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Plan for today 
•  F# polymorphic functions and types 
•  Concepts:  

–  free and bound variables and occurrences 
–  closed expressions 
–  substitution 

•  Interpreters and compilers 
•  Compilation of expressions 

– Replace names by indices (numbers) 
– To stack machine code, without variables 
– To stack machine code, with variables 

•  The Postscript language 
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F# polymorphic functions 

•  Same as a generic method in Java or C# 

let rec len xs =  
  match xs with 
    | []    -> 0 
    | x::xr -> 1 + len xr;; 

val len : 'a list -> int 

The function 
doesn’t look at 

the list elements 

… so the function 
is polymorphic 

static int Count<T>(IEnumerable<T> xs) { ... } 

len [7; 9; 13] 
len [true; true; false; true] 
len ["foo"; "bar"] 
len [("Peter", 50)] 

… and works in 
any type of list 



www.itu.dk 4 

F# polymorphic types 

•  Same as a generic type in Java or C#:  

type 'a tree = 
  | Lf  
  | Br of 'a * 'a tree * 'a tree 

Br(42, Lf, Lf) 
Br("quoi?", Lf, Lf) 
Br(("Peter", 50), Lf, Lf) 

The datatype has 
same structure 

regardless of node 
value type 

What type 
instances here? 

class ArrayList<T> { ... } 
interface IEnumerable<T> { ... } 
struct Pair<T,U> { ... } 
delegate R Func<A,R>(A x); 
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Kinds of polymorphism 
•  Parametric polymorphism, as in ML, F#, Java and C#: 

–  The type variable 'a stands for an arbitrary type 
–  A parametric polymorphic function works the same way regardless 

what the type variable stands for  
•  Bounded parametric polymorphism, as in Java, C#: 

–  The type variable T stands for a type with certain properties 
–  For instance, a List<T> is printable if all its elements are: 

•  Ad hoc polymorphism, or overloading: 
–  Java operator (+) works on int, double, String but not boolean 

•  Virtual method calls are sometimes said to be `polymorphic‘ 

•  A parametric polymorphic type is an assertion about a function 
–  What terminating pure F# function has type 'a -> 'a  ?? 
–  What terminating pure F# function has type 'a * 'b -> 'b * 'a  ?? 

class List<T> : IPrintable where T : IPrintable { ... } 

Vehicle v = getMyVehicle(); 
... v.getWeight() ... May call getWeight()  

on Bike, Car, Tank, … 
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Polymorphic functions  
on polymorphic types 

•  Return the tree’s node values in pre-order 
–  first root, then left subtree, then right subtree 

•  Works on any type of tree 

•  What is the type of this function? 

let rec preorder1 t =  
    match t with  
    | Lf            -> [] 
    | Br(v, t1, t2) -> v :: preorder1 t1 @ preorder1 t2 



Accumulating parameters 
•  The append (@) operation may be slow 
•  A faster version of preorder, no append! 
let rec preo t acc = 
    match t with  
     | Lf            -> acc 
     | Br(v, t1, t2) -> v :: preo t1 (preo t2 acc);; 

let preorder2 t = preo t [];; 

•  Function preorder2 is correct because:  
  preo t acc = preorder1 t @ acc 

•  and therefore: 
  preorder2 t = preo t [] = preorder1 t 

Accumulating 
parameter 

O(n) versus O(n2) 

Can be 1000 x faster 
Try #time;; in F# 
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Proof, by induction on the tree 
•  Case t = Lf: 

preo Lf acc  
= acc 
= [] @ acc 
= preorder1 Lf @ acc 

•  Case t = Br(v, t1, t2): 
preo (Br(v, t1, t2)) acc 
= v :: preo t1 (preo t2 acc) 
= v :: preo t1 (preorder1 t2 @ acc) 
= v :: preorder1 t1 @ (preorder1 t2 @ acc) 
= (v :: preorder1 t1 @ preorder1 t2) @ acc 
= preorder1 (Br(v, t1, t2)) @ acc 

Ikke pensum, 
bare nyttigt… 
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Set operations in F# 
•  We represent a set as a list without 

duplicates; simple but inefficient for large sets 
•  The empty set  ∅ is represented by [] 
•  Set membership: x ∈ vs 

let rec mem x vs =  
    match vs with 
    | []    -> false 
    | v::vr -> x=v || mem x vr;; 

> mem 42 [2; 5; 3];; 
val it : bool = false 
> mem 42 [];; 
val it : bool = false 
> mem 42 [2; 67; 42; 5];; 
val it : bool = true 
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Set union and difference in F# 
•  Set union: A ∪ B 
let rec union (xs, ys) =  
    match xs with  
    | []    -> ys 
    | x::xr -> if mem x ys then union(xr, ys) 
               else x :: union(xr, ys);; 

let rec minus (xs, ys) =  
    match xs with  
    | []    -> [] 
    | x::xr -> if mem x ys then minus(xr, ys) 
               else x :: minus(xr, ys);; 

•  Set difference: A \ B 
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Back to expressions: let-bindings 

•  How represent 
let z=x in z+x 
let z=3 in let y=z+1 in z+y 
let z=(let x=4 in x+5) in z*2 

type expr =  
  | CstI of int 
  | Var of string 
  | Let of string * expr * expr 
  | Prim of string * expr * expr;; 

Let("z", CstI 17, Prim("+", Var "z", Var "z")) 

 let z = 17 in z + z 

rhs = right-hand side 

body 



Evaluation of expressions with let 

•  To evaluate  “let x=erhs in ebody”: 
–  Evaluate erhs in given environment to get xval 
–  Extend env with binding (x, xval) binding to get env1 
–  Evaluate ebody in env1 

let rec eval e (env : (string * int) list) : int = 
    match e with 
    | CstI i            -> i 
    | Var x             -> lookup env x  
    | Let(x, erhs, ebody) ->  
      let xval = eval erhs env 
      let env1 = (x, xval) :: env  
      in eval ebody env1 
    | Prim("+", e1, e2) -> eval e1 env + eval e2 env 
    | Prim("*", e1, e2) -> eval e1 env * eval e2 env 
    | Prim("-", e1, e2) -> eval e1 env - eval e2 env 
    | Prim _            -> failwith "unknown primitive";; 
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Concepts: 
Free and bound variable occurrences 

•  A variable occurrence x is bound if it is in the ebody 
of a binding let x=erhs in ebody 

•  Otherwise it is free 
•  Which occurrences are bound and which free here: 

let z=x in z+x 
let z=3 in let y=z+1 in x+y 
let z=(let x=4 in x+5) in z*2 
let z=(let x=4 in x+5) + x in z*2 

•  A variable is free if it has some free occurrence 
•  Usually, a program must have no free variables... 
•  (… in C it may, but then must be bound by linking) 
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Finding the set of free variables 

•  An expression is closed if it has no free 
variables 

let rec freevars e : string list = 
   match e with 
   | CstI i -> [] 
   | Var x  -> [x] 
   | Let(x, erhs, ebody) ->  
     union (freevars erhs, minus (freevars ebody, [x])) 
   | Prim(ope, e1, e2) -> union (freevars e1, freevars e2) 

let closed e = (freevars e = []) 
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Substitution: replace free variables 
•  The substitution [(5-4)/z](y*z) replaces 

free z by expression (5-4) in expr. (y*z)!
•  The result is (y*(5-4))!

•  Think of [(5-4)/z] as an environment that 
maps z to (5-4) 
 Like [("z", Prim("-", CstI 5, CstI 4))]!

•  A variable not mentioned maps to itself: 

15 

let rec lookOrSelf env x = 
    match env with  
    | []        -> Var x 
    | (y, e)::r -> if x=y then e else lookOrSelf r x;; 
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Substitution, continued 
•  Substitution affects only free occurrences of z!
•  So what is the expected result of  
[(5-4)/z](let z=22 in y*z end)  ?? 

•  And what is the expected result of  
[(5-4)/z](z + let z=22 in y*z end)  ?? 

•  Remove z from environment when processing 
body of let z = rhs in body end!

16 

let rec remove env x = 
    match env with  
    | []        -> [] 
    | (y, e)::r -> if x=y then r else (y, e) :: remove r x;; 
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Naive implementation of substitution 
•  Substitution recursively transforms expr. e: 

•  Apparently this works: 

•  Also [(5-4)/z](let z=22 in y*z end) gives  
let z=22 in y*z end as it should 

17 

let rec nsubst (e : expr) (env : (string * expr) list) : expr = 
   match e with 
   | CstI i -> e 
   | Var x  -> lookOrSelf env x 
   | Let(x, erhs, ebody) -> 
     let newenv = remove env x 
     Let(x, nsubst erhs env, nsubst ebody newenv) 
   | Prim(ope, e1, e2) -> Prim(ope, nsubst e1 env, nsubst e2 env) 

replace x (maybe with x) 

not in ebody 
replace in erhs 

recursively in operands 

> let e6 = Prim("+", Var "y", Var "z");; 
> let e6s2 = nsubst e6 [("z", Prim("-", CstI 5, CstI 4))];; 
val e6s2 : expr = Prim ("+",Var "y",Prim ("-",CstI 5,CstI 4)) 
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Problem: Capture of free variables 
•  But replacing y by z,  

as in [z/y](let z=22 in y*z end) 
gives let z=22 in z*z end 

•  The free variable z that was substituted in 
for  variable y was captured by let z=...  

•  In a substitution [e/y]... free variables in e 
should remain free  

18 
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Capture-avoiding substitution 
•  To avoid capture of new free variables,  

rename existing bound variables 
•  Easy: Invent fresh names, substitute for old 

19 

let rec subst (e : expr) (env : (string * expr) list) : expr = 
    match e with 
    | CstI i -> e 
    | Var x  -> lookOrSelf env x 
    | Let(x, erhs, ebody) -> 
      let newx = newVar x 
      let newenv = (x, Var newx) :: remove env x 
      Let(newx, subst erhs env, subst ebody newenv) 
    | Prim(ope, e1, e2) -> Prim(ope, subst e1 env, subst e2 env) 

let newVar : string -> string =  
    let n = ref 0 
    let varMaker x = (n := 1 + !n; x + string (!n)) 
    varMaker 

make fresh variables 

rename bound 
variable x 



Interpretation and compilation 
•  Interpretation = one-stage execution/evaluation: 

Program Inter- 
preter Output 

Input 

Program Compiler Machine 
code Machine Output 

Input 

•  Compilation = two-stage execution/evaluation: 

eval 
e 

env 

P.java javac P.class java 

args[] 

prog.c gcc prog x86 

argv[] 
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Why compilation? 
•  Better correctness and safety.  The compiler can:  

–  check that all names are defined: classes, methods, fields, 
variables, types, functions, … 

–  check that the names have the correct type 
–  check that it is legal to refer to them (not private etc) 
–  improve the code, e.g. inline calls to private methods 

•  Better performance 
–  The compiler checks are performed once, but the machine 

code gets executed again and again 
•  Why not compilation? 

–  Compilation reduces flexibility by imposing static type 
checks and static name binding 

–  Web programming often requires more flexibility 
–  … hence PHP, Python, Ruby, JavaScript, VB.NET, … 
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Replacing variable names with indices 

•  After compilation, there are no variable 
names, only indices (locations), at runtime 

•  Instead of symbolic names: 

we shall use variable indexes: 

Let("z", CstI 17, Prim("+", Var "z", Var "z")) 

Let(CstI 17, Prim("+", Var 0, Var 0)) 

0 means closest 
variable binding 
0 means closest 
variable binding 

No variable name 

Let("z", CstI 17, Let("y", CstI 25,  
                      Prim("+", Var "z", Var "y"))) 

•  Index = number of let-bindings to cross: 
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Indexes instead of variable names 

•  We shall compile to this “target” language: 
type texpr =                  (* target expressions *) 
  | TCstI of int 
  | TVar of int               (* index at runtime   *) 
  | TLet of texpr * texpr  
  | TPrim of string * texpr * texpr 

expr tcomp texpr teval Output 

int list 
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Evaluating texprs 
•  The runtime environment of a texpr is a list 

of values – not (name, value) pairs 

let rec teval (e : texpr) (renv : int list) : int = 
    match e with 
    | TCstI i -> i 
    | TVar n  -> List.nth renv n 
    | TLet(erhs, ebody) ->  
      let xval = teval erhs renv 
      let renv1 = xval :: renv  
      teval ebody renv1  
    | TPrim("+", e1, e2) -> teval e1 renv + teval e2 renv 
    | TPrim("*", e1, e2) -> teval e1 renv * teval e2 renv 
    | TPrim("-", e1, e2) -> teval e1 renv - teval e2 renv 
    | TPrim _            -> failwith "unknown primitive" 



Replacing variable names with indices 
let rec getindex vs x =  
    match vs with  
      | []    -> failwith "Variable not found" 
      | y::yr -> if x=y then 0 else 1 + getindex yr x;; 

let rec tcomp (e : expr) (cenv : string list) : texpr = 
   match e with 
   | CstI i -> TCstI i 
   | Var x  -> TVar (getindex cenv x) 
   | Let(x, erhs, ebody) ->  
     let cenv1 = x :: cenv  
     in TLet(tcomp erhs cenv, tcomp ebody cenv1) 
   | Prim(ope, e1, e2) -> TPrim(ope, tcomp e1 cenv, tcomp e2 cenv) 

let z=3 in let y=z+1 in z+y 

•  What if the expression e is not closed? 

[] [] [“z”] ["y"; "z"] ["z"] 
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Binding-times in the environment 
•  Run-time environment in expr interpreter: 
[("y", 4); ("z", 3)] 

•  Compile-time environment in expr compiler: 
["y"; "z"] 

•  Run-time environment of texpr “machine”: 
[4; 3] 

•  The interpreter runtime environment splits to 
– A compile-time environment in the compiler 
– A runtime environment in the “machine” 

•  We meet such “binding-time” separation 
again later… 
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Towards more machine-like code 
•  Consider expression 2 * 3 + 4 * 5 
•  Write it in postfix:  2 3 * 4 5 * + 
•  This is sequential code for a stack machine: 

Instructions: 
2 3 * 4 5 * + 
3 * 4 5 * + 

* 4 5 * + 
4 5 * + 

5 * + 
* + 
+ 

Stack contents: 
2 
2 3 
6 
6 4 
6 4 5 
6 20 
26 
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10-minute exercises 
•  What is the postfix of 

2 * 3 + 4 
2 + 3 * 4 
2 * (3 + 4) 
2 – 3 – 4 – 5 
2 – (3 – (4 – 5)) 
2 + 3 * 4 / 5 

•  Evaluate the postfix versions using a stack 
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Expression stack machine 
without variables 

Instruction Stack before Stack after Effect 
RCSTI n s s, n Push const 
RADD s, n1, n2 s, n1+n2 Add 
RSUB s, n1, n2 s, n1-n2 Subtract 
RMUL s, n1, n2 s, n1*n2 Multiply 
RDUP s, v s, v, v Duplicate top elem 
RSWAP s, v1, v2 s, v2, v1 Swap 

+ 

* 

2 3 

4 



Compilation of expr to  
stack machine code 

•  A constant i compiles to code [RCst i] 
•  An operator application e1+e2 compiles to: 

–  code for operand e1 
–  code for operand e2 
–  code for the operator + 

let rec rcomp (e : expr) : rinstr list = 
    match e with 
    | CstI i            -> [RCstI i] 
    | Var _             -> failwith "rcomp cannot do Var" 
    | Let _             -> failwith "rcomp cannot do Let" 
    | Prim("+", e1, e2) -> rcomp e1 @ rcomp e2 @ [RAdd] 
    | Prim("*", e1, e2) -> rcomp e1 @ rcomp e2 @ [RMul] 
    | Prim("-", e1, e2) -> rcomp e1 @ rcomp e2 @ [RSub] 
    | Prim _            -> failwith "unknown primitive";; 

rcomp (Prim("+", Prim("*", CstI 2, CstI 3), CstI 4));; 
val it : rinstr list = [RCstI 2; RCstI 3; RMul; RCstI 4; RAdd] 



Stack machine (without variables) 
•  A direct implementation of state transitions: 
let rec reval (inss : rinstr list) (stack : int list) = 
    match (inss, stack) with  
    | ([], v :: _) -> v 
    | ([], [])     -> failwith "reval: no result on stack!" 
    | (RCstI i :: insr,         stk)  -> reval insr (i::stk) 
    | (RAdd    :: insr, i2::i1::stkr) -> reval insr ((i1+i2)::stkr) 
    | (RSub    :: insr, i2::i1::stkr) -> reval insr ((i1-i2)::stkr) 
    | (RMul    :: insr, i2::i1::stkr) -> reval insr ((i1*i2)::stkr) 
    | (RDup    :: insr,     i1::stkr) -> reval insr (i1 :: i1 :: stkr) 
    | (RSwap   :: insr, i2::i1::stkr) -> reval insr (i1 :: i2 :: stkr) 
    | _ -> failwith "reval: too few operands on stack";; 

expr rcomp 
rinstr  
list 

reval Output 

int list 
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Concepts 
•  An expression e is compiled to a sequence of 

instructions 
•  Net effect principle:  

– The net effect of executing the instructions is to 
leave the expression’s value on the stack 

•  Compiler correctness relative to interpreter 
– Executing the compiled code gives the same 

result as executing the original expression 
– That is: 
 reval (rcomp e []) []    equals   eval e []  



How store (let-bound) variables? 
•  Idea: Put them in the stack!  Classic, 1960’es 
•  So stack contains mixture of  

–  intermediate results (as before) 
–  values of bound variables 

•  To get a variable’s value, index off the stack top 
•  Example: 2 * let x=3 in x+4 end 
•  Code: 2 3 SVAR(0) 4 SADD SSWAP SPOP SMUL 

Instructions: 
2 3 SVAR(0) 4 SADD SSWAP SPOP SMUL 

3 SVAR(0) 4 SADD SSWAP SPOP SMUL 
SVAR(0) 4 SADD SSWAP SPOP SMUL 

4 SADD SSWAP SPOP SMUL 
SADD SSWAP SPOP SMUL 

SSWAP SPOP SMUL 
SPOP SMUL 

SMUL 

Stack: 
2 
2 3 
2 3 3 
2 3 3 4 
2 3 7 
2 7 3 
2 7  
14 

Value of let-
rhs is put  

on stack top Must be removed 
after let-body 



Expression stack machine 
with variables 

Instruction Stack before Stack after Effect 
SCSTI n s s, n Push const 
SVAR x s s, s[x] Index into stack 
SADD s, n1, n2 s, n1+n2 Add 
SSUB s, n1, n2 s, n1-n2 Subtract 
SMUL s, n1, n2 s, n1*n2 Multiply 
SPOP s, v s Remove top elem 
SSWAP s, v1, v2 s, v2, v1 Swap 

expr scomp 
sinstr  
list 

seval Output 

int list 



Stack machine (with vars) in F# 
let rec seval (inss : sinstr list) (stack : int list) = 
   match (inss, stack) with 
   | ([], v :: _) -> v 
   | ([], [])     -> failwith "seval: no result on stack" 
   | (SCstI i :: insr,          stk) -> seval insr (i :: stk)  
   | (SVar i  :: insr,          stk) -> seval insr (List.nth stk i :: stk) 
   | (SAdd    :: insr, i2::i1::stkr) -> seval insr (i1+i2 :: stkr) 
   | (SSub    :: insr, i2::i1::stkr) -> seval insr (i1-i2 :: stkr) 
   | (SMul    :: insr, i2::i1::stkr) -> seval insr (i1*i2 :: stkr) 
   | (SPop    :: insr,    _ :: stkr) -> seval insr stkr 
   | (SSwap   :: insr, i2::i1::stkr) -> seval insr (i1::i2::stkr) 
   | _ -> failwith "seval: too few operands on stack";; 

type sinstr = 
  | SCstI of int 
  | SVar of int 
  | SAdd 
  | SSub 
  | Smul 
  | Spop 
  | SSwap 

This seval “machine” combines 
•  teval: variables as indices 
•  reval: stack machine code 



Compiling to the seval “machine” 
•  The compile-time env. must distinguish between 

intermediate results and let-bound variables: 

let rec scomp (e:expr) (cenv : stackvalue list) : sinstr list = 
  match e with 
  | CstI i -> [SCstI i] 
  | Var x  -> [SVar (getindex cenv (Bound x))] 
  | Let(x, erhs, ebody) ->  
    scomp erhs cenv @ scomp ebody (Bound x :: cenv)  
                    @ [SSwap; SPop] 
  | Prim("+", e1, e2) ->  
    scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SAdd]  
  | Prim("-", e1, e2) ->  
    scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SSub]  
  | Prim("*", e1, e2) ->  
    scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SMul]  
  | Prim _ -> failwith "scomp: unknown operator";; 

type stackvalue = 
  | Value                               (* A computed value *) 
  | Bound of string;;                   (* A bound variable *) 
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The compile-time environment 
•  The compile-time environment keeps track of 

variable positions in the stack 
•  The compile-time environment is a stack; an 

abstraction of the run-time stack 

Position in expression: 
2* 
2*let x=3 in  
2*let x=3 in x+ 
2*let x=3 in x+4 end 

Compile-time env: 
TEMP 
TEMP x 
TEMP x TEMP 
TEMP 
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seval stack machine in Java (almost C) 
while (pc < code.length)  
  switch (instr = code[pc++]) { 
  case SCST: 
    stack[sp+1] = code[pc++]; sp++; break; 
  case SVAR: 
    stack[sp+1] = stack[sp-code[pc++]]; sp++; break; 
  case SADD:  
    stack[sp-1] = stack[sp-1] + stack[sp]; sp--; break; 
  case SSUB:  
    stack[sp-1] = stack[sp-1] - stack[sp]; sp--; break; 
  case SMUL:  
    stack[sp-1] = stack[sp-1] * stack[sp]; sp--; break; 
  case SPOP:  
    sp--; break; 
  case SSWAP:  
    { int tmp     = stack[sp];  
      stack[sp]   = stack[sp-1];  
      stack[sp-1] = tmp; 
      break; } 
  default:     
    throw new RuntimeException("Illegal instruction"); 
} 

code : int[] 
pc = program counter, points into code 
stack : int[] 
sp = stack pointer, points into stack 
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Stack machines everywhere 
•  Burroughs B5000 (1961) 
•  Forth virtual machine (1970) 
•  P-code, UCSD Pascal (1977) 
•  Western Digital Pascal microEngine  
•  Postscript (1984) 
•  Java Virtual Machine (1994) 
•  picoJava JVM core 
•  .NET Common Language Runtime (1999) 
•  ARM Jazelle instructions (2005) 
•  Intel cpu stack pointer prediction 
•  … zillions of others 

hardware 

hardware 

hardware 

hardware 

hardware 
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Postscript (.ps) is a postfix,  
stack-based language 

•  A Postscript printer is an interpreter: 

4 5 add 8 mul = (4 + 5) * 8 

/x 7 def 
x x mul 9 add = 

let x=7 in 
x*x+9 

/fac { dup 0 eq  
       { pop 1 }  
       { dup 1 sub fac mul } 
       ifelse } def  

n!, factorial 
function 

gs -sNODISPLAY on ssh.itu.dk 
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Reading and homework 
•  This week’s lecture: 

– PLC chapter 2 
– Exercises 2.2, 2.3, 2.4, 2.8 
– Send zip-file BPRD-02-Dit-Navn.zip to drc@itu.dk 

no later than Wednesday 12 September 

•  Next week’s lecture: 
– PLC chapter 3 
– Mogensen ICD 2011 sections 1.1-1.8, 2.1-2.5 

or Mogensen 2010 sections 2.1-2.7, 2.9, 3.1-3.6  


