
www.itu.dk 1

Programs as Data
Real-world abstract machines for

Java and C#/.NET.
Garbage collection techniques

Peter Sestoft
Monday 2012-10-22

www.itu.dk

Microsoft Techtalk 5. november
•  Mads Torgersen:

Asynkron programmering i C# 5.0
•  Mandag 5. november 9:00-10:30
•  Microsoft Development Center Copenhagen

Frydenlunds allé 6, Vedbæk
•  Mads

– er datalog fra Aarhus,
– var med til at designe Java wildcards, og
– har været i C# design team de sidste 5 år

•  Tilmelding: https://msevents.microsoft.com/cui/EventDetail.aspx?
culture=da-DK&EventID=1032529134

2

www.itu.dk 3

Today
•  Java Virtual Machine
•  .NET Common Language Infrastructure (CLI)
•  Garbage collection (GC) techniques

–  Reference-counting
–  Mark-sweep
–  Two-space stop and copy
–  The garbage collectors in JVM and .NET

•  List-C, a version of Micro-C with a heap and GC

Program Compiler Bytecode Abstract
machine Output

Input
.java javac .class Java VM

www.itu.dk 4

Example Java program (ex6java.java)

class Node extends Object {
 Node next;
 Node prev;
 int item;
}

class LinkedList extends Object {
 Node first, last;

 void addLast(int item) {
 Node node = new Node();
 node.item = item;
 if (this.last == null) {
 this.first = node;
 this.last = node;
 } else {
 this.last.next = node;
 node.prev = this.last;
 this.last = node;
 }
 }

 void printForwards() { ... }
 void printBackwards() { ... }
}

JVM class file (LinkedList.class)

Shown by
javap –c –v LinkedList

Generated by
javac ex6java.java

Some JVM bytecode instructions
Kind Example instructions

push constant iconst, ldc, aconst_null, …

arithmetic iadd, isub, imul, idiv, irem, ineg, iinc, fadd, …

load local variable iload, aload, fload, …

store local variable istore, astore, fstore, …

load array element iaload, baload, aaload, …

stack manipulation swap, pop, dup, dup_x1, dup_x2, …

load field getfield, getstatic

method call invokestatic, invokevirtual, invokespecial

method return return, ireturn, areturn, freturn, …

unconditional jump goto

conditional jump ifeq, ifne, iflt, ifle, …; if_icmpeq, if_icmpne, …

object-related new, instanceof, checkcast

Type prefixes: i=int, a=object, f=float, d=double, s=short, b=byte, …

www.itu.dk 7

JVM bytecode verification
The JVM bytecode is statically verified before execution:
•  An instruction must work on stack operands and local variables

of the correct type
•  A method must use no more local variables and no more local

stack positions than it claims to
•  For every point in the bytecode, the local stack has the same

depth whenever that point is reached
•  A method must throw no more exceptions than it admits to
•  The execution of a method must end with a return or throw

instruction, not `fall off the end'
•  Execution must not use one half of a two-word value (e.g. a

long) as a one-word value (int)

www.itu.dk 8

Additional JVM runtime checks
•  Array-bounds checks
•  Array assignment checks: Can store only subtypes

of A into an A[] array
•  Null-reference check (a reference is null or points to

an object or array, because no pointer arithmetics)
•  Checked casts: Cannot make arbitrary conversions

between object classes
•  Memory allocation succeeds or throws exception
•  No manual memory deallocation or reuse

•  Bottom line: A JVM program cannot read or
overwrite arbitrary memory

•  Better debugging, better security
•  No buffer overflow attacks, worms, etc as in C/C++

www.itu.dk 9

The JVM runtime stacks
•  One runtime stack per thread

– Contains activation records, one for each active
function call

– Each activation record has program counter, local
variables, and local stack for intermediate results

Example JVM runtime state
void m() {
 LinkedList lst = new LinkedList();
 lst.addLast(5);
 lst.addLast(7);
 Node node = lst.first;
}

www.itu.dk 11

The .NET Common Language
Infrastructure (CLI, CLR)

•  Same philosophy and design as JVM
•  Some improvements:

– Standardized bytecode assembly (text) format
– Better versioning, strongnames, …
– Designed as target for multiple source languages

(C#, VB.NET, JScript, Eiffel, F#, Python, Ruby, …)
– User-defined value types (structs)
– Tail calls to support functional languages
– True generic types in bytecode: safer, more

efficient, and more complex
•  The .exe file = stub + bytecode
•  Standardized as Ecma-335

Some .NET CLI bytecode instructions
Kind Example instructions

push constant ldc.i4, ldc.r8, ldnull, ldstr, ldtoken

arithmetic add, sub, mul, div, rem, neg; add.ovf, sub.ovf, …

load local variable ldloc, ldarg

store local variable stloc, starg

load array element ldelem.i1, ldelem.i2, ldelem.i4, ldelem.r8

stack manipulation pop, dup

load field ldfld, ldstfld

method call call, calli, callvirt

method return ret

unconditional jump br

conditional jump brfalse, brtrue; beq, bge, bgt, ble, blt, …; bge.un …

object-related newobj, isinst, castclass

Type suffixes: i1=byte, i2=short, i4=int, i8=long, r4=float, r8=double, …

www.itu.dk 13

Canonical compilation?
•  Consider the Java/C#/C program ex13:

 static void Main(string[] args) {
 int n = int.Parse(args[0]);
 int y;
 y = 1889;
 while (y < n) {
 y = y + 1;
 if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0)

 InOut.PrintI(y);
 }
 InOut.PrintC(10);
 }

•  Let us compile and disassemble it twice:
–  javac ex13.java then javap –c ex13
–  csc /o ex13.cs then ildasm /text ex13.exe

 0 aload_0 | IL_0000: ldarg.0 | args
 1 iconst_0 | IL_0001: ldc.i4.0 |
 2 aaload | IL_0002: ldelem.ref | args[0]
 3 invokestatic #2 (...) | IL_0003: call (...) | parse int
 6 istore_1 | IL_0008: stloc.0 | n = ...
 7 sipush 1889 | IL_0009: ldc.i4 0x761 |
 10 istore_2 | IL_000e: stloc.1 | y = 1889;
 11 goto 43 | IL_000f: br.s IL_002f | while (...) {
 14 iload_2 | IL_0011: ldloc.1 |
 15 iconst_1 | IL_0012: ldc.i4.1 |
 16 iadd | IL_0013: add |
 17 istore_2 | IL_0014: stloc.1 | y = y + 1;
 18 iload_2 | IL_0015: ldloc.1 |
 19 iconst_4 | IL_0016: ldc.i4.4 |
 20 irem | IL_0017: rem |
 21 ifne 31 | IL_0018: brtrue.s IL_0020 | y % 4 == 0
 24 iload_2 | IL_001a: ldloc.1 |
 25 bipush 100 | IL_001b: ldc.i4.s 100 |
 27 irem | IL_001d: rem |
 28 ifne 39 | IL_001e: brtrue.s IL_0029 | y % 100 != 0
 31 iload_2 | IL_0020: ldloc.1 |
 32 sipush 400 | IL_0021: ldc.i4 0x190 |
 35 irem | IL_0026: rem |
 36 ifne 43 | IL_0027: brtrue.s IL_002f | y % 400 == 0
 39 iload_2 | IL_0029: ldloc.1 |
 40 invokestatic #3 (...) | IL_002a: call (...) | print y
 43 iload_2 | IL_002f: ldloc.1 |
 44 iload_1 | IL_0030: ldloc.0 |
 45 if_icmplt 14 | IL_0031: blt.s IL_0011 | (y < n) }
 48 bipush 10 | IL_0033: ldc.i4.s 10 |
 50 invokestatic #4 (...) | IL_0035: call (...) | newline
 53 return | IL_003a: ret | return

JV
M

 (
20

03
)

.N
ET

www.itu.dk 15

Ten-minute exercise
•  On a printout of the preceding slide

– Draw arrows to indicate where jumps go
– Draw blocks around the bytecode segments

corresponding to fragments of the Java/C#
program

www.itu.dk 16

Metadata and decompilers
•  The .class and .exe files contains metadata: names

and types of fields, methods, classes
•  One can decompile bytecode into programs:

Program Compiler Bytecode

.cs csc .exe

•  Bad for protecting your secrets (intellectual property)
•  Bytecode obfuscators make decompilation harder

Reflector
decompiler

17

.NET CLI has generic types, JVM doesn’t
class CircularQueue<T> {
 private readonly T[] items;
 public CircularQueue(int capacity) {
 this.items = new T[capacity];
 }
 public T Dequeue() { ... }
 public void Enqueue(T x) { ... }
}

.class CircularQueue`1<T> ... {
 .field private initonly !T[] items
 ...
 .method !T Dequeue() { ... }
 .method void Enqueue(!T x) { ... }
}

class CircularQueue ... {
 public java.lang.Object dequeue(); ...
 public void enqueue(java.lang.Object); ...
}

Source;
generics

.NET CLI;
generics

JVM; no
generics

www.itu.dk 18

Consequences for Java
•  The Java compiler replaces T

–  with Object in C<T>
–  with Mytype in C<T extends Mytype>

•  So this doesn’t work in Java, but works in C#:
–  Cast: (T)e
–  Instance check: (e instanceof T)
–  Reflection: T.class
–  Overload on different type instances of gen class:

–  Array creation: arr=new T[10]
So Java versions of CircularQueue<T> must use
ArrayList<T>, not T[]

void put(CircularQueue<Double> cqd) { ... }
void put(CircularQueue<Integer> cqd) { ... }

Just-in-time (JIT) compilation
•  Bytecode is compiled to real (e.g. x86) machine

code at runtime to get speed comparable to C/C++

Program Compiler Bytecode Abstract
machine Output

Input
.cs csc .exe .NET VM

Bytecode JIT
compiler

x86
code

x86 cpu
hardware Output

Input

Just-in-time compilation
•  How to inspect .NET JITted code

Mono 2.10.9 MacOS 64 bit

mono –optimize=-inline
 –v –v Square.exe

00 pushq %rbp
01 movl %esp,%ebp
03 subl $0x08,%esp
06 fldl 0x08(%rbp)
09 fldl 0x08(%rbp)
0c fmulp %st,%st(1)
0e leave
0f ret

static double Sqr(double x) {
 return x * x;
}

IL_0000: ldarg.0
IL_0001: ldarg.0
IL_0002: mul
IL_0003: ret

C#

x86

CLI

csc /debug /o Square.cs

JIT compiler

movl %ebp,%esp
popq %rbp

www.itu.dk 21

Garbage collection
•  A: Reference counting
•  B: Mark-sweep
•  C: Two-space stop-and-copy, compacting
•  D: Generational
•  Conservative

The heap as a graph
•  The heap is a graph: node=object, edge=reference
•  An object is live if reachable from roots
•  Garbage collection roots = stack elements

www.itu.dk 23

The freelist
•  A freelist is a linked list of free heap blocks:

live

free

dead

heap

free

•  Allocation from freelist:
– Search for a large enough free block
–  If none found, do garbage collection
– Try the search again
–  If it fails, we are out of memory

www.itu.dk 24

A: Reference counting with freelist
•  Each object knows the number of references to it
•  Allocate objects from the freelist
•  After assignment x=o; the runtime system

–  Increments the count of object o
–  Decrements the count of x’s old reference (if any)
–  If that count becomes zero,

•  put that object on the freelist
•  recursively decrement count of all objects it points to

•  Good
–  Simple to implement

•  Bad
–  Reference count field takes space in every object
–  Reference count updates and checks take time
–  A cascade of decrements takes long time, gives long pause
–  Cannot deallocate cyclic structures

www.itu.dk 25

B: Mark-sweep with freelist
•  Allocate objects from the freelist
•  GC phase 1: mark phase

–  Assume all objects are white to begin with
–  Find all objects that are reachable from the stack, and color

them black
•  GC phase 2: sweep phase

–  Scan entire heap, put all white objects on the freelist, and
color black objects white

•  Good
–  Rather simple to implement

•  Bad
–  Sweep must look at entire heap, also dead objects;

inefficient when many small objects die young
–  Risk of heap fragmentation

www.itu.dk 26

C: Two-space stop and copy
•  Divide heap into to-space and from-space
•  Allocate objects in from-space
•  When full, recursively move all reachable objects

from from-space to the empty to-space
•  Swap (empty) from-space with to-space
•  Good

–  Need only to look at live objects
–  Good reference locality and cache behavior
–  Compacts the live objects: no fragmentation

•  Bad
–  Uses twice as much memory as maximal live object size
–  Needs to update references when moving objects
–  Moving a large object (e.g. an array) is slow
–  Very slow (much copying) when heap is nearly full

www.itu.dk 27

D: Generational garbage collection
•  Observation: Most objects die young
•  Divide heap into young (nursery) and old generation
•  Allocate in young generation
•  When full, move live objects to old gen. (minor GC)
•  When old gen. full, perform a (major) GC there
•  Good

–  Recovers much garbage fast
•  Bad

–  May suffer fragmentation of old generation (if mark-sweep)
–  Needs a write barrier test on field assignments:

After assignment o.f=y where o in old and y in young,
need to remember that y is live

www.itu.dk 28

Conservative garbage collectors
•  Is 0xFFFFFFFA on the stack an int or a heap ref?
•  If the GC doesn’t know, it must be conservative:

Assume it could be a reference to an object
•  Conservative collectors exist as C/C++ libraries

•  Good
–  Can be added to C and C++ programs as a library
–  Works even with pointer arithmetics

•  Bad
–  Unpredictable memory leaks
–  Cannot be compacting: updating a “reference” that is

actually a customer number leads to madness

www.itu.dk 29

Concurrent garbage collection
•  In a multi-cpu machine, let one cpu run GC
•  Complicated

– Race conditions when allocating objects
– Race conditions when moving objects

•  Typically suspends threads at "GC safe" points
– May considerably reduce concurrency (because one

thread may take long to reach a safe point)

www.itu.dk 30

GC in mainstream virtual machines
•  Sun/Oracle Hotspot JVM (client+server)

–  Three generations
–  When gen. 0 is full, move live objects to gen. 1
–  Gen. 1 uses two-space stop-and-copy GC; when objects get

old they are moved to gen. 2
–  Gen. 2 uses mark-sweep with compaction

•  IBM JVM (used in e.g. Websphere server)
–  Highly concurrent generational; see David Bacon’s paper

•  Microsoft .NET (desktop+server)
–  Three generation small-obj heap + large-obj heap
–  When gen. 0 is full, move to gen. 1
–  When gen. 1 is full, move to gen. 2
–  Gen. 2 uses mark-sweep with occasional compaction

•  Mono .NET implementation
–  Boehm’s conservative collector (still standard May 2012)
–  New two-generational (stop-and-copy plus M-S or S-&-C)

www.itu.dk 31

Other GC-related topics
•  Large object space: Large arrays and other

long-lived objects may be stored separately
•  Weak reference: A reference that cannot

itself keep an object live
•  Finalizer: Code that will be executed when an

object dies and gets collected (e.g. close file)
•  Resurrection: A finalizer may make a dead

object live again (yrk!)
•  Pinning: When Java/C# exports a reference

to C/C++ code, the object must be pinned;
if GC moves it, the reference will be wrong

www.itu.dk 32

GC stress (StringConcatSpeed.java)
•  What do these loops do? Which is better?
StringBuilder buf
 = new StringBuilder();
for (int i=0; i<n; i++)
 buf.append(ss[i]);
res = buf.toString();

String res = "";
for (int i=0; i<n; i++)
 res += ss[i];

www.itu.dk 33

New: List-C and the list machine
•  list-c = micro-C with Lisp/Scheme data
void main(int n) {
 dynamic xs;
 xs = nil;
 while (n>0) {
 xs = cons(n,xs);
 n = n - 1;
 }
 printlist(xs);
}

void printlist(dynamic xs) {
 while (xs) {
 print car(xs);
 xs = cdr(xs);
 }
}

1 2 3 nil xs

cons
cell

car cdr

www.itu.dk 34

List machine instructions
•  List machine = micro-C abstract machine

plus six extra instructions:
– NIL: Put nil reference on stack
– CONS: Allocate two-word block on heap, put

reference to it on stack
– CAR, CDR: Access word 1 or 2 of block
– SETCAR, SETCDR: Set word 1 or 2 of block

The structure of the list machine heap

•  The heap consists of 32-bit (4-byte) words
•  The heap is covered by blocks

header word 1 word 2

ttttttttnnnnnnnnnnnnnnnnnnnnnngg

Block tag,
always 0

Block length,
here 2

GC
color

32 bits

www.itu.dk 36

Garbage collection bits gg
Bits Color Meaning

00 white After mark phase: Not reachable
from stack; may be collected

01 grey During mark phase: Reachable,
referred-to blocks not yet marked

10 black After mark phase: Reachable from
stack; cannot be collected

11 blue On freelist, or is orphan block

•  The mark phase paints all reachable blocks black
•  The sweep phase paints black blocks white;

paints white blocks blue and puts them on freelist

www.itu.dk 37

The freelist; orphans
•  All blocks on the freelist are blue (gg=11)
•  Word 1 contains a reference to the next

freelist element, or nil:

nil

•  A block of length zero is an orphan
•  It consists of a header only
•  Cannot be on freelist: no room for next ref.
•  (Created by allocating almost all of a block)

fl

0 1 0 1 2 0 1 2

www.itu.dk 38

Distinguishing integers and references

•  For exact garbage collection we need to
distinguish integers from references

•  Old trick:
– Make all heap blocks begin on address that is a

multiple of 4; in binary it has form xxxxxx00
– Represent integer n as 2n+1, so the integer’s

representation has form xxxxxxx1
•  Test for IsInt(v): (v)&1==1
•  Tagging an int: ((v)<<1)|1
•  Untagging an int: (v)>>1

www.itu.dk 39

An example list-C program, ex30.lc
•  Each iteration allocates a cons cell that dies
•  Without a garbage collector the program

soon runs out of memory

void main(int n) {
 dynamic xs;
 while (n>0) {
 xs = cons(n, 22);
 print car(xs);
 n = n - 1;
 }
}

Allocate
cons cell
in heap

Assignment
causes previous
xs value to die

•  Your task in BOSC: Implement garbage
collectors: mark-sweep, and stop-and-copy

www.itu.dk 40

Reading and homework
•  This week’s lecture:

– PLC chapters 9 and 10
– Sun Microsystems: Memory Management in the

Java Hotspot Virtual Machine
– David Bacon, IBM: Realtime garbage collection
– Exercises 9.1 and 9.2

•  Next week’s lecture:
– PLC chapter 11

