
www.itu.dk 1

Programs as data
Interpretation vs compilation,

stack machines

Peter Sestoft
 Monday 2012-09-03

www.itu.dk 2

Plan for today
•  F# polymorphic functions and types
•  Concepts:

–  free and bound variables and occurrences
–  closed expressions
–  substitution

•  Interpreters and compilers
•  Compilation of expressions

– Replace names by indices (numbers)
– To stack machine code, without variables
– To stack machine code, with variables

•  The Postscript language

www.itu.dk 3

F# polymorphic functions

•  Same as a generic method in Java or C#

let rec len xs =
 match xs with
 | [] -> 0
 | x::xr -> 1 + len xr;;

val len : 'a list -> int

The function
doesn’t look at

the list elements

… so the function
is polymorphic

static int Count<T>(IEnumerable<T> xs) { ... }

len [7; 9; 13]
len [true; true; false; true]
len ["foo"; "bar"]
len [("Peter", 50)]

… and works in
any type of list

www.itu.dk 4

F# polymorphic types

•  Same as a generic type in Java or C#:

type 'a tree =
 | Lf
 | Br of 'a * 'a tree * 'a tree

Br(42, Lf, Lf)
Br("quoi?", Lf, Lf)
Br(("Peter", 50), Lf, Lf)

The datatype has
same structure

regardless of node
value type

What type
instances here?

class ArrayList<T> { ... }
interface IEnumerable<T> { ... }
struct Pair<T,U> { ... }
delegate R Func<A,R>(A x);

www.itu.dk 5

Kinds of polymorphism
•  Parametric polymorphism, as in ML, F#, Java and C#:

–  The type variable 'a stands for an arbitrary type
–  A parametric polymorphic function works the same way regardless

what the type variable stands for
•  Bounded parametric polymorphism, as in Java, C#:

–  The type variable T stands for a type with certain properties
–  For instance, a List<T> is printable if all its elements are:

•  Ad hoc polymorphism, or overloading:
–  Java operator (+) works on int, double, String but not boolean

•  Virtual method calls are sometimes said to be `polymorphic‘

•  A parametric polymorphic type is an assertion about a function
–  What terminating pure F# function has type 'a -> 'a ??
–  What terminating pure F# function has type 'a * 'b -> 'b * 'a ??

class List<T> : IPrintable where T : IPrintable { ... }

Vehicle v = getMyVehicle();
... v.getWeight() ... May call getWeight()

on Bike, Car, Tank, …

www.itu.dk 6

Polymorphic functions
on polymorphic types

•  Return the tree’s node values in pre-order
–  first root, then left subtree, then right subtree

•  Works on any type of tree

•  What is the type of this function?

let rec preorder1 t =
 match t with
 | Lf -> []
 | Br(v, t1, t2) -> v :: preorder1 t1 @ preorder1 t2

Accumulating parameters
•  The append (@) operation may be slow
•  A faster version of preorder, no append!
let rec preo t acc =
 match t with
 | Lf -> acc
 | Br(v, t1, t2) -> v :: preo t1 (preo t2 acc);;

let preorder2 t = preo t [];;

•  Function preorder2 is correct because:
 preo t acc = preorder1 t @ acc

•  and therefore:
 preorder2 t = preo t [] = preorder1 t

Accumulating
parameter

O(n) versus O(n2)

Can be 1000 x faster
Try #time;; in F#

www.itu.dk 8

Proof, by induction on the tree
•  Case t = Lf:

preo Lf acc
= acc
= [] @ acc
= preorder1 Lf @ acc

•  Case t = Br(v, t1, t2):
preo (Br(v, t1, t2)) acc
= v :: preo t1 (preo t2 acc)
= v :: preo t1 (preorder1 t2 @ acc)
= v :: preorder1 t1 @ (preorder1 t2 @ acc)
= (v :: preorder1 t1 @ preorder1 t2) @ acc
= preorder1 (Br(v, t1, t2)) @ acc

Ikke pensum,
bare nyttigt…

www.itu.dk 9

Set operations in F#
•  We represent a set as a list without

duplicates; simple but inefficient for large sets
•  The empty set ∅ is represented by []
•  Set membership: x ∈ vs

let rec mem x vs =
 match vs with
 | [] -> false
 | v::vr -> x=v || mem x vr;;

> mem 42 [2; 5; 3];;
val it : bool = false
> mem 42 [];;
val it : bool = false
> mem 42 [2; 67; 42; 5];;
val it : bool = true

www.itu.dk 10

Set union and difference in F#
•  Set union: A ∪ B
let rec union (xs, ys) =
 match xs with
 | [] -> ys
 | x::xr -> if mem x ys then union(xr, ys)
 else x :: union(xr, ys);;

let rec minus (xs, ys) =
 match xs with
 | [] -> []
 | x::xr -> if mem x ys then minus(xr, ys)
 else x :: minus(xr, ys);;

•  Set difference: A \ B

www.itu.dk 11

Back to expressions: let-bindings

•  How represent
let z=x in z+x
let z=3 in let y=z+1 in z+y
let z=(let x=4 in x+5) in z*2

type expr =
 | CstI of int
 | Var of string
 | Let of string * expr * expr
 | Prim of string * expr * expr;;

Let("z", CstI 17, Prim("+", Var "z", Var "z"))

 let z = 17 in z + z

rhs = right-hand side

body

Evaluation of expressions with let

•  To evaluate “let x=erhs in ebody”:
–  Evaluate erhs in given environment to get xval
–  Extend env with binding (x, xval) binding to get env1
–  Evaluate ebody in env1

let rec eval e (env : (string * int) list) : int =
 match e with
 | CstI i -> i
 | Var x -> lookup env x
 | Let(x, erhs, ebody) ->
 let xval = eval erhs env
 let env1 = (x, xval) :: env
 in eval ebody env1
 | Prim("+", e1, e2) -> eval e1 env + eval e2 env
 | Prim("*", e1, e2) -> eval e1 env * eval e2 env
 | Prim("-", e1, e2) -> eval e1 env - eval e2 env
 | Prim _ -> failwith "unknown primitive";;

www.itu.dk 13

Concepts:
Free and bound variable occurrences

•  A variable occurrence x is bound if it is in the ebody
of a binding let x=erhs in ebody

•  Otherwise it is free
•  Which occurrences are bound and which free here:

let z=x in z+x
let z=3 in let y=z+1 in x+y
let z=(let x=4 in x+5) in z*2
let z=(let x=4 in x+5) + x in z*2

•  A variable is free if it has some free occurrence
•  Usually, a program must have no free variables...
•  (… in C it may, but then must be bound by linking)

www.itu.dk 14

Finding the set of free variables

•  An expression is closed if it has no free
variables

let rec freevars e : string list =
 match e with
 | CstI i -> []
 | Var x -> [x]
 | Let(x, erhs, ebody) ->
 union (freevars erhs, minus (freevars ebody, [x]))
 | Prim(ope, e1, e2) -> union (freevars e1, freevars e2)

let closed e = (freevars e = [])

www.itu.dk

Substitution: replace free variables
•  The substitution [(5-4)/z](y*z) replaces

free z by expression (5-4) in expr. (y*z)!
•  The result is (y*(5-4))!

•  Think of [(5-4)/z] as an environment that
maps z to (5-4)
 Like [("z", Prim("-", CstI 5, CstI 4))]!

•  A variable not mentioned maps to itself:

15

let rec lookOrSelf env x =
 match env with
 | [] -> Var x
 | (y, e)::r -> if x=y then e else lookOrSelf r x;;

www.itu.dk

Substitution, continued
•  Substitution affects only free occurrences of z!
•  So what is the expected result of
[(5-4)/z](let z=22 in y*z end) ??

•  And what is the expected result of
[(5-4)/z](z + let z=22 in y*z end) ??

•  Remove z from environment when processing
body of let z = rhs in body end!

16

let rec remove env x =
 match env with
 | [] -> []
 | (y, e)::r -> if x=y then r else (y, e) :: remove r x;;

www.itu.dk

Naive implementation of substitution
•  Substitution recursively transforms expr. e:

•  Apparently this works:

•  Also [(5-4)/z](let z=22 in y*z end) gives
let z=22 in y*z end as it should

17

let rec nsubst (e : expr) (env : (string * expr) list) : expr =
 match e with
 | CstI i -> e
 | Var x -> lookOrSelf env x
 | Let(x, erhs, ebody) ->
 let newenv = remove env x
 Let(x, nsubst erhs env, nsubst ebody newenv)
 | Prim(ope, e1, e2) -> Prim(ope, nsubst e1 env, nsubst e2 env)

replace x (maybe with x)

not in ebody
replace in erhs

recursively in operands

> let e6 = Prim("+", Var "y", Var "z");;
> let e6s2 = nsubst e6 [("z", Prim("-", CstI 5, CstI 4))];;
val e6s2 : expr = Prim ("+",Var "y",Prim ("-",CstI 5,CstI 4))

www.itu.dk

Problem: Capture of free variables
•  But replacing y by z,

as in [z/y](let z=22 in y*z end)
gives let z=22 in z*z end

•  The free variable z that was substituted in
for variable y was captured by let z=...

•  In a substitution [e/y]... free variables in e
should remain free

18

www.itu.dk

Capture-avoiding substitution
•  To avoid capture of new free variables,

rename existing bound variables
•  Easy: Invent fresh names, substitute for old

19

let rec subst (e : expr) (env : (string * expr) list) : expr =
 match e with
 | CstI i -> e
 | Var x -> lookOrSelf env x
 | Let(x, erhs, ebody) ->
 let newx = newVar x
 let newenv = (x, Var newx) :: remove env x
 Let(newx, subst erhs env, subst ebody newenv)
 | Prim(ope, e1, e2) -> Prim(ope, subst e1 env, subst e2 env)

let newVar : string -> string =
 let n = ref 0
 let varMaker x = (n := 1 + !n; x + string (!n))
 varMaker

make fresh variables

rename bound
variable x

Interpretation and compilation
•  Interpretation = one-stage execution/evaluation:

Program Inter-
preter Output

Input

Program Compiler Machine
code Machine Output

Input

•  Compilation = two-stage execution/evaluation:

eval
e

env

P.java javac P.class java

args[]

prog.c gcc prog x86

argv[]

www.itu.dk 21

Why compilation?
•  Better correctness and safety. The compiler can:

–  check that all names are defined: classes, methods, fields,
variables, types, functions, …

–  check that the names have the correct type
–  check that it is legal to refer to them (not private etc)
–  improve the code, e.g. inline calls to private methods

•  Better performance
–  The compiler checks are performed once, but the machine

code gets executed again and again
•  Why not compilation?

–  Compilation reduces flexibility by imposing static type
checks and static name binding

–  Web programming often requires more flexibility
–  … hence PHP, Python, Ruby, JavaScript, VB.NET, …

www.itu.dk 22

Replacing variable names with indices

•  After compilation, there are no variable
names, only indices (locations), at runtime

•  Instead of symbolic names:

we shall use variable indexes:

Let("z", CstI 17, Prim("+", Var "z", Var "z"))

Let(CstI 17, Prim("+", Var 0, Var 0))

0 means closest
variable binding
0 means closest
variable binding

No variable name

Let("z", CstI 17, Let("y", CstI 25,
 Prim("+", Var "z", Var "y")))

•  Index = number of let-bindings to cross:

www.itu.dk 23

Indexes instead of variable names

•  We shall compile to this “target” language:
type texpr = (* target expressions *)
 | TCstI of int
 | TVar of int (* index at runtime *)
 | TLet of texpr * texpr
 | TPrim of string * texpr * texpr

expr tcomp texpr teval Output

int list

www.itu.dk 24

Evaluating texprs
•  The runtime environment of a texpr is a list

of values – not (name, value) pairs

let rec teval (e : texpr) (renv : int list) : int =
 match e with
 | TCstI i -> i
 | TVar n -> List.nth renv n
 | TLet(erhs, ebody) ->
 let xval = teval erhs renv
 let renv1 = xval :: renv
 teval ebody renv1
 | TPrim("+", e1, e2) -> teval e1 renv + teval e2 renv
 | TPrim("*", e1, e2) -> teval e1 renv * teval e2 renv
 | TPrim("-", e1, e2) -> teval e1 renv - teval e2 renv
 | TPrim _ -> failwith "unknown primitive"

Replacing variable names with indices
let rec getindex vs x =
 match vs with
 | [] -> failwith "Variable not found"
 | y::yr -> if x=y then 0 else 1 + getindex yr x;;

let rec tcomp (e : expr) (cenv : string list) : texpr =
 match e with
 | CstI i -> TCstI i
 | Var x -> TVar (getindex cenv x)
 | Let(x, erhs, ebody) ->
 let cenv1 = x :: cenv
 in TLet(tcomp erhs cenv, tcomp ebody cenv1)
 | Prim(ope, e1, e2) -> TPrim(ope, tcomp e1 cenv, tcomp e2 cenv)

let z=3 in let y=z+1 in z+y

•  What if the expression e is not closed?

[] [] [“z”] ["y"; "z"] ["z"]

www.itu.dk 26

Binding-times in the environment
•  Run-time environment in expr interpreter:
[("y", 4); ("z", 3)]

•  Compile-time environment in expr compiler:
["y"; "z"]

•  Run-time environment of texpr “machine”:
[4; 3]

•  The interpreter runtime environment splits to
– A compile-time environment in the compiler
– A runtime environment in the “machine”

•  We meet such “binding-time” separation
again later…

www.itu.dk 27

Towards more machine-like code
•  Consider expression 2 * 3 + 4 * 5
•  Write it in postfix: 2 3 * 4 5 * +
•  This is sequential code for a stack machine:

Instructions:
2 3 * 4 5 * +
3 * 4 5 * +

* 4 5 * +
4 5 * +

5 * +
* +
+

Stack contents:
2
2 3
6
6 4
6 4 5
6 20
26

www.itu.dk 28

10-minute exercises
•  What is the postfix of

2 * 3 + 4
2 + 3 * 4
2 * (3 + 4)
2 – 3 – 4 – 5
2 – (3 – (4 – 5))
2 + 3 * 4 / 5

•  Evaluate the postfix versions using a stack

www.itu.dk 29

Expression stack machine
without variables

Instruction Stack before Stack after Effect
RCSTI n s s, n Push const
RADD s, n1, n2 s, n1+n2 Add
RSUB s, n1, n2 s, n1-n2 Subtract
RMUL s, n1, n2 s, n1*n2 Multiply
RDUP s, v s, v, v Duplicate top elem
RSWAP s, v1, v2 s, v2, v1 Swap

+

*

2 3

4

Compilation of expr to
stack machine code

•  A constant i compiles to code [RCst i]
•  An operator application e1+e2 compiles to:

–  code for operand e1
–  code for operand e2
–  code for the operator +

let rec rcomp (e : expr) : rinstr list =
 match e with
 | CstI i -> [RCstI i]
 | Var _ -> failwith "rcomp cannot do Var"
 | Let _ -> failwith "rcomp cannot do Let"
 | Prim("+", e1, e2) -> rcomp e1 @ rcomp e2 @ [RAdd]
 | Prim("*", e1, e2) -> rcomp e1 @ rcomp e2 @ [RMul]
 | Prim("-", e1, e2) -> rcomp e1 @ rcomp e2 @ [RSub]
 | Prim _ -> failwith "unknown primitive";;

rcomp (Prim("+", Prim("*", CstI 2, CstI 3), CstI 4));;
val it : rinstr list = [RCstI 2; RCstI 3; RMul; RCstI 4; RAdd]

Stack machine (without variables)
•  A direct implementation of state transitions:
let rec reval (inss : rinstr list) (stack : int list) =
 match (inss, stack) with
 | ([], v :: _) -> v
 | ([], []) -> failwith "reval: no result on stack!"
 | (RCstI i :: insr, stk) -> reval insr (i::stk)
 | (RAdd :: insr, i2::i1::stkr) -> reval insr ((i1+i2)::stkr)
 | (RSub :: insr, i2::i1::stkr) -> reval insr ((i1-i2)::stkr)
 | (RMul :: insr, i2::i1::stkr) -> reval insr ((i1*i2)::stkr)
 | (RDup :: insr, i1::stkr) -> reval insr (i1 :: i1 :: stkr)
 | (RSwap :: insr, i2::i1::stkr) -> reval insr (i1 :: i2 :: stkr)
 | _ -> failwith "reval: too few operands on stack";;

expr rcomp
rinstr
list

reval Output

int list

www.itu.dk 32

Concepts
•  An expression e is compiled to a sequence of

instructions
•  Net effect principle:

– The net effect of executing the instructions is to
leave the expression’s value on the stack

•  Compiler correctness relative to interpreter
– Executing the compiled code gives the same

result as executing the original expression
– That is:
 reval (rcomp e []) [] equals eval e []

How store (let-bound) variables?
•  Idea: Put them in the stack! Classic, 1960’es
•  So stack contains mixture of

–  intermediate results (as before)
–  values of bound variables

•  To get a variable’s value, index off the stack top
•  Example: 2 * let x=3 in x+4 end
•  Code: 2 3 SVAR(0) 4 SADD SSWAP SPOP SMUL

Instructions:
2 3 SVAR(0) 4 SADD SSWAP SPOP SMUL

3 SVAR(0) 4 SADD SSWAP SPOP SMUL
SVAR(0) 4 SADD SSWAP SPOP SMUL

4 SADD SSWAP SPOP SMUL
SADD SSWAP SPOP SMUL

SSWAP SPOP SMUL
SPOP SMUL

SMUL

Stack:
2
2 3
2 3 3
2 3 3 4
2 3 7
2 7 3
2 7
14

Value of let-
rhs is put

on stack top Must be removed
after let-body

Expression stack machine
with variables

Instruction Stack before Stack after Effect
SCSTI n s s, n Push const
SVAR x s s, s[x] Index into stack
SADD s, n1, n2 s, n1+n2 Add
SSUB s, n1, n2 s, n1-n2 Subtract
SMUL s, n1, n2 s, n1*n2 Multiply
SPOP s, v s Remove top elem
SSWAP s, v1, v2 s, v2, v1 Swap

expr scomp
sinstr
list

seval Output

int list

Stack machine (with vars) in F#
let rec seval (inss : sinstr list) (stack : int list) =
 match (inss, stack) with
 | ([], v :: _) -> v
 | ([], []) -> failwith "seval: no result on stack"
 | (SCstI i :: insr, stk) -> seval insr (i :: stk)
 | (SVar i :: insr, stk) -> seval insr (List.nth stk i :: stk)
 | (SAdd :: insr, i2::i1::stkr) -> seval insr (i1+i2 :: stkr)
 | (SSub :: insr, i2::i1::stkr) -> seval insr (i1-i2 :: stkr)
 | (SMul :: insr, i2::i1::stkr) -> seval insr (i1*i2 :: stkr)
 | (SPop :: insr, _ :: stkr) -> seval insr stkr
 | (SSwap :: insr, i2::i1::stkr) -> seval insr (i1::i2::stkr)
 | _ -> failwith "seval: too few operands on stack";;

type sinstr =
 | SCstI of int
 | SVar of int
 | SAdd
 | SSub
 | Smul
 | Spop
 | SSwap

This seval “machine” combines
•  teval: variables as indices
•  reval: stack machine code

Compiling to the seval “machine”
•  The compile-time env. must distinguish between

intermediate results and let-bound variables:

let rec scomp (e:expr) (cenv : stackvalue list) : sinstr list =
 match e with
 | CstI i -> [SCstI i]
 | Var x -> [SVar (getindex cenv (Bound x))]
 | Let(x, erhs, ebody) ->
 scomp erhs cenv @ scomp ebody (Bound x :: cenv)
 @ [SSwap; SPop]
 | Prim("+", e1, e2) ->
 scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SAdd]
 | Prim("-", e1, e2) ->
 scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SSub]
 | Prim("*", e1, e2) ->
 scomp e1 cenv @ scomp e2 (Value :: cenv) @ [SMul]
 | Prim _ -> failwith "scomp: unknown operator";;

type stackvalue =
 | Value (* A computed value *)
 | Bound of string;; (* A bound variable *)

www.itu.dk 37

The compile-time environment
•  The compile-time environment keeps track of

variable positions in the stack
•  The compile-time environment is a stack; an

abstraction of the run-time stack

Position in expression:
2*
2*let x=3 in
2*let x=3 in x+
2*let x=3 in x+4 end

Compile-time env:
TEMP
TEMP x
TEMP x TEMP
TEMP

www.itu.dk 38

seval stack machine in Java (almost C)
while (pc < code.length)
 switch (instr = code[pc++]) {
 case SCST:
 stack[sp+1] = code[pc++]; sp++; break;
 case SVAR:
 stack[sp+1] = stack[sp-code[pc++]]; sp++; break;
 case SADD:
 stack[sp-1] = stack[sp-1] + stack[sp]; sp--; break;
 case SSUB:
 stack[sp-1] = stack[sp-1] - stack[sp]; sp--; break;
 case SMUL:
 stack[sp-1] = stack[sp-1] * stack[sp]; sp--; break;
 case SPOP:
 sp--; break;
 case SSWAP:
 { int tmp = stack[sp];
 stack[sp] = stack[sp-1];
 stack[sp-1] = tmp;
 break; }
 default:
 throw new RuntimeException("Illegal instruction");
}

code : int[]
pc = program counter, points into code
stack : int[]
sp = stack pointer, points into stack

www.itu.dk 39

Stack machines everywhere
•  Burroughs B5000 (1961)
•  Forth virtual machine (1970)
•  P-code, UCSD Pascal (1977)
•  Western Digital Pascal microEngine
•  Postscript (1984)
•  Java Virtual Machine (1994)
•  picoJava JVM core
•  .NET Common Language Runtime (1999)
•  ARM Jazelle instructions (2005)
•  Intel cpu stack pointer prediction
•  … zillions of others

hardware

hardware

hardware

hardware

hardware

www.itu.dk 40

Postscript (.ps) is a postfix,
stack-based language

•  A Postscript printer is an interpreter:

4 5 add 8 mul = (4 + 5) * 8

/x 7 def
x x mul 9 add =

let x=7 in
x*x+9

/fac { dup 0 eq
 { pop 1 }
 { dup 1 sub fac mul }
 ifelse } def

n!, factorial
function

gs -sNODISPLAY on ssh.itu.dk

www.itu.dk 41

Reading and homework
•  This week’s lecture:

– PLC chapter 2
– Exercises 2.2, 2.3, 2.4, 2.8
– Send zip-file BPRD-02-Dit-Navn.zip to drc@itu.dk

no later than Wednesday 12 September

•  Next week’s lecture:
– PLC chapter 3
– Mogensen ICD 2011 sections 1.1-1.8, 2.1-2.5

or Mogensen 2010 sections 2.1-2.7, 2.9, 3.1-3.6

