the techniques using a very simple language of arithmetic expres-

sions. At the end of the notes, we apply the techniques to parse and evaluate more realistic

arithmetic expressions, such as 3.1*(7.6-9.6/-3.2)+(2.0).

When reading these notes, keep in mind that although it may look `theoretical' at places,

the goal is to provide a practically useful tool.

2The lines (0, 0) and (0, 1) say that if the battery is completely uncharged (0) and the tank is empty (0) or
non-empty (1), then the meter will indicate Empty with probability 100%. The line (1, 0) says that if the battery
is charged (1) and the tank is empty (0), then the gas gauge will indicate Empty with probability 100% also.
Finally, the line (1, 1) says that even when the battery is charged (1) and the tank is non-empty (1), the gas
gauge will (erroneously) indicate Empty with probability 0.1% and Nonempty with probability 99.9%.

3

2 Grammars

2.1 Grammar notation

A grammar G is a set of rules for combining symbols to a well-formed text. The symbols that

can appear in a text are called terminal symbols. The combinations of terminal symbols are

described using grammar rules and nonterminal symbols. Nonterminal symbols cannot appear

in the �nal texts; their only role is to help generating texts: strings of terminal symbols.

A grammar rule has the form A = f1 | ... | fn where the A on the left hand side is the

nonterminal symbol de�ned by the rule, and the fi on the right hand side show the legal ways

of deriving a text from the nonterminal A.

Each alternative f is a sequence e1 ... em of symbols. We write � for the empty sequence

(that is, when m = 0).

A symbol is either a nonterminal symbol A de�ned by some grammar rule, or a terminal

symbol "c" which stands for c.

The starting symbol S is one of the nonterminal symbols. The well-formed texts are precisely

those derivable from the starting symbols.

The grammar notation is summarized in Figure 1.

A grammar G = (T;N;R; S) has a set T of terminals, a set N of nonterminals, a set R of

rules, and a starting symbol S 2 N .

A rule has form A = f1 | ... | fn, where A 2 N is a nonterminal, each alternative fi is

a sequence, and n � 1.

A sequence has form e1 ... em, where each ej is a symbol in T [N , and m � 0. When

m = 0, the sequence is empty and is written �.

Figure 1: Grammar notation

Example 2 Simple arithmetic expressions of arbitrary length built from the subtraction oper-

ator `-' and the numerals 0 and 1 can be described by the following grammar:

E = T "-" E | T .

T = "0" | "1" .

The grammar has terminal symbols T = f"-", "0", "1"g, nonterminal symbols N = fE, Tg,

two rules in R with two alternatives each, and starting symbol E. By convention, the �rst

nonterminal is the starting symbol. 2

2.2 Derivation

The grammar rule T = "0" | "1" above says that we may derive either the string "0" or the

string "1" from the nonterminal T, by replacing or substituting either "0" or "1" for T. These

derivations are written T =) "0" and T =) "1".

Similarly, from nonterminal E we can derive T, for instance. From T we could derive "0", for

example, which shows that from E we can derive "0", written E =) "0".

Choosing the other alternative for E we might get the derivation

E =) T "-" E

=) "0" "-" E

=) "0" "-" T

=) "0" "-" "1"

4

In each step of a derivation we replace a nonterminal with one of the alternatives on the right

hand side of its rule. A derivation can be shown as a tree; see Figure 2.

Every internal node in the tree in labelled by a nonterminal, such as E. The sequence of

children of an internal node, such as T, "-", E, represents an alternative from the corresponding

grammar rule.

A leaf of the tree is labelled by a terminal symbol, such as "-". Taking the leaves in sequence

from left to right gives the string derived from the symbol at the root of the tree: "0" "-" "1".

E
�
�
�
�
�
T

0

-

Z
Z
Z
Z
Z
E

T

1

Figure 2: A derivation tree

One can think of a grammar G as a generator of strings of terminal symbols. Let T � be the

set of all strings of symbols from T , including the empty string �. When A is a nonterminal, the

set of strings derivable from A is called L(A):

L(A) = f w 2 T �

j A =) w g

When grammar G has starting symbol S, the language generated by G is L(G) = L(S). Gram-

mars are useful because they are �nite and compact descriptions of usually in�nite languages.

In the example above we have L(E) = f0, 1, 0-0, 0-1, 1-0, 1-1, 0-0-0, . . . g, namely, the

set of well-formed texts according to the grammar. As shown here, the quotes around strings of

terminals are often left out.

Example 3 In mathematics, a rather liberal notation is used for writing down polynomials in

x, such as x3 � 2x2. The following grammar describes such polynomials:

Poly = Term

| Plusminus Term

| Poly Plusminus Term .

Term = Natnum "x" Exponent

| Natnum

| "x" Exponent .

Exponent = "^" Natnum

| � .

Plusminus = "+" | "-" .

Assume that Natnum stands for any natural number 0, 1, 2,

Check that the following strings are derivable: "0", "-0", "2x + 5", "x^3 - 2x^2",

and that the following strings are not derivable: "2xx", "+-1", "5 7", "x^3 + - 2x^2". 2

5

3 Parsing theory

We have seen that a grammar can be used to derive symbol strings having a certain structure.

When a program reads an input �le, the problem is the opposite: given an input text and a

grammar, we want to see whether the text could have been generated by the grammar. Moreover,

when this is the case, we want to know how it was generated, that is, which grammar rules and

which alternatives were used in the derivation. This process is called parsing or syntax analysis.

For the class of grammars de�ned in Figure 1 it is always possible to reconstruct a correct

derivation. In the method below we shall further restrict the grammars so that there is a simple

and e�cient way to perform the reconstruction.

This section explains a simple parsing principle. Section 4 explains how to construct Java

parser programs working according to this principle.

3.1 Parsing: reconstruction of a derivation tree

An attempt to reconstruct the derivation of a given string is called parsing . In these notes, we

perform the reconstruction by working from the starting symbol down towards the given string.

This method is called top-down parsing .

Consider again the grammar in Example 2:

E = T "-" E | T .

T = "0" | "1" .

Let us reconstruct a derivation of the string "0" "-" "1" from the starting symbol E. We will

do it by reconstructing the derivation tree, and therefore draw a box, write the starting symbol

E at the top, and write the given input string "0" "-" "1" at the bottom of the box:

E

0 - 1

(a)

Our task is to �nd a derivation tree which connects E with the string at the bottom. We

start from the top, and must derive something from E. According to the grammar, there are

two possibilities, E =) T "-" E and E =) T. Only the �rst alternative is useful because the

string, which involves a minus sign, could never be derived from T. So we extend the tree with

the branches T, "-", and E, as shown in box (b):

6

E
�
�
�
�
�
T

0 -

Z
Z
Z
Z
Z
E

1

(b)

The next task is to derive the string "0" from T; luckily the grammar allows T =) "0", so we

can extend the tree with the branch from T to "0" as shown in box (c):

E
�
�
�
�
�
T

0 -

Z
Z
Z
Z
Z
E

1

(c)

Next we must see how the remaining input symbol "1" can be derived from E. The E =) T

alternative is reasonable, so we extend the tree with a branch from E to T, as shown in box (d):

E
�
�
�
�
�
T

0 -

Z
Z
Z
Z
Z
E

T

1

(d)

Finally, we must derive "1" from T, but again there is a rule T =) "1", so we extend the tree

with a branch from T to "1", as shown in box (e):

7

E
�
�
�
�
�
T

0 -

Z
Z
Z
Z
Z
E

T

1

(e)

The parsing is complete: given the input string "0" "-" "1" we have constructed a derivation

tree for it. When a derivation tree is the result of parsing, it is usually called a parse tree.

The derivation tree tells us two things. First, the input string is derivable from the starting

symbol E. Secondly, we know at least one way it can be derived.

In the reconstruction, we worked from the top (E) and downwards; thus top-down parsing.

Also note that in each step we extended the tree at the leftmost nonterminal.

3.2 A more machine-oriented view of parsing

We now consider another way to explain top-down parsing, more suited for programming than

the trees shown above. We solve the same problem once more: can the string "0" "-" "1" be

derived from E using the grammar in Example 2?

Previously we wrote down the string, wrote the nonterminal E above it, and reconstructed a

derivation tree connecting the two. Now we write the string to the left, and the nonterminal E

to the right:

"0" "-" "1" E

This corresponds to the situation in box (a). In general there is a string of remaining input

symbols on the left and a sequence of remaining grammar symbols (nonterminals or terminals)

on the right. This situation can be read as an equation "0" "-" "1" = E between the two sides.

Parsing solves the equation in a number of steps. Each step rewrites the leftmost nonterminal

on the right hand side, until the input string has been derived. Whenever the same symbol is

at the head of both sides, we can cancel it. This is much like cancellation in algebra, where

x + y = x + z can be reduced to y = z by cancelling x. The parsing is successful when both

sides are empty, that is, �.

Returning to our task, we must rewrite E. There are two possibilities, E =) T "-" E and

E =) T. It is easy to see for the human reader that "0" "-" "1" can be derived only from

the �rst alternative, because of the "-" symbol. We now rewrite E to T "-" E and have the

con�guration

"0" "-" "1" T "-" E

This corresponds to the situation in box (b). Since T =) "0", we can get

"0" "-" "1" "0" "-" E

corresponding to the situation in box (c). Now we can cancel "0" and then "-" in both columns,

so we need only see how the remaining input symbol "1" can be derived from E. Choosing the

E =) T alternative and then T =) "1", we get in turn:

8

"1" E

"1" T

"1" "1"

The two latter lines correspond to the situations in box (d) and (e). Now we can cancel "1" on

both sides, leaving the empty string � on both sides, so the parsing process was successful. The

complete sequence of parsing steps was:

"0" "-" "1" E

"0" "-" "1" T "-" E

"0" "-" "1" "0" "-" E

"1" E

"1" T

"1" "1"

� �

We want to mechanize the parsing process by writing a program to perform it, but there is one

problem. To decide which alternative of E to use (in the �rst parsing step), we had to look ahead

in the input string to �nd the symbol "-". This lookahead is complicated to do in a program.

If our parsing program could choose the alternative by looking only at the �rst symbol of

the remaining input, then the program would be simpler and more e�cient.

3.3 Left factorization

The problem is with rules such as E = T "-" E | T, where both alternatives start with the

same symbol, T. We would like to factorize the right hand side into `T ("-" E | �)', pulling

the T outside a parenthesis, so to speak, and thus postponing the choice between the alternatives

until after T has been parsed.

However, our grammar notation does not allow such parenthesized grammar fragments. To

solve this problem we introduce a new nonterminal Eopt de�ned by Eopt = "-" E | �, and

rede�ne E as E = T Eopt. Thus Eopt represents the parenthesized grammar fragment above.

Moreover, in Section 6 below it will prove useful to replace E in the Eopt rule with its only

alternative T Eopt.

Example 4 Left factorization of the Example 2 grammar therefore gives

E = T Eopt .

Eopt = "-" T Eopt | � .

T = "0" | "1" .

The set of strings derivable from E is the same as in Example 2, but the derivations will be

di�erent. 2

Now the derivation of "0" "-" "1" (in fact, any derivation) must begin with E =) T Eopt,

and we need to see how "0" "-" "1" can be derived from T Eopt. Since T =) "0", we can

cancel the "0" and only need to see how the remaining input "-" "1" can be derived from Eopt.

There are two alternatives, Eopt =) � and Eopt =) "-" T Eopt.

Since � can derive only the empty string, whereas the other alternative can derive strings

starting with "-", we choose the latter. We now must see how "-" "1" can be derived from

"-" T Eopt. The "-" is cancelled, and we must see how "1" can be derived from T Eopt. Now

T =) "1", we cancel the "1", and we are left with the empty input. Clearly the empty input

can be derived from Eopt only by its �rst alternative, �.

The parsing steps for "0" "-" "1" with the left factorized grammar of Example 4 are:

9

"0" "-" "1" E

"0" "-" "1" T Eopt

"0" "-" "1" "0" Eopt

"-" "1" "-" T Eopt

"1" T Eopt

"1" "1" Eopt

� Eopt

� �

Notice that now we can always choose between the alternatives by looking only at the �rst

symbol of the remaining input. The corresponding derivation tree is shown in Figure 3.

E
�
�
�
�
�
T

0

Z
Z
Z
Z
Z
Eopt
�
�
�
�
�
- T

1

Z
Z
Z
Z
Z
Eopt

�

Figure 3: Derivation tree for the left factorized grammar

3.4 Left recursive nonterminals

There is another type of grammar rules we want to avoid. Consider the grammar

E = E "-" T | T .

T = "0" | "1" .

Some re
ection (or experimentation) shows that it generates the same strings as the grammar

from Example 2. However, E is left recursive: there is a derivation E =) E ... from E to a

symbol string that begins with E. It is even self left recursive: there is an alternative for E that

begins with E itself. This means that the grammar is no good for top-down parsing, since we

cannot choose between the alternatives for E by looking only at the �rst input symbol (in fact,

not even by looking at any bounded number of symbols at the beginning of the string).

Left factorization is not possible for the above grammar, since the alternatives begin with

di�erent nonterminals. The only solution is to change the grammar to one that is not left

recursive. Fortunately, this is always possible. In the present case, the original Example 2

grammar is a good solution.

In general, consider a grammar in which nonterminal A is self left recursive:

A = A g1 | ... | A gm | f1 | ... | fn .

The gi and fj stand for sequences of grammar symbols (possibly �). We require that m;n � 1,

and that no fj can derive a string beginning with A, so the only left recursion is through the

�rst m alternatives.

10

Observe that every string derived from A must begin with an fj, and continue with zero or

more gi's. Therefore we can construct the following equivalent grammar where A is not self left

recursive:

A = f1 Aopt | ... | fn Aopt .

Aopt = g1 Aopt | ... | gm Aopt | � .

The role of the new nonterminal Aopt is to derive sequences of zero or more gi's.

The new grammar produced by this transformation usually is not left recursive, and it

generates the same strings as the original one (namely, an fj followed by zero or more gi's). The

transformation sometimes produces a new grammar which is again left recursive. In that case,

one must apply (more) cleverness to �nd a non left recursive grammar.

3.5 First-sets, follow-sets and selection sets

Consider a rule A = f1 j f2, and assume we have an input string `t ...' whose �rst input

symbol is t. We want to decide whether this string could be derived from A. Moreover, we want

to choose between the alternatives f1 and f2 by looking only at the �rst input symbol.

There are two ways it might make sense to choose f1. First, if we can derive a string starting

with t from f1, then choosing f1 might be sensible. Secondly, if we can derive the empty string

� from f1, and we can derive a string starting with t from something following whatever is

derived from A, then choosing f1 might be sensible.

To make the choice between f1 and f2 simple, we shall require that for a given input symbol

t, it makes sense to choose f1, or f2, or none of them, but it must never make sense to choose

both. Accordingly, the parser chooses f1, or f2, or rejects the input as wrong. We now make

this idea more precise.

The set of terminal symbols that can begin a string derivable from f is called its �rst-set and

is written First(f). The set of symbols that can follow a nonterminal A is called its follow-set

and is written Follow(A).

The selection set for an alternative fi of a nonterminal A = f1 j ... j fn is First(fi) if fi
cannot derive the empty string �, and First(fi) [Follow(A) if fi can derive �:

Select(fi) =

(
First(fi) [Follow(A) if fi =) �

First(fi) otherwise

Intuitively, the selection set Select(fi) is the set of input symbols for which it is sensible to

choose fi. Why? It makes sense to choose fi only if the �rst input symbol can be derived from

fi, or if the input symbol can follow A, and A can derive � via fi.

How can we compute First(f)? If f is �, we have First(�) = fg because the empty string

does not start with any symbol.

If f is a terminal symbol "c", we have First("c") = fcg because the only string derivable

is "c", which begins with c.

If f is a nonterminal A whose rule is A = f1 j ... j fn, then the set of strings derivable

is the union of those derivable from the alternatives fi. Therefore First(A) is the union of the

�rst-sets of the alternatives.

If f is a sequence e1 e2 ... em, the set of strings derivable is the concatenation of strings

derivable from the elements. Thus First(f) includes First(e1). Moreover, if e1 can derive �,

then every string derivable from e2 ... em is derivable also from e1 e2 ... em. Therefore

when e1 can derive �, First(f) includes First(e2 ... em) also.

The computation of First(f) is summarized in Figure 4.

11

The �rst-set First(A) of a nonterminal A is the least (smallest) set of terminal symbols

satisfying these equations:

First(�) = fg

First("c") = fcg for terminal "c"

First(A) = First(f1) [: : : [First(fn) for nonterminal A

where A is de�ned by A = f1 j ...j fn

First(e1 e2 ... em) =

(
First(e1) [First(e2 ... em) if e1 =) �

First(e1) otherwise

Figure 4: Computation of �rst-sets

How can we compute the follow-set Follow(A) of a nonterminal A? Assume that A appears in

the rule B = ... j ... A f j ... for nonterminal B, where f is a string of grammar symbols

(possibly �). Then Follow(A) must include everything that f can begin with, that is, First(f).

Moreover, if f can derive �, then Follow(A) must include also everything that can follow B. This

is expressed by Figure 5.

The follow-set Follow(A) of nonterminal A is the least (smallest) set of terminal symbols

satisfying for every rule B = ...j ... A f j ..., that

Follow(A) �

(
First(f) [Follow(B) if f =) �

First(f) otherwise

Figure 5: Computation of follow-sets

Note in particular that the situation B = ...j ... A j ... corresponds to that above, with

f being �. In this case, the requirement is just Follow(A) � Follow(B) because f =) � and

First(�) = fg.

With these de�nitions, the requirement on grammars for parser construction is that the

selection sets of distinct alternatives fi and fj are disjoint: Select(fi) \ Select(fj) = fg. Then

a given input symbol c can belong to the selection set of at most one alternative, so the input

symbol determines which alternative to choose.

However, in practice we shall use the more easily checkable su�cient requirements given in

Figure 6.

Every grammar rule must have one of the forms

Form 0: A = f1

Form 1: A = f1 j ... j fn n � 2

Form 2: A = f1 j ... j fn j � n � 1

For rules of form 1 or 2 we require:

� For distinct fi and fj we must have First(fi) \ First(fj) = fg.

� No fi can derive �.

� In rules of form 2, we must have First(fi) \ Follow(A) = fg for all fi.

Figure 6: Su�cient requirements on grammar for parsing

12

The requirements in Figure 6 imply that the grammar does not contain a left recursive nonter-

minal (unless the nonterminal is unreachable from the starting symbol, and therefore irrelevant).

Looking again at the left factorization example, we see that it does not satisfy the �rst

requirement in Figure 6.

Example 5 Clearly First("0") = f0g and First("1") = f1g, so in the grammar from Exam-

ple 2

E = T "-" E | T .

T = "0" | "1" .

we have

First(T) = First("0") [First("1") = f0, 1g

First(T "-" E) = First(T) = f0, 1g

The rule E = T "-" E j T is of form 1 and does not satisfy the requirement on �rst-sets in

Figure 6, since the �rst-sets of the alternatives are not disjoint; they are identical. This problem

occurs whenever two alternatives begin with the same symbol. 2

Example 6 Let us compute Follow(T) for the grammar shown above. Consulting Figure 5, we

see that Follow(T) is the smallest set of terminal symbols which satis�es the two inequalities

Follow(T) � First("-" E) = First("-") = f�g

Follow(T) � Follow(E)

The �rst inequality is caused by the alternative E = T "-" E | ..., and the second one by the

alternative E = ...| T. In the latter case, the f following T is the empty string �.

But what is Follow(E)? It is the empty set fg, since Follow(E) is de�ned to be the least set

which satis�es

Follow(E) � Follow(E)

because there is a rule E = T "-" E | Any set satis�es this inequality. In particular the

empty set does, and this is clearly the least such set.

Using this fact, we see that Follow(T) = f-g. 2

Example 7 In the left factorized Example 4 grammar

E = T Eopt .

Eopt = "-" T Eopt | � .

T = "0" | "1" .

the Eopt rule has form 2, and we have for the alternatives of Eopt:

First("-" T Eopt) = First("-") = f-g

First(�) = fg

Reasoning as for Follow(E) in the previous example, we also �nd that Follow(Eopt) = fg.

The �rst-sets fg and f-g of the two alternatives are disjoint, and First("-" T Eopt) \

Follow(Eopt) = fg, so the E rule satis�es the grammar requirements. The selection sets for the

two alternatives are f"-"g and fg. This shows how to choose between the alternatives of E: if

the �rst input symbol is "-", then choose the �rst alternative ("-" T Eopt), and if the input is

empty, then choose the second alternative (�). 2

13

Now we know about �rst-sets, consider again the left recursive rule E = E "-" T | T from

Section 3.4. It has form 1, and for the �rst alternative we have

First(E "-" T) = First(E)

= First(E "-" T) [First(T)

� First(T)

Since First(T) = f0, 1g is not empty, the �rst-sets of the alternatives E "-" T and T are not

disjoint, and therefore the requirements of Figure 6 are not satis�ed.

Example 8 The following grammar describes more realistic arithmetic expressions:

E = E "+" T | E "-" T | T .

T = T "*" F | T "/" F | F .

F = Real | "(" E ")" .

Here E stands for expression, T for term, and F for factor. So an expression is the sum or

di�erence of an expression and a term, or just a term. A term is the product or quotient of a

term and a factor, or just a factor. A factor is a constant number, or an expression surrounded

by parentheses.

The rules for E and Tmust be transformed to remove left recursion as explained in Section 3.4:

E = T Eopt .

Eopt = "+" T Eopt | "-" T Eopt | � .

T = F Topt .

Topt = "*" F Topt | "/" F Topt | � .

F = Real | "(" E ")" .

Now we must check the grammar requirements. First we compute the follow-sets.

To determine Follow(E) we list the requirements imposed by Figure 5, by considering all

right hand side occurrences of E. There is only one, in the F rule:

Follow(E) � First(")")

= f ")" g

Now Follow(E) is the smallest set satisfying this requirement, so

Follow(E) = f ")" g

To determine Follow(Eopt) we similarly �nd the requirements

Follow(Eopt) � Follow(E)

Follow(Eopt) � Follow(Eopt)

Again, Follow(Eopt) is the least set satisfying these requirements, so we conclude that

Follow(Eopt) = f ")" g

To determine Follow(T) we note the sole requirement

Follow(T) � First(Eopt) [Follow(Eopt)

= f "+", "-" g [Follow(Eopt)

for which the smallest solution is

Follow(T) = f "+", "-", ")" g

14

To determine Follow(Topt) we note the requirements

Follow(Topt) � Follow(T)

Follow(Topt) � Follow(Topt)

for which the smallest solution is

Follow(Topt) = Follow(T)

= f "+", "-", ")" g

Now let us check the grammar requirements from Figure 6:

� The rules for E and T are of type 0 and therefore OK.

� The rule for F is of type 1 and OK because the �rst-sets f Real g and f "(" g are disjoint.

� The rule for Eopt is of type 2 and OK because the �rst-sets f "+" g and f "-" g and the

follow-set Follow(Eopt) = f ")" g are disjoint.

� The rule for Topt is of type 2 and OK because the �rst-sets f "*" g and f "/" g and the

follow-set Follow(Topt) = f "+", "-", ")" g are disjoint.

Thus the transformed grammar satis�es the requirements. 2

3.6 Summary of parsing theory

We have shown informally how top-down parsing works. We de�ned the concepts of �rst-set

and follow-set. Using these concepts, we formulated a su�cient requirement on grammars for

parser construction. For a grammar to satisfy this requirement, it must have no two alternatives

starting with the same symbol, and no left recursive rules.

15

4 Parser construction in Java

We now show a systematic way to write a parser skeleton (in Java) for input described by a

grammar satisfying the requirements in Figure 6. The parser skeleton checks that the input is

well-formed, but does not build an internal representation of it; this will be done in Section 6.

4.1 Java representation of the input

The raw input (from a text �le) is a stream of characters. For parsing, we need to turn this into

a stream of tokens, where a token is the internal representation of a terminal symbol.

In Java we can represent a token stream by an object ts of some class Tokenstream. This class

must have a �eld ts.tok which holds the current token, and it must have a method ts.next()

to read the next token in the stream. In addition, it must have a method parseerror to signal

an error in the input. The parser must access the input through the token stream ts only.

We shall use integers (int) to represent tokens; this allows us to use tokens in Java's switch

statements. A simple token corresponding to a character, such as '-', may be represented just

by its character code (always non-negative). A simple token corresponding to a keyword in the

source language, such as while, may be represented by a negative integer, e.g. �101.

However, some tokens occur in families. For instance, the terminal symbol Real may stand

for all
oating-point numbers. We cannot have a distinct integer for each
oating-point number,

so terminal symbols belonging to this family will be represented by a number, such as �97,

together with a �eld nval of type double in the Tokenstream object. We return to the subject

of token streams in Section 5 below.

4.2 Constructing parsing methods in Java

A parser for a grammar G satisfying the requirements of Figure 6 can be constructed system-

atically from the grammar rules. The parser will consist of a set of mutually recursive parsing

methods, one for each nonterminal in the grammar.

The parsing method corresponding to nonterminal A is called A also. It tries to �nd a string

derivable from A at the beginning of the current token stream. If it succeeds, then it just

returns, possibly after having read more tokens from the token stream. If it fails, then it throws

an exception.

Grammar The parser for grammar G = (T;N;R; S) has form

void A1() { ... }

void A2() { ... }

...

void Ak() { ... }

void parse() {

S();

if (ts.tok != Tokenstream.EOF)

throw ts.parseerror("Expected end of file");

return;

}

where fA1, . . . , Akg = N is the set of nonterminals and S is the starting symbol. The main

method is parse; it tries to parse the input according to S. If parsing succeeds and no input

remains, it just returns; otherwise it raises an exception.

16

Rule of form 0 The parsing method for a rule of form A = f1 is

void A() {

parse code for f1
return;

}

Rule of form 1 The parsing method for a rule of form A = f1 | ... | fn is

void A() {

switch (ts.tok) {

case t11: ... case t1a1:

parse code for alternative f1

return;

...

case tn1: ... case tnan:

parse code for alternative fn

return;

default:

throw ts.parseerror("Expected t11 or ... or tnan");

}

}

where fti1,. . . ,tiaig = First(fi) is the �rst-set of alternative fi, for i = 1; : : : ; n.

Rule of form 2 The parsing method for a rule of form A = f1 | ... | fn| � is

void A() {

switch (ts.tok) {

case t11: ... case t1a1:

parse code for alternative f1
return;

...

case tn1: ... case tnan:

parse code for alternative fn

return;

default:

return;

}

}

where fti1,. . . ,tiaig = First(fi) as above.

Sequence The parse code for an alternative f which is a sequence e1 e2 ... em is

P(e1)

P(e2)

...

P(em)

where the parse code P(ei) for each symbol ei is de�ned below. Note that when the sequence

is empty (that is, m = 0), the parse code is empty, too.

Nonterminal The parse code P(A) for a nonterminal A is a call A(); to its parsing method.

17

Terminal The parse code P("c") for a terminal "c" depends on its position ej in the sequence

e1 ... em.

If the terminal is not the �rst symbol e1, then we must check that c is the current symbol

in the token stream ts, and, if so, read the next token:

if (ts.tok != c)

throw ts.parseerror("Expected c");

ts.next();

If the terminal is the �rst symbol e1, then this check has already been made by the switch code

for alternatives, so we just need to read the next token:

ts.next();

Note that in parser construction for grammar rules of form 1 and 2, the grammar requirements

ensure that the �rst-sets are disjoint, so the case-alternatives are all distinct. Also, for rules of

form 2, the grammar requirements ensure that every �rst-set is disjoint from the follow-set of A,

so an fi alternative is never wrongly chosen instead of the default alternative (for �), which

occurs last.

Example 9 Applying this construction method to the left factorized grammar from Example 4

gives the parser below. The token stream is provided by an object ts of class Tokenstream.

class Example9 {

private Tokenstream ts;

public Example9(Tokenstream ts)

{ this.ts = ts; }

void E()

{ T(); Eopt(); return; }

void Eopt() {

switch (ts.tok) {

case '-':

ts.next(); T(); Eopt(); return;

default:

return;

}

}

void T() {

switch (ts.tok) {

case '0':

ts.next(); return;

case '1':

ts.next(); return;

default:

throw ts.parseerror("Expected 0 or 1");

}

}

18

void parse() {

E();

if (ts.tok != Tokenstream.EOF)

throw ts.parseerror("Expected end of file");

return;

}

}

To demonstrate the construction method we have followed it mindlessly in this example. Parts

of the program may be improved, but it is advisable to postpone such improvements until you

have acquired more practice with parser construction. 2

The parser may be used as follows to read �le "example1.zo" and check that it is well-formed:

class TestExample9 {

public static void main(String[] args) {

Tokenstream ts = new ZeroOnescan("example1.zo");

Example9 p = new Example9(ts);

p.parse();

}

}

The subclass ZeroOnescan of Tokenstream is de�ned in Example 10 below.

4.3 Parsing methods follow the derivation tree

It is interesting to consider how the token stream <'0', '-', '1', EOF>, which corresponds to

the input "0" "-" "1", is parsed by the parsing methods above. It turns out that the sequence

of calls closely follows the derivation tree:

E calls T with <'0','-','1',EOF>

T �nds a '0'; now <'-','1',EOF> remains

E calls Eopt with <'-','1',EOF>

Eopt �nds a '-'; now <'1',EOF> remains

Eopt calls T with <'1',EOF>

T �nds a '1' and returns to Eopt; now <EOF> remains

Eopt calls a second instance of Eopt with <EOF>

Eopt �nds EOF and returns to the �rst Eopt; now <EOF> remains

Eopt returns to E

If we draw this sequence of calls as a tree, we get precisely the derivation tree in Figure 3. The

parsing methods walk through the derivation tree from left to right. This is no coincidence,

but a result of the systematic construction shown above: the derivation tree corresponds to a

particular string and a particular grammar, and the parser was constructed systematically from

this grammar.

4.4 Summary of parser construction

We have shown a systematic way to construct a parser skeleton from a grammar satisfying the

requirements in Figure 6. The parser skeleton just checks that the input, which is a list of

terminal symbols, follows the grammar. In Section 6 we show how to make the parser return

more information, such as an internal representation of the input.

The parser in Example 9 can be found in �le Example9.java.

19

5 Scanners

Now we shall see how to represent a token stream. As explained above, input �les are character

streams, but it is inconvenient to work with the bare characters. Therefore parsing of text �les

is usually divided into two phases:

In the �rst phase, the character stream is converted to a stream of tokens, and lay-out

information (such as blanks, newlines, and tabulation characters) in the input text is removed.

This is called scanning or lexical analysis and is explained in this section.

In the second phase, the stream of tokens is parsed as described in the previous sections.

The division into two phases gives a convenient way to allow any number of blanks between

numerals and names without allowing blanks inside numerals and names. By a blank we mean

a space character, a tabulation character, or a newline. The scanner decides what is a numeral,

what is a name, and so on, and throws away all extra blanks. Then the parser never sees a

blank: only numerals, names, and so on.

Although a scanner could be constructed systematically from a grammar for terminal sym-

bols, we will not do that here.

We said in Section 4.1 that a token stream object must have a �eld ts.tok which tells us

what the current token is, and a method ts.next() to read the next token in the stream. In

addition it must have a �eld nval for representing the value of a numeric token, a �eld sval

for representing the value of a word token, and a method for raising an exception in case of a

parse error. We represent these requirements by the following abstract classes Tokenstream and

Parseerror:

abstract class Tokenstream {

final static int DOUBLE = -97;

final static int NAME = -98;

final static int STRING = -99;

final static int EOF = -100;

public int tok;

public double nval;

public String sval;

abstract public void next();

public IllegalArgumentException parseerror(String msg)

{ return new Parseerror(msg + " but found " + this); }

}

class Parseerror extends IllegalArgumentException {

public Parseerror(String s)

{ super(s); }

}

The token constants DOUBLE, NAME, STRING, and EOF represent
oating-point numerals, names,

string constants, and the end-of-�le marker. See Sections 5.1, 5.2, and 5.4 below.

To implement concrete subclasses of this class, we use the StreamTokenizer class from the

Java library package java.io to split an input character stream into token stream. We might just

use the StreamTokenizer class itself, but this turns out to be insu�cient when we want to scan

languages that have keywords or reserved names; see Section 5.3.

20

Example 10 The token stream object below could be used with the parser in Example 9. It

ignores all blanks, and considers all characters other than `-', `0' and `1' illegal.

import java.io.*;

class ZeroOnescan extends Tokenstream {

private StreamTokenizer strtok;

public ZeroOnescan(String filename) {

try {

strtok = new StreamTokenizer(new FileReader(filename));

setup();

next();

} catch (IOException e)

{ throw new Tokenerror("Error opening file " + filename); }

}

private void setup() {

strtok.resetSyntax();

strtok.whitespaceChars(' ', ' ');

strtok.whitespaceChars('\t', '\t');

strtok.whitespaceChars('\n', '\n');

strtok.whitespaceChars('\r', '\r');

}

public void next() {

if (tok != EOF)

try {

tok = strtok.nextToken();

switch (tok) {

case StreamTokenizer.TT_EOF:

tok = EOF; break;

case '0': case '1': case '-':

break;

default:

throw new Tokenerror("Illegal token " + this);

}

} catch (IOException e) { throw new Tokenerror(e.getMessage()); }

}

public String toString() {

switch (tok) {

case StreamTokenizer.TT_EOF: case EOF:

return "<EOF>";

default:

return "" + (char)tok;

}

}

}

class Tokenerror extends IllegalArgumentException {

public Tokenerror(String s)

{ super(s); }

}

21

2

The token stream is used as follows with the parser from Example 9 to scan and parse the

contents of a �le example1.zo:

class TestExample9 {

public static void main(String[] args) {

Tokenstream ts = new ZeroOnescan("example1.zo");

Example9 p = new Example9(ts);

p.parse();

}

}

5.1 Scanning
oating-point numerals

A numeral is a string of characters that represents a number, such as 3.1414 or -4.0. Floating-

point numeral can be described by this grammar:

Real = "-" Digits "." Digits | Digits "." Digits .

Digits = Digit | Digit Digits .

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

We can make StreamTokenizer recognize numbers by adding this line to method setup:

strtok.parseNumbers();

Then we just need to create a DOUBLE token when meeting a TT_NUMBER in the next method:

case StreamTokenizer.TT_NUMBER:

nval = strtok.nval; tok = DOUBLE; break;

5.2 Scanning names

Suppose we need to scan and parse an input language (such as a programming language) which

contains names of variables, procedures, or similar. Names are also called identi�ers. A name

in this sense is typically a nonempty sequence of letters and digits, beginning with a letter, and

containing no blanks. Names can be described by this grammar:

Name = Letter Letdigs .

Letdigs = Letter Letdigs | Digit Letdigs | � .

Letter = "A" | ... | "Z" | "a" | ... | "z" .

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

Since our token stream is based on StreamTokenizer, it is easy to make it recognize such names.

We just need to tell the StreamTokenizer, in method setup, what characters can make up a

name:

strtok.wordChars('a', 'z');

strtok.wordChars('A', 'Z');

strtok.wordChars('0', '9');

Then we de�ne, in method next, that TT_WORD should be turned into a NAME token:

case StreamTokenizer.TT_WORD:

sval = strtok.sval; tok = NAME; break;

22

5.3 Distinguishing names from keywords

Most (programming) languages have so-called keywords or reserved names which are sequences

of letters that cannot be used as names. For instance, Java and C++ have the keywords `class',

`while', `do', etc., which cannot be used as variable names.

Each keyword should be represented by a distinct token, not as yet another name. For

instance, if `class', `while', and `do' are keywords, then the corresponding tokens may be

CLASS, WHILE, and DO, de�ned as suitable integer constants:

final static int CLASS = -101;

final static int WHILE = -102;

final static int DO = -103;

...

The token stream may distinguish names from keywords as follows. Whenever a token that

looks like a name has been found, its string value is compared to the list of keywords. The token

is classi�ed as a keyword if it is in the list, otherwise it is classi�ed as a name. For example,

the following extension of the above scanner's the next method will distinguish keywords from

names:

case StreamTokenizer.TT_WORD:

sval = strtok.sval;

if (sval.equals("class")) tok = CLASS;

else if (sval.equals("while")) tok = WHILE;

else if (sval.equals("do")) tok = DO;

else ...

else tok = NAME;

break;

If the set of keywords is large, one may use more e�cient means to �nd the token corresponding

to a given string. For instance, the Hashtable class from the java.util package may be useful.

5.4 Scanning string constants

Most (programming) languages have a notion of a string constant, which consists of a sequence of

characters enclosed in double quotes, such as "Hello, world". We can make the token stream

recognize string constants by adding the following line to the setup method:

strtok.quoteChar('"');

The next method must recognize this as a STRING token, and store the string's contents in the

sval �eld:

case '"':

sval = strtok.sval; tok = STRING; break;

5.5 Summary of scanning: token streams

Scanning is the �rst phase in the parsing of a text. It turns a stream of characters into a stream

of tokens, which is then read by a parser in the second phase.

23

6 Parsers with attributes

So far a parser just checks that an input string can be generated by the grammar: only the form

or syntax of the input is handled. Of course we usually want to know more about the input, so

we extend the parsers to return a representation of the input.

For this, every parsing method must return an additional result. Some parsing methods take

an additional parameter too. The additional parameters and results are called attributes.

6.1 Constructing attributed parsers

We still use parser skeletons constructed as in Section 4.2, but we add code to handle the

attributes. So far a parsing method A has had type

void A() { ... }

That is, it has taken no arguments are returned no result. But from now on its type will be

outvaluetype A(invaluetype inval)

where invaluetype and outvaluetype are the types of the attributes. We call A an attributed

parser. The inval argument is called an inherited attribute and the return value is called

a synthesized attribute. One may decorate parse trees with attribute values. An inherited

attribute is sent down the tree as an argument to a parsing method, and a synthesized attribute

is sent up the tree as a result from a parsing method.

Some parsing methods do not take any inherited attributes, but most attributed parsing

methods return a synthesized attribute. An attributed parsing method A either returns the

synthesized attribute, or throws an exception.

One cannot say in general how to turn a parser skeleton into an attributed parser. What

extensions and changes are required depends on the kind of information we need about the

parsed input. Below we consider a typical example: simple expressions.

The main method parse of a parser now either returns a result or raises an exception. For

instance, if the type outvaluetype is really double, then parse is written like this:

double parse() {

double ev = E();

if (ts.tok != Tokenstream.EOF)

throw ts.parseerror("Expected end of file");

return ev;

}

where E is the starting symbol of the grammar. In the examples and exercises below, method

parse will always have this form, and is therefore not shown.

Arithmetic expressions are usually evaluated from left to right. One also says that the

arithmetic operators, such as `-', associate to the left , that is, group to the left.

Example 11 Recall the parser skeleton for simple arithmetic expressions in Example 9. We

extend it so that every parsing method returns a synthesized attribute which is the value of the

expression parsed by that method. To evaluate from left to right, we also extend method Eopt

with an inherited attribute inval which at any point is the value of the expression parsed so far.

When a T is parsed in the '-' branch of method Eopt, its value tv is subtracted from inval,

and the result is passed to Eopt in the recursive call.

24

class Example11 {

private Tokenstream ts;

public Example11(Tokenstream ts)

{ this.ts = ts; }

double E() {

double tv = T();

double ev = Eopt(tv);

return ev;

}

double Eopt(double inval) {

switch (ts.tok) {

case '-':

ts.next();

double tv = T();

double ev = Eopt(inval - tv);

return ev;

default:

return inval;

}

}

double T() {

switch (ts.tok) {

case '0':

ts.next(); return 0;

case '1':

ts.next(); return 1;

default:

throw ts.parseerror("Expected 0 or 1");

}

}

double parse() { ... }

}

Method E �rst calls T. Method T parses a "0" or a "1", and returns the integer 0 or 1, which

gets bound to tv. This value is passed to Eopt as an inherited attribute inval. In method Eopt

there are two possibilities: either it parses "-" T Eopt: calls T again, subtracts the new T-value

tv from inval, and passes the di�erence to Eopt in the recursive call, or it parses �, in which

case it just returns inval.

At any point, inval is the value of the expression parsed so far. When the input is empty,

inval is the value of the entire expression. 2

Figure 7 shows the attribute values when parsing the input string "0" "-" "1" "-" "1"

and evaluating from left to right, as done by the parser above. The inherited attribute inval is

shown to the left of the lines, and the synthesized attributes are shown to the right.

25

E
�

�
�

�
�
T

0

Z
Z
Z
Z
Z
Eopt

�
�
�
�
- T

1

b
b
b
b
b
b
Eopt

�
�
�
�
- T

1

b
b
b
b
b
b
Eopt

�

0 0
�2

1
�1

�2

1
�2

�2

Figure 7: Parse tree with attributes for left-to-right evaluation

A typical use of the attributed parser is

class TestExample11 {

public static void main(String[] args) {

Tokenstream ts = new ZeroOnescan("example1.zo");

Example11 p = new Example11(ts);

System.out.println(p.parse());

}

}

Some parsing methods could be simpli�ed. For instance, the method E could be simpli�ed to:

double E()

{ return Eopt(T()); }

Such simpli�cations are best done after the parser has been written. Their e�ect on execution

time is limited, so they are mostly of cosmetic value. Also, simpli�cations require a good

understanding of expression evaluation order in Java; otherwise one may introduce subtle errors.

Above we de�ned left-to-right evaluation of arithmetic expressions, which is usual in pro-

gramming languages. What if we had a bizarre desire to evaluate from right to left (as in the

programming language APL)? This can be done with a small change to the attributed parser

above.

26

Example 12 The attributed parser in Example 11 can be changed to evaluate the expression

from right to left as follows:

class Example12 {

private Tokenstream ts;

public Example12(Tokenstream ts)

{ this.ts = ts; }

double E() {

double tv = T();

double ev = Eopt(tv);

return ev;

}

double Eopt(double inval) {

switch (ts.tok) {

case '-':

ts.next();

double tv = T();

double ev = Eopt(tv);

return inval - ev;

default:

return inval;

}

}

double T() {

switch (ts.tok) {

case '0':

ts.next(); return 0;

case '1':

ts.next(); return 1;

default:

throw ts.parseerror("Expected 0 or 1");

}

}

double parse() { ... }

}

The only change is in the '-' branch of the Eopt method. The subtraction is now done after

the recursive call to Eopt.

At any point, inval is the value (0 or 1) of the last T parsed. The value ev of the remaining

expression is subtracted from inval after the recursive call to Eopt. No subtractions are done

until the entire expression has been parsed; and then they are done from right to left. 2

Figure 8 shows the attribute values when parsing the input string "0" "-" "1" "-" "1",

and evaluating from right to left, as done by the parser above. The inherited attribute inval is

shown to the left of the lines, and the synthesized attributes are shown to the right.

27

E
�

�
�

�
�
T

0

Z
Z
Z
Z
Z
Eopt

�
�
�
�
- T

1

b
b
b
b
b
b
Eopt

�
�
�
�
- T

1

b
b
b
b
b
b
Eopt

�

0 0
0 = 0� 0

1
1
0 = 1� 1

1
1
1

Figure 8: Parse tree with attributes for right-to-left evaluation

6.2 Building representations of input

An important application of attributed parsers is to build representations of the input that has

been read by the parser. Such representations are often called abstract syntax trees. An abstract

syntax tree is a representation of a text which shows the structure of the text and leaves out

irrelevant information, such as the number of blanks between symbols.

A
exible and general way to represent abstract syntax trees in Java is to use classes and

subclasses. For instance, to represent simple expressions as de�ned in Example 2, one may de�ne

an abstract class Expr of expressions, and concrete classes Zero, One, and Minus, corresponding

to each of the three kinds of expressions:

abstract class Expr

{ abstract public String toString(); }

class Zero extends Expr {

public String toString()

{ return "0"; }

}

class One extends Expr {

public String toString()

{ return "1"; }

}

class Minus extends Expr {

Expr e1, e2;

public Minus(Expr e1, Expr e2)

{ this.e1 = e1; this.e2 = e2; }

public String toString()

{ return e1 + "-" + e2; }

}

28

These class declarations say: there is an abstract concept Expr of expression. There are concrete

expression concepts Zero and One, corresponding to 0 and 1. There is a concrete expression

concept Minus, which consists of two subexpressions e1 and e2. Any object belonging to class

Expr, or one of its subclasses, knows how to convert itself to a String.

Thus the expression 0-1 can be represented as new Minus(new Zero(), new One()). The

expression 0-1-1 can be represented either as new Minus(new Minus(new Zero(), new One()),

new One()) or as new Minus(new Zero(), new Minus(new One(), new One())). The �rst

representation corresponds to a left-to-right reading, and the second one corresponds to a right-

to-left reading.

Let us make an attributed parser which builds the representation corresponding to a left-to-

right reading of simple arithmetic expressions. Such a parser will be very similar to the parser

for left-to-right evaluation in Example 11.

Example 13 This parser builds abstract syntax trees for simple arithmetic expressions.

class Example13 {

private Tokenstream ts;

public Example13(Tokenstream ts)

{ this.ts = ts; }

Expr E() {

Expr tv = T();

Expr ev = Eopt(tv);

return ev;

}

Expr Eopt(Expr inval) {

switch (ts.tok) {

case '-':

ts.next();

Expr tv = T();

Expr ev = Eopt(tv);

return new Minus(inval, ev);

default:

return inval;

}

}

Expr T() {

switch (ts.tok) {

case '0':

ts.next(); return new Zero();

case '1':

ts.next(); return new One();

default:

throw ts.parseerror("Expected 0 or 1");

}

}

Expr parse() { ... }

}

29

Instead of returning an integer (0 or 1), method T now returns the representation of an expression:

an object of class Zero or One. Instead of subtracting one number from another, returning a

number, method Eopt now builds and returns a representation of an expression (in the '-'

branch).

Since the new representation is built before Eopt is called recursively to parse the rest of the

expression, the representation is built from left to right as in Example 11. At any point, inval

is the representation of the expression parsed so far. 2

The new parsing methods return a representation of the parsed expression rather than its value.

Hence they have return type Expr, not double. A typical application of the attributed parser

in Example 13 would look like this:

class TestExample13 {

public static void main(String[] args) {

Tokenstream ts = new ZeroOnescan("example1.zo");

Example13 p = new Example13(ts);

System.out.println(p.parse());

}

}

where ZeroOnescan is the scanner class de�ned in Example 10. Calling method p.parse() will

scan and parse the �le "example1.zo" and build a representation of its contents, as an object

of class Expr. Printing this object will invoke its toString() method to convert the object to

a string.

6.3 Summary of parsers with attributes

To make parsing methods return information about the input, we add new components to

their results and (possibly) to their arguments. Di�erent ways of handling the new results and

arguments give di�erent e�ects, such as left-to-right or right-to-left evaluation. Looking at parse

trees is helpful for understanding attribute evaluation.

An abstract syntax tree is a representation of a text without unnecessary detail. Parsers can

be extended with attributes to construct the abstract syntax tree for a text while parsing it.

30

7 A larger example: arithmetic expressions

We now consider arithmetic expressions such as 4.0+5.0*7.0 and (20.0-5.0)/3.0, which are

found in almost all programming languages, and show how to scan, parse, and evaluate them.

7.1 A grammar for arithmetic expressions

Here is a �rst attempt at a grammar for arithmetic expressions:

E = E "+" E

| E "-" E

| E "*" E

| E "/" E

| Real

| "(" E ")" .

This grammar does not satisfy the grammar requirements, but could easily be transformed to

do so. However, the grammar does not express the structure of arithmetic expressions very well.

In arithmetics, the multiplication and division operators bind more strongly than addition and

subtraction. Thus 4.0+5.0*7.0 should be thought of as 4.0+(5.0*7.0), giving 39, and not as

(4.0+5.0)*7.0, giving 63. We say that multiplication and division have higher precedence than

addition and subtraction.

A subexpression which is a numeral or a parenthesized expression is called a factor . A subex-

pression involving only multiplications and divisions of factors is called a term. An expression

is a sequence of additions or subtractions of terms.

Then the precedence can be expressed as follows: Factors must be evaluated �rst, and then

terms must be evaluated before additions and subtractions.

To ensure that terms are parsed as units, we introduce a separate nonterminal T for them,

and similarly for factors F. This gives the following grammar for arithmetic expressions:

E = E "+" T | E "-" T | T .

T = T "*" F | T "/" F | F .

F = Real | "(" E ")" .

The rule for E generates strings of form T "+" T "+" � � � "-" T with one or more T's separated

by additions and subtractions. Similarly, the rule for T generates F "*" F "*" � � � "/" F with

one or more F's. Note that Real stands for a class of terminal symbols: the
oating-point

numerals.

To avoid the left recursive rules, we transform the E and T rules as described in Section 3.4.

We obtain the following grammar:

E = T Eopt .

Eopt = "+" T Eopt | "-" T Eopt | � .

T = F Topt .

Topt = "*" F Topt | "/" F Topt | � .

F = Real | "(" E ")" .

This grammar satis�es the requirements in Figure 6, as argued in Example 8.

7.2 The parser constructed from the grammar

The terminal symbols of the grammar are the operators `+', `-', `*', `/', the parentheses `(' and

`)', and the
oating-point numerals.

31

Application of the construction method from Section 4.2 to the above grammar gives the

parser skeleton shown below. (File Aritskel.java contains a copy of the parser skeleton).

class Aritskelparser {

private Tokenstream ts;

public Aritskelparser(Tokenstream ts)

{ this.ts = ts; }

void E()

{ T(); Eopt(); return; }

void Eopt() {

switch (ts.tok) {

case '+':

ts.next(); T(); Eopt(); return;

case '-':

ts.next(); T(); Eopt(); return;

default:

return;

}

}

void T()

{ F(); Topt(); return; }

void Topt() {

switch (ts.tok) {

case '*':

ts.next(); F(); Topt(); return;

case '/':

ts.next(); F(); Topt(); return;

default:

return;

}

}

void F() {

switch (ts.tok) {

case Aritscan.DOUBLE:

ts.next(); return;

case '(':

ts.next();

E();

if (ts.tok != ')')

throw ts.parseerror("Expected ')'");

ts.next();

return;

default:

throw ts.parseerror("Expected number or '('");

} }

void parse() { ... }

}

32

7.3 A scanner for arithmetic expressions

An appropriate scanner is shown below. File Aritscan.java contains a copy of this scanner.

import java.io.*;

class Aritscan extends Tokenstream {

private StreamTokenizer strtok;

public Aritscan(String filename) {

try {

strtok = new StreamTokenizer(new FileReader(filename));

setup(); next();

} catch (IOException e)

{ throw new Tokenerror("Error opening file " + filename); }

}

private void setup() {

strtok.resetSyntax();

strtok.parseNumbers();

strtok.whitespaceChars(' ', ' ');

strtok.whitespaceChars('\t', '\t');

strtok.whitespaceChars('\n', '\n');

strtok.whitespaceChars('\r', '\r');

}

public void next() {

if (tok != EOF)

try {

tok = strtok.nextToken();

switch (tok) {

case StreamTokenizer.TT_EOF:

tok = EOF; break;

case StreamTokenizer.TT_NUMBER:

nval = strtok.nval; tok = DOUBLE; break;

case '(': case ')': case '+': case '-': case '*': case '/':

break;

default:

throw new Tokenerror("Illegal token " + this);

}

} catch (IOException e) { throw new Tokenerror(e.getMessage()); }

}

public String toString() {

switch (tok) {

case StreamTokenizer.TT_EOF: case EOF:

return "<EOF>";

case StreamTokenizer.TT_NUMBER: case DOUBLE:

return "" + strtok.nval;

case StreamTokenizer.TT_WORD:

return "" + strtok.sval;

default:

return "" + (char)tok;

} } }

33

7.4 Evaluating arithmetic expressions

Now we extend the parser skeleton from Section 7.2 to evaluate the arithmetic expressions while

parsing them. As observed previously, arithmetic expressions should be evaluated from left to

right, so the resulting attributed parser below is similar to that in Example 11, except that it

has been simpli�ed by hand. (File Ariteval.java contains a copy of this parser).

class Aritevalparser {

private Tokenstream ts;

public Aritevalparser(Tokenstream ts)

{ this.ts = ts; }

double E() { return Eopt(T()); }

double Eopt(double inval) {

switch (ts.tok) {

case '+':

ts.next(); return Eopt(inval + T());

case '-':

ts.next(); return Eopt(inval - T());

default:

return inval;

} }

double T() { return Topt(F()); }

double Topt(double inval) {

switch (ts.tok) {

case '*':

ts.next(); return Topt(inval * F());

case '/':

ts.next(); return Topt(inval / F());

default:

return inval;

} }

double F() {

switch (ts.tok) {

case Aritscan.DOUBLE:

ts.next(); return ts.nval;

case '(':

ts.next();

double ev = E();

if (ts.tok != ')')

throw ts.parseerror("Expected ')'");

ts.next(); return ev;

default:

throw ts.parseerror("Expected number or '('");

} }

double parse() { ... }

}

34

8 Some background

8.1 History and notation

Formal grammars were developed within linguistics by Noam Chomsky around 1956, and were

�rst used in computer science by John Backus and Peter Naur in 1960 to describe the Algol

programming language. Their notation was subsequently called Backus-Naur Form or BNF. In

the original BNF notation, our grammar from Example 4 would read:

<E> ::= <T> <Eopt>

<Eopt> ::= | - <T> <Eopt>

<T> ::= 0 | 1

This notation uses a di�erent convention than ours: nonterminals are surrounded by angular

brackets, and terminals are not quoted. Also, here the empty string � is denoted by nothing

(empty space). In compiler books one may �nd still another notation:

E ! T Eopt

Eopt ! �

Eopt ! - T Eopt

T ! 0

T ! 1

In this notation there is only one alternative per rule, so de�ning a nonterminal may require

several rules. Also, � is used instead of our �.

As can be seen, the actual notation used for grammars varies, and combinations of these

notations exist also. However, the underlying idea of derivation is always the same.

8.2 Extended Backus-Naur Form

Our grammar notation is a simpli�cation of the so-called Extended Backus-Naur Form or EBNF.

The full EBNF notation contains more complicated forms of alternatives f.

In EBNF, an alternative f is a sequence e1 ... em of elements, not just symbols. An element

e may be a symbol as before, or

� an option of form [f], which can derive zero or one occurrence of sequence f, or

� a repetition of form f f g, which can derive zero, one, or more occurrences of f, or

� a grouping of form (f), which can derive an occurrence of f.

A grammar in EBNF notation using the new kinds of elements can be converted to a grammar

in our notation. The conversion is done by introducing extra nonterminals and rules:

� an option [f] is replaced by a new nonterminal Optf with rule Optf = f | �.

� a repetition f f g is replaced by a new nonterminal Repf with rule Repf = f Repf | �.

� a grouping (f) is replaced by a new nonterminal Grpf with rule Grpf = f.

This shows that our simple grammar notation can express everything that EBNF can, possibly

at the expense of introducing more nonterminals.

35

8.3 Classes of languages

The parsing method described in Section 4 is called recursive descent parsing and is an example

of a top-down parsing method. It works for a class of grammars called LL(1): those that can be

parsed by reading the input symbols from the Left, making derivations always from the Leftmost

nonterminal, and using a lookahead of 1 input symbol. This class includes all grammars that

satisfy the requirements in Figure 6.

Another well-known class of grammars, more powerful than LL(1), is the LR(1) class which

can be parsed bottom-up, reading the input symbols from the Left , making derivations always

from the Rightmost nonterminal, and using a lookahead of 1 input symbol. Construction of

bottom-up parsers is complicated, and is seldom done by hand. A useful subclass of LR(1)

is the class LALR(1) (for `lookahead LR'), which can be parsed more e�ciently, by smaller

parsers. Automatic LALR(1) parser generators exist for most programming languages. For

Java, use `JavaCC' or `Java CUP'. For Standard ML, use `mosmlyac' or `ML-Yacc'. For C, use

the classic `Yacc' or `Bison'. The LR(1) grammars are su�ciently powerful for most computing

problems, but as exempli�ed by Exercise 4 there are grammars for which there is no equivalent

LR grammar (and consequently no LALR(1)-grammar or LL-grammar).

The class of grammars de�ned in Figure 1 is properly called the context-free grammars. This

is just one class in the hierarchy identi�ed by Chomsky: (0) the unrestricted , (1) the context-

sensitive, (2) the context-free, and (3) the regular grammars. The unrestricted grammars are

more powerful than the context-sensitive ones, which are more powerful than the context-free

ones, which are more powerful than the regular grammars.

The unrestricted grammars cannot be parsed in general; they are of theoretical interest but

of little practical use in computing. All context-sensitive grammars can be parsed, but may

take an excessive amount of time and space, and so are of little practical use. The context-free

grammars are those de�ned in Figure 1; they are highly useful in computing, in particular the

subclasses LL(1), LALR(1), and LR(1) mentioned above. The regular grammars can be parsed

very e�ciently using a constant amount of memory, but they are rather weak; they cannot de�ne

parenthesized arithmetic expressions, for instance.

The following table summarizes the grammar classes:

Chomsky hierarchy Example rules Comments

0: Unrestricted "a" B "b" ! "c" Rewrite system

1: Context-sensitive "a" B "b" ! "a" "c" "b" Non-abbreviating rewrite system

2: Context-free B ! "a" B "b" As de�ned in Figure 1.

Some interesting subclasses:

LR(1) bottom-up parsing

LALR(1) bottom-up, `Yacc'

LL(1) top-down, these notes

3: Regular B ! "a" | "a" B parsing by �nite automata

8.4 Further reading

A description (in Danish) of practical recursive descent parsing using Turbo Pascal is given by

Kristensen [3].

There is a rich literature on scanning and parsing in connection with compiler construction.

The standard reference is Aho, Sethi, and Ullman [1]. More information on recursive descent

parsing is found in Lewis, Rosenkrantz, and Stearns [4], and in Wirth [5, Chapter 5].

36

9 Exercises

Exercise 1 Write down a grammar for arrays of (unsigned) integers. For instance, the empty

array of integers is fg. Other examples of lists of integers are [117], [2,3,5,7,11,13]. Show

the derivations of [] and [7, 9, 13]. 2

Exercise 2 Consider the grammar

E = T "+" E | T "-" E | T .

T = "0" | "1" .

Left factorize it and �nd selection sets for the alternatives of the resulting grammar. 2

Exercise 3 Consider the grammar below, which is self left recursive:

S = S S | "0" | "1" .

Apply the technique for removing left recursion (Section 3.4). Find �rst-, follow-, and selection

sets for the resulting grammar. Does it satisfy the grammar requirements?

What strings are derivable from this grammar? Find a grammar which generates the same

strings and satis�es the requirements (this is quite easy). 2

Exercise 4 The grammar

P = "a" P "a" | "b" P "b" | � .

generates palindromes (strings which are equal to their reverse). Find �rst-, follow-, and selection

sets for this grammar. Which requirement in Figure 6 is not satis�ed? (In fact, there is no way

to transform this grammar into one that satis�es the requirements). 2

Exercise 5 Consider the grammar in Exercise 2. Left factorize it. Construct a parser skeleton

for the left factorized grammar, using the tokens `+', `-', `0', and `1'. 2

Exercise 6 The grammar

T = "0" | "1" | "(" T ")" .

describes simple expressions such as 1, (1), ((0)), etc. with well-balanced parentheses. Choose

a suitable set of tokens to represent the terminal symbols, and construct a Java parser for the

grammar. Test it on the expressions above, and on some ill-formed inputs. 2

Exercise 7 Write a grammar and construct a parser for parenthesized expressions such as 0,

0+(1), 1-(1+1), (0-1)-1, etc. 2

Exercise 8 Consider the grammar for polynomials from Example 3. (1) Remove the left recur-

sion in the rule for Poly. (2) Left factorize the rule for Term. (3) Choose a suitable set of tokens

to represent the terminal symbols. Note that Natnum in the grammar stands for a family of

terminal symbols 1, 2, . . . ; the terminal symbol 123 could be represented by the token DOUBLE

with the value 123 held in �eld nval of the Tokenstream. (4) Construct a parser skeleton for

the transformed grammar and test it. 2

Exercise 9 Show that the requirements in Figure 6 imply that for every grammar rule, and

distinct alternatives fi and fj, it holds that Select(fi) \ Select(fj) = fg. 2

37

Exercise 10 The input language for the scanner in Example 10 is described by the grammar:

input = "-" input | "0" input | "1" input | blank input | � .

blank = " " | "\t" | "\n" .

Make sure the grammar satis�es the requirements, then use the construction method of Section 4

to systematically make a scanner for it. Your scanner must check the form of the input, but

need not return a list of terminals. 2

Exercise 11 Extend the parser constructed in Exercise 5 to evaluate the parsed expression and

return its value. You may decide yourself whether evaluation should be from left to right or

right to left. 2

Exercise 12 Extend the parser constructed in Exercise 5 to build an abstract syntax tree for

the parsed expression, using the following classes:

abstract class Expr { }

class Zero extends Expr {}

class One extends Expr {}

class Minus extends Expr {

Expr e1, e2;

public Minus(Expr e1, Expr e2)

{ this.e1 = e1; this.e2 = e2; }

}

class Plus extends Expr {

Expr e1, e2;

public Plus(Expr e1, Expr e2)

{ this.e1 = e1; this.e2 = e2; }

}

What are the types of the attributed parsing methods? 2

Exercise 13 Extend the scanner from Section 7.3 to recognize Java
oating-point numbers

with exponents such as `6.6256E34' or `3E8'. 2

Exercise 14 What changes are necessary to make the parser in Example 13 build representa-

tions from right to left? 2

Exercise 15 Check that the grammar at the end of Section 7.1 satis�es the grammar require-

ments. 2

Exercise 16 Extend the grammar, scanner, and parser from Section 7 to handle arithmetic

expressions with exponentiation, such that 3.0*4.0^2.0 evaluates to 48, that is, 3 times the

square of 4. Note that the exponentiation operator usually associates to the right and has higher

precedence than multiplication and division, so 2.0^2.0^3.0 is 2.0^(2.0^3.0) and evaluates

to 256, not to 64.

What changes are necessary if the exponentiation operator were `**' instead of `^'? 2

38

Exercise 17 The following classes may be used to represent the arithmetic expressions from

Section 7:

abstract class Expr { }

class Binop extends Expr {

Expr e1, e2;

char op;

public Binop(Expr e1, char op, Expr e2)

{ this.e1 = e1; this.op = op; this.e2 = e2; }

}

class Real extends Expr {

double r;

public Real(double r)

{ this.r = r; }

}

Write an attributed parser that builds abstract syntax trees of this form. 2

39

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[2] H. Elbr�nd Jensen and T. H�holdt. Grundl�ggende Matematik for Dataloger. Matematisk

Institut, Danmarks Tekniske H�jskole, Lyngby, Danmark, 1993.

[3] J.T. Kristensen. Konstruktion af indl�seprogrammer. Teknisk Forlag, 1990.

[4] P.M. Lewis II, D.J. Rosenkrantz, and R.E. Stearns. Compiler Design Theory. The Systems

Programming Series. Addison-Wesley, 1976.

[5] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

40

