
Partial Evaluation

and Automatic Program Generation

Neil D. Jones

DIKU, Department of Computer Science, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen �, Denmark

Carsten K. Gomard

DIKU and Computer Resources International A/S

Bregner�dvej 144, DK-3460 Birker�d, Denmark

Peter Sestoft

Department of Computer Science, Technical University of Denmark
Building 344, DK-2800 Lyngby, Denmark

with chapters by

Lars Ole Andersen and Torben Mogensen

DIKU, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen �, Denmark1

Originally published by Prentice Hall International 1993; ISBN 0-13-020249-5.

In 1999, the copyright has been transferred back to the authors.

Copyright c
1999 Neil D. Jones, Carsten K. Gomard, and Peter Sestoft

Contents

Preface x

1 Introduction 1

1.1 Partial evaluation = program specialization 1

1.2 Why do partial evaluation? 5

1.3 Computation in one stage or more 7

1.4 Partial evaluation and compilation 11

1.5 Automatic program generation 13

1.6 Critical assessment 15

1.7 Overview of the book 17

I Fundamental Concepts in Programming Languages 21

2 Functions, Types, and Expressions 23

2.1 Functions 23

2.2 Types in programming languages 26

2.3 Recursive data types 32

2.4 Summary 36

2.5 Exercises 37

3 Programming Languages and Interpreters 38

3.1 Interpreters, compilers, and running times 38

3.2 The untyped lambda calculus: syntax and semantics 43

3.3 Three mini-languages 50

3.4 Compiling compilers 58

3.5 The central problems of compilation 60

3.6 Summary 61

v

vi Contents

3.7 Exercises 62

II Principles of Partial Evaluation 65

4 Partial Evaluation for a Flow Chart Language 67

4.1 Introduction 68

4.2 What is partial evaluation? 69

4.3 Partial evaluation and compilation 73

4.4 Program specialization techniques 76

4.5 Algorithms used in mix 85

4.6 The second Futamura projection: compiler generation 86

4.7 Generating a compiler generator: mix3 91

4.8 The tricks under the carpet 91

4.9 The granularity of binding-time analysis 94

4.10 Overview of mix performance 97

4.11 Summary and a more abstract perspective 98

4.12 Exercises 99

5 Partial Evaluation for a First-Order Functional Language 101

5.1 From
ow charts to functions 101
5.2 Binding-time analysis by abstract interpretation 106
5.3 Adding annotations 110

5.4 Specialization algorithm for Scheme0 113
5.5 Call unfolding on the
y 118

5.6 Implementation 122
5.7 Using type rules for binding-time checking 123
5.8 Constructing the generating extension 125

5.9 Exercises 125

6 E�ciency, Speedup, and Optimality 127

6.1 De�ning and measuring speedup 127
6.2 Flow chart mix gives linear speedup 130

6.3 Speedup analysis 132

6.4 Optimality of mix 138
6.5 Hierarchies of meta-languages 139

6.6 Exercises 141

7 Online, O�ine, and Self-application 144

7.1 Decision making as a prephase? 145
7.2 Online and o�ine expression reduction 145

7.3 BTA and the taming of self-application 153
7.4 A recipe for self-application 157

7.5 Exercises 159

Contents vii

III Partial Evaluation for Stronger Languages 161

8 Partial Evaluation for the Lambda Calculus 163

8.1 The lambda calculus and self-interpretation 164

8.2 Partial evaluation using a two-level lambda calculus 166

8.3 Congruence and consistency of annotations 169

8.4 Binding-time analysis 172

8.5 Simplicity versus power in Lambdamix 173

8.6 Binding-time analysis by type inference 175

8.7 BTA by solving constraints 175

8.8 Correctness of Lambdamix 183

8.9 Exercises 190

9 Partial Evaluation for Prolog 192

9.1 An example 195

9.2 The structure of Logimix 196

9.3 Conclusion 200

9.4 Exercises 202

10 Aspects of Similix: A Partial Evaluator for a Subset of Scheme 204

10.1 An overview of Similix 204

10.2 Specialization with respect to functional values 210

10.3 Avoiding duplication 215

10.4 Call unfolding on the
y 217

10.5 Continuation-based reduction 218

10.6 Handling partially static structures 223

10.7 The Similix implementation 225

10.8 Exercises 225

11 Partial Evaluation for the C Language 229

11.1 Introduction 229

11.2 Specialization of control
ow 232

11.3 Function specialization 234

11.4 Data structures and their binding-time separation 239

11.5 Partial evaluation for C by two-level execution 245

11.6 Separation of the binding times 253

11.7 Self-application, types, and double encoding 256

11.8 C-mix: a partial evaluator for C programs 256

11.9 Towards partial evaluation for full Ansi C 258

11.10 Exercises 259

viii Contents

IV Partial Evaluation in Practice 261

12 Binding-Time Improvements 263

12.1 A case study: Knuth, Morris, Pratt string matching 264

12.2 Bounded static variation 266

12.3 Conversion into continuation passing style 270

12.4 Eta conversion 273

12.5 Improvements derived from `free theorems' 274

12.6 Exercises 274

13 Applications of Partial Evaluation 277

13.1 Types of problems susceptible to partial evaluation 277

13.2 When can partial evaluation be of bene�t? 285

13.3 Exercises 293

V Advanced Topics 295

14 Termination of Partial Evaluation 297

14.1 Termination of online partial evaluators 297

14.2 Termination of o�ine partial evaluators 298
14.3 Binding-time analysis ensuring termination 301
14.4 Safety of BTA algorithm 305

14.5 Exercises 307

15 Program Analysis 309

15.1 Abstract interpretation 309
15.2 Closure analysis 314

15.3 Higher-order binding-time analysis 319

15.4 Projections and partially static data 323

15.5 Projection-based binding-time analysis 328
15.6 Describing the dynamic data 332

15.7 Summary 333

15.8 Exercises 333

16 Larger Perspectives 335

16.1 Relations to recursive function theory 335

16.2 Types for interpreters, compilers, and partial evaluators 337

16.3 Some research problems 346

17 Program Transformation 347

17.1 A language with pattern matching 347
17.2 Fold/unfold transformations 350

17.3 Partial evaluation by fold/unfold 355

Contents ix

17.4 Supercompilation and deforestation 358

17.5 Exercises 364

18 Guide to the Literature 366

18.1 A brief historical overview 366

18.2 Partial evaluation literature by subject language 368

18.3 Principles and techniques 370

18.4 Applications 372

18.5 Other topics related to partial evaluation 374

A The Self-Applicable Scheme0 Specializer 376

A.1 Using the Scheme0 specializer 376

A.2 Data structures in the Scheme0 specializer 378

A.3 The components of the Scheme0 specializer 380

Bibliography 389

Index 406

Preface

This book is about partial evaluation, a program optimization technique also known

as program specialization. It presents general principles for constructing partial

evaluators for a variety of programming languages; and it gives examples, applica-
tions, and numerous references to the literature.

Partial evaluation

It is well known that a one-argument function can be obtained from a two-argument
function by specialization, i.e. by �xing one input to a particular value. In analysis

this is called restriction or projection, and in logic it is called currying. Partial
evaluation, however, works with program texts rather than mathematical functions.
A partial evaluator is an algorithm which, when given a program and some of

its input data, produces a so-called residual or specialized program. Running the
residual program on the remaining input data will yield the same result as running

the original program on all of its input data.
The theoretical possibility of partial evaluation was established many years ago

in recursive function theory as Kleene's `s-m-n theorem'. This book concerns its

practical realization and application.

Partial evaluation sheds new light on techniques for program optimization, com-
pilation, interpretation, and the generation of program generators. Further, it gives

insight into the properties of the programming languages themselves.
Partial evaluation can be thought of as a special case of program transformation,

but emphasizes full automation and generation of program generators as well as
transformation of single programs.

x

Preface xi

Partial evaluation and compilation

Partial evaluation gives a remarkable approach to compilation and compiler gen-

eration. For example, partial evaluation of an interpreter with respect to a source

program yields a target program. Thus compilation can be achieved without a

compiler, and a target program can be thought of as a specialized interpreter.

Compiler generation

Moreover, provided the partial evaluator is self-applicable, compiler generation is

possible: specializing the partial evaluator itself with respect to a �xed interpreter

yields a compiler. Thus a compiler can be thought of as a specialized partial

evaluator: one which can specialize only an interpreter for a particular language.

Finally, specializing the partial evaluator with respect to itself yields a compiler

generator. Thus a compiler generator can be thought of as a specialized partial

evaluator: one which can specialize only itself.

Other applications

The application of partial evaluation is not restricted to compiling and compiler
generation. If a program takes more than one input, and one of the inputs varies

more slowly than the others, then specialization of the program with respect to
that input gives a faster specialized program. Moreover, very many real-life pro-

grams exhibit interpretive behaviour. For instance they may be parametrized with
con�guration �les, etc., which seldom vary, and therefore they may be pro�tably
specialized.

The range of potential applications is extremely large, as shown by the list of

examples below. All have been implemented on the computer, by researchers from

Copenhagen, MIT, Princeton, and Stanford universities; and INRIA (France) and
ECRC (Germany). All have been seen to give signi�cant speedups.

� Pattern recognition

� Computer graphics by `ray tracing'

� Neural network training

� Answering database queries

� Spreadsheet computations

� Scienti�c computing

� Discrete hardware simulation

xii Preface

This book

We give several examples of such applications, but the main emphasis of the book

is on principles and methods for partial evaluation of a variety of programming

languages: functional (the lambda calculus and Scheme), imperative (a
owchart

language and a subset of C), and logical (Prolog). We explain the techniques

necessary for construction of partial evaluators, for instance program
ow analysis,

in su�cient detail to allow their implementation. Many of these techniques are

applicable also in other advanced programming tasks.

The book is structured as follows. The �rst chapter gives an overview of partial

evaluation and some applications. Then Part I introduces fundamental program-

ming language concepts, de�nes three mini-languages, and presents interpreters

for them. Part II describes the principles of self-applicable partial evaluation, il-

lustrated using two of the mini-languages:
ow charts and �rst-order recursion

equations. Part III shows how these principles apply to stronger languages: the

lambda calculus, and large subsets of the Prolog, Scheme, and C programming

languages. Part IV discusses practical aspects of partial evaluation, and presents a

wide range of applications. Part V presents more a theoretical view and a number
of advanced techniques, and provides extensive references to other research.
The book should be accessible even to beginning graduate students, and thus

useful for beginners and researchers in partial evaluation alike.
The perspective on partial evaluation and the selection of material re
ect the ex-

perience of our group with construction of several partial evaluators. These include

the �rst non-trivial self-applicable partial evaluators for a functional language, an
imperative language, the lambda calculus, a Prolog subset, and a subset of C. This

work has been carried out at the University of Copenhagen.

Acknowledgements

Many have contributed to both the substance and the ideas appearing in this book.
In particular we want to thank Lars Ole Andersen and Torben Mogensen who wrote

two specialist chapters, and Olivier Danvy who provided numerous constructive

comments and suggestions. More broadly we would like to express our thanks
to: Peter Holst Andersen, Henk Barendregt, Job Baretta, Anders Bondorf, Hans
Bruun, Mikhail Bulyonkov, Charles Consel, Robert Gl�uck, Chris Hankin, Rein-

hold Heckmann, Fritz Henglein, Carsten Kehler Holst, Paul Hudak, John Hughes,

Kristian Damm Jensen, Jesper J�rgensen, John Launchbury, Alan Mycroft, Hanne

and Flemming Nielson, Patrick O'Keefe, Sergei Romanenko, Bill Scherlis, David A.
Schmidt, Harald S�ndergaard, Morten Heine S�rensen, Carolyn Talcott, Valentin
Turchin, Phil Wadler, Daniel Weise, and last but not least, Lisa Wiese.

Parts of the research reported here were supported by DIKU (the Department

of Computer Science, University of Copenhagen) by the Danish Natural Sciences

Research Council, and by ESPRIT Basic Research Action 3124, `Semantique'.

Chapter 1

Introduction

Partial evaluation has been the subject of rapidly increasing activity over the past

decade since it provides a unifying paradigm for a broad spectrum of work in pro-

gram optimization, interpretation, compiling, other forms of program generation,
and even the generation of automatic program generators [19,24,79,101,141].
Many applications to date have concerned compiling and compiler generation

from interpretive programming language de�nitions, but partial evaluation also
has important applications to scienti�c computing, logic programming, metapro-
gramming, and expert systems.

It is a program optimization technique, perhaps better called program special-
ization. Full automation and the generation of program generators, as well as

transforming single programs, are central themes and have been achieved. In com-
parison with program transformation work such as [43,141], partial evaluation has
less dramatic speedups (typically linear) but greater automation.

1.1 Partial evaluation = program specialization

What is the essence of partial evaluation?
A one-argument function can be obtained from one with two arguments by spe-
cialization, i.e. by `freezing' one input to a �xed value. In analysis1 this is called

`restriction' or `projection', and in logic it is called `currying'. Partial evaluation,

however, deals with programs rather than functions.

The idea of specializing programs is also far from new. It was �rst formulated

and proven as Kleene's s-m-n theorem more than 40 years ago [149], and is an

important building block of the theory of recursive functions. However, e�ciency

matters were quite irrelevant to Kleene's investigations of the boundary between

computability and noncomputability, and Kleene's construction gave specialized

programs that were slower than the originals.

1The branch of mathematics.

1

2 Introduction

static input
in1

�
�

�
�

?

partial
evaluator
`mix'

??

subject
program p

'
&

$
%-

dynamic
input in2

�
�

�
�- specialized

program pin1

'
&

$
%-
- output

�
�

�
�

= data
�
 �	 = program

Figure 1.1: A partial evaluator.

A partial evaluator is given a subject program together with part of its input

data, in1. Its e�ect is to construct a new program pin1 which, when given p's
remaining input in2, will yield the same result that p would have produced given

both inputs. In other words a partial evaluator is a program specializer. In Figure
1.1 the partial evaluator is called mix.2

Figure 1.2 shows a two-input program to compute xn, and a faster program p5
resulting from specialization to n=5. The technique is to precompute all expres-
sions involving n, to unfold the recursive calls to function f, and to reduce x*1

to x. This optimization was possible because the program's control is completely
determined by n. If on the other hand x = 5 but n is unknown, specialization gives
no signi�cant speedup.

Our goal is to generate e�cient programs from general ones by completely auto-

matic methods. On the whole the general program will be simpler but less e�cient

than the specialized versions a partial evaluator produces. A telling catch phrase
is binding-time engineering | making computation faster by changing the times

at which subcomputations are done.

How is partial evaluation done?

Intuitively, specialization is done by performing those of p's calculations that de-
pend only on in1, and by generating code for those calculations that depend on

2Notation: data values are in ovals, and programs are in boxes. The specialized program pin1
is �rst considered as data and then considered as code, whence it is enclosed in both. Further,
single arrows indicate program input data, and double arrows indicate outputs. Thus mix has
two inputs while pin1 has only one; and pin1 is the output of mix.

Partial evaluation = program specialization 3

A two-
input
program

p =

f(n,x) =if n = 0 then 1

else if even(n) then f(n/2,x)"2

else x * f(n-1,x)

Program p, specialized to static input n = 5:

p5 = f5(x) = x * ((x"2)"2)

Figure 1.2: Specialization of a program to compute xn.

the as yet unavailable input in2. A partial evaluator performs a mixture of exe-

cution and code generation actions | the reason Ershov called the process `mixed

computation' [79], hence the name mix.

Three main partial evaluation techniques are well known from program trans-

formation [43]: symbolic computation, unfolding function calls, and program point
specialization. The latter is a combination of de�nition and folding, amounting to
memoization. Figure 1.2 applied the �rst two techniques; the third was unnec-

essary since the specialized program had no function calls. The idea of program
point specialization is that a single function or label in program p may appear in

the specialized program pin1 in several specialized versions, each corresponding to
data determined at partial evaluation time.

1.1.1 Program data and behaviour

Programs are both input to and output from other programs. Since we shall be

discussing several languages, we assume given a �xed set D of �rst-order data

values including all program texts. A suitable choice of D is the set of Lisp's
`list' data as de�ned by D = LispAtom +D�, e.g. (1 (2 3) 4) is a list of three

elements, whose second element is also a list. An example of a Lisp-like program

is p =

(define (length x)

(case x of

() => 0

(x1 . xrest) => (add 1 (length xrest))))

We use the typewriter font for programs and for their input and output. If p is

a program in language L, then [[p]]
L
denotes its meaning | often an input/output

function. To minimize notation, we use the same font both for concrete programs

and for variables denoting programs.

4 Introduction

The subscript L indicates how p is to be interpreted. When only one language

is being discussed we often omit the subscript so [[p]]
L
= [[p]]. Standard languages

used in the remainder of this article are:

L = implementation language

S = source language

T = target language

The program meaning function [[]]
L
is of type D ! D� ! D. Thus for n � 0,

output = [[p]]
L
[in1,in2,. . .,inn]

results from running p on input values in1, in2,. . ., inn, and output is unde�ned

if p goes into an in�nite loop.

1.1.2 An equational de�nition of partial evaluation

The essential property of mix is now formulated more precisely. Suppose p is a
source program, in1 is the data known at stage one (static), and in2 is data known
at stage two (dynamic). Then computation in one stage is described by

out = [[p]] [in1, in2]

Computation in two stages using specializer mix is described by

pin1 = [[mix]] [p, in1]

out = [[pin1]] in2

Combining these two we obtain an equational de�nition of mix:

[[p]] [in1, in2] = [[[[mix]] [p, in1]| {z }
specialized
program

]] in2

where if one side of the equation is de�ned, the other is also de�ned and has the

same value. This is easily generalizable to various numbers of static and dynamic
inputs at the cost of a more complex notation3.

Partial evaluation with di�erent input, output, and implementation languages

is also meaningful. An example is AMIX, a partial evaluator with a functional
language as input and implementation language, and stack code as output [120].

[[p]]
S
in1 in2 = [[[[mix]]

L
[p, in1]| {z }

specialized
program

]]
T
in2

3Exactly the same idea applies to Prolog, except that inputs are given by partially instanted
queries. In this case in1 is the part of a query known at stage one, and in2 instantiates this
further.

Why do partial evaluation? 5

1.2 Why do partial evaluation?

1.2.1 Speedups by partial evaluation

The chief motivation for doing partial evaluation is speed: program pin1 is often

faster than p. To describe this more precisely, for any p, d1, . . . , dn 2 D, let

tp(d1,...,dn) be the time to compute [[p]]L [d1; . . . ;dn] . This could, for example,

be the number of machine cycles to execute p on a concrete computer, or one could

approximate by counting 1 for every elementary operation.

Specialization is clearly advantageous if in2 changes more frequently than in1.

To exploit this, each time in1 changes one can construct a new specialized pin1,

faster than p, and then run it on various in2 until in1 changes again. Partial

evaluation can even be advantageous in a single run, since it often happens that

tmix(p; in1) + tpin1(in2) < tp(in1; in2)

An analogy is that compilation plus target run time is often faster than interpre-

tation in Lisp: tcompiler(source) + ttarget(d) < tint(source; d).

1.2.2 E�ciency versus generality and modularity?

One often has a class of similar problems which all must be solved e�ciently.
One solution is to write many small and e�cient programs, one for each. Two

disadvantages are that much programming is needed, and maintenance is di�cult:
a change in outside speci�cations can require every program to be modi�ed.
Alternatively, one may write a single highly parametrized program able to solve

any problem in the class. This has a di�erent disadvantage: ine�ciency. A highly
parametrized program can spend most of its time testing and interpreting param-
eters, and relatively little in carrying out the computations it is intended to do.

Similar problems arise with highly modular programming. While excellent for

documentation, modi�cation, and human usage, inordinately much computation

time can be spent passing data back and forth and converting among various
internal representations at module interfaces.

To get the best of both worlds: write only one highly parametrized and perhaps

ine�cient program; and use a partial evaluator to specialize it to each interesting
setting of the parameters, automatically obtaining as many customized versions as

desired. All are faithful to the general program, and the customized versions are

often much more e�cient. Similarly, partial evaluation can remove most or all the

interface code from modularly written programs.

6 Introduction

1.2.3 A sampler of applications

Because of its generality and conceptual simplicity, partial evaluation is applicable

to a wide range of problems. The essence of applying partial evaluation is to solve

a problem indirectly, using some relatively static information to generate a faster

special-purpose program, which is then run on various data supplied more dynam-

ically. Many applications begin with general and rather `interpretive' algorithms.

First, we give some examples which follow this line of thought, but do not use

a partial evaluator as such. An early example is a `symbolic' solution method

for sparse systems of linear equations [107]. Another is speeding up execution of

functional programs by `re-opening closures' [13]; and gaining signi�cant parser

speedups by compiling LR parsing tables into machine code [216]. A recent appli-

cation is a very fast operating system kernel which uses on-the-
y code generation

[221].

Related problems and a variety of others have been solved using general-purpose

partial evaluators. Applications include circuit simulation [14], computer graphics

[186], neural net training [126], numerical computations [22], optimizing hard real-

time systems [205], and scienti�c computing of several sorts [21].
The most developed area, programming language processors and especially com-

piling, will be discussed in detail in several later chapters and thus are not men-

tioned here. Related applications include pattern matching in general [54], and as
applied to a lazy language [138] or constraint logic programming [252]; e�ciently
implementing term rewriting systems [250]; and Lafont's interaction nets [18].

The following sketches give something of the
avor of problem-solving by pro-
gram specialization.

Computer graphics. `Ray tracing' repeatedly recomputes information about the
ways light rays traverse a given scene from di�erent origins and in di�erent di-

rections. Specializing a general ray tracer to a �xed scene to transform the scene
into a specialized tracer, only good for tracing rays through that one scene, gives

a much faster algorithm.

Database queries. Partial evaluation can compile a query into a special-purpose

search program, whose task is only to answer the given query. The generated
program may be discarded afterwards. Here the input to the program generator is

a general query answerer, and the output is a `compiler' from queries into search

programs.

Neural networks. Training a neural network typically uses much computer time,
but can be improved by specializing a general simulator to a �xed network topology.

Scienti�c computing. General programs for several diverse applications including
orbit calculations (the n-body problem) and computations for electrical circuits

have been sped up by specialization to particular planetary systems and circuits.

Computation in one stage or more 7

Compilation: 2 steps

source
program

�
�

�
�

?

compiler

??

runtime
input

�
�

�
�- target

program

�
�

�
�-- output
�
�
�
�

Interpretation: 1 step

source
program

�
�

�
�

?

runtime
input

�
�

�
�- inter-

preter
-- output
�
�
�
�

Figure 1.3: Compilation in two steps, interpretation in one.

1.3 Computation in one stage or more

Computational problems can be solved either by single stage computations, or by
multistage solutions using program generation. Partial evaluation provides a way

to go automatically from the �rst to the second. To clarify the problems and
payo�s involved we �rst describe two familiar multistage examples:

1. a compiler, which generates a target (= object) program in some target

language from a source program in a source language;

2. a parser generator, which generates a parser from a context free grammar.

Compilers and parser generators �rst transform their input into an executable

program and then run the generated program, on runtime inputs for a compiler or
on a character string to be parsed. E�ciency is vital: the target program should run

as quickly as possible, and the parser should use as little time per input character

as possible. Figure 1.3 compares two-step compilative program execution with one-
step interpretive execution. Similar diagrams describe two-step parser generation

and one-step general parsing.

1.3.1 Interpreters

A source program can be run in one step using an interpreter : an L-program we

call int that executes S-programs. This has as input the S-program to be executed,

together with its runtime inputs. Symbolically,

output = [[source]]
S
[in1,. . .,inn] = [[int]]

L
[source,in1,. . .,inn]

8 Introduction

Assuming only one input for notational simplicity, we de�ne program int to be an

interpreter for S written in L if for all source, d 2 D

[[source]]
S
d = [[int]]

L
[source, d]

1.3.2 Compilers

A compiler generates a target (object) program in target language T from a source

program source in language S. The compiler is itself a program, say compiler,

written in implementation language L. The e�ect of running source on input in1,

in2,. . ., inn is realized by �rst compiling source into target form:

target = [[compiler]]
L
source

and then running the result:

output = [[source]]
S
[in1,. . .,inn] = [[target]]

T
[in1,. . .,inn]

Formally, compiler is an S-to-T-compiler written in L if for all source, d 2 D,

[[source]]
S
d = [[[[compiler]]

L
source]]

T
d

Comparison
Interpreters are usually smaller and easier to write than compilers. One reason
is that the implementer thinks only of one time (the execution time), whereas

a compiler must perform actions to generate code to achieve a desired e�ect at
run time. Another is that the implementer only thinks of one language (the source
language), while a compiler writer also has to think of the target language. Further,
an interpreter, if written in a su�ciently abstract, concise, and high-level language,
can serve as a language de�nition: an operational semantics for the interpreted

language.
However compilers are here to stay. The overwhelming reason is e�ciency :

compiled target programs usually run an order of magnitude (and sometimes two)

faster than when interpreting a source program.

Parsing
One can parse by �rst generating a parser from an input context-free grammar:

parser = [[parse-gen]]
L
grammar

and then applying the result to an input character string:

parse-tree = [[parser]]
L
char-string

On the other hand, there exist one-step general parsers, e.g. Earley's parser [72].

Similar tradeo�s arise | a general parser is usually smaller and easier to write

than a parser generator, but a parser generated from a �xed context-free grammar

runs much faster.

Computation in one stage or more 9

1.3.3 Semantics-directed compiler generation

By this we mean more than just a tool to help humans write compilers. Given

a speci�cation of a programming language, for example a formal semantics or an

interpreter, our goal is automatically and correctly to transform it into a compiler

from the speci�ed `source' language into another `target' language [195,215].

Traditional compiler writing tools such as parser generators and attribute gram-

mar evaluators are not semantics-directed, even though they can and do produce

compilers as output. These systems are extremely useful in practice | but it is

entirely up to their users to ensure generation of correct target code.

The motivation for automatic compiler generation is evident: thousands of

person-years have been spent constructing compilers by hand; and many of these

are not correct with respect to the intended semantics of the language they com-

pile. Automatic transformation of a semantic speci�cation into a compiler faithful

to that semantics eliminates such consistency errors.

The three jobs of writing the language speci�cation, writing the compiler, and

showing the compiler to be correct (or debugging it) are reduced to one: writing
the language speci�cation in a form suitable as input to the compiler generator.

There has been rapid progress towards this research goal in the past few years,
with more and more sophisticated practical systems and mathematical theories
for the semantics-based manipulation of programs, including compiler generation.

One of the most promising is partial evaluation.

1.3.4 Executable speci�cations

A still broader goal is e�cient implementation of executable speci�cations. Exam-
ples include compiler generation and parser generation, and others will be men-
tioned later. One can naturally think of programs int and parser above as speci-
�cation executers : the interpreter executes a source program on its inputs, and the
parser applies a grammar to a character string. In each case the value of the �rst

input determines how the remaining inputs are to be interpreted. Symbolically:

[[spec-exec]]
L
[spec,in1,. . . ,inn] = output

The interpreter's source program input determines what is to be computed. The

interpreter thus executes a speci�cation, namely a source S-program that is to be
run in language L. The �rst input to a general parser is a grammar that de�nes

the structure of a certain set of character strings. The speci�cation input is thus
a grammar de�ning a parsing task.

A reservation is that one can of course also commit errors (sometimes the most

serious ones!) when writing speci�cations. Achieving our goal does not eliminate

all errors, but it again reduces the places they can occur to one, namely the speci�-

cation. For example, a semantics-directed compiler generator allows quick tests of

10 Introduction

static input
in1

�
�

�
�

?

p-gen

'
&

$
%

??

p-gen is Ershov's
`generating
extension'

for p

general
program p

'
&

$
%- cogen -

-

dynamic
input in2

�
�

�
�- specialized

program pin1

'
&

$
%-
- output

�
�

�
�

Figure 1.4: A generator of program generators.

a new language design to see whether it is in accordance with the designers' inten-
tions regarding program behaviour, computational e�ects, freedom from runtime

type errors, storage usage, e�ciency etc.

1.3.5 Generating program generators

In practice one rarely uses speci�cation executers to run S-programs or to parse
strings | since experience shows them to be much slower than the specialized
programs generated by a compiler or parser generator. Wouldn't it be nice to have

the best of both worlds | the simplicity and directness of executable speci�cations,
and the e�ciency of programs produced by program generators? This goal is

illustrated in Figure 1.4:

� Program cogen accepts a two-input program p as input and generates a

program generator (p-gen in the diagram).

� The task of p-gen is to generate a specialized program pin1, given known

value in1 for p's �rst input.

� Program pin1 computes the same output when given p's remaining input in2

that p would compute if given both in1 and in2.

Andrei Ershov gave the appealing name generating extension to p-gen. We shall

see that partial evaluation can realize this goal, both in theory and in practice on

the computer.

Partial evaluation and compilation 11

Parser and compiler generation
Assuming cogen exists, compiler generation can be done by letting p be the inter-

preter int, and letting in1 be source. The result of specializing int to source

is a program written in the specializer's output language, but with the same in-

put/output function as the source program. In other words, the source program

has been compiled from S into cogen's output language. The e�ect is that int-gen

is a compiler.

If we let p be program parser, with a given grammar as its known input in1, by

the description above parser-gen is a parser generator, meaning that parser-gen

transforms its input grammar into a specialized parser. This application has been

realized in practice at Copenhagen (unpublished as yet), and yields essentially the

well-known LR(k) parsers, in program form.

E�ciency is desirable at three di�erent times:

1. The specialized program pin1 should be fast. Analogy: a fast target program.

2. The program specializer p-gen should quickly construct pin1. Analogy: a
fast compiler.

3. cogen should quickly construct p-gen from p. Analogy: fast compiler gen-
eration.

It would be wonderful to have a program generator generator, but it is far from

clear how to construct one. Polya's advice on solving hard problems: solve a
simpler problem similar to the ultimate goal, and then generalize. Following this
approach, we can clump boxes cogen and p-gen in Figure 1.4 together into a single

program with two inputs, the program p to be specialized, and its �rst argument
in1. This is just the mix of Figure 1.1, so we already have a weaker version of the

multiphase cogen.

We will see how cogen can be constructed from mix. This has been done in

practice for several di�erent programming languages, and e�ciency criteria 1, 2 and

3 have all been met. Surprisingly, criteria 2 and 3 are achieved by self-application
| applying the partial evaluator to itself as input.

1.4 Partial evaluation and compilation

One may compile by specializing an interpreter to execute only one �xed-source

program, yielding a target program in the partial evaluator's output language so

target = [[mix]] [int, source]. Program target can be expected to be faster
than interpreting source since many interpreter actions depend only on source

and so can be precomputed.

In general, program target will be a mixture of int and source, containing

parts derived from both. A common pattern is that the target program's control

12 Introduction

structure and computations resemble those of the source program, while its appear-
ance resembles that of the interpreter, both in its language and the names of its

specialized functions.

The cost of interpretation

A typical interpreter's basic cycle is �rst, syntax analysis; then evaluation of subex-

pressions by recursive calls; and �nally, actions to perform the main operator, e.g.

to subtract 1 or to look up a variable value. In general, running time of interpreter

int on inputs p and d satis�es ap �tp(d) � tint(p, d) for all d, where ap is a constant.

(In this context, `constant' means that ap is independent of d, but may depend on

source program p.) In experiments ap is often around 10 for simple interpreters

run on small source programs, and larger for more sophisticated languages. Clever

use of data structures such as hash tables or binary trees can make ap grow slowly

as a function of p's size.

Optimality

The `best possible' mix should remove all computational overhead caused by inter-

pretation. This criterion has been satis�ed for several partial evaluators for various
languages, using natural self-interpreters.

1.4.1 Partial evaluation versus traditional compiling

Does partial evaluation eliminate the need to write compilers? Yes and no. . .Pro:
when given a language de�nition in the form of an operational semantics, a partial
evaluator eliminates the �rst and largest order of magnitude: the interpretation
overhead. A virtue is that the method yields target programs that are always
correct with respect to the interpreter. Thus the problem of compiler correctness
seems to have vanished. This approach is clearly suitable for prototype implemen-
tation of new languages from interpretive de�nitions (known as metaprogramming
in the Prolog community).

Contra: the generated target code is in the partial evaluator's output language,

typically the language the interpreter is written in. Thus partial evaluation will not

devise a target language suitable for the source language, e.g. P-code for Pascal.

It won't invent new runtime data structures either, so human creativity seems

necessary to gain the full handwritten compiler e�ciency. Recent work by Wand,

and Hannan and Miller, however, suggests the possibility of deriving target machine

architectures from the text of an interpreter [277,110].

Finally, partial evaluation is automatic and general, so its generated code may

not be as good as handwritten target code. In particular we have not mentioned

classical optimization techniques such as common subexpression elimination, ex-

ploiting available expressions, and register allocation. Some of these depend on

speci�c machine models or intermediate languages and so are hard to generalize;

Automatic program generation 13

but there is no reason why many well-known techniques could not be incorporated

into the next generation of partial evaluators.

1.5 Automatic program generation

This section shows the sometimes surprising capabilities of partial evaluation for

generating program generators.

1.5.1 The �rst Futamura projection

Compiling by partial evaluation always yields correct target programs, veri�ed as

follows:

out = [[source]]
S
input

= [[int]] [source, input]
= [[[[mix]] [int, source]]] input

= [[target]] input

The last three equalities follow respectively by the de�nitions of an interpreter, mix,

and target. The net e�ect has thus been to translate from S to L. Equation target
= [[mix]] int source is often called the �rst Futamura projection, �rst reported in
[92].

1.5.2 Compiler generation by self-application

We now show that mix can also generate a stand-alone compiler:

compiler = [[mix]] [mix, int]

This is an L-program which, when applied to source, yields target, and is thus

a compiler from S to L, written in L. Veri�cation is straightforward from the mix

equation:

target = [[mix]] [int ,source]

= [[[[mix]] [mix, int]]] source

= [[compiler]] source

Equation compiler = [[mix]] [mix, int] is called the second Futamura projection.

The compiler generates specialized versions of interpreter int, and so is in e�ect

int-gen as discussed in Section 1.3.5. Operationally, constructing a compiler this

way is hard to understand because it involves self-application | using mix to

specialize itself. But it gives good results in practice, as we shall see.

14 Introduction

Remark. This way of doing compiler generation requires that mix be written in

its own input language, e.g. that S = L. This restricts the possibility of multiple

language partial evaluation as discussed in Section 1.1.24.

1.5.3 The third Futamura projection

By precisely parallel reasoning, cogen = [[mix]] [mix, mix] is a compiler generator :
a program that transforms interpreters into compilers. The compilers it produces

are versions of mix itself, specialized to various interpreters. This projection is even

harder to understand intuitively than the second, but also gives good results in

practice. Veri�cation of Figure 1.4 is again straightforward from the mix equation:

[[p]] [in1, in2] = [[[[mix]] [p, in1]]] in2 = . . . = [[[[[[cogen]] p]] in1]] in2

While easily veri�ed from the de�nitions of mix and interpretation, it is far from

clear what the pragmatic consequences of these equations are. What is the e�ect in
practice of applying programs to themselves as inputs? Isn't self-application most
often used to show problems impossible to solve on the computer, as in the proof of
the unsolvability of the halting problem? And even assuming that these equations
can be realized on the computer, how does a compiler generated mechanically as

above compare in e�ciency and structure with handmade compilers?

Answers to these questions form the bulk of this book.

1.5.4 Speedups from self-application

A variety of partial evaluators satisfying all the above equations have been con-

structed. Compilation, compiler generation, and compiler generator generation can
each be done in two di�erent ways:

target = [[mix]] [int, source] = [[compiler]] source

compiler = [[mix]] [mix, int] = [[cogen]] int

cogen = [[mix]] [mix, mix] = [[cogen]] mix

The exact timings vary according to the design of mix and int, and with the
implementation language L. Nonetheless, we have often observed that in each case
the second way is about 10 times faster than the �rst. Moral: self-application can

generate programs that run faster!

4The output language of mix may, however, be di�erent from its input and implementation
languages.

Critical assessment 15

1.5.5 Hierarchies of metalanguages

A modern approach to solving a wide-spectrum problem is to devise a user-oriented
language to express computational requests, viz. the widespread interest in expert

systems. A processor for such a language usually works interpretively, alternating

between reading and deciphering the user's requests, consulting databases, and

doing problem-related computing | an obvious opportunity to optimize by partial

evaluation.

Such systems are often constructed using a hierarchy of metalanguages, each

controlling the sequence and choice of operations at the next lower level [234]. Here,

e�ciency problems are yet more serious since each interpretation layer multiplies

computation time by a signi�cant factor. We shall see that partial evaluation

allows one to use metaprogramming without order-of-magnitude loss of e�ciency.

1.6 Critical assessment

Partial evaluation and self-application have many promising applications, and work

well in practice for generating program generators, e.g. compilers and compiler gen-
erators, and other program transformers, for example style changers and instru-
menters. They are, however, still far from perfectly understood in either theory or

practice. Signi�cant problems remain, and we conclude by listing some of them.

Greater automation and user convenience

The user should not need to give advice on unfolding or on generalization, that is
to say, where statically computable values should be regarded as dynamic. (Such

advice is required in some current systems to avoid constructing large or in�nite
output programs.)

The user should not be forced to understand the logic of a program resulting from
specialization. An analogy is that one almost never looks at a compiler-generated

target program, or a Yacc-generated parser.

Further, users shouldn't need to understand how the partial evaluator works.
If partial evaluation is to be used by non-specialists in the �eld, it is essential

that the user thinks as much as possible about the problem he or she is trying

to solve, and as little as possible about the tool being used to aid its solution. A

consequence is that debugging facilities and interfaces that give feedback about the

subject program's binding-time separation are essential for use by non-specialists.

Analogy with parser generation

In several respects, using a partial evaluator is rather like using a parser generator

such as Yacc. First, if Yacc accepts a grammar, then one can be certain that the
parser it generates assigns the right parse tree to any syntactically correct input

string, and detects any incorrect string. Analogously, a correct partial evaluator

16 Introduction

always yields specialized programs faithful to the input program. For instance, a

target program will be faithful to its source, and a generated compiler will always

be correct with respect to the interpreter from which it was derived.

Second, when a user constructs a context-free grammar, he or she is mainly

interested in what strings it generates. But use of Yacc forces the user to think from

a new perspective: possible left-to-right ambiguity. If Yacc rejects a grammar, the
user may have to modify it several times, until it is free of left-to-right ambiguity.

Analogously, a partial evaluator user may have to think about his or her program

from a new perspective: how clear is its binding-time separation? If specialized

programs are too slow, it will be necessary to modify the program and retry until

it has better binding-time properties.

Partial evaluation is no panacea

Not all programs bene�t from specialization. Knowing the value of x will not

signi�cantly aid computing xn as in Figure 1.2, since no actual operation on x can

be done by the partial evaluator. Further, the e�ciency of mix-generated target
programs depend crucially on how the interpreter is written. For example, if the

interpreter uses dynamic name binding, then generated target programs will have
runtime variable name searches; and if it uses dynamic code creation then generated
target programs will contain runtime source language text.

Some recurring problems in partial evaluation

Rapid progress has occurred, but there are often problems with termination of
the partial evaluator, and sometimes with semantic faithfulness of the specialized
program to the input program (termination, backtracking, correct answers, etc.).

Further, it can be hard to predict how much (if any) speedup will be achieved by
specialization, and hard to see how to modify the program to improve the speedup.

An increasing understanding is evolving of how to construct partial evaluators for
various languages, of how to tame termination problems, and of the mathematical

foundations of partial evaluation. On the other hand, we need to be able to

� make it easier to use a partial evaluator;

� understand how much speedup is possible;

� predict the speedup and space usage from the program before specialization

� deal with typed languages;

� generate machine architectures tailor-made to a source language de�ned by

an interpreter.

Overview of the book 17

1.7 Overview of the book

Prerequisites

Our presentation style is semiformal. On the one hand, the various terms and

algorithms used are precisely de�ned. For example, the programs we present may

be unambiguously executed by hand. On the other hand, we do not use advanced

mathematical concepts and terminology (domains, algebras, categories, etc.); or-

dinary discrete mathematics is su�cient.

We assume the reader to be familiar with a Pascal-like programming language.

Prior knowledge of a functional language such as Lisp, Scheme, ML, Miranda,

or Haskell would make some parts easier to follow, but is not a prerequisite. Fi-

nally, some experience with compilers (e.g. an undergraduate compiler construction

course) would be desirable.

Outline

Part I introduces concepts and notation of programming languages.

Chapter 2 introduces functions, recursion, and data types, and the distinction

between a program (text) and the function it de�nes.

Chapter 3 de�nes the concepts of interpreter and compiler and discusses pro-

gram running times and interpretation overhead. Then three mini-languages are
presented: the lambda calculus, �rst-order recursion equations, and a
ow chart
language. Interpreters for executing them are given also, to introduce the concepts

of abstract syntax, environment, and closure, which will be used in the partial
evaluators presented later.

Part II presents partial evaluators for two of the mini-languages introduced in
Chapter 3. This introduces a variety of techniques for partial evaluation, useful

also in the partial evaluation of stronger languages.

Chapter 4 concerns the
ow chart language. A partial evaluator is developed
in considerable detail, emphasizing concrete examples and carefully motivating

the various design decisions that are taken. Enough details are given to allow

the reader to implement the partial evaluator and generate compilers on his or

her own computer. It is shown by examples that partial evaluation can compile,
generate compilers, and even generate a compiler generator. The key to the latter
two is self-application as in the Futamura projections of Section 1.5. It may come

as a surprise that self-application leads to considerable improvements in compiler

running times. Program texts illustrating all of these are included.

The important topic of binding-time analysis is introduced, and a variety of

technical problems are identi�ed, analysed, and solved.

Chapter 5 describes a self-applicable partial evaluator for a �rst-order language

of recursive equations. Many of the principles of Chapter 4 can be adapted to this

stronger programming language.

Chapter 6 presents one way to recognize a good partial evaluator, and shows

18 Introduction

that there is a theoretical limit to the amount of speed-up that can in general be

expected from partial evaluation.

Chapter 7 compares o�ine partial evaluation (using a separate binding-time

analysis phase) to online partial evaluation. The o�ine approach appears bene�cial
to self-application, and all partial evaluators presented in this book are o�ine.

Finally, some advice on constructing a self-applicable partial evaluator for a new

programming language is given.

Part III presents partial evaluators for four languages which are stronger in var-

ious respects than the
ow chart and recursion equation language.

Chapter 8 describes a self-applicable partial evaluator for the untyped lambda

calculus, stronger than the previous partial evaluator in that it can deal with

higher-order functions. It is seen that type inference provides a simple and elegant

way to do binding-time analysis for higher-order partial evaluation.

Chapter 9 describes a self-applicable partial evaluator for a Prolog subset, em-

phasizing problems not seen in the earlier chapters.

Chapter 10 presents a partial evaluator `Similix', which handles a substantial

subset of Scheme including both higher-order functions and restricted side e�ects.
Scheme is interesting because it is a realistic language.
Chapter 11 presents some techniques required to deal with languages (C, Pascal,

etc.) where the programming style relies on both (recursive) function calls and a
global, mutable state, including arrays and pointers.

Part IV discusses practical problems frequently encountered when using partial
evaluation, and gives several examples of its practical application.

Chapter 12 shows that some subject programs are less amenable to speed-up by
partial evaluation than others, and presents some transformation that improve the
results of partial evaluation while preserving the meaning of the subject program.

Chapter 13 describes several applications of partial evaluation and demonstrates
that the utility of partial evaluation is not limited to compiler generation.

Part V presents advanced topics, more brie
y than the previous subjects and

with references to current literature.

Chapter 14 contains a discussion of termination in partial evaluation. An algo-
rithm su�cient to guarantee that program specialization terminates (in the absence
of in�nite static loops) is presented and justi�ed, for the simple
ow chart language

of Chapter 4.

Chapter 15 explains the program analysis method called abstract interpretation,

presents a so-called closure analysis which is useful for doing analysis of higher-
order programs, and applies this to produce a higher-order binding-time analysis
for the partial evaluator in Chapter 10. Finally, it presents a projection-based

approach to binding-time analysis of partially static data structures.

Chapter 16 relates partial evaluation to recursive function theory, gives a more

abstract view of program specialization, and discusses the types of program-pro-

Overview of the book 19

cessing programs: interpreters, compilers, and partial evaluators.

Chapter 17 explains the relation between partial evaluation and classical program

transformation methods such as Burstall and Darlington's fold/unfold technique.

Finally, Chapter 18 gives an overview of the literature on partial evaluation and

closely related topics, and serves as a guide to further studies in the �eld.

Part I

Fundamental Concepts in

Programming Languages

Chapter 2

Functions, Types, and

Expressions

In this chapter we relate mathematical functions to the functions that can be

de�ned in a programming language such as Pascal, Lisp, Scheme, ML or Miranda.

We also introduce relevant mathematical ideas in a way that is independent of
algorithmic or programming concepts.
It is important to understand that programs and functions are two distinct

domains. One is a syntactic world of program texts containing symbols, commands,
expressions, etc. These can be interpreted in quite arbitrary ways, according to the
whims of a programming language designer (for example `+' can mean addition,

set union, a tab skip, or string concatenation). The other is the relatively well-
understood world of mathematical functions, sets, etc.

There are, however, connections between the two worlds. In one direction, math-
ematical concepts can be used to explicate program meanings, as is done in deno-
tational semantics [241,256]. In the other direction, some programming languages

have been designed to model mathematical concepts. For instance, two of the
miniature programming languages introduced in Chapter 3 are based on lambda

notation and recursion equations. Chapter 3 also introduces a simple imperative

language, not directly based on mathematical ideas.

2.1 Functions

Informally, a mathematical function is a relation between the elements of two sets:

a relation that relates each element of the �rst set to exactly one element of the

second. More formally, recall that the Cartesian product A�B of two sets A and
B is the set

A� B = f(a; b) j a 2 A and b 2 Bg

A total function f from A to B (written as f : A
t
!B) is formally a subset of A�B

with the properties:

23

24 Functions, Types, and Expressions

1. 8a 2 A 8b; b0 2 B : (a; b) 2 f and (a; b0) 2 f implies b = b0.

2. 8a 2 A 9b 2 B such that (a; b) 2 f .

Property 1 says f is single-valued, meaning that each a in A is mapped to at most

one b in B. This b is usually written f(a) or just fa. Property 2 says f is total,
meaning that each a in A is mapped to at least one b in B. In other words, f(a)

is de�ned for every a in A.

In computer science we often meet functions which are unde�ned for some ar-

guments. A partial function f from A to B (written f : A!B) is a subset f of

A�B that satis�es 1, but not necessarily 2. A natural example is the function that

maps a program's input to the corresponding output. This function is unde�ned

for any input that causes the program to go into an in�nite loop. We shall use the

notation

f(a) = ?

(where ? is called bottom) to indicate that f(a) is unde�ned, i.e. that f contains
no pair of form (a; b). Sometimes ? will be treated as if it were a special value.
Thus it is possible to consider a partial function f : A!B as a total function which

may yield the unde�ned value ?, that is, f : A
t
!(B + f?g).

Note that every total function is also a partial function, whereas the converse is

not true.

Examples
Suppose sets X and Y have x and y elements, respectively. It is easy to see that

there are in all yx di�erent total functions from X to Y . Further, there must be
(y+1)x di�erent partial functions from X to Y (to see this, think of `unde�ned' as
the special value ?). If, for example, X = fred; greeng and Y = fred; blueg then

� the set of total functions from X to Y is: ff1; f2; f3; f4g;

� the set of partial functions from X to Y is: ff1; f2; f3; f4; f5; f6; f7; f8; f9g;

where the functions f1; . . . ; f9 are de�ned as follows:

f1 f1(red) = red f1(green) = red

f2 f2(red) = red f2(green) = blue

f3 f3(red) = blue f3(green) = red

f4 f4(red) = blue f4(green) = blue

f5 f5(red) = red f5(green) = ?

f6 f6(red) = blue f6(green) = ?

f7 f7(red) = ? f7(green) = red

f8 f8(red) = ? f8(green) = blue
f9 f9(red) = ? f9(green) = ?

Functions 25

Equality of functions
Two functions f; g : A!B are equal, written f = g, if

8a 2 A: f(a) = g(a)

Note that for partial functions f and g, and a 2 A, this means that either both

f(a) and g(a) are unde�ned (?), or both are de�ned and equal.

Composition of functions
The composition of two functions f : A!B and g : B!C is the function g � f :

A!C such that (g � f)(a) = g(f(a)) for any a 2 A.

Finite functions and updating
When a1; . . . ; an 2 A and b1; . . . ; bn 2 B, the notation [a1 7! b1; . . . ; an 7! bn]

denotes the partial function g : A!B such that

g(x) =

(
bi if x = ai for some i

? if x 6= ai for all i

When f : A!B is a partial function, the notation f [a1 7! b1; . . . ; an 7! bn] denotes
the partial function g : A!B such that

g(x) =

(
bi if x = ai for some i
f(x) if x 6= ai for all i

and is called the result of updating f by [ai 7! bi] (also called overriding).

Functions and algorithms
The term `function' as used in programming languages like Pascal, Lisp, Scheme,
or ML, is not the same as the mathematical concept. The �rst reason is that a
Pascal `function declaration' speci�es an algorithm, i.e. a recipe for computing

the declared function. An example algorithm to compute the factorial n! of n,

programmed in Pascal:

function fac(n:integer):integer;

begin

if n = 0 then fac := 1 else fac := n * fac(n - 1)

end

On the other hand, a mathematical function f is just a set of ordered pairs. For

instance,

f(n) = the nth digit of �'s decimal expansion

speci�es a well-de�ned function on the natural numbers even though it does not

say how to compute f(n) for a given natural number n.

A second di�erence is that a Pascal-de�ned `function' need not even be single-

valued. For example, consider the following function declaration:

26 Functions, Types, and Expressions

var global:integer;

function f(a:integer):integer;

begin

global := global + 1;

f := a + global

end

Repeated execution of the call f(1) may return di�erent values every time, since

every call changes the value of the variable global.

2.2 Types in programming languages

For the purpose of this book, a type can be considered a set of values. The concept
is non-trivial due to the many ways that new values can be built up from old, and

the next few sections will discuss several of them. A more sophisticated treatment

of types involves partial orders and domain theory as in denotational semantics;
but the view of types as sets of values will be su�cient for the greater part of this

book, except brie
y in some of the last chapters.

2.2.1 Product and function types

If f is a partial function from A to B we write f : A!B, and say f has type
A!B. For example, f(n) = n! has type N!N where N = f0; 1; 2; . . .g is the
set of natural numbers. More generally we can form some simple type expressions.
Each of these denotes a set of values, obtained by the following rules:

1. The names of various standard sets are type expressions, including

� N = f0; 1; 2; . . .g, the set of natural numbers;

� Z = f. . . ;�2;�1; 0; 1; 2; . . .g, the set of integers;

� B = ftrue; falseg, the set of booleans, also called truth values;

� ID, the set of all identi�ers (�nite strings of letters or digits that begin
with a letter).

2. If A1; . . . ; An are types (sets), then A1� � � � �An is the Cartesian product of
A1, A2, . . . , and An.

3. If A and B are types (sets), then

� A!B is the set of partial functions from A to B;

� A
t
!B is the set of total functions from A to B.

A function f : A!B is higher-order if either A or B is a function type. If neither

A nor B is a function type, then f is �rst-order.

Types in programming languages 27

Some examples of function de�nitions and their types

Following are several examples of function de�nitions with appropriate types. Note

that the same de�nition may be compatible with several types, for example square

below could be assigned types Z!Z, N!N , or N
t
!N .

Function de�nition Type

square(x) = x2 square : N
t
!N

g(n) = if n = 0 then 1 else n � g(n� 1) g : N
t
!N

h(m;n) = m+ n h : N �N
t
!N

k(m;n) = (m+ n;m� n) k : Z � Z
t
!Z �Z

sum(f; x) = f(0) + f(1) + � � �+ f(x) sum : (N
t
!N)�N

t
!N

add(n) = p;where p(x) = x + n add : N
t
!(N

t
!N)

power(n) = q;where q(x) = xn power : N
t
!(N

t
!N)

twice(f)(x) = f(f(x)) twice : (N!N)
t
!(N!N)

The list above contains:

1. a recursively de�ned function g (note that g(n) is n factorial);

2. functions h; k with structured data as arguments and results;

3. a function sum, which takes a function as an argument.

The function arrow associates to the right, so A!(B!C) can be abbreviated

A!B!C. If f : A!B!C then f(a) : B!C for any a 2 A, so f is a function-
producing function. Function application associates to the left, so f a b means
(f(a))(b), assuming f : A!B!C, and a 2 A, b 2 B.

Higher-order functions

A higher-order function is a function which takes a function as argument or returns
a function as its result (when applied). The functions sum, add, power, and twice
de�ned above are higher-order. For instance, add(1) is the function which, given

any argument x, returns x + 1; and power(2) is the `squaring function', so

add(1)(7) = 8 and

power(2)(7) = 49

The higher-order function twice takes a function as its �rst argument and yields

a function as its result. For example, twice(square) is the function j which raises

its argument to the fourth power:

twice(square) = j; where j(x) = (x2)2 = x4

28 Functions, Types, and Expressions

Curried functions

Compare the function add above with the familiar addition function plus(x; y) =

x + y. They are related as follows:

plus : (N �N)
t
!N and add : N

t
!(N

t
!N)

add x y = plus(x; y)

The di�erence is that plus takes both its arguments at the same time, whereas add

can be applied to a single argument and so is a function-producing function. We

say that add is a curried version of plus. The term `curry' stems from the name of

H.B. Curry, a mathematical logician. The idea is attributed also to M. Sch�on�nkel

(1924).

Programming notations for product and function types

We have discussed functions as mathematical objects, and the type notation used

to describe them. We now see how they are realized in two programming languages.

Pascal

Pascal is a statically typed imperative programming language [127], and has built-
in product types. The declaration

var T: record

a:A; b:B

end

declares variable T to be a pair of a and b; its type is the Cartesian product of
types A and B. The components of T are referred to in Pascal by selectors as T.a
and T.b.

Pascal also has built-in function types and function calls. The declaration

function f(a1:A1, a2:A2,..., an:An) : B;

...

a1 := f1(x+1,3); (* call f1 *)

...

f := ... (* return value of f *)

end

de�nes a function f : A1 � � � � � An ! B. The arguments a1,. . . , an may be of

any de�nable type, including functions, so sum as seen above may be programmed

directly in Pascal. However, the result type B is severely restricted by Pascal (to

pointer or scalar types). Consequently, function k (whose result is a pair), and the

functions add and power (whose results are functions) cannot be directly expressed

in Pascal, but sum and twice can.

ML

Standard ML is a statically typed functional programming language [185]. ML

makes much use of pattern matching for manipulating structured values such as

Types in programming languages 29

pairs or lists. The declaration

fun f (x: int, y: int) = abs(x - y) < 2

declares a function f whose (single) argument is a pair of integers and whose result

is a boolean. Function f's argument has product type int * int, corresponding

to Z �Z above. Function f's result type is bool, corresponding to B above. This

result type is not given explicitly in the program but can be inferred automatically.

ML allows expressions that evaluate to a pair, which cannot be done in Pascal.

An example expression is: (x-1,x+1).

ML treats functions as any other kind of values, and there are no restrictions on

the argument and result types of a function. Thus all the example functions above

can be directly de�ned in ML. The function-producing function add is de�ned in

ML by

fun add (x: int) (y: int) = x + y

and then add(1) denotes the `add one' function.

Scheme
Scheme is a functional language [49], related to Lisp, and is dynamically typed.

Thus in general the type of an expression cannot be determined until run time. The
atomic values in Scheme are numbers 4.5 and atoms 'foo. So-called S-expressions
are used to build composite data structures. A pair (a; b) can be represented as

the S-expression '(a . b), or alternatively as '(a b).

Scheme has function de�nitions, but no pattern matching. Application of a

function (or operator) f to an argument a is written pre�x as (f a). Thus function
f shown above is de�ned in Scheme by:

(define (f x y) (< (abs (- x y)) 2))

2.2.2 Type inference

When x is a variable and t a type, we write x : t to indicate that the value of x

belongs to type t.

We say that an expression is well-typed if all operators and functions in the

expression are applied to arguments of a suitable type. When e is an expression,
we write e : t to indicate that e is well-typed and that the value of e has type t.

For instance, 3 + 5 : N .

Now suppose e is an expression, such as x + x, which contains occurrences of

the variable x. Then the type e can be determined only under some assumptions
about the type of x. Such assumptions are represented by a type environment
� = [x 7! t; . . .], which maps x to its type, so �x = t.

The assertion that `whenever x : N , then x + x : N ' is written as follows:

30 Functions, Types, and Expressions

[x 7! N] ` x + x : N

More generally, the notation � ` e : t is called a judgement and means that `in

type environment � , expression e is well-typed and has type t'.

Type inference is often based on a set of type inference rules, one for each form

of expression in the language. For an expression which is a variable occurrence, we

have the assertion:

� [x 7! t] ` x : t

since the type of a variable occurrence is determined by the type environment.

(Recall that � [x 7! t] is the same function as � , except that it maps x to t.)

Now consider an expression not e whose value is the negation of the value of its

subexpression e. If subexpression e is well-typed and has type B, then the entire

expression is well-typed and has type B. This is expressed by the inference rule,

where the part above the line is called the premise:

� ` e : B
� ` not e : B

Now consider an expression e1+ e2, which is the sum of two subexpressions e1 and
e2. If each subexpression is well-typed and has type Z, then the entire expression

is well-typed and has type Z. This is expressed by a two-premise inference rule:

� ` e1 : Z � ` e2 : Z
� ` e1 + e2 : Z

Now consider an expression (e1; e2) which builds a pair. If e1 has type t1 and e2
has type t2, and both are well-typed, then the pair (e1; e2) is well-typed and has
type t1 � t2:

� ` e1 : t1 � ` e2 : t2
� ` (e1; e2) : t1 � t2

When f is a function of type t!t 0, and e is an (argument) expression of type t,

and both are well-typed, then the application f(e) is well-typed and has type t0:

� ` f : t!t0 � ` e : t
� ` f(e) : t0

Using type inference rules, the type of a complex expression can be inferred from

the assumptions (about the types of variables) held in the type environment � .

For instance, when � = [m 7! Z; n 7! Z], then the inference

� ` m : Z � ` n : Z

� ` m + n : Z

� ` m : Z � ` n : Z

� ` m� n : Z

� ` (m+ n;m� n) : Z � Z

Types in programming languages 31

shows that (m + n;m � n) has type Z � Z. The nodes in the inference tree are

obtained from the inference rules by instantiating the types t, t1, and t2 to Z.

For another example, when � = [f 7! N!N ; x 7! N], the following inference

� ` f : N!N

� ` f : N!N � ` x : N

� ` f(x) : N

� ` f(f(x)) : N

shows that f(f(x)) has type N . Thus if the arguments of function twice above

have type N!N and N , then its result has type N .

2.2.3 Sum types

The sum of two or more sets is a set of tagged values. A tagged value is written
as a tag applied to a value. For instance, if Inttag and Booltag are tags, then the
Inttag(17) and Booltag(false) are values belonging to the sum type

Inttag Z j Booltag B

The tags are also called constructors.

A general sum type has the following form, where the Ci are the tags (or con-

structors):

C1 t11 � . . .� t1k1 j � � � j Cn tn1 � . . .� tnkn

where n � 1, all ki � 0, and all constructors Ci must be distinct. A value belonging

to this type is a construction of form Ci(vi1; . . . ; viki), where vi1 : ti1, . . . , viki : tiki .
The above sum type denotes the following set of values:

n[
i=1

f Ci(v1; . . . ; vki) j vj : tij for j = 1; . . . ; ki g

Note that while all values belonging to a product type such as N � (B � B) must

have the same structure, namely (n; (b1; b2)), the values of a sum type may have

di�erent structures. However, all values with the same constructor must have the

same structure.

Programming notations for sum types

In Pascal, sum types can be expressed by variant records, using an enumerated

type to hold the tags (such as Inttag and Booltag above). The �rst example could

be written:

32 Functions, Types, and Expressions

type tag = (Inttag, Booltag);

sum = record

case t : tag of

Inttag : (N : integer);

Booltag : (B : boolean)

end

In ML, the notation is closer to that shown above:

datatype sum = Inttag of int | Booltag of bool

fun f1 (Inttag (n)) = Inttag(1 - n)

| f1 (Booltag (b)) = Booltag(not b)

Since the programming language Scheme is dynamically typed, it has no notation

for de�ning sum types. However, in Section 2.3.4 we show an encoding of sum

types in Scheme.

2.3 Recursive data types

Our last way to de�ne types is by recursive type equations. The collection of values
de�ned this way is called a data type. An equation de�nes a type T as a sum type

T = C1 t11 � . . .� t1k1 j � � � j Cn tn1 � . . .� tnkn

where the type expressions tij may contain T and names of other types. As before,
all constructors must be distinct.

Since a data type is essentially a sum type, its values need not all have the same
form. Since it may be recursive, its values may be arbitrarily large.

Familiar examples of data types include search trees, game trees, and expressions
in a programming language. We begin with a simple and widely used special case:

the type of lists, i.e. �nite sequences of elements from a given base type.

2.3.1 List types

When describing programming languages, one often needs sequences of values

whose length is not statically determined. Typical examples are the input �les

and output �les of a program, and program texts. For such applications the list
type is useful.

Let A be a type (set). Then the set of �nite lists of elements of A is the data

type As de�ned by:

As = nil j cons A� As (2.1)

Recursive data types 33

where nil and cons are constructors. The de�nition says that an element of As is

either nil, or has form cons(a; as), where a has type A and as has type As. That

is, a �nite list is either the empty list nil, or is non-empty and has a �rst element

(head) a of type A, and a tail as, which must in turn be a list of A elements.

The type of �nite lists of elements of A is often called A�. For example, the

list containing 9 and 13 is written cons(7; cons(9; cons(13; nil))), and has type Z�.

Usually the more convenient notation [7; 9; 13] is used:

1. The list containing a1; a2; . . . ; an in that order is written

[a1; a2; . . . ; an]

instead of cons(a1; cons(a2; . . . ; cons(an; nil) . . .)) for n � 0, when all ai : A.

2. The empty list is written [] instead of nil.

3. The constructor `cons' can be written in�x as `::', such that

a :: [a1; a2; . . . ; an]) = [a; a1; a2; . . . ; an]

4. The in�x constructor `::' associates to the right, so that

a1 :: (a2 :: (� � � :: (an :: nil) � � �)) = a1 :: a2 :: � � � :: an :: nil

5. The operators hd : A�!A and tl : A�!A� are de�ned by:

hd([a1; a2; . . . ; an]) = a1; provided n 6= 0

tl([a1; a2; . . . ; an]) = [a2; . . . ; an]; provided n 6= 0

Programming notations for list types
Since Pascal has no built-in declarations or operations for manipulating lists, they
must be encoded using pointers, which requires great care.
ML uses essentially the in�x :: notation and the bracket list notation [7,9,13]

above. The type A� is written as A list, where ML type A denotes set A. The

use of pattern matching allows simple and compact programs. For example, the

length of a list is computed by:

fun length nil = 0

| length (_ :: xs) = 1 + length xs

Scheme uses S-expressions to represent lists, writing the empty list nil as (), and

the example list above above as '(7 9 13). The functions hd and tl are called

car and cdr in Scheme.

In fact, Scheme S-expressions roughly correspond to the recursive datatype:

Se = () j cons Se� Se j atom Basetype (2.2)

except that the constructor atom on Basetype values is omitted. Application of

a constructor C to a value a is written as function application (C a), so the list

shown above is actually an abbreviation for (cons 7 (cons 9 (cons 13 nil))).

34 Functions, Types, and Expressions

2.3.2 The meaning of recursive data type de�nitions

It is important to agree on the meaning (or semantics) of type equation such as

equation (2.1), de�ning the type of lists. If we regard a type as a set of values, it

is natural to interpret j as set union [, and nil as the one-element set fnilg. The

equation then asserts the equality of two sets:

As = fnilg [f cons(a; as) j a 2 A and as 2 As g (2.3)

We de�ne that the set As speci�ed by type equation (2.1) is the least set which is

a solution to equation (2.3).

The least set solving equation (2.3) can be constructed iteratively, starting with

the empty set As0 = fg. For example, if A denotes the set f1; 2g, then

As0 = fg

As1 = f[]g [fa :: as j a 2 A and as 2 As0g

= f[]g
As2 = f[]g [fa :: as j a 2 A and as 2 As1g

= f[]; [1]; [2]g
As3 = f[]g [fa :: as j a 2 A and as 2 As2g

= f[]; [1]; [2]; [1; 1]; [1; 2]; [2; 1]; [2; 2]g

As4 = . . .

Note that As1 contains all lists of length less than 1, As2 contains all lists of length

less than 2, etc. The set As of all �nite lists is clearly the union of all these:
As = As0 [As1 [As2 [. . ..

2.3.3 Syntax trees

Recursive data types are often used for representing program fragments, such as
arithmetic expressions. For instance, the set of arithmetic expressions built from

integer constants and the operators Add andMul (for addition and multiplication)

can be represented by the data type Nexp:

Nexp = Int N j Add Nexp � Nexp j Mul Nexp � Nexp

For example, the arithmetic expression 5+(6*7) can be represented by the Nexp-
value Add(Int(5); Mul(Int(6); Int(7))). Drawing this value as a tree makes its

structure more obvious:

Recursive data types 35

Mul
@
@
@

�
�
�

Add
@
@
@
@

�
�

�
�

Int

5
Int

7

Int

6

This is called an abstract syntax tree (or just a syntax tree) for the expression

5+(6*7). Also, a recursive data type used for representing program fragments is

often called an abstract syntax.
Recursive data type de�nitions resemble the production rules of a context-free

grammar. However, a grammar describes a set of linear strings of symbols, whereas
a recursive data type de�nition describes a set of trees, where each subtree is

labelled by a constructor.

Programming notations for syntax trees
Pascal has no recursive declarations in the sense just given, so all structure mani-

pulation must be done by means of pointers.

ML has a notion of data type very similar to the one above. The type of arith-
metic expressions can be de�ned as follows, together with a function to evaluate
the expressions:

datatype nexp =

Int of int (* Constant *)

| Add of nexp * nexp (* Addition *)

| Mul of nexp * nexp (* Multiplication *)

fun neval (Int n) = n

| neval (Add(e1, e2)) = (neval e1) + (neval e2)

| neval (Mul(e1, e2)) = (neval e1) * (neval e2)

The Nexp element above, written in ML as an element of the nexp datatype, would

be Add(Int 5, Mul(Int 6, Int 7)).

2.3.4 Encoding recursive data types in Scheme

In Scheme, one cannot declare recursive data types. However, there is a standard

way to encode them using Scheme's (dynamically typed) lists.

36 Functions, Types, and Expressions

A tagged value C(v1; . . . ; vn) is represented as a Scheme list (C v01 . . . v0n). The

�rst element of the list is a Scheme atom C representing the constructor, and the

remaining elements v0i are representations of the constructor's arguments vi.

For example, Inttag(17) is represented as (Inttag 17). Also, the Nexp value

shown above is encoded in Scheme as

(Add (Int 5) (Mul (Int 6) (Int 7)))

Pattern matching on a tagged value v is encoded as a sequence of tests on its tag.

Since the tag is the �rst element in the encoding, it can be extracted by (car v).

The �rst and second constructor arguments can be extracted by (car (cdr v))

and (car (cdr (cdr v))), which can be abbreviated (cadr v) and (caddr v).

Using this encoding, the neval function shown in ML above can be written in

Scheme as follows:

(define (neval v)

(if (equal? (car v) 'Int)

(cadr v)

(if (equal? (car v) 'Add)

(+ (neval (cadr v)) (neval (caddr v)))

(if (equal? (car v) 'Mul)

(* (neval (cadr v)) (neval (caddr v)))

(error)

))))

In practice the tags on numbers are usually left out, writing 5 instead of (Int

5). Then pattern matching exploits the fact that there is a predicate number?

in Scheme which distinguishes numbers from all other values. Similarly, a source
program variable x is usually represented just as the Scheme atom x instead of

(Var x), say. Then pattern matching exploits the Scheme predicate atom?.

We use this encoding of recursive data types and pattern matching frequently

in later chapters. However, since pattern matching improves the readability and
reduces the length of programs, we shall allow ourselves to use it freely in pseudo-

Scheme programs, although this introduces some ambiguity. The intention is that a

knowledgeable programmer can convert pseudo-Scheme programs into real Scheme
programs by replacing pattern matching with a sequence of tests as above.

2.4 Summary

In this chapter we have introduced the following concepts and terminology for

future use:

� algorithms and programs, and their di�erences from functions;

� the Cartesian product A� B of two sets;

Exercises 37

� the set A
t
!B of total functions from set A to set B;

� the set A!B of partial functions from set A to set B;

� notations for �nite functions and updating (f [x 7! v]);

� types as sets of possible data values;

� sum data types with constructors;

� recursively de�ned data types with constructors;

� abstract syntax as a special case of recursively de�ned data types;

� an encoding of recursive data types in Scheme.

2.5 Exercises

Exercise 2.1 Discuss the relations between a mathematical function f : A ! B

and the following concepts from programming:

1. an array in Pascal;

2. a relation in a database;

3. a function in Pascal.

2

Exercise 2.2 Give an example illustrating the di�erence between the type A !

(B ! C) and the type (A! B)! C. 2

Exercise 2.3 The types A ! (B ! C) and A � B ! C are similar but not
identical. Give an intuitive explanation of the similarity. Can you de�ne an ML
function uncurry, such that whenever f is a function of type (A ! (B ! C)),

then uncurry f is the corresponding function of type A�B ! C? 2

Exercise 2.4 Use the type inference rules to show that when arguments m and n
k both have type Z, then expression k(m;n) has type Z � Z. 2

Exercise 2.5 De�ne a recursive data type Bintree of binary trees whose leaves

are integers. De�ne a function add of type Bintree ! Z, such that add(tree)

calculates the sum of all the leaves in tree. 2

Exercise 2.6 Which set has most members:

Fun = ff j f is a partial function: N ! Ng

Prog = fp j p is a Pascal program, de�ning a function: N ! Ng

2

Chapter 3

Programming Languages and

Interpreters

3.1 Interpreters, compilers, and running times

To give a semantics for a programming language is to assign systematically a
meaning to every program in the language.

3.1.1 Operational semantics

Here we de�ne the meaning of programs in a language S by giving an interpreter
for S-programs, that is, a program for executing S-programs. This provides a very

concrete computer-oriented semantics. Interpreters have been used for language
de�nition for many years, e.g. for Lisp [181], the lambda calculus [162], and as a
general formalism for language de�nitions [25].

More abstract versions of operational semantics exist, notably Plotkin's struc-
tural operational semantics [220], and Kahn's natural semantics [142]. In these sys-
tems a language de�nition is a set of axioms and inference rules su�cient to execute
programs. They have some advantages over interpreters as language de�nitions:

they are more compact; they are less dependent on current computer architectures

(for example, arbitrary decisions due to the sequential nature of most computers
can be avoided); their mathematical properties are easier to analyse; and they seem
better suited to describing communication among parallel processes.

On the other hand, it is still not clear how to implement structural operational

semantics or natural semantics e�ciently on current computers, although progress

has recently been made [142,110]. Axiomatic and algebraic semantics seem less
well suited to automation, although both have been used as guidelines for writing
correct compilers.

38

Interpreters, compilers, and running times 39

3.1.2 Programming languages

Let L-programs denote the set of syntactically correct programs in language L. As

in Chapter 1, we de�ne the meaning of program p 2 L-programs to be

[[p]]
L
: input ! output

That is, the meaning of program p is the input{output function it computes.

3.1.3 Interpreters

Let L be an (implementation) language and S be a (source) language. An inter-

preter int 2 L-programs for a language S has two inputs: a source program p 2

S-programs to be executed, and the source program's input data d 2 D. Running

the interpreter with inputs p and d on an L-machine must produce the same result

as running p with input d on an S-machine.

More precisely, the L-program int is an interpreter for S if for every p 2 S-
programs and every d 2 D,

[[p]]
S
d = [[int]]

L
[p,d]

We use the symbol

L

S
= f int j 8p; d: [[p]]

S
d = [[int]]

L
[p,d] g

to denote the set of all interpreters for S written in L.

3.1.4 Compilers

Now let T be a (target) language. A compiler comp 2 L-programs from S to T has

one input: a source program p 2 S-programs to be compiled. Running the compiler

with input p (on an L-machine) must produce a target, such that running target

on a T-machine has the same e�ect as running p on an S-machine.

More precisely, the L-program comp is a compiler from S to T if for every p 2

S-programs and every d 2 D,

[[p]]
S
d = [[[[comp]]

L
p]]

T
d

We use the symbol

40 Programming Languages and Interpreters

S T

L

-
= f comp j 8p; d: [[p]]

S
d = [[[[comp]]

L
p]]

T
d g

to denote the set of compilers from S to T written in L.

3.1.5 Compilation

Suppose we are given a collection of S-programs, nature unspeci�ed. This set can

be denoted by

S

**

Suppose we also have a compiler comp from source language S to target language
T, written in L. We can then perform translations (assuming L-programs can be

executed). This situation can be described by the diagram

S

**

T

**

S T

L

-
source program 2 3 target program

"

compiler

3.1.6 Layers of interpretation

Diagrams such as these can be thought of as describing `computer runs'. For

example, suppose a Lisp system (called L) is processed interpretively by an inter-

preter written in Sun RISC machine code (call this M). The machine code itself is

processed by the central processor (call this C) so two levels of interpretation are
involved, as described by the following �gure:

Interpreters, compilers, and running times 41

L

**

M

L

C

M

The major problem with implementing languages interpretively is that the `nat-

ural' running time of the interpreted program must be multiplied by the basic cycle

time used by the interpreter. This cost of one level of interpretation may well be

an acceptable price to pay to have a powerful, expressive language (as was the

case with Lisp since its beginnings). On the other hand, if one uses several layers

of interpreters, each new level of interpretation multiplies the time by a signi�-

cant constant factor, so the total time may be excessive. Compilation is clearly

preferable if there are too many interpreters, each interpreting the next.

3.1.7 Program running times

We study the time di�erence between executing a program directly on a machine
and executing it with the aid of an interpreter. That is, we study the cost of
interpretation.

For many programming languages one can predict the actual running time on
the computer with reasonable precision. For example, the number of elementary
operations (required to execute the program) is a good time estimate.

To make this more concrete, suppose that arithmetic expression exp contains c

constants, v variables, and m additions or multiplications. A measure of the time
to evaluate exp is c + v +m, since every constant, variable, or operator needs to

be accessed once. By this measure, evaluation of x+2*y would take 5 time units.

In fact, c + v + m is roughly proportional to the time that would be taken

by machine code instructions to evaluate the expression. Since we are mainly

interested in the rate of growth of execution time, the di�erence between, say, time
10n + 5 and 10n + 8 is immaterial, whereas the di�erence between 10n and 11n

will be considered signi�cant.

Considering a whole program p rather than just an expression, we count one

for each variable access, function call, pattern match, arithmetical operation, and

logical operation performed.

De�nition 3.1 For program p and inputs d1,. . . ,dn, let tp(d1,. . . ,dn) represent the
running time of p on d1,. . . ,dn. 2

42 Programming Languages and Interpreters

3.1.8 Interpreter running times

Suppose we are given a programming language S. To de�ne the e�ect of S-program

execution we write an interpreter for S using some existing implementation lan-

guage, say L. The interpreter is thus an L-program. Its input consists of the S-

program s (usually in the form of an abstract syntax tree), together with the input

data for s. We now exemplify this using an interpreter (written in ML) for an

extremely simple expression language.

Evaluating expressions in contexts

The value of the expression x + 2 � y clearly depends on the current values of

x and y. More generally, an expression e can only be evaluated if the current

values of all variables in it are known. These values can be represented by a so-

called environment, namely a function env : V ariable ! V alue. If, for example,

env(x) = 5 and env(y) = 7 the value of x+2�y in environment env is 5+2�7 = 19.

An appropriate evaluation function for expressions with variables thus has type

eval : Expression� Environment! V alue

env : Environment = V ariable! V alue

One way to evaluate an expression is by substitution. For example, one could �rst
substitute for every variable the value bound to it in env, and then apply function

neval of Section 2.3 to evaluate the resulting constant expression. An alternative
is to do the substitution only when needed during evaluation, using env to the
current value of variables. This approach is seen in the following ML program,

where eval is de�ned by recursion on the expression's syntax.

datatype exp =

Num of int (* Constant *)

| Var of string (* Variable *)

| Add of exp * exp (* Addition *)

| Mul of exp * exp (* Multiplication *)

fun eval (Num n, env) = n

| eval (Var v, env) = env(v)

| eval (Add(e1, e2), env) = eval (e1, env) + eval (e2, env)

| eval (Mul(e1, e2), env) = eval (e1, env) * eval (e2, env)

For example, if env = [x 7! 5; y 7! 7] then evaluation of x + 2 � y proceeds as

follows:

eval(Add (Var "x", Mul (Num 2, Var "y")), env)

= eval(Var "x", env) + eval(Mul (Num 2, Var "y"), env)

= env("x") + eval(Num 2, env) * eval(Var "y", env)

= 5 + 2 * env("y")

= 5 + 2 * 7

= 19

The untyped lambda calculus: syntax and semantics 43

The running time of the interpreter
Now consider the running time of the interpreter eval. It exceeds the running time

texp = c+ v+m for direct evaluation because of the `interpretation overhead': the

extra book-keeping time needed for eval to decompose exp into its subexpressions

and to �nd variable values in env.

The interpreter's running time with inputs p and d1; . . . ; dn is approximately

tint(p; d1; . . . ; dn) = � � tp(d1; . . . ; dn)

where � is a factor depending only on the program p being interpreted.

Interpretation overhead
Such overhead is typical for a wide range of interpreters. We shall see below

that for eval above the factor � is between 3 and 5, which thus is the overhead

for the `interpretation loop' in eval. For realistic interpreters the interpretation

overhead can be substantially larger (factors from 3 to 200 have been reported in

the literature), depending on the language being implemented.

Detailed time analysis
In the interpreter eval, an access to a source program variable v is done by an

application (env v). Suppose, a little optimistically, that such an application
takes 1 time unit. Then a source program variable access involves a call, a match,
an access to variable env, an access to variable v, and an application, totalling 5

time units.
Then the total time is 3 for constants (a call, a match, and an access to variable

n), 5 for a source program variable (a call, a match, two variable accesses, and
an application), and 5 for an addition or multiplication (call, match, two variable
accesses, and either + or �) plus the time to evaluate the arguments. The total

interpretation time thus is:

tint(exp) = 3c+ 5v + 5m

Thus we can relate the maximum evaluation time for the interpreter to the `natural'
evaluation time texp:

3� texp � tint(exp) � 5� texp

3.2 The untyped lambda calculus: syntax and semantics

Lambda notation was developed in the 1930s by Alonzo Church [47,48] as a way to

write expressions denoting functions and as a medium for studying an important

question: what functions can be computed by mechanical devices? (His answer

was: those that can be speci�ed by lambda expressions.) Since then lambda calculus
has been studied extensively within the �eld of mathematical logic. It is widely

44 Programming Languages and Interpreters

used in computer science, and is the core of Lisp, Scheme, and most other functional

programming languages, including ML, Miranda, and Haskell.

3.2.1 Lambda notation for functions

A starting point is the observation that arithmetic expressions alone are not suit-

able for de�ning functions. For example, it is not clear whether the expression n!

denotes the factorial function itself (of type n! : N ! N) or its value given the

current value of n (of type n! : N). Another problem: if y2 + x is regarded as

a function of two variables, should (y2 + x)(3; 4) have the value 13 = 32 + 4 or

19 = 42 + 3?

These problems are solved by using the notation �x:exp to denote a function of

one variable. The `�' is the Greek letter `lambda', x is the formal parameter, and
exp is the body of the function. An application (�x:exp)(5) of this function to the

value 5, say, is evaluated by �rst substituting 5 for all free occurrences of x in exp,

then evaluating the resulting expression. A de�nition of `free occurrence' appears

in the next section.
A function of several variables can be de�ned by writing �(x1; . . . ; xn):exp. Using

this notation we can de�ne the two di�erent interpretations of y2 + x by

(�(y; x):y2 + x)(3; 4) = 13

(�(x; y):y2 + x)(3; 4) = 19

The notation can be augmented by writing �x : A:exp to give the type A of x.
If exp has type B, then �x : A:exp will have type A ! B. A function of several

arguments can be written as

�(x1 : A1; . . . ; xn : An) : exp

which has type A1 � � � � � An ! B, provided exp has type B.

Note that according to these rules �(x : A; y : B):exp : C has type (A�B)! C

while the expression �x : A:�y : B:exp : C has type A ! (B ! C). The latter is
a curried version of the former.

From now on we consider only the untyped lambda calculus, and therefore do

not add types to the expressions. We now give some examples from Section 2.2.1

rewritten as lambda expressions:

square = �x:x2

h = �(m;n):m + n

k = �(m;n):(m + n;m� n)

twice = �f:�x:f(f(x))
add = �n:�x:x + n

The untyped pure lambda calculus, containing only variables, abstraction, and

application, has been studied at length in mathematical logic by Church [48] and

The untyped lambda calculus: syntax and semantics 45

Barendregt [16]. We choose for our mini-language a dialect which is extended

with data values (typically numbers or lists) and a conditional expression. Our

treatment has di�erent goals and thus is less formal than that of Church and

Barendregt.

3.2.2 Syntax of the lambda calculus

The abstract syntax of our variant of the untyped lambda calculus is de�ned by the

grammar below. For the sake of generality the set hConstanti of possible constant

values and the set hOpi of operations on them have not been speci�ed: various

dialects will have their own data domains. In our examples, hConsti will be the

natural numbers and hOpi the arithmetic operations.

hLami ::= hConstanti Constants

j hVari Variables

j hLamihLami Application
j �hVari.hLami Abstraction

j if hLami then hLami else hLami Conditional
j hOpihLami. . . hLami Base application

Examples
As in the earlier discussion we shall only parenthesize when necessary to remove

ambiguity, and shall write, for example, f x for f(x) and f x y for (f(x))(y).
Note that an operator such as + by itself is a lambda expression. Thus (5+6) should
formally be written as (+ 5 6), but we shall use ordinary in�x notation where it

clari�es the examples. In an expression ---�x.--- the part �x is understood to
apply to the longest complete expression to the right of the `dot'.

x

5

+ 5 x (or 5 + x in ordinary notation)

�x.x + 1

(�y.(�x.x/y)6)2

if x=y then x+y else x-y

3.2.3 Evaluating lambda expressions

Evaluating a lambda expression is simple: the expression is repeatedly rewritten

by a series of reductions until the �nal answer is reached, if ever. We write M)P to

mean that lambda expression M can be reduced (or rewritten) to lambda expression

P.

An occurrence of variable x in a lambda expression is bound if it is inside a

subexpression of form �x.. . . . For instance, the occurrence of x is bound in �x.x

46 Programming Languages and Interpreters

but not in �y.x.

An occurrence of variable x in a lambda expression is free if it is not bound. For
instance, the occurrence of x is free in �y.x but not in �x.x.

A variable x is free in a lambda expression if it has a free occurrence. For

instance, x is free in �y.x(�x.x), but not in �y.�x.x.

We use a special notation for substitution. When N and M are lambda expressions,

[N/x]M is the result of substituting N for all free occurrences of x in M.

3.2.4 Lambda calculus reduction rules

�-conversion: �x.M) �y.[y/x]M

Renaming the bound variable x to y. Restriction: y must not be free in M.

�-reduction: (�x.M)(N)) [N/x]M

Function application. A function �x.M is applied to argument N by substi-
tuting N for every free occurrence of x in M. Restriction: no free variable in N

may become bound as a result of the substitution [N/x]M. This problem can
be avoided by �rst renaming bound variables in M.

�-reduction: op a1. . . an) b

whenever b is the result of applying op to constants a1,. . . ,an

Computation with data values. For example, (+ 5 6) can be reduced to 11.

Restriction: the arguments a1,. . . ,an must be data constants.

reduction of conditional: if true then M else N) M

if false then M else N) N

reduction in context: ...M...) ...N...

whenever M) N

A subexpression of a lambda expression may be reduced without changing

the rest of the expression.

repeated reduction: M1) M3
whenever M1) M2 and M2) M3

A computation consists of a series of the above reductions. For instance, a
conditional (if B then M else N) may be reduced by �rst reducing B to

an atomic value b; then if b is true, the conditional reduces to M, else if b is

false, the conditional reduces to N.

The untyped lambda calculus: syntax and semantics 47

Examples
+ 5 6) 11 by �-reduction

(5 + 6) = 11) true by two �-reductions

�a.a + 5) �b.b + 5 by �-conversion

(�a.a + 5)6) 6 + 5 by �-reduction

(�a.a + 5)6) 11 by repeated reductions

(�x.(�y.x+y)6)7) (�x.x+6)7 by reduction in context

if true then 13 else 14) 13 by conditional

if 5+6=11 then 13 else 14) 13 by � and conditional

(�x.((�x.x+x)5)+x+(�x.x*x)3)4) 23 by repeated reductions

A redex is an expression which can be reduced by a �-, �-, or conditional re-

duction. A top-level redex is a redex not inside a lambda abstraction. Functional

programming languages restrict the use of �-, �-, and conditional reductions to

top-level redexes.

A lambda expression is in weak head normal form (or whnf) if it is a constant,

such as 17, or a function �x.M, or a free variable x, or an application x e1 . . .
en of a free variable x, where n � 1. If a lambda expression is in whnf, it has no

top-level redex.

All of the above expressions can be reduced to whnf. However, some lambda
expressions cannot. For example, (�y.y y)(�y.y y) can be �-reduced, but it

reduces to itself, which can again be �-reduced, and so on inde�nitely:

(�y.y y)(�y.y y)

) (�y.y y)(�y.y y)

) (�y.y y)(�y.y y)

) . . .

A restriction on substitution

In �-conversion and �-reduction, the substitution [N/x]M may only be done if no
free variable in N becomes bound as a result of the substitution. A free variable

that becomes bound is said to be captured.

For example, let y be a free variable of the argument N in:

(�x.2+(�y.x+y)5)| {z }
M

(y+1)| {z }
N

Blindly applying �-reduction and substitution would yield the lambda expression

2+(�y.(y+1)+y)5, in which the free variable y in N has become captured: bound
by the lambda abstraction �y. in M.

This is clearly wrong, since the y's of M and N have nothing to do with each

other, and luckily the restriction on substitution prevents �-reduction in this case.

However, (�x.M)N can always be reduced if we �rst rename M's bound variable y

to z by an �-conversion.

48 Programming Languages and Interpreters

Functional programming languages
In functional programming languages, considered as implementations of the lambda

calculus, renaming is not needed. Such implementations do not allow free vari-

ables in the `program' (the top-most lambda expression), and they do not perform

reductions inside lambda abstractions �x.M. Because of these restrictions, the ex-

pressions considered in reduction rules have no free variables. In particular, there

are no free variables in the argument N of an application (�x.M)N, and therefore

no variables can be captured.

Also, because of the restrictions, every whnf at top-level is a constant or a

function.

3.2.5 Call-by-value and call-by-name

Even with this restriction, the reductions on a lambda expression may be done

in many di�erent orders. For example, we may �-reduce a top-level application

(�x.M)N right away, or we may require the argument N to be evaluated to a whnf

before �-reduction of the application. These alternatives are known as call-by-name
reduction and call-by-value reduction, or normal order reduction and applicative
order reduction.

The call-by-name reduction order does not impose further restrictions. Thus the
application (�x.M)N can be reduced immediately by a �-reduction.
The call-by-value reduction order further restricts the use of �-reduction to top-

level redexes (�x.M)P where the argument P is a whnf (that is, a constant or
a function). Thus with call-by-value, a (top-level) application (�x.M)N must be

reduced by �rst reducing the argument N to a whnf P; then (�x.M)P is reduced by
a �-reduction.
In principle, call-by-name is preferable to call-by-value because of the complete-

ness property: namely, if M can be reduced to a constant c, then the call-by-name

reduction order will reduce M to c.

In other words, if there is any way to reduce an expression to a constant, then
call-by-name will do it. This does not hold for call-by-value, as shown by the

example:

(�x.1+2) ((�y.y y)(�y.y y))

Call-by-name reduces this expression to 3, since x does not occur in the body 1+2.

However, call-by-value attempts to reduce the argument ((�y.y y)(�y.y y)) to

a whnf, which is impossible as shown above.
An obvious question is: can di�erent reduction sequences produce di�erent �nal

unreducible answers (in the form of constant values)? The answer is `no' as a

consequence of the Church{Rosser theorem [115].

The untyped lambda calculus: syntax and semantics 49

3.2.6 Recursion in the lambda calculus

The pure lambda calculus has no explicit way of expressing recursion. An extension

often seen is the so-called Y constant, with � reduction rule

Fix-point reduction: Y M) M(Y M)

Clearly this allows application of M as many times as desired by reductions:

Y M) M(Y M)) M(M(Y M))) M(M(M(Y M)))) . . .

For example, let M be (�f.�n.if n=0 then 1 else n*f(n-1)). Then de�ne the

factorial function by:

fac = Y M

Now 3!, say, can be computed as follows:

fac(3) = Y(M)(3)

) M(Y M)(3)

) (�n.if n=0 then 1 else n * (Y M)(n-1)) (3)

) 3*(Y M)(2)

) 3*M(Y M)(2)

) 3*(�n.if n=0 then 1 else n * (Y M)(n-1))(2)

) 3*2*(Y M)(1)

) 3*2*M(Y M)(1)

) 3*2*(�n.if n=0 then 1 else n * (Y M)(n-1))(1)

) 3*2*1*(Y M)(0)

) 3*2*1*M(Y M)(0)

) 3*2*1*(�n.if n=0 then 1 else n * (Y M)(n-1))(0)

) 3*2*1*1

) . . .) 6

This gives a syntactical view of recursion; the �x-point constant Y explicates recur-

sion by unfolding a formula as often as needed to obtain the desired result. This
view resembles the interpretation of recursive type equations as seen in Section 2.3.

Surprisingly, the �x-point constant is not really necessary. It can be expressed

in the untyped lambda calculus by the following lambda expression, called the Y
combinator:

Yn = �h.(�x.h(x x))(�x.h(x x))

To see this, let M be any lambda expression. Then we have

Yn M = (�h.(�x.h(x x))(�x.h(x x)))M

) (�x.M(x x))(�x.M(x x))

) M((�x.M(x x))(�x.M(x x)))

Denoting the lambda expression (�x.M(x x))(�x.M(x x)) by C, we observe that

50 Programming Languages and Interpreters

Yn M) C and also C) M C. Thus C behaves as Y M above, so the lambda ex-

pression called Yn faithfully simulates the Y constant.

A call-by-value version of the Y combinator
The expression called C is not in whnf, and �-reducing it gives an application M C

whose argument is C. Call-by-value reduction will attempt to reduce the argument

C to a whnf �rst, producing M(M C), then M(M(M C)), and so on. This process will

not terminate. Thus Yn is useless with call-by-value reduction order.

However, the lambda expression Yv below encodes recursion under call-by-value:

Yv = �h.(�x.h(�a.(x x)a))(�x.h(�a.(x x)a))

3.3 Three mini-languages

We now present three simple languages and interpreters for them.
Section 3.3.1 presents an interpreter for the untyped call-by-value lambda calcu-

lus. A program is simply a lambda expression, and the computed value is an ex-
pression also. The lambda calculus is especially interesting because of its simplicity,
its computational power, and its notable di�erences from conventional languages.

Further, it illustrates some fundamental concepts in a simple context:

� Binding of variables to values.

� Call-by-name and call-by-value argument evaluation.

� First-order representation of functions by closures.

Section 3.3.2 presents the language of �rst-order recursion equations. This is

also a functional, expression-oriented language. Unlike the lambda calculus, the
concepts of `program' and `computed value' are separated. The programming lan-

guages Lisp, Scheme, ML, and Miranda (among others) resemble a combination of
the lambda calculus and recursion equations.
Section 3.3.3 presents the language of traditional imperative
ow charts with

assignments and jumps, and gives an interpreter for it. Moreover, a mathematical

semantics for
ow charts is given in Section 3.3.4.
Later in the book we present partial evaluators for each of the three mini-

languages, showing a range of partial evaluation techniques necessary to handle
the various features.

3.3.1 An interpreter for the call-by-value lambda calculus

We now develop an interpreter for untyped call-by-value lambda expressions | an

executable ML program, shown in Figure 3.1.

Three mini-languages 51

datatype lambda =

Int of int (* Constant *)

| Var of string (* Variable *)

| Abs of string * lambda (* Abstraction *)

| Apply of lambda * lambda (* Application *)

| Op of string * lambda list (* Base application *)

| If of lambda * lambda * lambda (* Conditional *)

and value =

Numb of int

| Closure of lambda * (string list * value list)

fun lookup (x, (n::ns, v::vs)) = if n = x then v

else lookup(x, (ns, vs))

fun eval (Int n, env) = Numb n

| eval (Var x, env) = lookup(x, env)

| eval (Abs(x,e), env) = Closure(Abs(x,e), env)

| eval (Apply(e,f), env) =

let val f1 = eval(f, env)

val Closure(Abs(x,e1), (ns, vs)) = eval(e, env)

in eval (e1, (x::ns, f1::vs)) end

| eval (Op("+",[e1, e2]), env) =

let val Numb v1 = eval (e1, env)

val Numb v2 = eval (e2, env)

in Numb (v1 + v2) end

| eval (If (e,f,g), env) =

case eval(e, env) of

(Numb 1) => eval(f, env) (* 1 is true *)

| (Numb _) => eval(g, env) (* non-1 is false *)

fun interpret e = eval (e, ([], []))

Figure 3.1: Interpreter for call-by-value lambda calculus.

Environments represent delayed substitution

An obvious approach would be to program the reduction rules and substitution
directly in ML, but this is rather ine�cient. Computing [N/x]M by substituting

N into M at every �-reduction is impractical, since it may build extremely large

expressions by repeatedly copying N.

A better alternative is to use an environment to map the free variables of an

expression to their values. This amounts to a `delayed' substitution: instead of

computing [N/x]M explicitly, we represent it by a pair

(M, env[x 7!N])

where the updated environment env[x 7!N] records the fact that x will, when

52 Programming Languages and Interpreters

referenced, be replaced by N. Such a pair of an expression and an environment

is called a closure, and is widely used in practical implementations of functional

languages. Note that the substitution is not actually done; but the environment

remembers that it is to be e�ectuated when variable x is used in M.

As a consequence the interpreter will manipulate two types of values: numbers

and closures. Whenever a � reduction (�x.M)(N)) [N/x]M is to be performed,

the evaluator updates the environment and then evaluates M in the new environ-

ment. All references to x within M are looked up in the environment.

The environment is represented by a pair of a name list and a value list, such

that valuei is the value of the variable called namei:

([name1,. . .,namen],[value1,. . .,valuen])

The interpreter written in ML is shown in Figure 3.1. In the conditional, 1 is used

for `true' and all other numbers for `false'. The interpreter performs call-by-value

reduction of the lambda calculus; namely, in the Apply branch, ML evaluates the

binding let val f1 = eval(f, env) of the argument f1 before the lambda body
e1.

The interpreter will fail with an error on a lambda expression which attempts
to apply a number, or add a closure to something, or determine the truth value of
a closure. This is a kind of graceless dynamic typechecking. Also, it will fail (in

lookup) if an unbound variable is referenced, so it works only for programs which
are closed lambda expressions: those without free variables.

3.3.2 An interpreter for �rst-order recursion equations

Syntax

Here we describe a language of call-by-value recursion equation systems. The
function de�ned by the equation system is the one given by the �rst equation.

hProgrami ::= hEquationi, . . . , hEquationi Function de�nitions
hEquationi ::= hFuncNamei (hVarlisti) = hExpri

hVarlisti ::= hVari, . . . , hVari Formal parameters

hExpri ::= hConstanti Constant
j hVari Variable

j if hExpri then hExpri else hExpri
j hFuncNamei (hArglisti) Function application

j hOpi hExpri . . . hExpri Base application

hArglisti ::= hExpri, . . . , hExpri Argument expressions

As in the lambda calculus, we leave unspeci�ed the set of possible constant values

hConstanti and the base functions hOpi operating on them. However, note that the
interpreter in Figure 3.2 implements only integer constants. We allow expressions

to be written using customary precedence and associative rules, in�x notation, etc.

Three mini-languages 53

datatype expr =

Int of int (* Constant *)

| Var of string (* Variable *)

| If of expr * expr * expr (* Conditional *)

| Call of string * expr list (* Function call *)

| Op of string * expr list (* Base application *)

fun lookup (x, (n::ns, v::vs)) =

if x = n then v else lookup(x, (ns, vs))

fun eval (Int n, env, pgm) = n

| eval (Var x, env, pgm) = lookup(x, env)

| eval (Call(f, exps), env, pgm) =

let val vals = evlist(exps,env,pgm)

val (vars, exp) = lookup(f, pgm)

in eval(exp, (vars, vals), pgm) end

| eval (Op("+",[e1,e2]), env, pgm) = (* similar for *,-,... *)

eval(e1,env,pgm) + eval(e2,env,pgm)

| eval (If(e,f,g), env, pgm) =

case eval(e, env, pgm) of

1 => eval(f, env, pgm) (* 1 is true *)

| _ => eval(g, env, pgm) (* non-1 is false *)

and evlist ([], _, _) = []

| evlist (e::es, env, pgm) =

eval(e, env, pgm) :: evlist(es, env, pgm)

fun interpret (pgm, args) =

let val (_, (vars, exp)::_) = pgm

in eval(exp, (vars, args), pgm) end

Figure 3.2: Interpreter for call-by-value recursion equations.

Scope
In an equation

f(x1,. . . ,xn) = expression

the scope of x1,. . . ,xn is the expression. This means that variables x1,. . . ,xn
bound on the left hand side can be used only inside the expression. Moreover,

these are the only variables that can be used in the expression. The variables

x1,. . . ,xn must all be distinct.

Call-by-name and call-by-value in recursion equations
The distinction between call-by-value and call-by-name (see Section 3.2.5) applies
to recursion equations as well as to the lambda expressions. An example where

termination behaviour di�ers is:

54 Programming Languages and Interpreters

h(x,y) = if y � 1 then y else h(h(x+1,y),y-2)

Using call-by-name, h(1,2) evaluates to 0, but using call-by-value it is unde�ned.

Operational semantics

Figure 3.2 shows an interpreter for recursion equations, written in ML. A program

is represented as a pair of lists. The �rst is a list of function names [f1,. . . ,fn]

and the second is a list of corresponding pairs ([xi1,. . . ,xiai], bodyi), where

[xi1,. . . ,xiai] are the parameters of function fi and bodyi is its body.

In ML the type of a program can be described by

type funcname = string

type var = string

type program = (funcname list) * ((var list * expr) list)

The interpreter passes round the entire program in parameter pgm; this allows to

�nd the de�nition of a called function. The interpreter uses an environment env
just as the previous interpreter did.

Remarks

1. A function arguments are evaluated by call-by-value. Namely, in the Call

branch, ML evaluates the binding let val vals = evlist(exps,env,pgm)

of the argument values before the function body exp. A call-by-name se-
mantics can also be de�ned, by letting the environment bind variables to

closures that contain unevaluated argument expressions; these (sometimes
called thunks or suspensions) are evaluated when needed, e.g. to perform a
test or as arguments of a base function that demands evaluated arguments

(e.g. addition).

2. We have not allowed functions as expression values or function arguments,

but this is easily accommodated using closures, as in Section 3.3.1.

3. The interpreter fails if an unbound variable is referenced.

3.3.3 An interpreter for
ow chart programs

Flow charts form a simple imperative language much closer to traditional ma-

chine architectures than the functional languages just discussed. Their essential

characteristic is that computation proceeds sequentially by execution of a series of
commands, each of which updates some component of an implicit program state.
This state usually consists of the values of certain registers (accumulators, index

registers, etc.) together with a store or memory which maps variables or their

corresponding storage locations to the values currently stored in them.

Three mini-languages 55

Syntax
Following is a grammar for
ow chart programs:

hProgrami ::= read hVari, . . . , hVari; hBasicBlocki+

hBasicBlocki ::= hLabeli: hAssignmenti� hJumpi

hAssignmenti ::= hVari := hExpri;

hJumpi ::= goto hLabeli;

j if hExpri goto hLabeli else hLabeli;

j return hExpri;

hExpri ::= hConstanti

j hOpi hExpri . . . hExpri

hLabeli ::= any identi�er or number

The set hConstanti of constants and the set hOpi of base functions are left unspec-

i�ed, and again the interpreter in Figure 3.3 implements only integer constants.

The values of the variables mentioned in the initial read statement are supplied

by the input. The values of all other (numeric) variables are initially zero.

Example
A program to compute the greatest common divisor of natural numbers x and y:

read x, y;

1: if x = y goto 7 else 2

2: if x < y goto 5 else 3

3: x := x - y

goto 1

5: y := y - x

goto 1

7: return x

Operational semantics
As for the previous two languages we give the semantics for
ow chart programs op-

erationally by an interpreter written in ML. As before we use an abstract program

syntax. The store behaves much like the environment in the previous interpreter,

but with a di�erence: it must also be possible to change the value bound to a
variable, i.e. to update an existing store. Equivalence with the mathematical se-

mantics given in the next section can be proven by induction on the length of a

computation.

The kernel of the interpreter in Figure 3.3 is the command execution function
run, which returns the program's �nal answer, provided it terminates. The �rst

argument is the current `point of control', and the second argument is the command
to be executed. If control is not transferred, then the command is performed, the

store is updated, and the instruction counter is incremented. In all cases, the

function nth is used to �nd the next command to be executed.

As seen in function lookup, the initial value of a non-input variable is 0. The

56 Programming Languages and Interpreters

datatype expr =

Int of int (* Integer constant *)

| Var of string (* Variable *)

| Op of string * expr list (* Base application *)

and command =

Goto of int (* Goto command *)

| Assign of string * expr (* Assignment command *)

| If of expr * int * int (* If-then-else command *)

| Return of expr (* Return command *)

and program = Read of string list * command list

fun nth (c::cs, 1) = c

| nth (c::cs, n) = nth(cs, n-1)

fun lookup (x, ([], [])) = 0 (* Initial value *)

| lookup (x, (n::ns, v::vs)) =

if x = n then v else lookup(x, (ns, vs))

fun update (([], []), x, w) = ([x], [w])

| update ((n::ns, v::vs), x, w) =

if x = n then (n::ns, w::vs)

else let val (ns1, vs1) = update((ns,vs), x, w)

in (n::ns1, v::vs1) end

fun eval (Int n, s) = n

| eval (Var x, s) = lookup(x, s)

| eval (Op("+",[e1,e2]), s) = eval(e1, s) + eval(e2, s)

fun run (l, Goto n, s, p) = run(n, nth (p, n), s, p)

| run (l, Assign(x, e), s, p) =

let val s1 = update(s, x, eval(e, s))

in run(l+1, nth(p, l+1), s1, p) end

| run (l, If(e,m,n), s, p) =

if eval(e, s) = 0

then run(m, nth(p, m), s, p)

else run(n, nth(p, n), s, p)

| run (l, Return e, s, p) = eval(e, s)

fun interpret (pgm, args) =

let val Read (vars, cmds) = pgm

val (c1 :: _) = cmds

val store = (vars, args)

in run(1, c1, store, cmds) end

Figure 3.3: Interpreter for
ow chart language.

Three mini-languages 57

interpreter fails if a jump to an unde�ned address is attempted.

The intention is that the value of run(lab, cmd, s, program) is the �nal out-

put resulting from executing program with store s, beginning at command cmd

which has label lab.

3.3.4 Mathematical semantics of
ow charts

Suppose one is given a
ow chart program p with input variables x1 . . . xk. It

consists of a read-statement read x1 . . . xk; followed by a sequence of labelled

basic blocks: l0:bb0 l1:bb1 . . . ln:bbn. If the program has variables x1, . . . , xm
(m � k) then a store v can be represented by an m-tuple of values v = (v1, . . . ,

vm).

The program's store (memory) is a mapping from variables to their current

values. Input to a program p is a list of values d = (v1 . . . vk), initially bound to

x1 . . . xk. All the non-input variables xk+1, . . . , xm have initial value 0, so the

initial store is the tuple: (v1, . . . , vk, 0, . . . , 0).

Base functions must have no side e�ects. Assignments, conditionals, and jumps

are executed in the usual way, and return exp terminates execution, yielding the
value of exp as the value of the program execution [[p]]

L
d .

The meaning of each basic block bb` is a store transformer w`: Value
m
! Valuem

computing the e�ect of assignments on the store. If bb` = a1; . . . ; an; <Jump>,
the store transformer w` is de�ned by:

w`(v) = (t[[an]] � . . . � t[[a1]]) v

t[[xj := e]] v = (v1, . . . , vj�1, eval[[e]]v, vj+1, . . . , vm)
where v = (v1, . . . , vm)

The control function c`: Value
m ! fl0, . . . , lng [Value returns either the label

of the basic block to be executed after bb`, or the program's �nal result in case a

return-statement is executed. The function c` is de�ned by:

c`(v) = eval[[e]](w`(v)) if bb` = . . . ; return e

= lj if bb` = . . . ; goto lj
= lj if bb` = . . . ; if e goto lj else lk

and eval[[e]](w`(v)) = true

= lk if bb` = . . . ; if e goto lj else lk
and eval[[e]](w`(v)) = false

A (�nite) computation is a (�nite) sequence

(pp0, v0) ! (pp1, v1) ! . . . ! (ppi, vi) !(ppi+1, vi+1) !

where v0 holds the values d of the input variables x1, . . . , xk, and pp0 = l0. If ppi
= l`, then vi+1 = w`(vi), and ppi+1 = c`(vi). Finite computations end with ppt 2

Value for some t.

58 Programming Languages and Interpreters

This de�nes the standard evaluation of a
ow chart program. If it terminates,

the value computed is [[p]]
L
d = ppt, else [[p]]L d = ?.

3.4 Compiling compilers

3.4.1 Compiler bootstrapping, an example of self-application

The term bootstrapping comes from the phrase `to pull oneself up by one's boot-

straps' and refers to the use of compilers to compile themselves. The technique

is widely used in practice, including industrial applications. Suppose we have ex-

tended a known language S to a larger one called S0, such that S-programs �

S0-programs. Suppose also that the extension is conservative, so every S program

has the same semantics in both languages. Finally, assume that we already have

a compiler from source language S to target language T, and that the compiler is

available both in source form h 2 S-programs and in target form t 2 T-programs:

S T

S

-high-level compiler h 2

S T

T

-low-level compiler t 2

The two versions of the compiler must agree, that is, [[h]]
S
= [[t]]

T
. Then h and t

can be used to create a compiler from S0 to T as follows:

1. Extend the existing compiler h into a compiler h0 2 S-programs for S0. This
must be a conservative extension of h, so that [[[[h]]

S
p]]

T
= [[[[h0]]

S
p]]

T
for all

S-programs p:

S0 T

S

-high-level compiler h0 2

2. Now use t on h0 to obtain an S0 compiler t10 in target language form:

S T

T

-

S0 T

T

-S0 T

S

-

high-level compiler h0 2 3 low-level compiler t10

low-level compiler t 2

Compiling compilers 59

3. Use t10 to obtain an S0 compiler t20 in target language form:

S0 T

T

-

S0 T

T

-S0 T

S

-

high-level compiler h0 2 3 low-level compiler t20

low-level compiler t10 2

4. Finally, use t20 to obtain an S0 compiler t30 in target language form:

S0 T

T

-

S0 T

T

-S0 T

S

-

high-level compiler h0 2 3 low-level compiler t30

low-level compiler t20 2

These runs can be written more concisely in the notation for program execution

introduced in Chapter 1:

t10 = [[t]]
T
h0

t20 = [[t10]]
T
h0

t30 = [[t20]]
T
h0

Now t10 and t20 (and t30) are semantically equivalent since they are all obtained

from the same source program, h0.

[[t10]]
T

= [[[[h]]
S
h0]]

T
by de�nition of t10

= [[[[h0]]
S
h0]]

T
since h0 is a conservative extension of h

= [[[[[[t]]
T
h0]]

T
h0]]

T
since t is a compiler from S to T

= [[[[t10]]
T
h0]]

T
by de�nition of t10

= [[t20]]
T

by de�nition of t20

Note that t10 and t20 may not be textually identical since they were produced
by two di�erent compilers, t and t10, and it is quite possible that the extended
language S0 may require di�erent target code than S.

However, it should be clear that t20 and t30 are textually identical since the

compilers used to compile them are semantically equivalent | at least, if one
assumes the extended compiler h0 to be correct. If they are not textually identical,

then h0 (or, less likely, t) must be wrong.
Note that bootstrapping involves self-application in the sense that (compiled

versions of) h0 are used to compile h0 itself. Moreover, self-application is useful: it

gives a simple way to prove h0 wrong.

60 Programming Languages and Interpreters

3.4.2 Compiler generation from interpreters

Later in this book we shall see that it is possible to convert an interpreter into a

compiler:

L

S
�!

S L

L

-

by partial evaluation. As already argued in the introduction, this is interesting for

several reasons:

� In practice, interpreters are smaller, easier to understand, and easier to debug

than compilers.

� An interpreter is a (low-level form of) operational semantics, and so can serve

as a de�nition of a programming language.

� The question of compiler correctness is completely avoided, since the compiler
will always be faithful to the interpreter from which it was generated.

3.5 The central problems of compilation

Above we have seen how to interpret, that is, evaluate, programs in three rather
di�erent mini-languages. The remainder of this book shows how to specialize, that

is, partially evaluate, programs in these and more complex languages.

Specialization of an interpreter with respect to a source program amounts to
compilation, as already argued in Chapter 1. While a very promising direction for

automating compilation, partial evaluation has not yet successfully accomplished

all the tasks done by traditional handwritten compilers. Those that have been
achieved with considerable success include:

1. Removal of as much interpretation overhead as possible.

2. Generation of target code in which as little computation as possible is done at

run-time. Ideally, one wishes to execute at run-time only those computations

`that the programmer ordered when he wrote the program'.

3. Going from an interpreter's general-purpose implementation mechanisms to
target code that is tailored to execute only one particular source program.

Some achievements of traditional handwritten compilers are, even though generally

well-understood, as yet not fully automated. Following are some challenges on

which work is currently being done:

Summary 61

1. Changing language style, for example from non-linear, value-oriented expres-
sions to linear, command-oriented machine code.

2. Sequentializing naturally non-sequential processes, e.g. devising a stack to

remember temporary results obtained while evaluating the parts of an arith-

metic expression in a particular sequence.

3. Lowering the level of abstraction from source level (e.g. `higher-level lan-

guage') to a target code level tailored to that particular source code, e.g.

P-code for implementing Pascal.

4. Devising data structures at the machine code level suitable for implement-

ing higher-level data (products, sums, recursively de�ned data, functions as

values, etc.), all implemented in a linear storage space.

5. Implementing value management, e.g. going from implicit last-in �rst-out

scope rules to stacked activation blocks containing environment bindings.

3.6 Summary

This chapter concerned interpreters: operational semantics for programming lan-
guages in a directly executable form. Important topics included the following:

� interpreted programs usually run slower than directly executed ones;

� the speed di�erence is often a practically signi�cant factor;

� the interpretation overhead is nearly constant for a given source program

being interpreted | the constant depends on the program but not the input;

� the lambda calculus is a useful notation for de�ning functions;

� computation in the lambda calculus can be de�ned by reduction relations;

� evaluation strategies used in functional languages are restrictions of these

relations;

� call-by-name evaluation terminates more often than call-by-value.

We also presented interpreters written in ML for three mini-languages: the call-

by-value lambda calculus, �rst-order recursion equations, and a simple imperative

ow chart language.

Finally, we summarized the achievements and non-achievements of compilation

by automatic program specialization.

62 Programming Languages and Interpreters

3.7 Exercises

Exercise 3.1 Identify the free and bound variable occurrences in the following

lambda expressions. For each bound occurrence, point out the binding lambda.

1. (x (�x.�x.x x) x)

2. (x (�x.(�x.x) x) x)

3. �h.(�x.h (x x)) (�x.h (x x))

2

Exercise 3.2 Use the � and � reduction rules to reduce the following lambda ex-

pressions:

1. x ((�y.x) z)

2. (�x.x y) (�z.z)

3. (�y.�z.z y) (�k.z)

4. (�x.(�y.x y) x) (�x.z)

5. (�f.�g.�x.f x (g x)) (�x.�y.x) (�x.�y.x) a

2

Exercise 3.3 Find two �-expression M and N such that

1. M is evaluated faster with call-by-value than with call-by-name

2. N is evaluated faster with call-by-name than with call-by-value

2

Exercise 3.4 Let M be any lambda expression. Show that there is a lambda expres-

sion D such that Yv M) D and D) M(�a.M D a), using the call-by-value reduction

order:

Yv = �h.(�x.h(�a.(x x)a))(�x.h(�a.(x x)a))
2

Exercise 3.5 A lambda expression is said to be in normal form when no �-, �-, or

conditional reduction can be applied to any subexpression.

Find a �-expression P without free variables, such that reduction of P to normal
form requires renaming by �-reduction. 2

Exercise 3.6 Show every step in the call-by-name reduction of the expression:

Yn(M)(1), where Yn and M are de�ned as follows:

Exercises 63

Yn = �h.(�x.h(x x))(�x.h(x x))

M = �f.�n.if n=0 then 1 else n*f(n-1)

Repeat the exercise, using call-by-value and the Yv combinator. 2

Exercise 3.7 Reduce the expression fib(4) with call-by-name, where fib is de�ned

as:

fib = Yn (�f.�n.if (n=1 or n=2) then 1 else f(n-1)+f(n-2))| {z }
M

Repeat the exercise, using call-by-value and the Yv combinator. 2

Exercise 3.8 * Write an interpreter for the call-by-name lambda calculus. 2

Exercise 3.9 * Write an interpreter for call-by-name recursion equations. 2

Exercise 3.10 * Consider a tiny imperative language. A program has only one

variable X, whose value is a list. Programs have the following syntax:

program ::= read X; Initialize X from input
cmd; Program body

write X Output X
cmd ::= X := expr Assignment to X

j cmd ; cmd Sequence of commands
j while expr do cmd While loop

expr ::= X Variable X

j hd expr First element of expr
j tl expr Remaining elements of expr

The informal semantics is straightforward. An expression e evaluates to a list. For
example, X evaluates to its current value. If e evaluates to ["A","B","C"], then
expression hd e evaluates to ["A"], and tl e evaluates to ["B","C"].

An assignment X := e evaluates e to obtain a value v, then makes v the new
current value of X. A sequencing c1;c2 executes c1, then c2. A while loop while

e do c �rst evaluates e to a value v. If v is ["nil"] then the loop has no further

e�ect; otherwise it has the same e�ect as c; while e do c.
Consider the example program pgm:

read X;

while hd X do X := tl X;

write X

This program outputs the longest su�x of its input starting with "nil", if any.

For instance, if the input is ["A","nil","B"], then the output is ["nil","B"].

1. The running time tp(inp) of a program p on input inp is the number of

operations that p performs when executed with input inp. The operations
counted are: assignment, test (in the while loop), hd, tl, and fetching the

value of X. For instance,

64 Programming Languages and Interpreters

tpgm(["A","nil","B"]) = 9

Assume the input to pgm is a list inp = [A1,..., An, "nil"], where Ai 6=

"nil". Describe the running time tpgm(inp) as a function of n.

2. Write an interpreter int for the tiny imperative language. The interpreter

should be in the same language, extended as desired with constants and other

list manipulation operations and/or command forms as desired. It may not,
however, use recursive or other function calls.

Hint: use a `control stack', whose top contains the expression or command

currently being executed, and whose lower elements can contain expressions

or commands to be executed later, together with `
ags', each describing what

is to be done when the expressions or commands above it are �nished.

3. The running time tint(p; inp) of the interpreter is the number of operations

that int performs when executing p on inp.

How large is tint(pgm, ["A","nil","B"])?

4. Assume again that the input is a list inp = [A1,..., An, "nil"], where
Ai 6= "nil". Describe the running time tint(pgm; inp) as a function of n.

5. What is the relation between tint(pgm; inp) and tpgm(inp) for large n?

2

Part II

Principles of Partial Evaluation

Chapter 4

Partial Evaluation for a Flow

Chart Language

It was known as long ago as 1971 [92] that the program transformation principle

called partial evaluation or program specialization is closely connected with com-

pilation. In particular, a program specializer can be used to compile, given an
interpretative de�nition of a programming language as input data. Further, a pro-
gram specializer can generate a compiler and even a compiler generator, provided it

is self-applicable. The purpose of this chapter is to show using a concrete example,
that certain rather simple techniques are su�cient to construct a fully automatic
and non{trivial program specializer for a simple imperative language. Further, the

specializer is self-applicable, with the consequence that it can both compile and
generate stand-alone compilers.

To introduce the basic principles of partial evaluation we use the simple imper-
ative language that was introduced in Section 3.3.3. Compared to a real program-
ming language this language is ridiculously small and it can seem doubtful what

can be learned from studying such a language. Years of work in partial evaluation
have led to the following reasons:

� The semantics of the language is so easy to understand that it does not

distract focus from the problems of partial evaluation.

� This language was the �rst imperative language for which self-applicable par-
tial evaluation was successfully implemented. A key to success was indeed
the simplicity of the language. Subsequent experiments with partial evalua-

tion of stronger imperative languages have all used the techniques presented

here as a stepping stone (as we shall see in later chapters).

� Partial evaluation of the
ow chart language also serves as a stepping stone

to partial evaluation of languages as diverse as Scheme and Prolog. Despite

the di�erent natures of the languages, the core techniques carry over and

serve as a natural starting point (see later chapters).

67

68 Partial Evaluation for a Flow Chart Language

� Many of the usual complications in partial evaluation arise, but due to the

simplicity of the language they appear in a very clean form. Solving the

problems for the miminal imperative language �rst and then moving the

solutions to more complex frameworks has been shown to be fruitful.

4.1 Introduction

We show that certain basic techniques are su�cient to construct a nontrivial and

self-applicable program specializer for a very simple imperative language. The

result, called mix, is only 65 lines long.

We present one approach to program specialization, namely polyvariant special-
ization, also called polyvariant mixed computation [40] (others exist, e.g. supercom-
pilation [265,267]). Successive concepts and techniques will be brought in only on

the basis of need, so as to distinguish necessary from arbitrary design decisions

and reduce the inevitable complexity problems that occur when documenting an

existing system. To make our mix as simple and readable as possible we have

assumed `library' functions as needed; we let these functions do some cumbersome
work not central to the concepts of program specialization.
Three fundamental assumptions dominate this chapter, and di�erentiate it from

much other work in program transformation. The �rst is that we are only interested
in methods that are completely automatic, with no need at all for user advice while

program transformation is taking place. The second is that our methods must
be strong enough to compile by specializing an interpreter with respect to a �xed
source program. Third, we must be able automatically to generate stand-alone

compilers. To do this we must be able to self-apply the specializer, i.e., to specialize
the specializer itself with respect to a �xed interpreter.

Thesis

Our main thesis is that program specialization can be done by three steps, all
essentially independent of the particular programming language being transformed.

The underlying ideas are not new, having been seen implicitly in several earlier

works including [19,76,175,265,267] and more explicitly in [40].

We consider only deterministic languages, and suppose that any program has
a set of program points which include the `current control point' at any instant

during program execution. Examples include labels in a
ow chart language, func-

tion names in a functional language, and procedure (predicate) names in a logic

programming language. The three steps of the program specialization algorithm

are as follows:

1. Given the value of part of the program's input, obtain a description of all

computational states reachable when running the program on all possible

What is partial evaluation? 69

input values.

2. Rede�ne the program's control by incorporating parts of the data state into

the control state, yielding perhaps several specialized versions of each of the

program's control points (0, 1 or more; hence the term polyvariant special-
ization).

3. The resulting program usually contains many trivial transitions. Optimize it

by traditional techniques, yielding the specialized (or residual) program.

A note on termination

In some places this chapter is not completely precise with respect to termination

properties. These problems are in general ignored, so certain equations describing

computer executions may be formally incorrect because of the possibility that

one side is unde�ned when the other is not. The purpose of this chapter is to
communicate certain programming concepts; a more formalistic treatment might
make it harder to understand the basic algorithms. We defer the discussion of

problems and solutions concerning termination to Chapter 14. Hence we simply
ignore the problem, just ensuring that the programs we deal with terminate `often

enough'.

4.2 What is partial evaluation?

Given a program and its input data, an interpreter can execute the program pro-
ducing a �nal answer. Given a program and only part of this program's input data,
a program specializer will attempt to execute the given program as far as possible

yielding as result a residual program that will perform the rest of the computation

when the rest of the input data is supplied.

To de�ne program specialization more precisely we need a concise notation de-

scribing the e�ect of running a program. Suppose p is a program written in the

language L. Recall from Section 3.1.2 that we denote the result of running the

program p on some input data d (if it terminates) by

[[p]]
L
d = result

Since program specializers accept both programs and data as input, we assume

that both p and d are drawn from a common set D of data values. A well-known

notation allowing programs to be treated as data is Lisp's list notation, hence we
take D to be the set of Lisp S-expressions. We shall represent programs as Lisp

lists as described in Section 2.3.4.

70 Partial Evaluation for a Flow Chart Language

4.2.1 The
ow chart language

In this chapter, L is a simple
ow chart language with variables, assignment state-

ments, gotos and tests. The syntax is shown in Figure 4.1. This is almost the

language described in Section 3.3.3, but the syntax has been changed to make

single-entry blocks explicit. The main modi�cation to the language is that the set

of constants is that of Lisp S-expressions, and operations work on S-expressions.

For brevity we shall write the constant expression (quote value) as 'value.

hProgrami ::= read hVari, . . . , hVari; hBasicBlocki+

hBasicBlocki ::= hLabeli: hAssignmenti� hJumpi

hAssignmenti ::= hVari := hExpri;

hJumpi ::= goto hLabeli;

j if hExpri goto hLabeli else hLabeli;

j return hExpri;

hExpri ::= hConstanti
j hVari

j hOpi hExpri . . . hExpri
hConstanti ::= quote hVali
hOpi ::= hd j tl j cons j . . .

plus any others needed for writing
interpreters or program specializers

hLabeli ::= any identi�er or number

Figure 4.1: Syntax of L-programs.

The program's store (memory) is a function from the program's variables into
their current values. Input to a program p is a list of values d = (v1 . . . vn), ini-
tially bound to var1,. . . , varn. All the non{input variables varn+1,. . . , varn+k
have as initial values the empty list (), so the initial store is the �nite function:

[var1 7!v1,. . . , varn 7! vn, varn+1 7! (),. . . ,varn+k 7! ()]

Base functions are assumed free of side e�ects on the values of the variables.
Assignments, conditionals, and goto are executed in the usual way, and return

expression terminates execution, yielding the value of expression as the value
of the program execution [[p]]

L
d .

Syntactic sugar

For the sake of readability we shall write programs freely using Pascal-like con-
structs such as begin . . . end, while . . . do . . . and repeat . . . until . . . to be

regarded as structured ways of writing programs in the syntax given above.

What is partial evaluation? 71

4.2.2 Residual programs and program specialization

De�nition 4.1 Let p be an L-program taking as input a two-element list, and let

d1 2 D. Then an L-program r is a residual program for p with respect to d1 i�

[[p]]
L
[d1, d2] = [[r]]

L
d2

for all d2 2 D. 2

The equation expresses that running r on d2 yields the same result as running p

on both d1 and d2. Intuitively, the input d1 is already incorporated in the residual

program r. We now de�ne a (correct) program specializer to be a program which

given p and d1 yields as result a residual program r, such that the above equation

holds.

De�nition 4.2 An L-program mix is a program specializer i� for every p, d1 2 D,

the program r = [[p]]
L
d1 is a residual L-program for p with respect to d1. Expressed

symbolically we get the mix equation:

[[p]]
L
[d1, d2] = [[([[mix]]

L
[p, d1])]]

L
d2

for all d2 2 D. 2

The program p is called the subject program. Note that the right hand side of
the mix equation involves two program executions. First, a residual program r =

[[mix]]
L
[p, d1] is generated. Second, the residual program r is run on data d2.

The equations can be generalized to the situation where p takes a �xed number
n pieces of input data, of which m are given to the program specializer, 0 � m � n.

In the equations above, n = 2 and m = 1.

Example 4.1 Consider the program fragment in Figure 4.2. It might occur inside

an interpreter which represents the runtime store of an interpreted program by a

list namelist of names of variables, and a parallel list valuelist of their values.
The `input data' to the program fragment are the three variables name, namelist,

and valuelist, that is, n = 3.

while name 6= hd (namelist) do

begin

valuelist := tl (valuelist);

namelist := tl (namelist)

end;

value := hd (valuelist);

Figure 4.2: An L-program program fragment to look up a name.

Suppose the program specializer is given the initial values of the variables name and

namelist, for example name = z and namelist = (x y z) but that valuelist

72 Partial Evaluation for a Flow Chart Language

is unknown, that is, m = 2. Since the program's control is entirely determined by

name and namelist it can be symbolically executed, yielding as a residual program

fragment:

valuelist := tl (valuelist);

valuelist := tl (valuelist);

value := hd (valuelist);

Note that the while-loop has disappeared, and the residual program fragment

contains only those commands from the subject program whose e�ect can not be

computed at program specialization time. Note also that the command

valuelist := tl (valuelist)

appears twice in the residual program, once for each iteration of the loop, even

though it appeared only once in the subject program. The two iterations stem

from the fact that we had to take tl of namelist twice before its hd was equal to

name. 2

Three remarks in relation to the de�nition of program specialization:

Further optimization: Since variable valuelist will not be used after the program
fragment, it is tempting to optimize the resulting program to: value := hd (tl

(tl (valuelist))). An appropriate technique for doing such transformations is
to use `dags' [4]. Since the optimization is not essential to program specialization,
we shall not pursue the idea further here.

The existence of residual programs: The general possibility of partially evaluating
a program is known as Kleene's s-m-n theorem in recursive function theory. This,

however, only states the existence of a residual program; nothing is said about e�-
ciency. The usual proof of the s-m-n theorem involves generating a trivial residual

program such as:

name := 'z; namelist := '(x y z);

while name 6= hd(namelist) do

begin

valuelist := tl (valuelist);

namelist := tl (namelist)

end;

value := hd(valuelist);

This residual program clearly satis�es the de�ning equation, but it is of no practical

interest.

The language of the residual program: Note that the program specializer is as-

sumed to generate residual programs, r, written in the same language as the input

program p. This makes it much easier to understand the transformations mix

performs as long as the aim is to understand principles and gain experience with

Partial evaluation and compilation 73

program specialization. If the goal were maximal e�ciency it would be natural to

let mix generate programs in a lower-level language [120].

4.3 Partial evaluation and compilation

In this section we �rst show by a concrete example that a partial evaluator can

be used to compile, given an interpreter and a source program. We then show

that this remarkable fact is a simple consequence of the mix equation as presented

above and from the de�nitions of interpreters and compilers from Section 3.1. This

result is known as the �rst Futamura projection.

4.3.1 An interpreter for Turing machine programs

This section presents a concrete program that will be used to illustrate several

points later in the chapter. The program is an interpreter for a Turing machine
(Post's variant) with tape alphabet A = f0,1,Bg, where B stands for `blank'. A

Turing program Q is a list (I0 I1 . . . In) of instructions each of form

right, left, write a, goto i, or if a goto i

A computational state consists of a current instruction Ii about to be executed,
and an in�nite tape of squares ai:

. . . a�2 a�1 a0 a1 a2 . . .

Only �nitely many of the squares contain symbols ai not equal to B; a0 is called

the scanned square. Instruction e�ects: write a changes a0 to a, right and left

change the scanning point, and if a goto i causes the next control point to be Ii
in case a0 = a; in all other cases the next control point is the following instruction

(if any).

An example program Q in the Turing language is given in Figure 4.3. The input

to this program is a0a1 . . . an 2 f0,1g*, and the initial tape contains B in all other
positions, that is, an+1, an+2,. . . , and a�1, a�2,. . . . Program output is the �nal

value of a0 a1 . . . (at least up to and including the last non{blank symbol) and is
produced when there is no next instruction to be executed. Note that a di�erent

square may be scanned on termination than at the beginning.

0: if 0 goto 3

1: right

2: goto 0

3: write 1

Figure 4.3: A Turing machine program.

74 Partial Evaluation for a Flow Chart Language

The program �nds the �rst 0 to the right on the initial tape and converts it to 1

(and goes into an in�nite loop if none is found). If the input to Q is 110101, the

output will be 1101.

The Turing interpreter in Figure 4.4 has a variable Q for the whole Turing pro-

gram, and the control point is represented via a su�x Qtail of Q (the list of

instructions remaining to be executed). The tape is represented by variables Left,

Right with values in A*, where Right equals a0 a1 a2 . . . (up to and including

the last non{blank symbol) and Left similarly represents a�1 a�2 a�3 Note

that the order is reversed.

read (Q, Right);

init: Qtail := Q; Left := '();

loop: if Qtail = '() goto stop else cont;

cont: Instruction := first instruction(Qtail);

Qtail := rest(Qtail);

Operator := hd(tl(Instruction));

if Operator = 'right goto do-right else cont1;

cont1: if Operator = 'left goto do-left else cont2;

cont2: if Operator = 'write goto do-write else cont3;

cont3: if Operator = 'goto goto do-goto else cont4;

cont4: if Operator = 'if goto do-if else error;

do-right: Left := cons(firstsym(Right), Left);

Right := tl(Right); goto loop;

do-left: Right := cons(firstsym(Left), Right);

Left := tl(Left); goto loop;

do-write: Symbol := hd(tl(tl(Instruction)));

Right := cons(Symbol,tl(Right)); goto loop;

do-goto: Nextlabel := hd(tl(tl(Instruction)));

Qtail := new tail(Nextlabel, Q); goto loop;

do-if: Symbol := hd(tl(tl(Instruction)));

Nextlabel := hd(tl(tl(tl(tl(Instruction)))));

if Symbol = firstsym(Right) goto jump else loop;

jump: Qtail := new tail(Nextlabel,Q); goto loop;

error: return ('syntax-error: Instruction);

stop: return right;

Figure 4.4: Turing machine interpreter written in L.

The interpreter uses some special base functions. These are new tail, which takes

a label lab and the program Q as arguments and returns the part (su�x) of the

Partial evaluation and compilation 75

program beginning with label lab; first instruction, which returns the �rst

instruction from an instruction sequence; and rest, which returns all but the �rst

instruction from an instruction sequence. Moreover, we need a special version

firstsym of hd for which firstsym () = B, and we assume that tl () is ().

Example 4.2 Let Q be (0: if 0 goto 3 1: right 2: goto 0 3: write 1).

Then

[[int]]
L
[Q, 110101] = 1101

new tail(2, Q) = (2: goto 0 3: write 1)

first instruction(Q) = (0: if 0 goto 3)

rest(Q) = (1: right 2: goto 0 3: write 1)

are some typical values of these auxiliary functions. 2

Time analysis. The Turing interpreter in Figure 4.4 executes between 15 and 28
operations per executed command of Q, where we count one operation for each

assignment, goto or base function call.

4.3.2 The Futamura projections

Futamura was the �rst researcher to realize that self-application of a partial evalu-

ator can in principle achieve compiler generation [92]. Therefore the equations de-
scribing compilation, compiler generation, and compiler generation are now called
the Futamura projections.

target = [[mix]]
L
[int, source program]

compiler = [[mix]]
L
[mix, int]

cogen = [[mix]]
L
[mix, mix]

Although easy to verify, it must be admitted that the intuitive signi�cance of these

equations is hard to see. In the remainder of this chapter we shall give some

example target programs, and a compiler derived from the interpreter just given.

4.3.3 Compilation by the �rst Futamura projection

In this section we shall show how we can compile programs using only an interpreter

and the program specializer. We start by verifying the �rst Futamura projection,
which states that specializing an interpreter with respect to a source program has

the e�ect of compiling the source program. Let int be an S-interpreter written in

L, let s be an S-program, and d its input data. The equation is proved by:

76 Partial Evaluation for a Flow Chart Language

[[s]]
S
d = [[int]]

L
[s,d] by the de�nition of

an interpreter

= [[([[mix]]
L
[int,s])]]

L
d by the mix equation

= [[target]]
L
d by naming the residual

program: target

These equations state nothing about the quality of the target program, but in

practice it can be quite good. Figure 4.5 shows a target program generated from

the above interpreter (Figure 4.4) and the source program s = (0: if 0 goto

3 1: right 2: goto 0 3: write 1). Here we just present the result; a later

section will show how it was obtained.

read (Right);

lab0: Left := '();

if '0 = firstsym(Right) goto lab2 else lab1;

lab1: Left := cons(firstsym(Right), Left);

Right := tl(Right);

if '0 = firstsym(Right) goto lab2 else lab1;

lab2: Right := cons('1, tl(Right));

return(Right);

Figure 4.5: A mix-generated target program.

Notice that the target program is written in the same language as the interpreter;
this comes immediately from the mix equation. On the other hand, this target

program's structure more closely resembles that of the source program from which
it was derived than that of the interpreter. Further, it is composed from bits and
pieces of the interpreter, for example Left := cons(firstsym(Right), Left).

Some of these are specialized with respect to data from the source program, e.g.
if '0 = firstsym(Right) goto lab2 else lab1. This is characteristic of mix-
produced target programs.

Time analysis. We see that the target program (Figure 4.5) has a quite natural
structure. The main loop in the target program takes 8 operations while the

interpreter takes 61 operations to interpret the main loop of the source program,

so the target program is nearly 8 times faster than the interpreter when run on

this source program.

4.4 Program specialization techniques

We now describe basic principles su�cient for program specialization; a concrete

algorithm will be given in a later section.

Program specialization techniques 77

4.4.1 States, program points, and divisions

A computational state at any instant during execution of a program in our simple

imperative language is a pair (pp, store), where pp is a program point indicating

the current point of control and store contains the current values of all program

variables. A store containing the current values of variables X1,. . . ,Xn will be

represented by a list of the form (v1 . . . vn). When an assignment is executed, the

store is updated and pp reset to the next program point; when a conditional or a

goto is executed, only the control point is updated.

Suppose now that only part of the input data is at hand. Then we cannot execute

the program but we can specialize it with respect to the known input. In this case

the initial and subsequent stores will be incomplete (at specialization time), hence

we cannot expect to be able to evaluate at specialization time all expressions in

the subject program.

What form should such an incomplete store take? A simple method is to classify

every variable independently as static if its values can be determined at program

specialization time, and as dynamic if not static. A partial computational state is
thus a pair of form (pp, vs), where vs is a list of the values of the static variables,
and the values of the dynamic variables are unknown.
Such a static/dynamic classi�cation is called a division in [130], where more

general versions are also considered. Where the opposite is not explicitly stated,
we shall assume throughout this chapter that the same division is valid at all
program points. Call such a division uniform. This assumption, which simpli�es

matters without being essential, often holds in practice although counterexamples
may easily be found, e.g., it would be convenient to violate the assumption for a

program that swaps two variables, one initially static and the other dynamic.
An essential requirement for use in program specialization is that the division is

(uniformly) congruent. This means that in any transition from computational state

(pp, store) to (pp0, store0), the values of the static variables at program point
pp0 must be computable from the values of the static variables at pp. Expressed

concisely: any variable that depends on a dynamic variable must itself be dynamic.
An expression exclusively built from constants and static variables is also called

static, while it is called dynamic if it contains a dynamic variable. Suppose that

the subject program contains the assignment

X := exp

If exp is dynamic then by the congruence condition X must also be dynamic.

Consider the program fragment in Figure 4.2 and assume, as there, that name

and namelist are static, while value and valuelist are dynamic:

78 Partial Evaluation for a Flow Chart Language

while name 6= hd (namelist) do

begin

valuelist := tl (valuelist);

namelist := tl (namelist)

end;

value := hd (valuelist);

We see that none of the assignments violates the congruence condition.

4.4.2 Program point specialization

The idea of program point specialization is to incorporate the values of the static

variables into the control point. Suppose that at program specialization time we

discover that if the program had been executed normally with all input data sup-

plied, the computation might eventually be in a state with control at point pp and

with vs as the values of the static variables. Then the pair (pp, vs) is made
a program point in the residual program. The code that (pp, vs) labels in the
residual program is an optimized version of the code at pp in the subject program.

The potential for optimization is because we know the values of the static variables.
As hinted by the examples, this means that a program point pp may appear in
several residual versions, each with di�erent values of the static variables.

Let us continue the above example. Since we need explicitly named program
points, this time we use a desugared version of the program fragment.

search: if name = hd(namelist) goto found else cont;

cont: valuelist := tl(valuelist);

namelist := tl(namelist);

goto search;

found: value := hd(valuelist);

Assume our task is to specialize this fragment beginning at search, and that

initially name is z and namelist is (x y z). Thus initially the value of vs in the

specializer is the pair:

vs = (z, (x y z))

Now consider program execution on this initial vs and unknown variables value

and valuelist. The list vs can assume three di�erent values at search, namely:
(z, (x y z)), (z, (y z)), and (z, (z)). At label cont, vs can assume the two

�rst of the listed values, and at point found, vs has (z, (z)) as its only value.

De�nition 4.3 A specialized program point is a tuple (pp, vs) where pp is a pro-

gram point from the subject program and vs is a set of values of the static

variables. 2

A specialized program point (pp, vs) represents a set of states of the subject

program's computation | all those with control point pp and static variable values

Program specialization techniques 79

vs. In the residual program the value of vs is `built in' to the specialized program

point (pp, vs), and not explicit as it is at program specialization time.

De�nition 4.4 The set of all specialized program points (pp, vs) that are reach-

able during program execution is called poly. 2

Note that poly thus represents the set of points of control in the residual pro-

gram; in our example:

poly = f (search, (z,(x y z))),(search,(z,(y z))),(search,(z,(z))),

(cont, (z,(x y z))),(cont, (z,(y z))),

(found, (z,(z))) g

In the next sections we show how to compute poly and how to generate a residual
program given poly. We address the latter question �rst.

4.4.3 Generating code for the various commands

Suppose we are given a specialized program point (pp, vs). In the subject pro-
gram the label pp is attached to a basic block consisting of a sequence of commands.

The generated code for a basic block is the concatenation of the code generated
for the commands.

In the following we assume a rich library of basic functions. In particular, suppose
exp is an expression and vs is a list of values of the program's static variables. We

need two functions: eval(exp, vs), which returns the value of a static expression
exp; and reduce(exp, vs), which performs constant folding [4] of static parts of
a dynamic expression. If vs, for example, says that b = 2, the expression b � b +

a can be replaced by 4 + a.

Command Done at specialization time Generated code
X := exp reduced exp := reduce(exp, vs) X := reduced exp

(if X is dynamic)

X := exp val := eval(exp, vs);

(if X is static) vs := vs[X 7! val]

return exp reduced exp := reduce(exp, vs) return reduced exp

goto pp0 goto (pp0, vs)

80 Partial Evaluation for a Flow Chart Language

Code generation for a conditional: if exp goto pp0 else pp00

Done at specialization time Generated code
(if exp is dynamic) reduced exp := reduce(exp,vs) if reduced exp

goto(pp0,vs)

else(pp0 0,vs)

(if exp is static and val := eval(exp,vs) goto (pp0, vs)

val = true)

(if exp is static and val := eval(exp,vs) goto (pp00,vs)

val = false)

Computing poly

Let pp0 be the �rst label in the program and let vs0 be the initial values of the static

data. It is clear that (pp0, vs0) should be in poly. Moreover, if any specialized

program point (pp, vs) is in poly, all specialized program points reachable from

(pp, vs) should be there. That is, poly is the closure of vs0 under the relation
`reachable from'.
We now address this more carefully. Consider specialized program point (pp,

vs), where pp is attached to a basic block of commands in the subject program: a
sequence of assignments ended by a `passing of control'. Some assignments might
reassign static variables, thus forcing the entry list of statically known values, vs,

to be updated, so a new specialized program point has form (pp', vs'). The
set of successors naturally depends on the form of control passage. Let us write

successors(pp, vs) for the set of possible successors (it has two elements for a
dynamic conditional, none for a return and otherwise one). In the earlier example,

successors(search,(z, (x y z))) = f (cont, (z, (x y z))) g

successors(search,(z, (z))) = f (found, (z, (z))) g

successors(cont, (z, (x y z))) = f (search,(z, (y z))) g

and so on. A �rst approximation to the overall structure of mix can now be given

(Figure 4.6).

poly := f (pp0, vs0) g;

while poly contains an unmarked (pp, vs) do

begin

mark (pp, vs);

generate code for the basic block starting at pp using the values in vs;

poly := poly [successors(pp, vs)

end

Figure 4.6: A simple specialization algorithm.

Rules for computing successors are easily given. If the basic block labelled by pp

Program specialization techniques 81

transforms the static store vs into vs0, then use:

Code generation for a conditional: if exp goto pp0 else pp00

control component of pp successors(pp, vs)

return fg

goto pp0 f(pp0, vs0)g

if exp f(pp0, vs0)g if exp evaluates to true

goto pp0 else pp00 f(pp00, vs0)g if exp evaluates to false

f(pp0, vs0), (pp00, vs0)g if exp is dynamic

4.4.4 Transition compression

When the subject program in Figure 4.2 is slavishly specialized using the algorithm

in Figure 4.6, the following residual program is produced:

(search, (z, (x y z))): goto (cont, (z, (x y z)));

(cont, (z, (x y z))): valuelist := tl (valuelist);

goto (search, (z, (y z)));

(search, (z, (y z))) : goto (cont, (z, (y z)));

(cont, (z, (y z))) : valuelist := tl (valuelist);

goto (search, (z, (z)));

(search, (z, (z))) : goto (found, (z, (z)));

(found, (z, (z))) : value := hd (valuelist);

Though correct this result is not very pleasing. We therefore apply the technique
called transition compression to eliminate the redundant gotos.

De�nition 4.5 Let pp be a label occurring in program p, and consider a jump goto

pp. The replacement of this goto by a copy of the basic block labelled pp is called

transition compression. 2

When we compress the above program to remove super
uous jumps, we obtain
the natural residual program, except that the composite label (search, (z, (x

y z))) should be replaced by a simple one (a number or an identi�er):

(search, (z, (x y z))): valuelist := tl (valuelist);

valuelist := tl (valuelist);

value := hd (valuelist);

The bene�ts of the compression are evident: the code becomes neater and more
e�cient. However, indiscriminate use of transition compression o�ers two pitfalls:

code duplication and in�nite compression. Code duplication can occur when two
distinct transitions to the same program point are both compressed. When the

residual program contains a loop, the compression can even be continued in�nitely.

82 Partial Evaluation for a Flow Chart Language

When should transition compression be done?

Transition compression can be performed as a separate phase after the whole resid-

ual program has been generated, making it easy to avoid the above{mentioned

problems. A program
ow chart can then be built and analysed to see which tran-

sitions can safely be compressed. It is, however, desirable in practice to do the

compressions along with the code generation since this may be more e�cient than

generating a whole program containing super
uous gotos just to compress many

of the gotos afterwards. Doing compression on the
y makes it more complicated

to ensure safe compression. One solution is to annotate some gotos as `residual',

and let mix compress transitions from all the remaining ones. (We elaborate on

this approach in Chapter 5.)

In this chapter we use a simpler strategy which does not involve annotating

gotos. We compress all transitions that are not a part of a residual conditional.

Note that the language does not permit more extensive compressing than directed

by our strategy, since the branches of an if-statement may only contain jumps and

not any other commands. The strategy causes some code duplication, but experi-
ence indicates that it is a minor problem. More important is that the compression

strategy will not cause the program specializer to loop in�nitely unless the subject
program (with the given initial static data) contains a potential `bomb', that is, a
sequence of instructions that will certainly loop in�nitely whenever executed, no

matter what (dynamic) input data is supplied.

Doing transition compression and code generation at the same time improves
the results of self-application signi�cantly. The explanation of this phenomenon

is a little subtle, and since the issue is not, for now, important, we postpone the
treatment to a later section.

4.4.5 Choosing the right division is tricky

The task of classifying variables as static or dynamic is more di�cult than it might
appear at �rst sight. A natural strategy would be to denote as static all variables

that are assigned values computed from constants and static input data. As the

following program fragment demonstrates, this strategy might cause the program
specializer to loop in�nitely.

iterate: if Y 6= 0 then begin

X := X + 1; Y := Y - 1; goto iterate;

end;

This seemingly innocent program has two variables, X and Y. If the initial value of
X is known to be 0 and Y is unknown, it seems natural to classify X as static and

Y as dynamic. The reason is that the only value assigned to X is X + 1, which can

be computed at program specialization time since X is known. But this does not

work, as the following shows.

Program specialization techniques 83

As is usually done in practice we intermingle the computation of poly and the

code generation. Initially poly contains the specialized program point (iterate,

0). The code generation yields

(iterate, 0): if Y 6= 0 then begin

Y := Y - 1; goto (iterate, 1);

end;

We see that (iterate, 1) should be added to poly, hence we should add to the

residual program

(iterate, 1): if Y 6= 0 then begin

Y := Y - 1; goto (iterate, 2);

end;

and so forth ad nauseam. The problem is that poly becomes in�nite:

poly = f(iterate, 0), (iterate, 1), (iterate, 2), . . . g

This happens because the value of X, though known, is unbounded since its val-

ues are computed under dynamic control. The problem did not arise when we
specialized the example programs of this chapter (an interpreter and mix itself).
The problem is handled by classifying the unbounded variable(s) as dynamic. A

division which ensures �niteness of poly is itself called �nite.

In this example, X should be classi�ed as dynamic to prevent the program spe-
cializer from making use of its value, disregarding that it could have be computed

at partial evaluation time. The process of classifying of a variable X as dynamic,
when congruence would have allowed X to be static, is called generalization. As
just witnessed, generalization can be necessary to avoid non-terminating partial

evaluation. Another purpose of generalization is to avoid useless specialization
(see Section 4.9.2).

To classify a su�cient number of the variables as dynamic to ensure �niteness of
poly, always avoiding classifying an unnecessarily large number, is not computable.

We treat the problem and how to �nd an acceptable approximate solution in Chap-

ter 14.

4.4.6 Simple binding-time analysis

By assuming that the same division is applicable for each program point and ig-

noring the problem of ensuring �niteness, it is easy to compute the division of all

program variables given a division of the input variables. This process is called

binding-time analysis, often abbreviated BTA, since it determines at what time

the value of a variable can be computed, that is, the time when the value can be

bound to the variable.

Call the program variables X1, X2, . . ., XN and assume that the input variables

are X1, . . ., Xn, where 0 � n � N . Assume that we are given the binding times

84 Partial Evaluation for a Flow Chart Language

�b1; . . . ;�bn for the input variables, where each �bj is either S (for static) or D (for

dynamic). The task is now to compute a congruent division (Section 4.4.1) for all
the program variables: B = (b1; . . . ; bN) which satis�es �bi = D) bi = D for the

input variables. This is done by the following algorithm:

1. Construct the initial division �B = (�b1; . . . ;�bn; S; . . . ; S) and set B = �B

2. If the program contains an assignment

Xk = exp

where variable Xj appears in exp and bj = D in B then set bk = D in B.

3. Repeat step 2 until B does not change any longer. Then the algorithm

terminates with congruent division B.

4.4.7 Online and o�ine partial evaluation

Above we have described partial evaluation as a process which has two (or more)

stages. First compute a division B from the program and the initial division �B,
without making use of the concrete values of the static input variables. Then the

actual program specialization takes place, making use of the static inputs to the
extent determined by the division, not by the concrete values computed during
specialization. This approach is called o�ine partial evaluation, as opposed to

online partial evaluation.
A partial evaluator makes (at least) two kinds of decisions: which available values

should be used for specialization and which transitions should be compressed. Each

decision is made according to a strategy employed by the partial evaluator.

De�nition 4.6 A strategy is said to be online if the concrete values computed

during program specialization can a�ect the choice of action taken. Otherwise the

strategy is o�ine. 2

Almost all o�ine strategies, including those to be presented in this book, base
their decisions on the results of a preprocess, the binding-time analysis.

Many partial evaluators mix online and o�ine methods, since both kinds of
strategies have their advantages. The main advantage of online partial evaluation

is that it can sometimes exploit more static information during specialization than

o�ine, thus yielding better residual programs. O�ine techniques make generation
of compilers, etc., by self-application feasible and yield faster systems using a

simpler specialization algorithm.

Chapter 7 contains a more detailed comparison of online and o�ine partial eval-

uation.

Algorithms used in mix 85

4.4.8 Compiling without a compiler

We now return to compilation by specializing the Turing interpreter from Fig-

ure 4.4. The �rst task is to determine a division of the interpreter's variables,

given that the program to be interpreted (Q) is static while its initial input tape

(Right) is dynamic. It is fairly easy to see that the following variables

Q, Qtail, Instruction, Operator, Symbol and Nextlabel

may be static (S) whereas Right and Left must be dynamic (D) in the division.

This information is given to the program specializer along with the interpreter text.

Suppose mix is given the Turing interpreter text, a division of the interpreter

variables and the Turing program in Figure 4.3

Q = (0: if 0 goto 3 1: right 2: goto 0 3: write 1)

Then the residual program shown in Figure 4.5 is generated. All assignments X

:= exp, where X is static, and tests if exp . . . , where exp is static, have been
reduced away; they were performed at program specialization time. The labels
lab0, lab1, and lab2 seen in Figure 4.5 are in fact aliases for specialized program

points (pp, vs), where pp is an interpreter label and vs holds the values of the
static interpreter variables. In the table below we show the correspondence between
the labels in the target program and the specialized program points. (Since the

interpreter variable Q holds the whole Turing program as its value at every program
point, it is omitted from the table. The variable Operator is omitted for space.)

The ()'s are the values of uninitialized variables.

Target Interpre- Static interpreter variables (vs):
label ter label Instruction Qtail Symbol Nextlabel

lab0 init () () () ()

lab1 cont right (2:goto 0 3:write 1) 0 3

lab2 jump if 0 goto 3 (1:right 2:goto 0 3:write 1) 0 3

4.5 Algorithms used in mix

We have described techniques that together form program specialization. They

were presented one at a time, and it is possible to build a program specializer that

applies these techniques in sequence, yielding an algorithm like this:

Input: A subject program, a division of its variables into

static and dynamic, and some of the program's input.
Output: A residual program.

86 Partial Evaluation for a Flow Chart Language

Algorithm:

� Compute poly and generate code for all the specialized program points in

poly;

� Apply transition compression to shorten the code;

� Relabel the specialized program points to use natural numbers as labels.

This structure re
ects the principles of program specialization well, but we have

found it ine�cient in practice since it involves �rst building up a large residual

program, and then cutting it down to form the �nal version.

A more e�cient algorithm
We now present the algorithm we implemented, where the phases mentioned above

are intermingled. Along with the computation of poly, we generate code and apply

transition compression. Variable pending holds a set of specialized program points

for which code has not yet been generated, while marked holds the set of specialized

program points for which code has already been generated. The algorithm is shown
in Figure 4.7.

For simplicity we have omitted the relabelling of the specialized program point
(pp, vs).

4.6 The second Futamura projection: compiler genera-

tion

We have seen how specializing an interpreter with respect to a source program
gave a compiled version of the source program. In this section we examine how

a stand-alone compiler can be generated by specializing mix with respect to the
interpreter. The theoretical basis for this is the second Futamura projection:

compiler = [[mix]]
L
[mix, int]

This equation states that when mix is specialized with respect to an interpreter,

the residual program will be a compiler. (Our mix has in fact an extra argument,

division, not made explicit in the Futamura projections to avoid cluttering up
the equations.) For the proof, let int be an S-interpreter written in L and let s be

an S-program.

[[s]]
S
d = [[int]]

L
[s, d] by de�nition of interpreter

= [[([[mix]]
L
[int, s])]]

L
d by the mix equation

= [[([[([[mix]]
L
[mix,int])]]

L
s)]]

L
d by the mix equation

= [[([[compiler]]
L
s)]]

L
d by naming the residual program

This establishes compiler as an S-to-L-compiler written in L.

The second Futamura projection: compiler generation 87

read(program, division, vs0);

1 pending := f (pp0, vs0) g; (* pp0 is program's initial program point *)
2 marked := fg;

3 while pending 6= fg do

4 begin

5 Pick an element (pp, vs) 2 pending and remove it;
6 marked := marked [f(pp, vs)g;

7 bb := lookup (pp, program); (* Find the basic block labeled by pp in program*)
(* Now generate residual code for bb given vs *)

8 code := initial code(pp, vs);(* An empty basic block with label (pp, vs) : *)

9 while bb is not empty do

10 begin

11,12 command := first command(bb); bb := rest (bb);

13 case command of

14 X := exp:

15 if X is classi�ed as static by division
16 then vs := vs [X 7! eval(exp, vs)];

(* Static assignment *)
17 else code := extend(code, X := reduce(exp, vs));

(* Dynamic assignment *)
18 goto pp':
19 bb := lookup (pp', program); (* Compress the transition *)
20 if exp then goto pp' else goto pp'':

if exp is static by division
then begin (* Static conditional *)

21 if eval (exp, vs) = true

22 then bb := lookup (pp', program);

(* Compress the transition *)
23 else bb := lookup (pp'', program);

(* Compress the transition *)
end

24 else begin (* Dynamic conditional *)
25 pending := pending [(f(pp', vs)g n marked);

26 pending := pending [(f(pp'', vs)g n marked);

27 code := extend (code, if reduce(exp, vs)

goto (pp', vs)

else (pp'', vs));

end

return exp:

code := extend(code, return reduce(exp, vs));

otherwise error;

28 end; (* while bb is not empty *)

29 residual := extend(residual, code); (* add new residual basic block *)
30 end (* while pending 6= fg *)

Figure 4.7: The mix algorithm.

88 Partial Evaluation for a Flow Chart Language

4.6.1 Specializing mix

When we want to specialize mix with respect to int we have to determine a division

of the variables of mix. We do not address this in full detail as we did with

the Turing interpreter since mix is a somewhat larger program. In the following

discussion we will refer to the mix algorithm as presented in Figure 4.7.

The question to ask now is: what information will be available to mix1 when the

following run, the compiler generation, is performed (for accuracy we show also

the arguments divmix and divint, which were left out above)?

compiler = [[mix1]]L [mix2, divmix, [int, divint]]

In this run mix1 is the active specializer that is actually run on its three arguments.

The �rst argument is the program text of mix2 which is identical to mix1. The

second argument is a division of mix2's variables. The third argument is the initial

values of mix2's static input variables. Two of mix2's three input variables are

static, namely program, whose value is the interpreter, and division, whose value

is the division divint. Thus mix2 is given the interpreter text and a division of the
interpreter's variables but not the initial values of the interpreter's input variables.

Recall that mix applied to an interpreter and a source program yields a target

program. When [[mix1]]L [mix2,divint,int] is run, only the interpreter is available
to mix2, so it can only perform those actions that depend only on the interpreter
text and not on the source program. It is vital for the e�ciency of the generated

compiler that mix2 can perform some of its computation at compiler generation
time.

We shall now examine the most important mix2 variables to see which have
values at hand during compiler generation time and so can be classi�ed as static
by the division.

To begin with, the variables program and division are static. Variables vs and
vs0 are intended to hold the values of some interpreter variables: this information

is not available before the source program is supplied, hence they are dynamic.

The congruence principle now forces pending, marked, code, and residual to be
classi�ed as dynamic. These variables will thus not be reduced away by mix1, and

so will appear in the residual program corresponding to int, namely, the compiler.

Now consider lines 5{7 in the algorithm. The variable pp gets its value from
pending and is hence dynamic. The variable bb gets its value by looking up pp in

program (= the interpreter). Even though the source program is clearly static and

bb always a part of it, the congruence principle implies that bb must be dynamic

since pp is dynamic. It would be quite unfortunate if it were so. The dependency
principle would now classify command as dynamic, with the consequence that hardly
any computation at all could be done at compiler generation time.

Variable pp can be said to be of bounded static variation, meaning that it can
only assume one of �nitely values; and that its possible value set is statically

computable. Here pp must be one of the labels in the interpreter, enabling us

The second Futamura projection: compiler generation 89

to employ a programming `trick' with the e�ect that bb, and thereby command,

become static. The trick is seen so often in program specialization that we devote

a later section (4.8.3) to an explicit treatment. For now, the reader is asked to

accept without explanation that bb and command are static variables.

4.6.2 The structure of a generated compiler

It turns out that the structure of the generated stand-alone compiler is close to

that of a traditional recursive descent compiler. We have already seen an example

of target code generated by specializing the interpreter, and by the mix equation

the generated compiler works in exactly the same way. Our present concern is the

structure and e�ciency of the compiler.

Figure 4.8 shows the compiler generated from the Turing interpreter. (The

compiler is syntactically sugared for readability.)

The generated compiler represents an interesting `mix' of the partial evaluator

mix and the Turing interpreter. The inner while-loop, line 10{23, closely resembles
the interpretation loop. The conditionals that perform the syntactic dispatch stem

directly from the interpreter. The intervening code generating instructions are, of
course, not like in the interpreter but the connection is tight; the code generated
here is exactly the instructions that the interpreter would have performed.

The inner while-loop containing syntactic dispatch and code generation looks
quite natural, save perhaps the actions for compiling if-statements. This di�ers
from a handwritten compiler using pure predictive parsing, which would be likely

to perform one linear scan of the source program and generate code on the
y,
followed by backpatching.

This compiler is, on the other hand, derived automatically from an interpreter,
and it has thus inherited some of the interpreter's characteristics. An interpreter
does not perform a linear scan of the source program; it follows the
ow of control as

determined by the semantics. The compiler does the same. As long as control can
be determined from the source program alone a linear code sequence is generated.

When an if-statement is encountered this is no longer possible, since code must

be generated for both of the branches. The compiler uses pending and marked to

keep track of which source program fragments have to be compiled. After compiling

an if-statement, compilation has to go on from two di�erent points. One (to be
executed on a false condition) is characterized by Qtail, the other (to be executed

when a jump is made) is characterized by lbl, the target of the conditional jump.

Therefore the two tuples (cont, Qtail) and (jump, lbl) are added to pending

provided they are not already there and that they have not already been processed

(that is, they are not in marked).

One point needs further explanation: the pairs (init, Q), (cont, Qtail), and

(jump, lbl) are claimed to be of form (pp, vs). This does not seem reasonable

at �rst sight since vs should contain the values of all of the interpreter's static

90 Partial Evaluation for a Flow Chart Language

read(Q);

1 pending := f ('init, Q) g;

2 marked := fg;

3 while pending 6= '() do

4 begin

5 Pick an element (pp, vs) 2 pending and remove it;
6 marked := marked [f(pp, vs)g;

7 case pp of

8 init:Qtail := Q; (* vs = Q *)
9 generate initializing code;

10 while Qtail 6= '()' do

11 begin

12 Instruction := hd(Qtail); Qtail := tl(Qtail);

13 case Instruction of

14 right: code := extend(code,

left := cons(firstsym(right),left),

right := tl(right))

15 left: code := extend(code,

right:= cons(firstsym(left),right),

left := tl(left))

16 write s: code :=

extend(code, right := cons(s, tl(right)))

17 goto lbl: Qtail := new tail(lbl, Q);

18 if s goto lbl:pending := pending [f('cont, Qtail)g n marked;

19 pending := pending [f('jump, lbl)g n marked;

20 code := extend(code, if s = firstsym(right)

goto ('jump, lbl)

else ('cont, Qtail));

21,22 otherwise: error

23 end;
24 cont:if Qtail 6= '() goto line 11 (* vs = Qtail *)
25 jump:Qtail := new tail(lbl, Q); if Qtail 6= '() goto line 11

(* vs = lbl *)
26 otherwise: error;

27 residual := extend(residual, code)

28 end;

Figure 4.8: A mix-generated compiler.

variables. The point is that the only static variables whose values can be referenced
after the program points init, cont, and jump are Q, Qtail, and lbl. This is

detected by a simple live static variable analysis described later on.

The variables pending and marked have two roles. First, pending keeps track

of the advance of the compilation, in a way corresponding to the recursion stack

in a recursive descent compiler. Secondly, pending and marked take care of the
correspondence between labels in the source and target programs, as the symbol

table does in a traditional compiler.

As to e�ciency, computer runs show that target = [[compiler]]
L
source is

computed about 9 times as fast as target = [[mix]]
L
[mix, source] .

Generating a compiler generator: mix3 91

4.7 Generating a compiler generator: mix3

We have seen how to use mix to generate a stand-alone compiler. In this section

we shall demonstrate how a stand-alone compiler generator, cogen, is generated.

The third Futamura projection is

cogen = [[mix]]
L
[mix, mix]

We claim that cogen is a compiler generator, that is, cogen applied to an inter-

preter yields a compiler. The claim is veri�ed by

[[cogen]]
L
int = [[([[mix]]

L
[mix, mix])]]

L
int by de�nition of cogen

= [[mix]]
L
[mix, int] by the mix equation

since we already know that [[mix]]
L
[mix, int] yields a compiler. Furthermore,

cogen has the interesting property that it is self-generating.

[[cogen]]
L
mix = [[([[mix]]

L
[mix, mix])]]

L
mix by de�nition of cogen

= [[mix]]
L
[mix, mix] by the mix equation

= cogen by de�nition of cogen

We shall not describe cogen here, but its size and speed measures are given in

Section 4.10 at the end of the chapter.

4.8 The tricks under the carpet

4.8.1 Successful self-application: binding-time analysis

For self-application to be successful it is essential to use a prephase called binding-
time analysis. Its output is a division: a classi�cation of each program variable

as static or dynamic. The program specializer uses the division to determine the

static parts of the subject program in advance, instead of analysing the subject
program on-line at program specialization time. As a consequence the results of

self-application are much smaller and more e�cient.

The important point is that the static parts of the subject program are deter-
mined prior to the specialization phase, and that the program specializer can use

this information when it is run. We have found that supplying a division of the

subject program's variables was the simplest way of communicating the necessary
insight to mix.

Experiments have shown that specialization can be made still more e�cient by
annotating the subject program: all assignments and conditionals are marked as

either eliminable or residual. This allows the program specializer to determine its
actions at a very low cost. The subject will not be pursued here, but we will return

to it in Chapter 7.

92 Partial Evaluation for a Flow Chart Language

4.8.2 The use of base functions

We included plenty of base functions to make mix more readable and keep focus on

the principles of program specialization. Base functions have been used to perform

computation in places where it did not matter how the job was done; examples

include lookup of variables, store updates, etc. Using base functions has made

programming in L less cumbersome and program execution more e�cient since a

base function written in the underlying implementation language, Chez Scheme,

runs faster than the corresponding interpreted L-instructions.

Partial evaluation of base function calls is done by another base function, reduce,

which uses a trivial strategy: if all arguments in a base function call are static,

evaluate the call completely. If some are dynamic then leave the base function call

untouched, and replace the static argument expressions, if any, by their values.

This approach works well when a base function is usually called with all arguments

either static or dynamic, but when both static and dynamic arguments are present,

useful information is likely to be wasted. One situation where it would not be
bene�cial to use this simple strategy is the lookup of a dynamic label in a static

program, as described in the next section.

4.8.3 Variables of bounded static variation

It often happens in partial evaluation that a variable seems dynamic since it de-

pends on dynamic input, but only takes on �nitely many values. In such cases a
bit of reprogramming can yield much better results from partial evaluation. This

kind of reprogramming, or program transformation, which does not alter the stan-
dard meaning of the program but leads to better residual programs is called a
binding-time improvement. The term `improvement' of binding times refers to the

goal of the transformation: that more computations can be classi�ed as static to
be reduced by the partial evaluator. The following shows a classical example seen

in mix itself, and Chapter 12 gives a survey of the most common binding-time

improvement techniques.

Consider the following line from the mix algorithm, which �nds the basic block

labelled by pp:

bb := lookup (pp, program);

Recall that pp is taken from pending and hence is dynamic. If lookup were
implemented by a base function then bb would also be dynamic. However, since

pp can only assume one of �nitely many values (the labels that appear in the
program), there is an alternative. We implement the lookup by the following loop:

The tricks under the carpet 93

pp0 := pp0; (* �rst label (static) *)

while pp 6= pp0 do

pp0 := next label after pp'; (* pp0 remains static *)

bb := basic block at label pp0; (* bb is static too *)

<computations involving bb>

Intuitively, mix compares the dynamic pp to all possible values it can assume (pp0,

pp1 . . .), and specializes code with respect to the corresponding outcome of the

lookup (bb0, bb1 . . .). The point is that the choice between the labels is done at

run-time, but their range of values can be known at compile-time.

In the residual program of mix (e.g. the compiler) the
ow chart equivalent (a

lot of nested conditionals) of this appears:

case pp of

pp0: < code specialized with respect to bb0 >

pp1: < code specialized with respect to bb1 >

. . .

ppn: < code specialized with respect to bbn >

end case

In fact the trick of exploiting `statically bounded values' is necessary to avoid trivial

self-application in the mix described above. In partial evaluators for more complex
languages it is common for this to occur in several places, although here we apply
the technique only to labels.

This trick is so common that it has been named The Trick.

4.8.4 Transition compression on the
y revisited

The size of the generated case-statement naturally depends on how well the value

of pp can be approximated, that is, the size of the set of possible values fpp0,

. . . , ppng. A program point ppi should only be in the set, and thus contribute to

the case-statement, if pp can assume the value ppi. We now address an important

question: which values can pp (which is taken from pending) assume? A �rst
answer is: any label that appears in the subject program. This answer is de�nitely

safe but a smaller set also su�ces. Since we initialize pending to f(pp0, vs0)g, the

approximating set must contain pp0, which is assumed to be the �rst label in the
program. When mix encounters a residual if-statement: if exp goto pp0 else

pp00, the algorithm adds specialized program points containing pp0, respectively
pp00. This implies that all program points pp0 and pp00 appearing in the branches

of a conditional should also be in the set approximating pp. Due to our simple

transition compression strategy which compresses all other gotos, no others need
appear in the approximating set.

As a consequence we use a base function find-blocks-in-pending to compute

the set of basic blocks labelled by those program points pp that can appear in

94 Partial Evaluation for a Flow Chart Language

pending. The result is stored in blocks-in-pending. When mix takes a program

point pp from pending and looks it up, it does not scan the whole program, only

blocks-in-pending. (Romanenko gives the �rst description of this idea [227]).

The reader might want to re-examine the interpreter in Figure 4.4 and the

structure of the generated compiler in Figure 4.8 to see that the generated case-

statement contains one branch for each program point among init, cont, jump

that is either initial (init) or the target of a conditional jump with a dynamic

condition (cont, jump).

The underlying reason why only three of the interpreter's 15 labels contribute

to the case-statement is that transition compressing is done on the
y. If mix had

generated all the trivial gotos, and compressed them afterwards, many specialized

program points, namely the targets of all gotos (and not only the targets of residual

conditionals), would be added to pending during program specialization. This

would mean that every program point pp0, being the target of a goto in the subject

program, would be in the set fpp0, . . . , ppng. This advantage of compressing on

the
y is certainly not evident at �rst sight: smaller residual programs are produced

when mix is self-applied.

4.9 The granularity of binding-time analysis

Until now we have assumed that task of binding-time analysis is to compute one
division, valid at all program points. For most small programs it has turned out
to be a very reasonable assumption that one division could be used to classify the
status of a variable throughout the whole program. There are, however, a series of

objections to this simpli�ed view of BTA.

4.9.1 Pointwise divisions

Consider the following program fragment where the initial division is (S;D):

read (X Y);

init: X := X + 1;

Y := Y - 1;

goto cont;

cont: Y := 3;

next: . . .

Obviously a congruent, uniform division would have to be (S;D), but (judging
from the shown fragment alone) a more detailed division init:(S;D), cont:(S;D),

next:(S; S) would be safe. We shall call such a division pointwise.
As opposed to the simplest possible binding-time analysis computing uniform

divisions (Section 4.4.6), an analysis to compute pointwise divisions will have to

consider the control
ow of the program. Constructing the algorithm is not hard

The granularity of binding-time analysis 95

and is left as an exercise.

The mix algorithm (Figure 4.7) needs a slight extension to handle pointwise divi-

sions. The division argument should be replaced by a division-table and each

time a specialized program point (pp, vs) has been fetched from pending the rel-

evant division should be computed by division = lookup(pp,division-table).

We have claimed that it is crucial for getting good results from self-application that

the division is kept static. Since pp is static (Section 4.8.3), the use of pointwise

divisions does not destroy this property.

4.9.2 Live and dead static variables

The use of an imperative language introduces a serious problem: specialization

with respect to dead static data. This problem is not directly caused by self-

application, but it appears at every program specialization of `non{toy programs',

that is, programs beyond a certain size. Consider a specialized program point

(pp, vs) where, as usual, vs contains the values of those of the program values

that are static. Some of these static values might be completely irrelevant for the
computations to be performed at the program point pp. For a simple example,
consider the program fragment:

start: if hdynamic conditioni

then a := 1; hcommands using ai; goto next

else a := 2; hcommands using ai; goto next

next: hcommands not referring to ai;

As far as this program fragment is concerned the variable a is static, hence its value

is in vs, even though that value is completely irrelevant to further computations.
The unfortunate e�ect is that the specialized program point (start, . . .) has
two successors: (next, ..1..) and (next, ..2..), even though the code pieces

generated for these two successors are clearly identical.

Fortunately, this problem can be avoided by doing a live variable analysis [4] to
recognize which static variables can a�ect future computation or control
ow, and

by specializing program points only with respect to such variables. This analysis is

performed by the base function find-projections which given the program text

and the division computes the set of live static variables for each program point
that can appear in pending. When find-projections is applied to the interpreter
text and the corresponding division, the result is

(jump Nextlabel Q)

(cont Qtail Q)

showing that when the interpreter's control is at point jump, the only static vari-

ables that will be referenced (before they are rede�ned) are Nextlabel and Q.

In the programs used as examples in this chapter we did not need to compute

pointwise divisions as discussed in Section 4.9.1, but it was essential to the success-

96 Partial Evaluation for a Flow Chart Language

ful specialization of the larger programs (such as mix itself) to reclassify dead static

variables as dynamic. We started out by computing a uniform division and the

subsequent reclassi�cation of the dead variables transformed the uniform division

into a pointwise one.

4.9.3 Polyvariant divisions

Even pointwise divisions can be accused of being overly restrictive, namely in the

case where the S=D-status of a variable depends not only on the program point but

also on how the program point was reached. An example (assume initial division

(S;D)):

read (X Y);

init: if Y > 42 goto xsd else dyn

dyn: X := Y;

goto xsd;

xsd: X := X + 17;

. . .

A congruent, pointwise division would have to rule xsd:(D;D). A polyvariant
division assigns to each label a set of divisions. For the above program, a congruent,
polyvariant division would be: init:f(S;D)g, dyn:f(D;D)g, xsd:f(S;D),(D;D)g.

A division which is not polyvariant is called monovariant.
Computing a polyvariant division is not hard, but how should mix exploit the

more detailed information? When generating code for (pp, vs), there is a set of
possible divisions for pp to choose from. Unless (pp, vs) is the initial specialized
program point, there exists a (pp1, vs1) such that (pp, vs) 2 successors((pp1,

vs1)) and the proper division for vs depends on the division used for vs1. A way
of keeping track of the divisions would be to extend the de�nition of a specialized

program point to include a division component. Then, by employing the trick
from Section 4.8.3, the division would be static by self-application (ensuring good

results).

A tempting alternative is to transform the source program prior to partial eval-
uation by duplicating the blocks that have more than one possible division. The

above example is transformed into:

read (X Y);

init: if Y > 42 goto xsd-s else dyn

dyn: X := Y;

goto xsd-d;

xsd-s: X := X + 17;

. . .

xsd-d: X := X + 17;

. . .

The duplication would otherwise have been done during specialization by mix it-

Overview of mix performance 97

self, so the pre-transformation introduces no `extra' code duplication. The trans-

formation can be regarded as specialization of the source program with respect to

binding-time information, and its chief advantage is that the mix algorithm is kept

simple (that is, no modi�cation is needed).

In the programs in this chapter (including mix itself) we have not needed poly-

variant divisions. The absence of functions, procedures, and subroutines does not

encourage the modular programming style where one piece of code can be used in

many di�erent contexts, and that eliminates much of the need for polyvariance.

The later chapters will contain examples where the need for a polyvariant division

arises naturally.

4.10 Overview of mix performance

Following are some program sizes and running times for a preliminary version of

mix. Int is the Turing interpreter from Figure 4.4, source is the Turing program
from Figure 4.3, and target is the result of compiling source from the Turing
language to our language L (Figure 4.5). The run times are measured in Sun 3/50

cpu seconds using Chez Scheme, and include garbage collection.

Program Size (#lines) Ratio Size (bytes) Ratio
source 4 57
target 7 1.75 265 4.6

int 31 1.1 K
compiler 60 1.94 4.5 K 4.1

mix 65 2.8 K

compiler generator 126 1.94 15.0 K 5.4

Run Time Ratio
output = [[int]]

L
[source, data] 0.085

= [[target]]
L
d ata 0.010 8.5

target = [[mix]]
L
[int, source] 2.63

= [[compiler]]
L
s ource 0.27 9.7

compiler = [[mix]]
L
[mix, int] 28.90

= [[cogen]]
L
i nt 3.37 8.6

cogen = [[mix]]
L
[mix, mix] 59.30

= [[cogen]]
L
m ix 7.13 8.3

98 Partial Evaluation for a Flow Chart Language

4.11 Summary and a more abstract perspective

This chapter discussed self-applicable partial evaluation of a
ow chart language.

In spite of the simplicity of this language, we shall see that almost all the concepts

introduced here are also central to partial evaluation of more complex languages:

functional languages, logic programming languages, imperative languages with re-

cursive procedures, etc. Furthermore, essentially the same methods su�ce for

partial evaluation of such seemingly rather di�erent languages.

The essence of program specialization
The previous sections were intentionally concrete and detailed. We now reduce the

ideas involved to their essential core, as a preliminary to partial evaluation of more

complex languages.

Almost all programming languages involve some form of state, which may be a

pair (pp, store) as in the
ow chart language; or (fname, environment) in a func-

tional language, where fname is the name of the function currently being evaluated
and environment binds actual parameters to their values; or (pname, argumentlist)
in Prolog where pname is the name of the current procedure (predicate) and argu-
mentlist is a list of terms, perhaps containing uninstantiated (free) variables.
Equally central is the concept of a state transition, e�ected by a goto, a function

call, or a predicate call. Each changes the state and control point, described
symbolically by

(pp; v)) (pp0; v0);

where p; p0 are control points and v; v0 are data such as stores or argument lists.
Suppose there is a way to decompose or factor a data value v into static and

dynamic parts without loss of information. Such a data division can be thought
of as a triple of functions (stat; dyn; pair), each mapping the set V of data values

to itself. The ability to deompose and recompose without information loss can be
expressed by three equations:

pair(stat(v); dyn(v)) = v

stat(pair(vs; vd)) = vs
dyn(pair(vs; vd)) = vd

Remarks. In this chapter a division was speci�ed by an S �D vector, for instance

SDSD speci�ed the division of V = D4 where pair((a; c); (b; d)) = (a; b; c; d),
stat((a; b; c; d)) = (a; c), and dyn((a; b; c; d)) = (b; d). More generally, o�ine spe-

cializers as used in this chapter will use a single, prede�ned division, whereas an
online specializer will decide static and dynamic projections more dynamically.

Using the division, the transition can be decomposed into:

(pp; v)) (pp0; v0) = (pp; pair(vs; vd))) (pp0; pair(v0s; v
0
d))

This transition can be specialized by reassociating to get

Exercises 99

((pp; vs); vd)) ((pp0; v0s); v
0
d)

This is also a transition, but one with specialized control points (pp; vs) and (pp
0; v0s),

each incorporating some static data. The runtime data are vd, v
0
d, the result of the

dynamic projections.

Fundamental concepts revisited
Residual code generation amounts to �nding commands or a function or procedure

call which syntactically speci�es the transition from vd to v0d. If vd = v0d then

transition compression may be possible since no residual code beyond at most a

control transfer need be generated. (For
ow charts, this happens if the basic block

begun by pp contains no dynamic expressions or commands.) Finally, we have seen

the congruence condition to be needed for code generation. In the current context

this becomes: v0s must be functionally determined by vs in every transition.

4.12 Exercises

Exercise 4.1 Write a program and choose a division such that partial evaluation
without transition compression terminates, and partial evaluation with transition

compression on the
y (as described in this chapter) loops. 2

Exercise 4.2 The purpose of this exercise is to investigate how much certain ex-

tensions to the
ow chart language would complicate partial evaluation. For each
construction, analyse possible problems and show the specialization time compu-

tations and the code generation

1. for loop,

2. while loop,

3. case/switch conditional,

4. computed goto, cgoto hExpri, where Expr evaluates to a natural number =
a label,

5. gosub ... return.

Do any of the above constructions complicate the binding-time analysis? 2

Exercise 4.3 At the end of Section 4.2.2 it is mentioned that mix could generate
residual programs in a low-level language, e.g. machine code.

1. Write the mix equation for a mix that generates machine code.

2. Do the Futamura projections still hold?

3. What are the consequences for compiler generation?

100 Partial Evaluation for a Flow Chart Language

2

Exercise 4.4 Consider the mix-generated program in Figure 4.5. The program is

suboptimal in two ways; discuss how to revise the partial evaluation strategy to

obtain an optimal residual program in this particular example.

1. The same conditional statement appears twice.

2. The assignments to the variable Left do not contribute to the �nal answer.

Would the proposed revisions have any adverse e�ects? 2

Exercise 4.5 Specialize the Turing interpreter with respect to to following program:

0: if B goto 3

1: right

2: goto 0

3: write 1

4: if B goto 7

5: left

6: goto 4

7: write 1

2

Exercise 4.6 The mix equation and the Futamura projections as presented in this
chapter gloss over the fact that partial evaluation (here) consists of a binding-
time analysis phase and a specialization phase. Re�ne the mix-equation and the

Futamura projections to re
ect this two-phase approach. 2

Exercise 4.7 Will specialization of the Turing interpreter (Figure 4.4) with respect

a program p terminate for all Turing programs p? 2

Exercise 4.8 Use the algorithm in Section 4.4.6 to determine a congruent division

for the Turing interpreter when the division for the input variables (Q, Right) is

1. (S;D),

2. (D;S).

2

Exercise 4.9 Write a binding time analysis algorithm that computes a pointwise

division. 2

Exercise 4.10 Write a binding time analysis algorithm that computes a polyvariant

division. 2

Exercise 4.11 The binding time analysis algorithm from Section 4.4.6 is not likely

to be very e�cient in practice. Construct an e�cient algorithm to do the same
job. 2

Chapter 5

Partial Evaluation for a

First-Order Functional Language

This chapter presents self-applicable partial evaluation for a �rst-order functional

language. Many of the ideas and principles that worked for the simple
ow chart
language in Chapter 4 adapt smoothly to this stronger programming language.

In fact the language used below is very similar to that used in the very �rst

self-applicable partial evaluator (constructed by Jones, Sestoft, and S�ndergaard
[135,136]).

In a
ow chart, a program point is a label; in a �rst-order functional language, a

program point is a function de�nition. Labelled statements were specialized with
respect to static global variables, and function de�nitions will be specialized with
respect to static function parameters. The strong similarity between the techniques

for the two languages means that the core algorithm for polyvariant program point
specialization carries over to this new language with little modi�cation.

5.1 From
ow charts to functions

This section examines the basic concepts of partial evaluation as presented in

Chapter 4, and shows their counterparts in a �rst-order functional language.

As an example language we will use a �rst-order subset of Scheme, here called
`Scheme0'. Indeed, most work in partial evaluation of functional languages has

been done in a Lisp or Scheme framework, because it is trivial to parse such
programs, that is, to convert them from concrete to abstract syntax. Concrete

syntax (a string of characters) is convenient for writing example programs, but

abstract syntax (a tree data structure) is required for symbolic manipulation; the
simple Lisp or Scheme notation o�ers a good compromise. Another reason for

using a Scheme subset here is to pave the way for Chapter 10, which describes a
publicly available partial evaluator for a higher-order subset of Scheme.

Figure 5.1 gives the syntax of Scheme0. Note that a Scheme0 program is very

similar to a system of recursion equations as presented in Section 3.3.2. A Scheme0

101

102 Partial Evaluation for a First-Order Functional Language

program takes its input through the (formal) parameters of the �rst function. It

has call-by-value semantics and is statically scoped. Partial function applications

are not allowed, and the language contains no nameless functions (that is, lambda

abstractions). There is no assignment operation, and base function applications

(Op . . .) have no side-e�ects, so Scheme0 programs are purely applicative. The

expression hExpri in a function de�nition hEquationi is called the function body.
The �rst function in a program is called its goal function.

hProgrami ::= (hEquationi . . . hEquationi) Function de�nitions

hEquationi ::= (define (hFuncNamei hVarlisti) hExpri)

hVarlisti ::= hVari . . . hVari Formal parameters

hExpri ::= hConstanti Constant

j hVari Variable

j (if hExpri hExpri hExpri) Conditional

j (call hFuncNamei hArglisti) Function application

j (hOpi hExpri . . . hExpri) Base application

hArglisti ::= hExpri . . . hExpri Argument expressions
hConstanti ::= hNumerali

j (quote hValuei)
hOpi ::= car j cdr j cons j = j + j . . .

Figure 5.1: Syntax of Scheme0, a �rst-order functional language.

Programs and program points. A
ow chart program (Chapter 4) is a collection
of labelled basic blocks; a Scheme0 program is a collection of named function
de�nitions. In the
ow chart program, a program point is the label of a basic

block; in a Scheme0 program, a program point is the name of the de�ned function.
During ordinary program execution, control passes from program point to program
point; by jumps in a
ow chart program and by function calls in Scheme0.

Global variables versus function parameters. In the
ow chart language, values
are bound to global, mutable variables. The bindings are created or changed by

assignments, and the language has a notion of current state. In Scheme0, values are

bound to function parameters. The bindings are created by function application

and cannot be modi�ed; they are immutable and the language has no notion of
current state.

Divisions. In the
ow chart language, each global variable is classi�ed as static

or dynamic; such a classi�cation is called a division. Similarly, in Scheme0 a

division is a classi�cation of each function parameter as static or dynamic. During

specialization, a static parameter can never be bound to a residual expression, only
to ordinary values; a dynamic parameter may be bound to residual expressions as

well as ordinary values.

From
ow charts to functions 103

A monovariant division for a Scheme0 program maps each function to a single

classi�cation of its variables. This corresponds roughly to a pointwise division

in the
ow chart language, namely, one giving a classi�cation for each individ-

ual program point. A polyvariant division maps each function to a �nite set of

classi�cations of its variables.

In a functional language the added
exibility of polyvariant divisions is often

useful. One may write a general library function and call it from several places with

di�erent combinations of static and dynamic arguments, without one argument

combination a�ecting the others.

Existing partial evaluators handle polyvariant binding times by creating several

(monovariant) copies of function de�nitions. This copying is done prior to special-

ization, as described in Section 4.9.3. Therefore we shall assume from now on that

divisions are monovariant.

Congruence. A division is congruent if the value of every static parameter is

determined by the values of other static parameters (and thus ultimately by the

available input). Equivalently, a parameter whose value depends on a dynamic

parameter must itself be dynamic. This means that a static parameter cannot be
bound to a residual expression during specialization.
In the
ow chart language, congruence is formulated as a requirement on assign-

ment statements: it is these that create and modify variable bindings. In Scheme0,
congruence is formulated as a similar requirement on function applications (call
f . . . ej . . .). If the j'th argument expression ej depends on a dynamic variable,

then the corresponding parameter xj in (define (f . . . xj . . .) . . .) must also
be dynamic.

Specialized program points. In the
ow chart language, the specialization of a
program point pp is a specialized basic block, labelled with a specialized label

(pp,vs). This specialized label is a pair of an original label pp (from the subject
program) and values vs of the static variables in the global state. A specialized

ow chart program is a collection of such specialized basic blocks.

Similarly, in Scheme0 a specialized program point is a specialized function de�ni-
tion whose name is a specialized function name. A specialized function name is a

pair (f,vs) of an original function name f and values vs of the static parameters
of f. A specialized Scheme0 program is a collection of such specialized function

de�nitions.

However, choosing specialization points other than function de�nitions may give
more `natural' residual programs. For example, introducing a specialization point

at each conditional (if e1 e2 e3) in which the condition e1 is dynamic, may
give a more reasonable and compact branching structure in the residual program.

Such new specialization points can be introduced by de�ning a new function for

each dynamic conditional before specialization takes place. The new function's
body will consist of the conditional expression (if e1 e2 e3), and the conditional

expression must be replaced by a call to the new function. This idea is used in the

104 Partial Evaluation for a First-Order Functional Language

partial evaluator Similix (Chapter 10).

Transition compression. In the
ow chart language, transition compression is used

to improve residual programs by removing super
uous jumps, such as a jump to a

trivial basic block consisting only of a jump, etc. Transition compression may be

done during specialization, or after. These alternatives are also called on the
y
compression and postphase compression. It was argued that on the
y compression
is preferable.

The Scheme0 notion corresponding to transition compression is unfolding of a

function application. Unfolding replaces a function call (call f . . . ej . . .) by

a copy of f's body, where every argument expression ej is substituted for the

corresponding formal parameter xj.

A trivial basic block corresponds to a function which does nothing but call an-

other function; calls to such functions can be eliminated by unfolding. Unfolding

is more complicated than (
ow chart) transition compression, as it involves substi-

tution of argument expressions for formal parameters in addition to plain inlining

of code. This substitution introduces the risk of computation duplication, which

is even worse than code duplication: it wastes run time in addition to space.
Like transition compression, unfolding may be done on the
y or in a postphase.

As for the
ow chart language, unfolding on the
y greatly improves the residual

programs generated by specialization, and in particular compilers generated by self-
application. A strategy for unfolding on the
y must (1) avoid in�nite unfolding,
(2) avoid duplication of code and computation, and (3) produce as few residual

calls as possible. Several strategies have been suggested that attempt to satisfy
these requirements.

The most conservative strategy would do no unfolding on the
y. Then during
specialization, a function application would always reduce to a residual function
application, never to a value. But then the result of the function application would

be dynamic, even when all its arguments were static, which means that the static
data would be exploited badly, and very little specialization is achieved.

The second-most conservative strategy is to unfold on the
y precisely those

applications which have only static parameters. This introduces a risk of in�-
nite unfolding, but only if there is already a potential in�nite loop in the subject

program, controlled only by static conditionals (or none at all).

We choose for now to unfold precisely those calls without dynamic parameters,

but in Section 5.5.6 we consider an even more liberal strategy for on the
y un-

folding. In both cases we must accept the risk of in�nite unfolding.

Binding-time analysis. In the
ow chart language, a congruent division was found

by a simple program
ow analysis. There are two ways to �nd a congruent division

for a given Scheme0 program. One method is abstract interpretation, described in

more detail in Chapter 15. This is the functional counterpart of classical program

ow analysis as done by compilers: the program is evaluated over the abstract

value domain fS, Dg, where S abstracts all ordinary values (static results) and D

From
ow charts to functions 105

abstracts all residual expressions and values (dynamic results). This is the method

we shall use here. It was used also in the very �rst self-applicable partial evaluator

[135] and is used in the partial evaluator Similix (see Chapter 10).

The other method employs a type inference system to build a set of constraints on

the binding times of all variables. A constraint is an inequality on the binding times
of variables. For instance, if x depends on y, we want to express the congruence

requirement `if y is dynamic, then x must be dynamic too'. With the ordering

S < D on the binding-time values, and writing bt(x) for the binding time of x,

the requirement is the constraint bt(y) � bt(x). The constraint set can be solved

subsequently, giving the binding times for each variable. Variants of this method

are used in partial evaluators for the lambda calculus (Chapter 8), and for a subset

of C (Chapter 11).

Annotations for expressing divisions. A program division div can be given to the

specializer in two ways: separately as a mapping from function names to variable

classi�cations, or integrated into the subject program as annotation.
Divisions and annotations provide the same information in slightly di�erent

ways. A division describes the binding time of a variable or expression, whereas an
annotation tells how to handle program phrases at specialization time. Annota-
tions can be conveniently represented in a two-level syntax, which has a static and

a dynamic version of each construct of the language (conditional, function appli-
cation, and base function application). In general, reduction of the static version
(at specialization time) will produce a value, whereas reduction of the dynamic

version will not change its form, only reduce its subexpressions.
Annotations are not necessary in principle | the relevant information can always

be computed from the division | but they greatly simplify the symbolic reduction
of expressions in the specialization algorithm. Thus we shall use annotations to
represent divisions in the Scheme0 specializer.

We require divisions to be congruent. Similarly, annotations should be consis-
tent. For instance, a static base function must be applied only to static argument

expressions; and an argument expression in the static argument list of a function

call must be static. Consistency rules for annotations are shown in the form of type
inference rules in Section 5.7 below. The type rules for annotations are related to

the type inference approach to binding-time analysis mentioned above.

Specialization algorithm. The specialization algorithm for Scheme0 is very similar

to that for
ow charts. It has a set pending of functions yet to be specialized, and
a set marked of those already specialized. As long as pending is non-empty, it

repeatedly selects and removes a member (f . vs) from pending, and constructs
a version of function f, specialized to the values vs of its static parameters. The

specialization of f's body with respect to vs may require new functions to be added

to pending, namely those called from the specialized body. As in the
ow chart
specializer, the residual program is complete when pending is empty.

A Scheme0 function body is specialized by reducing it symbolically, using the

106 Partial Evaluation for a First-Order Functional Language

values of static variables. Since Scheme0 has no statements and all program frag-

ments are expressions, a single function reduce su�ces for this purpose. Compare

this with the
ow chart specializer, which has di�erent mechanisms for reduction

of statements and reduction of expressions.

The Scheme0 reduction function works on the annotated syntax for Scheme0,

using the annotations to decide whether to evaluate or reduce expressions.

Example 5.1 Figure 5.2 below �rst shows the append function for list concatena-

tion, written as a Scheme0 program. Second, it gives an annotated version (in the

two-level Scheme0 syntax) corresponding to input xs being static and input ys

being dynamic. Third, the specialization of the annotated program with respect

to the list xs = '(a b) is shown. Finally, this specialized program is improved by

transition compression: unfolding of the calls to the rather trivial functions app-b

and app-().

The result is the specialized function app-ab, with the property that (app-ab

ys) equals (app '(a b) ys) for all lists ys. 2

5.2 Binding-time analysis by abstract interpretation

Binding-time analysis of a Scheme0 subject program computes a division: a classi-
�cation of each function parameter xij as static (S) or dynamic (D). This classi�-
cation can be found by an abstract interpretation of the program over the abstract

value domain fS;Dg. Here we show the details of this for monovariant binding-
time analysis; polyvariant analysis is quite similar.
The binding-time analysis is safe if the division it computes is congruent: a

parameter may be classi�ed as static (S) only if it cannot be bound to a residual

expression. Consequently it is always safe to classify a parameter dynamic: D

is a safe approximation of S. Therefore the binding-time analysis may well be

approximate, classifying a parameter dynamic even when it cannot be bound to a
residual expression.

Assume henceforth we are given a Scheme0 subject program pgm of form

(define (f1 x11 . . . x1a1) e1)
...

(define (fn xn1 . . . xnan) en)

and a binding-time classi�cation �1 for the program's input parameters (that is,

the parameters of its �rst function f1).

The analysis computes a congruent monovariant division for pgm. A division

div maps a function name f to a binding-time environment � , which is a tuple
of binding-time values. The binding-time environment � = (t1; . . . ; ta) maps a

variable xj to its binding time tj.

Binding-time analysis by abstract interpretation 107

A program implementing the append function:

(define (app xs ys)

(if (null? xs)

ys

(cons (car xs) (call app (cdr xs) ys))))

Assuming xs is static, the annotated append function is as shown below. The

lift operation embeds the static expression (cars xs) in a dynamic context:

(define (app (xs) (ys))

(ifs (null?s xs)

ys

(consd (lift (cars xs))

(calld app ((cdrs xs)) (ys)))))

The append function specialized with respect to xs = '(a b):

(define (app-ab ys) (cons 'a (app-b ys)))

(define (app-b ys) (cons 'b (app-() ys)))

(define (app-() ys) ys)

The above residual program can be improved by unfolding the calls to app-b

and app-(), giving:

(define (app-ab ys) (cons 'a (cons 'b ys)))

Figure 5.2: Example specialization of the append function in Scheme0.

t 2 BindingTime = fS;Dg

� 2 BTEnv = BindingTime�

div 2 Monodivision = FuncName ! BTEnv

We impose the ordering S < D on the set BindingTime:

t � t0 i� t = S or t = t0

That is, `�' means `is less dynamic than'. This ordering extends pointwise to

binding-time environments in BTEnv and divisions in Monodivision, as follows.

Division div1 is smaller than division div2 if div1 classi�es no more variables

as dynamic. More precisely, for binding-time environments � = (t1; . . . ; ta) and
� 0 = (t01; . . . ; t

0
a):

(t1; . . . ; ta) � (t01; . . . ; t
0
a) i� tj � t0j for j 2 f1; . . . ; ag

and for divisions

108 Partial Evaluation for a First-Order Functional Language

div1 � div2 i� div1(fk) � div2(fk) for all functions fk

The division div computed by the analysis should respect the given classi�cation

�1 of the input parameters. Thus if input parameter x is D according to �1, then

it must be dynamic according to div(f1) too. This requirement on div can now

be expressed by the inequality div(f1) � �1.

In the analysis we need to �nd the best (least dynamic) common description of

two or more elements of BTEnv or Monodivision. The least upper bound, often
abbreviated lub, of � and � 0 is written � t � 0 and is the smallest � 00 which is greater

than or equal to both � and � 0. It is easy to see that the least upper bound � t� 0 is

the smallest (least dynamic) binding-time environment which is at least as dynamic

as both � and � 0. For instance, (S; S;D;D)t(S;D; S;D) = (S;D;D;D). Compare

t with set union: the union A [B of two sets A and B is the least set which is

greater than or equal to both A and B.

5.2.1 Analysis functions

The core of the binding-time analysis is the analysis functions Be and Bv de�ned

below. The �rst analysis function Be is applied to an expression e and a binding-
time environment � , and the result Be[[e]]� 2 fS;Dg is the binding time of e in

binding-time environment � . The Be function is de�ned in Figure 5.3.

Be[[e]] : BTEnv ! BindingTime

Be[[c]]� = S

Be[[xj]]� = tj where � = (t1; . . . ; ta)

Be[[(if e1 e2 e3)]]� = Be[[e1]]� t Be[[e2]]� t Be[[e3]]�

Be[[(call f e1 . . . ea)]]� =
Fa
j=1 Be[[ej]]�

Be[[(op e1 . . . ea)]]� =
Fa
j=1 Be[[ej]]�

Figure 5.3: The Scheme0 binding-time analysis function Be.

The de�nition of Be can be explained as follows. The binding time of a con-

stant c is always static (S). The binding time of variable xj is determined by the

binding-time environment. The result of a conditional (if e1 e2 e3) is static if all
subexpressions are static, otherwise dynamic | recall that the least upper bound

D t S is D. Note that the result is dynamic if the condition is dynamic, even if

both branches are static. Function application and base function application are

similar to conditional.

The second analysis function Bv is applied to an expression e, binding-time

environment � , and the name g of a function in the subject program pgm. The

result Bv[[e]]�g 2 BTEnv is the least upper bound of the argument binding times

Binding-time analysis by abstract interpretation 109

in all calls to g in expression e. Thus Bv[[e]]�g gives the binding-time context of g

in e. The Bv function is de�ned in Figure 5.4.

Bv[[e]] : BTEnv ! FuncName ! BTEnv

Bv[[c]]�g = (S; . . . ; S)

Bv[[xj]]�g = (S; . . . ; S)

Bv[[(if e1 e2 e3)]]�g = Bv[[e1]]�g t Bv[[e2]]�g t Bv[[e3]]�g

Bv[[(call f e1 . . . ea)]]�g = t t (Be[[e1]]� ,. . . ,Be[[ea]]�) if f = g

= t if f 6= g

where t =
Fa
j=1 Bv[[ej]]�g

Bv[[(op e1 . . . ea)]]�g =
Fa
j=1 Bv[[ej]]�g

Figure 5.4: The Scheme0 binding-time propagation function Bv.

This de�nition is explained as follows. A constant c contains no call to function g,

so the least upper bound of the argument binding times is (S; . . . ; S), namely the
identity for t. (Compare with the sum of a set of numbers. If the set is empty,
the sum is 0, which is the identity for +.) A variable xj also contains no calls to g.

A conditional (if e1 e2 e3) contains those calls to g which are contained in e1,
e2, or e3. A function call (call f e1 . . . ea) possibly contains calls to g in the
subexpressions ej. Moreover, if f is g, then the call itself is to g, and we must use

the �rst analysis function Be to �nd the binding times of the arguments expressions
e1 . . . ea. Finally, a base function application contains only those calls to g which

are in the subexpressions ej.

5.2.2 The congruence requirement

We can now express the congruence requirement by equations involving Bv (which

in turn uses Be). The congruence requirement for a monovariant division says: if

there is some call of function g where the j'th argument expression is dynamic,

then the j'th parameter of g must be described as dynamic. In other words, the
binding time of the j'th parameter of g must be equal to or greater than that of
the j'th argument expression of every application of g.

Function Bv was de�ned such that Bv[[e]]�g is equal to or greater than (at least as

dynamic as) the binding times of all argument patterns of function g in e. Taking
the least upper bound of these values over all expressions in the program gives

congruent binding times for g's arguments. Thus g's binding-time environment
(div g) should satisfy:

(div g) =
Fn
i=1 Bv[[ei]](div fi) g

where f1 . . . fn are all functions in program pgm, and e1 . . . en are the corre-

110 Partial Evaluation for a First-Order Functional Language

sponding function bodies. Extending this idea from g to all functions fk, we have

that division div is congruent if it solves the equation system:

(div fk) =
Fn
i=1 Bv[[ei]](div fi) fk for k = 1; . . . ; n

Note that div appears on both sides of the equations. Because of the way Be and

Bv were de�ned, the equation system always has one or more solutions. Below we

show how to compute the best (least dynamic) one.

5.2.3 Finding the best division

In general we want as much specialization as possible, that is, as many static ex-

pressions as possible. In other words, we are interested in as small a division as

possible, so the goal of our analysis is to �nd the smallest (or least dynamic) con-

gruent division. This division is the smallest solution to the equations shown above

which also satis�es (div f1) � �1, that is, which respects the input classi�cation

�1.

This smallest solution can be computed by starting with the very least division

div0 = [f1 7! �1; f2 7! (S; . . . ; S); . . . ; fn 7! (S; . . . ; S)]

which classi�es every parameter as static, except that the binding-time environ-

ment of the goal function f1 is �1. To possibly �nd a new value for (div fk), we
repeatedly compute

Fn
i=1 Bv[[ei]](div fi) fk, for all k 2 f1; . . . ; ng. If the new value

is greater than the old one, we update div and recompute again. If the new value
is not greater for any k, we stop, and we have found the smallest solution div to
the congruence equations. (Because the analysis function Bv is monotonic, the new

value will always be equal to or greater than the old one.)

The recomputation terminates, since a change in div must change the binding
time of some value from S to D, which can happen only �nitely many times.

5.3 Adding annotations

Annotation of subject programs is a convenient way to represent the divisions
found by binding-time analysis. For this purpose we introduce a two-level syntax
for Scheme0. Two-level languages are studied in depth by Nielson in [201].

5.3.1 Two-level syntax for Scheme0

In the two-level syntax, conditional expressions, function calls, and base function

applications appear in a static as well as a dynamic version, such as ifs and ifd,

Adding annotations 111

cars and card, etc. During partial evaluation, a static expression e evaluates to

some value v, whereas a dynamic expression evaluates to a residual expression e0.

Moreover, the parameter list of a function de�nition or function application is

split into two: a list of the static parameters and a list of the dynamic parameters.

Constants are always static, so it is not necessary to annotate them.

A new construct (lift e) marks a static expression e that occurs in a dynamic
context. During partial evaluation, a static expression e evaluates to some value

v, but if it is in a dynamic context, it should really result in a residual expression.
This is achieved by turning v into the constant expression (quote v). The lift

mark tells the specializer to do this [187,227]. The two-level syntax is shown in

Figure 5.5. The nonterminals hArglisti, hConstanti, and hOpi were de�ned in

Figure 5.1.

hExpri ::= hConstanti Constant

j hVari Variable

j (ifs hExpri hExpri hExpri) Static conditional

j (ifd hExpri hExpri hExpri) Dynamic conditional
j (calls hFuncNamei hSDArgsi) Static function appl.

j (calld hFuncNamei hSDArgsi) Dynamic function appl.
j (hOpis hExpri . . . hExpri) Static base appl.
j (hOpid hExpri . . . hExpri) Dynamic base appl.

j (lift hExpri) Lifting a static expr.
hSDArgsi ::= (hArglisti) (hArglisti) Argument lists

Figure 5.5: Syntax of two-level (annotated) Scheme0 expressions.

For a two-level Scheme0 program to be well-formed, every application of a func-
tion f must agree with the de�nition of f, in particular as concerns the number of

static and dynamic parameters. This requirement corresponds to the congruence
requirement for monovariant divisions.

5.3.2 From division to annotations

Let a division div be given, and consider a function de�nition

(define (f x1 . . . xa) e)

Assume that xs1 . . . xsm are the static parameters, and xd1 . . . xdk the dynamic

parameters of f, according to div. The corresponding annotated de�nition is:

(define (f (xs1 . . . xsm)| {z }
static

(xd1 . . . xdk)| {z }
dynamic

) eann)

The body eann is the annotated version of e, obtained as follows. Consider a

function call in e:

112 Partial Evaluation for a First-Order Functional Language

(call g e1 . . . ea)

and assume es1 . . . esm are the static parameters of g according to div, and ed1 . . .

edk are the dynamic ones. We must split the argument list into two, and we must

make the call a calls or a calld. If there are no dynamic arguments (that is, if

m = a and k = 0), then the call is static (should be unfolded during specialization)

and is transformed to

(calls g (es1 . . . esa) ())

If there are dynamic arguments (that is, m < a and k > 0), then the call is dynamic

(should not be unfolded during specialization) and is transformed to

(calld g (es1 . . . esm) (ed1 . . . edk))

This annotation of the call corresponds to the second-most conservative call un-

folding (or transition compression) strategy mentioned on page 104. We shall

discuss more liberal unfolding techniques in Section 5.5 below. Note that with a

monovariant division div it may well happen that an argument expression ej is

static according to the binding-time analysis, yet it is in the dynamic argument
list because the jth parameter of f is dynamic according to the division div.

Conditionals and base function applications are marked as static or dynamic,
depending on the binding times of their arguments. A conditional (if e1 e2 e3)

is annotated as (ifs e1 e2 e3) if e1 is static, and as (ifd e1 e2 e3) if e1 is

dynamic. A base function application (op e1 . . . ea) is annotated as (ops e1
. . . ea) if all ej are static, and as (opd e1 . . . ea) if some ej is dynamic.
Every expression e which is static according to the binding-time analysis, but

appears in a dynamic context, must be marked as (lift e). The dynamic contexts
are: dynamic argument lists, the argument list of an opd, a subexpression of an

ifd, the branches of an ifs which is itself in a dynamic context, the body of the
goal function, and the body of a function de�nition having at least one dynamic
parameter.

As noted previously, polyvariant binding times can be dealt with by inventing suf-
�ciently many versions of each function. For instance, assume that a two-argument
function f is called at one point with static arguments only (S; S), and at another

point with one static and one dynamic argument (S;D). Then we �rst construct

two versions fSS and fSD of f, then annotate the program as above. Thus a simple

way to handle polyvariant binding times is to introduce a su�cient set of binding-
time variants and apply the essentially monovariant annotation procedure. The

specialization algorithm shown below can be used in both cases.

Specialization algorithm for Scheme0 113

5.4 Specialization algorithm for Scheme0

The Scheme0 specializer is outlined in Figures 5.6 and 5.7 below. The specializer

is rather similar to that for
ow charts shown in Figure 4.7, and the reader is

encouraged to compare the two as we proceed.

5.4.1 Specializing function de�nitions

The main function specialize in Figure 5.6 takes as input an annotated subject

program program and a list vs0 of the values of the �rst function's static param-

eters, and returns a specialized program. A specialized program is a list of spe-

cialized function de�nitions. Since the subject program is annotated, a division

argument is not needed.

Function complete implements the specialization loop. As in the
ow chart spe-

cializer in Figure 4.7, pending holds the set of functions (that is, program points)
yet to be specialized, and marked holds those already specialized. While pending is
non-empty, function complete repeatedly selects a member (f . vs) of pending,

then constructs the de�nition of a new specialized function called (f . vs), where
f is an original function name and vs is the values for its static parameters. When

pending becomes empty, the list of specialized function de�nitions is returned.
This list corresponds to code in the
ow chart specializer.

The auxiliary functions lookup and successors (not shown in the �gure) are
similar to those in the
ow chart specializer. The application (lookup f program)

�nds the de�nition of function f in program, and the application (successors

evs) �nds the set of residual calls in expression evs.

The function reduce, which constructs the specialized function body evs, is

shown in the next section. It is called with the original function's body e, a list of
the function's parameters (x1 . . . xm xm+1 . . . xa), which may occur in e, and

a list (vs1 . . . vsm xm+1 . . . xa) of the corresponding values and expressions:
values vsj for the static parameters and the trivial expressions xj for the dynamic

parameters xj. (The intention is that dynamic parameter reduces to itself when e

is specialized.)

Note that the specializer functions are themselves written in Scheme0 but with

syntactic sugar, such as if-then-else, let-in, in�x cons `::', case-of, and
simple pattern matching.

5.4.2 Reducing Scheme0 expressions

The core of the Scheme0 specializer is the function reduce for symbolic reduction of
expressions, shown in Figure 5.7 below, again using syntactically sugared Scheme0.

It corresponds partly to the large case statement (lines 13{28 of Figure 4.7) and

114 Partial Evaluation for a First-Order Functional Language

(define (specialize program vs0)

let ((define (f1 _ _) _) . _) = program

in (complete (list (f1 :: vs0)) () program)

)

(define (complete pending marked program)

if pending is empty then

()

else

let (f . vs) 2 pending

let (define (f (x1. . . xm) (xm+1. . . xa)) e) = (lookup f program)

let (vs1 . . . vsm) = vs

let evs = (reduce e (x1. . . xm xm+1. . . xa) (vs1. . . vsm xm+1. . . xa))

let newmarked = marked [f(f . vs)g

let newpending = (pending [(successors evs)) n newmarked

let newdef = (list 'define (list (f . vs) xm+1. . . xa) evs)

in (newdef :: (complete newpending newmarked program))

)

Figure 5.6: Main loop of Scheme0 specialization algorithm.

partly to the base functions eval and reduce for expression evaluation and re-

duction in the
ow chart specializer. In Scheme0 there are no statements, only
expressions, so a single reduction function su�ces. On the other hand, reduction

is now more complicated, mainly due to the presence of function calls.

The reduce function takes as arguments an annotated Scheme0 expression e, a
list vn = (y1 . . . yk) of variables that may occur in e, and a list vv = (v1 . . .

vk) of corresponding variable values. Function reduce returns either a value (a
number or S-expression) or a reduced residual expression, according to whether e
is static or dynamic.

The vn and vv together constitute the specialization environment which maps yj
to vj. Here vj is either a value (a number or S-expression) or a Scheme0 expression,

according to whether yj is static or dynamic. A dynamic variable y will typically be

mapped to itself: the expression y. In the
ow chart specializer, the environment
vs maps only static variables, and so corresponds only to the static part of vn and

vv.

The cases of function reduce can be explained as follows. A number or a constant

is static and reduces to a value. A variable yj reduces to the value or expression

vj found in vv. The conditional expression e1 of a static ifs must be static and

reduce to a value. Depending on this value the entire ifs reduces to the reduction

of its then or else branch. A dynamic ifd reduces to an if expression.

A static function call (calls) is reduced by reducing the called function's body,

in an environment which binds the function's parameters to the reduced argument

expressions. This amounts to unfolding the call. The result is a value if the function

Specialization algorithm for Scheme0 115

The environment is represented by a list vn = (y1 . . . yk) of the names of the
variables that may occur in e, and a list vv = (v1 . . . vk) of corresponding
values.

(define (reduce e vn vv)

case e of

number n => n

(quote c) => c

yj => vj where (y1 . . . yj . . . yk) = vn

(v1 . . . vj . . . vk) = vv

(ifs e1 e2 e3) => if (reduce e1 vn vv)

then (reduce e2 vn vv)

else (reduce e3 vn vv)

(ifd e1 e2 e3) => (list 'if (reduce e1 vn vv)

(reduce e2 vn vv)

(reduce e3 vn vv))

(calls f (e1 . . . em) (em+1 . . . ea)) =>

(reduce ef (x1 . . . xa) (e01 . . . e0a))

where e0j = (reduce ej vn vv) for j = 1; . . . ; a

(define (f (x1. . . xm) (xm+1. . . xa)) ef)

= (lookup f program)

(calld f (e1 . . . em) (em+1 . . . ea)) =>

(list 'call (f :: (e01 . . . e0m)) e0m+1 . . . e0a)

where e0j = (reduce ej vn vv) for j = 1; . . . ; a

(ops e1 . . . ea) => (op (reduce e1 vn vv) . . . (reduce ea vn vv))

(opd e1 . . . ea) => (list 'op (reduce e1 vn vv) . . .

(reduce ea vn vv))

(lift e) => (list 'quote (reduce e vn vv)))

Figure 5.7: Reduction of Scheme0 expressions.

body reduces to a value, otherwise it is a residual expression. Note that with the

call annotation strategy used until now, the dynamic argument list (em+1 . . . ea)

of a calls is always empty. In Section 5.5 below this will no longer be the case.
A dynamic function call (calld) reduces to a call (call (f . vs) . . .) of a

new specialized function (f . vs). The arguments of the residual call are the

reduced dynamic argument expressions, and vs is the list of values of the static

argument expressions.
An application of a static base function ops reduces to the result of applying op

to the values of its (necessarily static) argument expressions. An application of a
dynamic base function opd reduces to a base function application whose arguments

are the reduced argument expressions.

The expression (lift e) reduces to the constant expression (quote v) where
v is the value of the expression e.

116 Partial Evaluation for a First-Order Functional Language

5.4.3 Self-application of the specializer

Values of bounded static variation

The Scheme0 specializer shown in Figure 5.6 has the same drawback as the
ow

chart specializer in Chapter 4: when self-applied it would produce very bad results.

The reason is the same as previously. Assume we specialize function specialize

with the program being static and vs0 dynamic. Then in function complete, the

parameter pending is dynamic, and since the argument f in (lookup f program)

comes from pending, the result of the look-up is also dynamic. But then the

expression e to be reduced is dynamic too, so function reduce cannot decompose

e at specialization time.

For instance, if we attempt to generate a compiler by specializing the specializer

with respect to an interpreter int, then the expressions e will be subexpressions of

int. Thus the interpreter would not be decomposed by this process, the generated

compiler would contain the entire unmodi�ed interpreter, and compilation would

simply proceed by general partial evaluation | clearly an unsatisfactory result.

The solution to this problem is `the trick', exactly as used for the
ow chart
specializer. We have to write and unfold lookup to obtain a binding-time im-

provement, exploiting the fact that the argument f is of bounded static variation
(cf. Section 4.8.3). Namely, the value of f must be one of the �nitely many func-

tion names fv in the program, which is static. Figure 5.8 shows how to obtain
this e�ect in Scheme0. This solution is slightly more complicated than in the
ow
chart language.

The new function generate serves the same purpose as that part of the old

complete which begins with the call to lookup.

Assume again that we specialize the function specialize with the program

being static and vs0 dynamic. Then in function generate, the parameters program
and defs are static, and so is the expression e extracted from defs. Thus now the
e parameter of function reduce is static too, so reduce can decompose e, and the

results of specializing the specializer will be far better.

In a sense, that part of the old complete function which depends on the result of

lookup has been moved into the body of lookup (giving the function generate).
This transformation can be understood as a special case of the transformation to

continuation passing style. The transformation was used already in the very �rst

self-applicable partial evaluator [135], but the understanding in terms of continu-

ations is more recent [56,139].

Separating static and dynamic data

It is also worth noting that splitting reduce's environment into a variable list vn

and a value list vv is very bene�cial for self-application of the specializer. Namely,

when specializing the specializer (and thus the reduce function) with respect to
a known subject program but unknown inputs, vn will be static and vv will be

dynamic. Had these two lists been merged into one, then the resulting list would

Specialization algorithm for Scheme0 117

(define (specialize program vs0)

let ((define (f1 _ _) _) . _) = program

in (complete (list (f1 :: vs0)) () program)

)

(define (complete pending marked program)

if pending is empty then

()

else

let (f . vs) 2 pending

in (generate f vs program pending marked program)

)

(define (generate f vs defs pending marked program)

if defs = () then

(error-undefined-function f)

else

let ((define (fv (x1. . . xm) (xm+1. . . xa)) e) . restdefs) = defs

let (vs1 . . . vsm) = vs

in

if f = fv then

let evs = (reduce e (x1. . . xm xm+1. . . xa)(vs1. . . vsm xm+1. . . xa))

let newmarked = marked [f(f . vs)g

let newpending = (pending [(successors evs)) n newmarked

let newdef = (list 'define (list (f . vs) xm+1. . . xa) evs)

in (newdef :: (complete newpending newmarked program))

else

(generate f vs restdefs pending marked program)

)

Figure 5.8: Self-applicable version of Scheme0 specialization algorithm.

be dynamic, since we do not handle partially static structures at this point (see

Section 15.4).

When specializing the specializer with respect to an interpreter (to obtain a
compiler), this means that the variable names used in the interpreter would still be

present in the compiler. During compilation, the syntactic analysis of the source

program would proceed by interpretation of the interpreter's syntactic analysis.
In particular, instead of just accessing a component of the source program, the

compiler would do a lookup in a list of interpreter data structures, to �nd the data
structure corresponding to a certain interpreter variable.

Binding-time improvements

The use of the two binding-time improvements discussed above is by no means con-

�ned to self-application of partial evaluators. In fact, they have proven themselves

118 Partial Evaluation for a First-Order Functional Language

highly useful many other contexts, such as specialization of interpreters, pattern

matchers, etc. The challenge in writing a self-applicable partial evaluator is that

one has to be conscious not only of what the partial evaluators does, but also how
it does it.

5.5 Call unfolding on the
y

So far we have done a minimum of call unfolding on the
y (during specialization).

That is, we unfolded only calls having no dynamic arguments. More unfolding

is often desirable as witnessed by the �rst residual program in Figure 5.2, for

example. To do more unfolding on the
y, one needs an unfolding strategy. Such
a strategy must (1) avoid in�nite unfolding, and (2) avoid duplication of code and

computation, and still eliminate as many calls as possible.

5.5.1 Avoiding in�nite unfolding

To avoid in�nite unfolding, a strategy may unfold a recursive call only if the value of

some static argument gets smaller in a well-founded ordering (or if all arguments are
static). Then unfolding must stop in �nitely many steps, unless there is a potential
in�nite static loop: a loop not involving any dynamic tests. This strategy was used
by Sestoft [246].

In the Scheme0 specializer we use a simple strategy resembling the transition
compression strategy used in
ow chart mix, namely, a call is unfolded precisely if

it is not in a branch of a dynamic conditional. Thus a call in a branch of a dynamic
conditional is made dynamic (calld), and all other calls are made static (calls).
This strategy ensures �nite unfolding as long as the subject program contains no

in�nite static loops.

Consider the append function from Figure 5.2, and suppose for a change that ys
is static and xs is dynamic. The annotated program now is:

(define (app (ys) (xs))

(ifd (null?d xs)

(lift ys)

(consd (card xs) (calld app (ys) ((cdrd xs))))))

The condition (null? xs) now becomes dynamic, so the recursive call to app

appears in a branch of a dynamic conditional (ifd) and must be made dynamic

(calld). It will not be unfolded, and with good reason: the unfolding would not

be stopped by a static conditional.

This strategy ensures that a function will be unfolded twice only if no dynamic

conditional has been passed between the two unfoldings. However, a `harmless'

call, such as a non-recursive call which just happens to be in the branch of a

dynamic conditional, will not be unfolded either. Thus our strategy avoids in�nite

Call unfolding on the
y 119

unfolding but is slightly more conservative than necessary.

5.5.2 Avoiding duplication of code and computations

An unfolding strategy must also avoid duplication of code and computation, so we

need to re�ne our strategy. Recall that when unfolding a call (calls (f (. . .)

(. . . ej. . .))), the reduced form of dynamic argument expression ej is substituted

for the corresponding dynamic variable xj in the reduced body of function f. Thus

duplication happens if the variable xj occurs several times in the reduced body of

f. In this case we shall say that ej is duplicable.
The number of occurrences of xj in a reduced function body can be approximated

by analysing the annotated Scheme0 program. For example, xj occurs twice in the

reduced form of (consd xj xj), and twice in the reduced form of (ifd . . . xj xj),

since these dynamic expressions reduce to themselves. Counting the occurrences of

xj in other expressions is similar, with one exception: a static conditional reduces

to exactly one of its branches, so xj occurs only once in the reduced form of:

(ifs . . .

(. . . xj . . .)

(. . . xj . . .))

For a static conditional it is safe to take the maximum (instead of the sum) of
the number of occurrence in the branches. Thus we can approximate the number
occurrences of xj by an analysis done when annotating the program.

Code duplication will sometimes lead to computation duplication. In this exam-

ple a very moderate code duplication gives exponential computation duplication:

(define (f n) (if (= n 0) 1 (g (f (- n 1)))))

(define (g m) (+ m m))

Unfolding of the call to g would give:

(define (f n) (if (= n 0) 1 (+ (f (- n 1)) (f (- n 1)))))

The unfolded program has run time exponential in n where the original has linear

run time.

Code duplication without computation duplication occurs when xj occurs (once)

in both branches of a dynamic conditional.

5.5.3 Unfolding and side-e�ects

Scheme0 does not allow side-e�ects, such as incrementing a global variable X, or

outputting a message to a printer. However, for completeness it should be noted

that side-e�ects would create new problems for unfolding, since side-e�ects should

never be duplicated, reordered, or discarded.

120 Partial Evaluation for a First-Order Functional Language

Imagine a call (call g e1) where the (dynamic) argument expression e1 has a

side-e�ect. First, unfolding the call may duplicate e1 if the corresponding formal

parameter appears twice in g. Secondly, unfolding may reorder side-e�ects, since

it postpones the evaluation of e1. Third, unfolding may discard e1 if the formal

parameter does not appear in all branches of g.

Even in the absence of side-e�ects, unfolding may change the termination prop-

erties of a program by discarding an argument expression whose evaluation would

not terminate.

5.5.4 Program transformations to assist unfolding

Until now an unfolding strategy has been described as a procedure to decide which

calls to unfold, and we have seen that many problems must be taken into account.

To simplify the unfolding strategy and improve the results of unfolding, one may

automatically transform the subject program before specialization. This is done

in the Similix partial evaluator (Chapter 10).

Insertion of let-expressions
Automatic introduction of a let-binding for each duplicable variable allows to sep-

arate the problems of code duplication from those of �nite call unfolding. Consider
the example program from Section 5.5.2. Insertion of let-bindings would give

(define (f n) (let (x n) (if (= x 0) 1 (g (f (- x 1))))))

(define (g m) (let (y m) (+ y y)))

Now the unfolding strategy need not be concerned with code duplication at all,

only with ensuring �nite unfolding. Unfolding the call to g cannot lead to in�nite
unfolding, and we get

(define (f n)

(let (x n) (if (= x 0) 1 (let (y (f (- x 1))) (+ y y)))))

This is far better than the result above, although the outer let-binding is super-

uous. For functions of more than one argument, lets need only be inserted for

the duplicable arguments.

Also, in a strict language let-expressions provide a simple way to avoid reorder-
ing and discarding computations with side-e�ects. The partial evaluator Similix

inserts let-expressions prior to program specialization to separate the problem of
in�nite unfolding from those of duplication, reordering, and discarding.

Insertion of function calls
Until now, a specialized program point is a pair of a program point (a label or

a function name) present in the subject program and the static data values. Sim-
ilix replaces each dynamic conditional (ifd . . .) with a call to a new function f

whose de�nition (define (f . . .) (ifd . . .)) is added to the subject program.

Call unfolding on the
y 121

The parameters to f are the free variables of (ifd . . .). The inserted calls are

annotated as dynamic to appear in the residual program and all other calls are
unfolded. This strategy is a slight variant of the compression strategy of Chapter 4

and the Scheme0 strategy of Section 5.5.1 and its termination properties are the

same: unfolding will loop in�nitely only if the subject program contains an in�nite

static loop.

The `moving' of the cut points for unfolding to the dynamic conditionals has

reduced code duplication in many practical applications. For an example, suppose

that function f has a static parameter x (possible values 2 and 3) and dynamic

parameter y.

(define (f x y) (+d (*s x x) (ifd (=d y 0) 1 (calld g y))))

The Scheme0 strategy would duplicate the conditional and deliver specialized func-

tions

(define (f-2 y) (+ 4 (if (= y 0) 1 (call g y))))

(define (f-3 y) (+ 9 (if (= y 0) 1 (call g y))))

Instead we could introduce a new function h and transform the subject program

into:

(define (f x y) (+d (*s x x) (calld h y)))

(define (h y) (ifd (=d y 0) 1 (calls g y)))

which partially evaluates to:

(define (f-2 y) (+ 4 (call h y)))

(define (f-3 y) (+ 9 (call h y)))

where the conditional is not duplicated.

The compression strategy from Chapter 4 has a tendency to duplicate condi-
tionals since the cut points for unfolding are in the branches instead of before the
conditional. See for example the residual program in Figure 4.5.

5.5.5 Harmless duplication

Consider unfolding a call (calls (f (. . .) (. . . ej. . .))) where ej is duplicable.

The duplication is harmless if the reduced form ej
0 of ej is just a variable. Sub-

stituting one variable for another will make the resulting expression neither larger

nor more expensive to evaluate. Thus before annotating the calls, we would like

to detect when ej
0 must be a variable. Unfortunately, we can detect only when it

cannot be a variable.

Let ej be a dynamic expression. If ej is not a variable, then its reduced form

ej
0 will also not be a variable. When ej is a variable w, then ej

0 is not necessarily

a variable, since w may be bound (by an unfolded call) to a non-variable dynamic

expression:

122 Partial Evaluation for a First-Order Functional Language

(define (f () (v)) (calls g () ((consd v v))))

(define (g () (w)) (calls h () (w)))

(define (h () (z)) (consd z z))

Here w will be bound to the residual expression (consd v v); unfolding the call

to h would duplicate that expression.

Before annotating a call we cannot detect when ej must reduce to a variable.

However, during specialization we can easily detect whether the reduced form of

ej is a variable. This suggests a call unfolding strategy which does not require

insertion of lets, and which works in two stages: during annotation, and during

specialization.

5.5.6 A two-stage call unfolding strategy

When annotating the program, we count the occurrences of dynamic variables,

then annotate function calls as follows. A call is made static (calls) if it has no

dynamic arguments, or if it is not in a branch of a dynamic conditional and all its
duplicable dynamic arguments are variables. The call is made dynamic (calld) in
all other cases, that is, if it has a dynamic argument, and either appears in a branch

of a dynamic conditional or has a duplicable non-variable dynamic argument.

When specializing the program, a dynamic call will never be unfolded. This is
su�cient to avoid in�nite unfolding (disregarding in�nite static loops). To avoid

code duplication, a static call may be unfolded if all of its duplicable dynamic argu-
ment expressions reduce to variables. For a static call without dynamic arguments
this requirement is trivially satis�ed, so it will always be unfolded.

Note that the meaning of static call has changed: a static call will possibly but not
necessarily be unfolded. The two-stage call unfolding strategy therefore requires a

change to the reduce function in the specializer. The calls case must check that

each dynamic argument expression either is not duplicable or reduces to a variable.
The necessary changes are shown in Figure 5.9. Note that this unfolding strategy,

as opposed to those presented previously, is partially but not exclusively steered

by the annotations. Thus the strategy combines online and o�ine techniques (see

Section 4.4.7 and Chapter 7).

5.6 Implementation

An implementation of the Scheme0 specializer using the ideas described so far in
this chapter is given in Appendix A. The implementation includes monovariant

and polyvariant binding-time analysis, annotation, and the specializer.

The implementation can be obtained electronically (via the Internet) by anony-

mous ftp from ftp.diku.dk as �le pub/diku/dists/jones-book/Scheme0.tar.Z.

Using type rules for binding-time checking 123

case e of
...

(calls f (e1 . . . em) (em+1 . . . ea)) =>

let e0j = (reduce ej vn vv) for j = 1; . . . ; a

let (define (f (x1. . . xm) (xm+1. . . xa)) ef)

= (lookup f program)

in if e0j is a variable or xj is not duplicable, j = m+ 1; . . . ; a

then (reduce ef (x1 . . . xa) (e01 . . . e0a))

else (list 'call (f :: (e01 . . . e0m)) e0m+1 . . . e0a)
...

Figure 5.9: On the
y call unfolding with online `variable test'.

On a Unix system, proceed as follows:

1. Type `ftp ftp.diku.dk' on your terminal.

2. In response to `Name (freja.diku.dk:...):', type `ftp'

3. In response to `Password:', type your own e-mail address.

4. Type `binary'

5. Type `cd pub/diku/dists/jones-book'

6. Type `get Scheme0.tar.Z' to get the packed Scheme0 �les.

7. Type `bye' to terminate the ftp session.

8. Type `zcat Scheme0.tar.Z j tar xf -' to unpack the �les.

5.7 Using type rules for binding-time checking

Section 5.2 presented binding-time analysis as an interpretation of the subject pro-

gram over the abstract value domain fS,Dg. This section applies the notion of type
inference rules (see Section 2.2.2) to annotated (two-level) Scheme0 expressions.

The type inference rules can immediately be used for checking the correctness of
binding-time annotations. In Chapter 8 we show how to use such rules for infer-
ring binding-time annotations. Type inference methods can pro�tably be used for

binding-time analysis, especially for languages such as the lambda calculus which

are more powerful than Scheme0.

The set of binding-time checking rules for two-level Scheme0 are shown in Fig-

ure 5.10. The judgement � ` e : t asserts that the annotations of expression e are

consistent and that its binding time is t, given that the variables in e have the

binding times determined by environment � .

124 Partial Evaluation for a First-Order Functional Language

In a judgement � ` e : t, the parameter � is a binding-time environment, e

is a two-level Scheme0 expression, and t 2 fS;Dg is the binding time of e in

binding-time environment � .

� ` c : S

� [x 7! t] ` x : t

� ` e1 : S . . . � ` ea : S
� ` (ops e1 . . . ea) : S

� ` e1 : D . . . � ` ea : D
� ` (opd e1 . . . ea) : D

� ` e1 : S � ` e2 : t � ` e3 : t
� ` (ifs e1 e2 e3) : t

� ` e1 : D � ` e2 : D � ` e3 : D
� ` (ifd e1 e2 e3) : D

� ` e1 : S . . . � ` ea : S
� ` (calls f (e1 . . . ea) ()) : S

� ` e1 : S . . . � ` em : S � ` em+1 : D . . . � ` ea : D m < a
� ` (calls f (e1 . . . em) (em+1 . . . ea)) : D

� ` e1 : S . . . � ` em : S � ` em+1 : D . . . � ` ea : D m < a
� ` (calld f (e1 . . . em) (em+1 . . . ea)) : D

� ` e : S
� ` (lift e) : D

Figure 5.10: Binding-time checking rules for annotated Scheme0.

The rules can be read as follows. A constant c is static in any binding-time

environment. Variable x has binding time t if the environment maps x to t. An

application of a static base function ops must have static arguments and its result

is static. An application of a dynamic base function opd must have dynamic
arguments and its result is dynamic. A static conditional ifs must have a static
�rst argument e1, its branches must both have the same binding time t, and this

is the binding time of the result. A dynamic conditional ifd must have all three

subexpressions dynamic, and its result is dynamic. The result of a function call

without dynamic arguments is static. The result of a function call with dynamic
arguments is dynamic. Finally, if the result of expression e is static, then the result
of (lift e) is dynamic.

An annotated Scheme0 program (def1 . . . defn) is checked by checking each

function de�nition defi as follows. Assume the de�nition has the form:

Constructing the generating extension 125

(define (f (x1 . . . xm) (xm+1 . . . xa)) e)

The two parameter lists show that the relevant binding-time environment is � =

[x1 7! S; . . . ; xm 7! S; xm+1 7! D; . . . ; xa 7! D]. Then we must check that � ` e : t,
where t = S if the function has no dynamic arguments (that is, if m = a), and

t = D if it has a dynamic argument (that is, if m < a).

Together with the well-formedness requirements on two-level Scheme0 programs,

this su�ces to ensure binding-time safety. If the annotated subject program is

correct with respect to these rules, the specializer will not fail: it will never attempt

to add one to a residual expression, or mistake a value (such as a data structure)

for an expression. However, the specializer may well loop, attempting to produce

an in�nite residual program or unfolding a function in�nitely often. Handling this

�niteness aspect of specializer safety is addressed in Chapter 14.

5.8 Constructing the generating extension

Let a Scheme0 program pgm be given, and let pgma be a two-level (annotated)

version of pgm, the �rst parameter of which is static, and the second one dynamic.
A generating extension of pgma is a program pgmgen for which

[[[[pgmgen]] in1]] in2 = [[pgm]] [in1, in2]

for all inputs in1 and in2. That is, the result of applying pgmgen to an argument

in1 is a version of pgm specialized to the value in1 of its �rst argument.
As seen in Section 1.5.3, the program pgmgen can be generated by cogen or mix:

pgmgen = [[cogen]] pgma = [[mix]] [mix, pgma]

Sergei Romanenko noticed that the machine-generated cogen contains a rather
natural function gex, shown in Figure 5.11, which transforms the two-level Scheme0
expressions of pgma into the Scheme0 expressions in pgmgen [227, p. 460].

Holst and Launchbury suggest that for strongly typed languages, it is easier to

hand-code cogen (including gex) than to generate it by partial evaluation, because
types make self-application more complicated (see Section 11.7 and [69,169]).

5.9 Exercises

Exercise 5.1 Specialize the Scheme0 function power with x dynamic and n static:

(define (power x n)

(if (= n 0)

1

(* x (power x (- n 1)))))

126 Partial Evaluation for a First-Order Functional Language

(define (gex e)

case e of

number n => n

(quote c) => (list 'quote c)

variable y => y

(ifs e1 e2 e3) => (list 'if e1 (gex e2) (gex e3))

(ifd e1 e2 e3) => (list 'list ''if (gex e1) (gex e2) (gex e3))

(calls f (e1 . . . em) (em+1 . . . ea)) =>

(list 'call f e1 . . . em (gex em+1) . . . (gex ea))

(calld f (e1 . . . em) (em+1 . . . ea)) =>

(list 'list ''call (list 'quote f)

(list 'quote e1) . . . (list 'quote em)

(gex em+1) . . . (gex ea))

(ops e1 . . . ea) => (list op e1 . . . ea)

(opd e1 . . . ea) => (list 'list (list 'quote op)(gex e1). . . (gex ea))

(lift e) => (list 'list ''quote e)

)

Figure 5.11: Constructing the generating extension.

1. Perform the binding-time analysis as described in Section 5.2 and annotate

the program accordingly.

2. Do the specialization by hand with respect to n = 3.
2

Exercise 5.2 Partially evaluate Ackermann's function ack with m static and n dy-
namic:

(define (ack m n)

(if (= m 0)

(+ n 1)

(if (= n 0)

(ack (- m 1) 1)

(ack (- m 1) (ack m (- n 1))))))

1. Perform the binding-time analysis as described in Section 5.2 and annotate
the program accordingly.

2. Do the specialization (without call unfolding) by hand with m = 2.

3. How would a reasonable call unfolding strategy lead to a better residual pro-

gram than the one generated in step 2? Starting from Ackermann's function
discuss (at least) two di�erent unfolding strategies. Choose a strategy and

specialize ack again with m = 2.

4. Suppose you wish to specialize ack with m dynamic and n static. Explain

why the monovariant binding-time analysis gives an unnecessarily bad result,

and sketch an automatic solution to the problem.
2

Chapter 6

E�ciency, Speedup, and

Optimality

The motivation for studying partial evaluation is e�ciency, and a partial evalua-

tor has pragmatic success if it runs fast and produces fast residual programs. A

clear and machine-independent way to measure the quality of a partial evaluator
would be most useful to both users and writers of partial evaluators. When is a
partial evaluator `strong enough' and what is the theoretical limit for the speedup

obtainable by partial evaluation?

The chapter begins with an analysis of comparative running times in a par-
tial evaluation context. An argument is given that standard partial evaluation

techniques cannot accomplish superlinear speedup, and we outline a method that
automatically estimates how much speedup will be accomplished, given a program

with explicit binding time information.

Finally, the time overhead incurred by language interpretation is discussed. An
optimal partial evaluator is de�ned as one able to remove all such overhead; and a

technique is given to allow multiple levels of interpretation without the usual and
problematic multiplication of interpretational overhead.

6.1 De�ning and measuring speedup

Suppose we are given a program p with two inputs: static s, known at specialization
time; and dynamic d. As in Section 3.1.7 we write tp(s; d) for the time to compute

[[p]] [s,d]. Let ps be the result of specializing p to s, and let jsj ; jdj be the sizes
of s, d (for example the number of symbols required to write them). For the sake

of non-triviality we assume that for any �xed choice of s or d, computation time

tp(s; d) grows unboundedly in the size of the other input.

Our goal is to make meaningful, useful, and reliable statements about the relation

between run time tp(s; d) of the unspecialized program, and the time tps(d) of its
specialized version. Doing this can be tricky because comparison of multi-argument

functions is not entirely straightforward, and because sometimes the time to run

127

128 E�ciency, Speedup, and Optimality

the specializer itself is a signi�cant factor.

6.1.1 Quantifying speedup

Let R1 = fx 2 R j x � 1g [f1g1. De�ne lim(A), where A = fa0; a1; a2; . . .g is a

set of reals, to be the maximum element of A if �nite, else the smallest number b

such that b � ai for all but a �nitely many indices i. Note that b =1 is possible.

One may compare run times for single input programs by relating their asymp-

totic run time growth rates on larger and larger inputs from value set D. For

example, program p is twice as fast as program q in the limit if

2 = lim
jxj!1

tq(x)

tp(x)

The situation is more complex for multi-argument programs.

De�nition 6.1 1. For a �xed two-input program p and static input s, de�ne the

speedup function sus() by

sus(d) =
tp(s; d)

tps(d)

2. The speedup bound sb(s) is

sb(s) = lim
jdj!1

sus(d)

3. Partial evaluator mix gives linear speedup if sb(s) is �nite for every s in D.

2

A largest sus(d) does not always exist, even when s is �xed. Consider a program

with a dynamically controlled loop with equally time consuming static and dynamic

computations, and assume that outside the loop there is one dynamic and no static
statements. Any a < 2 bounds sus(d) for all but �nitely many d, but not a = 2.

Still, sb(s) = 2 seems the right choice for the speedup, since the computations
outside the loop contribute little to the total run time when the loop is iterated

many times.

1For addition involving 1 we use x+1 =1+ x =1 for all x 2 R [f1g.

De�ning and measuring speedup 129

6.1.2 A range of examples

Specialization is advantageous if sus(d) > 1 for all s and d, and if d changes more

frequently than s. To exploit it, each time s changes one may construct a new

specialized ps. This will be faster than p, and may be run on various d until s

changes again.

If s and d both change frequently, the time to do specialization must also be

accounted for. Partial evaluation will be advantageous in a single run if

tmix(p; s) + tps(d) < tp(s; d)

A correct analogy is that compilation plus target run time can be faster than

interpretation in Lisp:

tcompiler(source) + ttarget(d) < tinterpreter(source; d)

We investigate the growth of sus(d) as a function of d, for various values of s. The
speedup function is often nearly independent of s; for instance speedups resulting
from specializing an interpreter p to various source programs s are not strongly

dependent on s. On the other hand, some algorithms, e.g. pattern matching pro-
grams, have a speedup strongly dependent on s.

Change of algorithm
Spectacular speedups can be achieved by changing p's computational method. The
�eld of program transformation [43] has many examples; a typical example is to

optimize the Fibonacci function by memoizing, decreasing its computation time
from exponential to linear (or even logarithmic).

Use of non-uniform methods seems not to be in the spirit of full automation; it
is more like arti�cial intelligence. In practice, program transformation systems are

not yet as fully automated as partial evaluators.

The trivial partial evaluator
This achieves no speedup: tp(s; d)

:
= tps(d) so in the limit sus(d) approaches 1 for

each s. (This holds even if we take into account the time to specialize p to s since
this is independent of dynamic inputs.)

Additive running times
Suppose p's running time is an additive function of static and dynamic input sizes:
tp(s; d) = f(jsj) + g(jdj). Then specialization does not help much, even if we

assume all static computations can be done at specialization time. The reason is
that for any s, unboundedness of g(n) implies

sb(s) = lim
jdj!1

sus(d) = lim
jdj!1

f(jsj) + g(jdj)

constant + g(jdj)
= 1

130 E�ciency, Speedup, and Optimality

Interpreter speedups
We saw in Section 3.1.8 that a typical interpreter int's running time on inputs p

and d satis�es

�p � tp(d) � tint(p, d)

for all d. Here �p is independent of d, but it may depend on static source program

p. Often �p
:
= c+f(p), where constant c represents the time taken for `dispatch on

syntax' and recursive calls of the evaluation or command execution functions; and

f(p) represents the time for variable access. In experiments c is often around 10 for

simple interpreters run on small source programs, and larger for more sophisticated

interpreters. Clever use of data structures such as hash tables, binary trees, etc.

can make �p grow slowly as a function of p's size.

Interpreters thus typically give linear speedup, with the value of sb(p) � c large

enough to be worth reducing. The speedup is not, however, strongly dependent on

static data p.

String matching
A rather di�erent example is Consel and Danvy's algorithm [54] to match a pattern
string s against a subject string d. It has multiplicative time complexity O(m � n)
where m = jsj is the pattern length, and n = jdj is the subject length.

Specializing their algorithm with respect to the pattern eliminated the multi-
plicative overhead, giving a specialized matcher running in time O(n), as good as

possibly can be expected, assuming that the whole subject string is to be read (see
Section 12.1 for details).

The fact that sb(s) can grow unboundedly as s varies can make the speedup
obtained by partial evaluation falsely `seem' superlinear. Consel and Danvy spe-

cialized an O(m � n) algorithm to yield an O(n) matcher for the �xed pattern s.
This gives a speedup bound sb(s) = m = jsj, which is still linear, although strongly
dependent on s.

A �nal remark: the generated matchers are just as fast as the ones obtained by

the well-known KMP (Knuth, Morris, and Pratt) technique [150]. On the other

hand, the KMP technique generates a matching program in time O(jsj). This is
faster than partial evaluation in general, so the KMP technique is to be preferred

if both pattern and subject change frequently.

6.2 Flow chart mix gives linear speedup

If mix uses reductions such as (car (cons e1 e2)) =) e1 that discard `unnec-

essary' computations2, introduces memoization, or eliminates repeated subexpres-
sions (e + e) =) (let v = e in (v + v)), then it is easy to conceive exam-

ples of superlinear speedup (especially in the presence of recursion). But the partial

2Unsafe since discarded computations may have caused non-termination.

Flow chart mix gives linear speedup 131

evaluators we have heretofore seen do not use these techniques, leading to the fol-

lowing question.

Jones posed the following in [131]: `If mix uses only these techniques [program

point specialization, constant folding, transition compression, and unfolding] do

there exist programs p on which mix accomplishes superlinear speedups?' Equiva-
lently: do there exist p, s for which sb(s) is not �nite?

In this section we show that partial evaluation of
ow chart programs as in

Chapter 4 gives, at most, linear speedups. The key point is that the assumption

that partial evaluation terminates can be used to place a bound on sb(s), thus

excluding superlinear speedups. The theorem below is from Andersen and Gomard

[11], but Yuri Gurevich independently came up with similar reasoning.

We use the
ow chart framework of Section 3.3.3, where v is a vector of variable

values. Given a program p and input v0, a (�nite) computation p(v0) is a (�nite)

sequence

p(v0) = (pp0, v0) ! (pp1, v1) ! . . .

where pp0 is the initial program point and v0 is the program input. We assume

the cost in terms of time is the same for all transitions (not outrageous due to the
absence of user-de�ned function calls). Thus it is reasonable to de�ne the running
time for a computation to be the length of the sequence (possibly in�nite). To avoid
subscripted subscripts, we henceforth write this as jp(v0)j, rather than tp(v0) as
used before.

As before we assume the input v0 = (s,d) to consist of a static part s and a
dynamic part d.

Theorem 6.1 Partial evaluation by
ow chart mix never accomplishes superlinear
speedup.

Proof Assume that partial evaluation terminates. As usual, we call those com-
putations that are performed at partial evaluation time static and those that are
postponed dynamic.
Consider a �nite computation p(v0) for program p on input v0:

(pp0, v0) ! (pp1, v1) ! . . . ! (pph, vh)

Assume that each vi has form (si; di) where si depends only on static input s0.

Input to the program is thus v0 = (s0; d0). Each step (ppi, vi) ! (ppi+1, vi+1)

in the computation involves computing variable values vi+1 and a new control point

ppi+1. Variable values depending only on ppi and si can be computed at partial

evaluation time (= constant folding), and so can the shift of control to ppi+1 (=

transition compression or unfolding) when it is uniquely determined by ppi and si.

To compute the speedup gained by partial evaluation for p, s0, and d0, consider

the computation (pp0, v0) ! . . . above and simply sum the time spent on static

respectively dynamic computations, calling the sums (ts0) and (td0). We stress

that we consider a standard computation and imagine: if this program had been

132 E�ciency, Speedup, and Optimality

partially evaluated with respect to s, then this part would have been static and

this part would have been dynamic.

The speedup (a function of v0 = (s0; d0)):

sus0(d0) =
ts0 + td0
td0

Assume that partial evaluation of p on s terminates in K steps. Then in the

standard computation there can be at most K � 1 static steps with no intervening
dynamic computations since mix is no faster than direct execution. This means

that (ts0) � (K� 1) � (td0), and so the speedup for p, s0, and d0 is bounded by the

same K. This bound is independent of d0, which rules out superlinear speedup.

Moreover, the bound is safe: in any computation there can be at most K � 1

consecutive static steps and the computation must end with a dynamic printing of

the result. 2

Clearly, this bound is far larger than what is usually seen in practice.

Hansen [111] proves in the setting of logic programming that fold/unfold trans-

formations at most can give rise to linear speedup. Note that uni�cation is daringly
assumed to run in constant time.

6.3 Speedup analysis

An estimate of the obtainable speedup, available before the specialization is done,
would be valuable information. On the basis of a speedup estimate, the user could

decide to rewrite the program in order to improve the prospective speedup (or just
forget about it!). It would be logical to combine the speedup analysis with a binding
time debugger as supplied with, for example, the Similix [28] and the Schism [60]
systems. Another perspective would be to let the partial evaluator automatically
reclassify as dynamic those static computations which are found not to contribute

to a good speedup, the objective being faster specialization and smaller residual

programs.
A user without detailed knowledge of partial evaluation is usually unable to

predict how much can be gained by specialization. The question: `is specialization

of this program worthwhile?' can be answered using three di�erent approaches.

1. Apply mix to p and s to get ps. Then run the original and specialized

programs to compute sus(d) for various values of d.

2. Apply mix to p and s to get ps. Then approximate the speedup bound

sb(s) by a speedup interval [u; v] � R
1. A speedup interval for ps should

characterize speedups for all possible d in a sense to be made precise below.

3. Approximate the speedup for all s and for all d similarly, by a speedup

interval [u; v] � R
1.

Speedup analysis 133

Clearly the �rst approach gives precise results, but only gives one speedup at a time,

so the user will have to think for himself or herself how sus(d) varies as a function

of d. It is undesirable when partial evaluation is applied to computationally heavy

problems where experimenting is time-consuming.

The second must give an approximate answer due to the absence of d, and the

third a still less precise approximation due to the absence of both s and d. In this

section we will describe approach 3 in some detail, and sketch approach 2.

Precise estimation of speedup is clearly undecidable, and approximate estimation

of speedup is still in its infancy. Here we show a simple speedup analysis which,

when given a
ow chart program with explicit binding time information (conveyed

by annotations or a division), approximates the speedup to be gained by partial

evaluation by a speedup interval [l; h] � R1. The interpretation is: the specialized

version of the program will run at most h but at least l times faster than the

original program. If h is 1, an unbounded speedup is possible. For example, this

can happen if the program contains a completely static loop where the number of

iterations is determined by the static input.

6.3.1 Safety of speedup intervals

A speedup interval [u; v] is safe for p if the speedup sus(d) `converges' to values
in the interval as (s,d) are chosen such that jp(s; d)j ! 1. Consider again the

scenario at the end of Section 6.1 and assume the speedup achievable for that
particular program is independent of the choice of s (that assumption does not
hold in general). Then a safe (and precise) speedup interval is [2,2].

In general, the speedup may not converge to one �xed x as jp(s; d)j ! 1, but
we shall require that all programs that run `long enough' shall exhibit a speedup

arbitrarily close to the interval.

De�nition 6.2 A speedup interval [u; v] is safe for p if for all sequences (si; di):
jp(si; di)j ! 1 implies

8" > 0 : 9k : 8j > k :
jp(sj; dj)j

jpsj(dj)j
2 [u� "; v + "]

2

6.3.2 Simple loops and speedup

Let a
ow chart program with nodes ni be given. A loop is a sequence of program
points

pp1 ! pp2 ! . . . ! ppk, for k 2 N

134 E�ciency, Speedup, and Optimality

where pp1 = ppk and the program contains a (perhaps conditional) jump from ppi
to ppi+1 for 1 � i < k. A simple loop is a loop pp1 ! . . . ! ppk where ppi 6= ppj
if 1 � i < j � k.

De�ne for a node ppi the cost C(ppi) as the sum of the running times of the basic

block labelled ppi. We write Cs(ppi) for the cost of the static statements in basic

block ppi, and Cd(ppi) for the dynamic statements. Speedup can be de�ned for a

single basic block in the obvious way.

De�nition 6.3 Let l = pp1!� � �!ppk be a simple loop. The speedup SU(l) in l is
then de�ned by:

SU(l) =

(
Cs(l)+Cd(l)

Cd(l)
if Cd(l) 6= 0

1 otherwise

where Cs(l) =
Pk�1

i=1 Cs(ppi) and Cd(l) =
Pk�1

i=1 Cd(ppi). 2

The speedup of a loop is a number in R1, and is independent of variable values.

6.3.3 Doing speedup analysis

Let a
ow chart program p with simple loops L be given. The basic idea behind the
analysis is the observation that the speedup of the whole program is determined

by the speedups of the loops. If the program runs for a su�ciently long time, it
will spend most of its time inside loops.

Algorithm For all simple loops l 2 L in p, compute the speedup SU(l). The
speedup interval for p is the smallest interval [u; v] � R1 such that 8l 2 L :
SU(l) 2 [u; v]. 2

To see that the speedups for non-simple loops are also in the interval, it su�ces

to see that if [u; v] is safe for loops l1 and l2 then it is also safe for a loop l composed
from one instance of each of l1 and l2. Assuming without loss of generality that

SU(l1) � SU(l2) <1, a little algebra yields:

SU(l1) � SU(l) =
Cs(l) + Cd(l)

Cd(l)
� SU(l2)

The speedup analysis does not take basic blocks outside loops into account. Clearly,

the speedup of the loops will dominate the speedup of the whole program provided
the running time is large. However, the analysis can easily be modi�ed to han-

dle the remaining basic blocks by accumulating speedups for all paths through

the program without loops. Without the revision, the analysis will have nothing

meaningful to say about programs without loops.

Speedup analysis 135

Example 6.1 The following program implements addition of natural numbers using

a sequence of tests for zero, increments, and decrements. Assume m to be static

and n to be dynamic.

read (m, n);

1: sum := n;

2: if (zero? m) goto 3 else 4;

3: sum := sum+1; m := m-1; goto 2;

4: return sum;

Counting one time unit for each statement for simplicity, the (unique) simple loop

2! 3! 2 exhibits a speedup of 4. Hence, the approximated speedup of the whole

program is [4; 4]. By the theorem below, this approximates the actual speedup

arbitrarily well when the loop is iterated `enough', that is, for large values of m. 2

Theorem 6.2 Assume speedup analysis computes the speedup interval [u; v] for

program p. Then [u; v] is safe for p.

Proof An upper bound v =1 is trivially safe, so we assume v 6=1.
Consider the sequence c of program points ppi visited during a terminating

computation p(s,d):

c = pp1 ! pp2 ! . . . ! ppk

To delete a simple loop ppi ! ppi+1 ! . . . ! ppi+j = ppi from c is to replace c

by:

pp1 ! . . . ppi ! ppi+j+1 . . . ! ppk

Now delete as many simple loops as possible from c (the order is immaterial).

Denote the multiset of deleted loops by L. The program points remaining in c

now occur only once. The total number of program points in p provides a uniform
bound on the number of remaining program points, independent of the choice of

(s,d). Denote the set of remaining nodes by NL and de�ne nlstat =
P

n2NL Cs(n)
and nldyn =

P
n2NL Cd(n). De�ne the cost functions Cs and Cd on the multiset L

of loops to be the sum of the costs for each loop l 2 L.

We now calculate the speedup for p, s, d:

Cs(L) + nlstat + Cd(L) + nldyn

Cd(L) + nldyn

This expression can be rewritten to:

SU =
(
Cs(L)+Cd(L)

Cd(L)
)

(
Cd(L)+nldyn

Cd(L)
)
+

(nlstat+nldyn

nldyn
)

(
Cd(L)+nldyn

nldyn
)

Now we will argue that for all " > 0 there exists a K such that SU 2 [u�"; v+"] if

jp(s; d)j > K. Choose a sequence of (si; di) such that jp(si; di)j ! 1 and examine

the fractions.

136 E�ciency, Speedup, and Optimality

To the right of the +, the numerator nlstat+nldyn

nldyn
is uniformly bounded and the

denominator
Cd(L)+nldyn

nldyn
!1. (Recall that Cd(L)!1 since we assumed v 6=1.

Intuitively, looping in fully static loops is excluded.)

To the left of the +, the denominator
Cd(L)+nldyn

Cd(L)
! 1 so we conclude SU !

Cs(L)+Cd(L)

Cd(L)
.

Since L is a multiset of simple loops,
Cs(L)+Cd(L)

Cd(L)
2 [u; v] which concludes the

proof. 2

6.3.4 Experiments

The speedup analysis has been implemented as a part of the C-Mix system, a partial

evaluator for a subset of C (see Chapter 11 and [6]). The analysis is implemented

as described above except that it has a di�erentiated cost function for statements

and expressions.
In the table below the measured and estimated speedups for three di�erent

programs are shown. The Add program is given in Example 6.1 above. The Int

program is an interpreter for a `polish-form' language taken from [213]. In this
example, the static input was a program computing the �rst n primes, and the
dynamic input was n = 500. The program Scanner is a general lexical analysis

taking as input a scanner table (static input) and a stream of characters (dynamic
input). In the test run, it was given a speci�cation of 8 di�erent tokens which

appeared 30 000 times in the input stream.

Example Run-time (sec.) Speedup (ratio)
Src Res Measured Estimated

Add 12.2 4.6 2.7 [2:7; 2:7]
Scanner 1.5 0.9 1.7 [1:5; 4:1]

Int 59.1 8.7 6.8 [5:1;1]

For the Add program the speedup factor is independent of the dynamic input and
converges to 2.7 as the static input grows. Hence the very tight interval.
The interval for the Scanner is quite satisfactory. If a speci�cation of unam-

biguous tokens is given, very litle can be done at mix-time, and hence the speedup

is near the lower bound (approached in the example). On the other hand, if the
supplied table contains many `fail and backtrack' actions, the upper bound can be

approached (not shown).
The upper bound for Int is correctly 1 as the interpreter's code for handling

unconditional jumps is completely static:

Speedup analysis 137

while (program[pp] 6= HALT)

switch (program[pp])

f

case ...

case JUMP: pp := program[pp+1]; break;

case ...

g

Thus, an unboundedly high speedup can be obtained by specializing Int with

respect to a program with `su�ciently' many unconditional, consecutive jumps. To

provide some practical justi�cation that the seemingly non-tight speedup intervals

computed by the analysis are indeed reasonable, we have applied Int to three

di�erent programs, i.e. three di�erent static inputs. Each program exploits di�erent

parts of the interpreter. Primes is the program computing the �rst n primes. The

Addp program is equivalent to the program Add in Example 6.1, but in `polish-form'.

The Jump program consists of a single loop with ten unconditional, consecutive

jumps. The measured speedups are as follows.

Example Run-time Speedup

Source Residual Measured

Primes 59.1 8.7 6.8

Addp 51.5 5.5 9.2
Jump 60.7 3.0 20.3

A limitation: loops are not related
Even though the speedup analysis demonstrated some pragmatic success above, it
does have its limitations. Consider for example the program fragments below.

n := N; n := N;

while (n 6=0) while (n6=0)

f S1; S2; n := n-1; g f S1; n := n-1; g

n := N;

while (n6=0)

f S2; n := n-1; g

Suppose that S1 (fully static) and S2 (fully dynamic) do not interfere, meaning
the two programs have the same e�ect. For the program on the left, the estimated

speedup interval is [4; 4] (counting 1 for all kinds of statements). The corresponding

interval for the program on the right is [3;1], where 1 is due to the completely
static loop. The latter result is still safe but certainly less tight than the former.

The problem is that the analysis considers loops in isolation, and fails to recognize
that the two loops iterate the same number of times.

138 E�ciency, Speedup, and Optimality

6.3.5 Accounting for static data

In case both p and s are known (approach 2 from the beginning of this section),

more precise results can be obtained. For example, the interpreter speedups shown

above are concrete speedups for speci�c values of d. Now suppose we wish a

speedup interval holding for all d. To estimate this, note that every residual tran-

sition pp ! pp0 in ps corresponds to a sequence of transitions pp0 ! pp1 ! . . . !

ppn in p. Recording the relationships between transitions in ps and those in p can

give the desired speedup information.

More concretely but still informally: consider the
ow chart specializer of Fig-

ure 4.7. All program points in ps come from the set pending. This contains the

initial program point, and all others are of form (pp, vs), where pp is the target

of a dynamic conditional statement in p.

Thus any residual basic block in ps is generated as the result of a computation

by Figure 4.7 of the following form: lines 5 through 8 begin at one of p's basic

blocks; then the while loop starting at line 9 is repeated some number of times,

until a dynamic conditional or the end of a basic block is encountered. (Static
conditionals cause the current basic block to be extended, so a residual basic block
may be much longer than any basic block in p.)

To estimate speedup, modify Figure 4.7 by adding two counters, both initialized
to zero before line 9. One records the number of dynamic statements generated

in a residual basic block, and the other counts the number of static or dynamic
statements encountered. Generation of the the residual basic block is ended when
a dynamic conditional or the end of a source basic block is encountered. At that

time, the ratio of the two counters gives the speedup for the residual block that
was generated.

Finally, once the speedup has been calculated for each basic block, the technique
of the previous section can be applied to all loops in ps to get a speedup interval

for the entire program.

6.4 Optimality of mix

Interpreted programs are typically executed more slowly than those which are

compiled (or executed directly, which amounts to being interpreted by hardware).

The di�erence is often large enough to be worth reducing for practical reasons, and

may depend on the size of the program being interpreted.

For practical purposes a trivial partial evaluator, e.g. as given by Kleene's original

s-m-n construction [149], is uninteresting since in e�ect it yields target programs
of the form `apply the interpreter to the source program and its input'. On the

other hand, mix should ideally remove all interpretational overhead.

How can we meaningfully assert that a partial evaluator is `good enough'? Per-

haps surprisingly, a machine-independent answer can be given. This answer in-

Hierarchies of meta-languages 139

volves the mix equation and a self-interpreter sint | an interpreter for L which is

written in L, as was McCarthy's �rst Lisp de�nition. As argued above, the running

time of self-interpreter sint will be around �p � tp(d); and �p will be large enough

to be worth reducing.

For any program p and input d we have:

[[p]] d = [[sint]] p d = [[[[mix]] sint p]] d

so p0 = [[mix]] sint p is an L-program equivalent to p. This suggests a natural goal:

that p0 be at least as e�cient as p. Achieving this goal implies that all overhead

caused by sint's interpretation has been removed by mix, i.e. �p has been reduced

to 1.

De�nition 6.4 mix is optimal provided

tp0(d) � tp(d)

for all p, d 2 D, where sint is a self-interpreter and

p0 = [[mix]] sint p

2

Although it may seem quite strict, this criterion has been satis�ed for several
partial evaluators for various languages, using natural self-interpreters. In each
case, p0 is identical to p up to variable renaming and reordering. An optimal mix

will be seen in Chapter 8. On the other hand, the
ow chart mix seen earlier is
nearly but not quite optimal; see Exercise 6.12.

Note that the de�nition is not perfect because it can be `cheated': if mix always

outputs its second argument unaltered when its �rst argument is equal to sint,
and performs trivial partial evaluation for all other values of the �rst argument,

then mix is ruled optimal by the de�nition (and the mix equation still holds).

6.5 Hierarchies of meta-languages

Instead of solving a wide-spectrum problem by writing many special-purpose pro-

grams, one may devise a user-oriented language to express computational requests.
An example is the current interest in developing expert systems.

A user-oriented language needs a processor, and these processors usually work

interpretively, alternating between reading and deciphering the user's requests,

consulting databases, and doing problem-related computing. Considerable time
may be spent interpreting rather than computing or searching, giving obvious

opportunities to optimize by partial evaluation. The possibility of alleviating these
problems by partial evaluation has been described in several places [62,123,172,234,

260].

140 E�ciency, Speedup, and Optimality

Two levels of
interpretation

w
L2

�
�
�
�
�
�
�>

int21

w
L1

�
�
�
�
�
�
�>

int10

w
L0

Language
L2

w���
�
�
�
�>

int21

Language
L1

w
mix

?w���
�
�
�
�>

int10

Language
L0

w
mix

?w
time
con-
sump-
tion

6

Figure 6.1: Overhead introduction and elimination.

Further, programming systems are often constructed with a hierarchy of meta-

languages, each controlling the sequence and choice of operations at the next lower
level [234]. In this context, e�ciency problems are yet more serious due to the risk
of multiple interpretation layers, each multiplying computation time by a signi�-

cant factor. Assume L2 is executed by an interpreter written in language L1, and
that L1 is itself executed by an interpreter written in implementation language L0.

The left hand side of Figure 6.1 depicts the time blowup occurring when running

programs in language L2, where using earlier notation the time blowup is �21 � �
1
0.

Metaprogramming without order-of-magnitude loss of e�ciency

The right side of Figure 6.1 illustrates graphically that partial evaluation can sub-
stantially reduce the cost of multiple levels of interpretation. This can be done in

at least two ways.

1. A literal interpretation of Figure 6.1 would involve writing two partial eval-

uators, one for L1 and one for L0. This seems besides the point, which is to

execute programs written in language L2 e�ciently and with as little e�ort as

possible. Fortunately there is an alternative approach using only one partial
evaluator, for L0.

2. For concreteness let p2 be an L2-program, and let in, out be representative

input and output data. Then

out = [[int10]]L0 [int
2
1, [p2, in]]

3. One may construct an interpreter for L2 written in L0 as follows:

Exercises 141

int20 := [[mix]]
L0

[int10; int
2
1] satisfying

out = [[int20]]L0 [p2, in]

4. By partial evaluation of int20, L2-programs can be compiled to L0-programs.

Better still, one may construct a compiler from L2 into L0 by

comp20 := [[cogen]]
L0

int20

The net e�ect is that metaprogramming may be used without order-of-magnitude

loss of e�ciency.

The development above, though conceptually complex, has actually been re-

alized in practice by partial evaluation [71,138,139]. The �rst two describe how

J�rgensen began with an interpreter for denotational semantics, and used par-

tial evaluation to transform denotational de�nitions into interpreters written in

Scheme. An application was to a denotational de�nition of a Miranda-like lazy

programming language with pattern matching. The interpreter generated as in

step 3 above was then converted to a compiler as in step 4. The target programs
it produces run faster than those produced by a commercial Miranda compiler.

More theoretically, a thesis by Dybkj�r concerns the use of category theory as a
very general framework for designing programming languages [71]. The framework
is constructive but extremely slow to implement directly. Dybkj�r used exactly the

technique above | partial evaluation of machine-produced programs | to obtain
substantial speedups and to allow experiments that would not otherwise have been

possible.

6.6 Exercises

Exercise 6.1 Consider a program p that has one input variable x and assume that
x is dynamic.

1. Can partial evaluation optimize p?

2. Now assume that the input to p is known to be a one-digit prime number.

Describe how this knowledge can be used to achieve better results from partial
evaluation and show the structure of the residual program.

3. Could the weaker knowledge that the input would be prime have been ex-
ploited in a similar way?

2

Exercise 6.2 Use the algorithm in Section 6.3.3 to determine the speedup interval
for the program in Figure 4.2. 2

142 E�ciency, Speedup, and Optimality

Exercise 6.3

1. Use the algorithm in Section 6.3.3 to determine the speedup interval for the

Turing interpreter in Figure 4.4.

2. What Turing programs bring the actual speedups as close to the upper and

lower bounds as possible?

2

Exercise 6.4 Theorem 6.1 places an upper bound on the speedup that can be

obtained by partial evaluation. State and prove a theorem about the lower bound.

Hint: A `no slowdown' theorem. 2

Exercise 6.5

1. Is Theorem 6.1 valid for the partial evaluator for Scheme0 as presented in

Chapter 5? If not, can supplementary restrictions make it valid?

2. Same question, but for the `no slowdown' theorem from Exercise 6.4.

2

Exercise 6.6 Formulate the algorithm in Section 6.3.3 for Scheme0 programs. 2

Exercise 6.7 Find an example program which shows that in De�nition 6.2 the
condition

8" > 0 : 9k : 8j > k :
jp(sj; dj)j

jpsj(dj)j
2 [u� "; v + "]

is preferable to the simpler

9k : 8j > k :
jp(sj; dj)j

jpsj(dj)j
2 [u; v]

2

Exercise 6.8 In Section 6.3.3 it is stated that SU(l1) � SU(l2) <1, implies:

SU(l1) � SU(l) =
Cs(l) + Cd(l)

Cd(l)
� SU(l2)

Prove it. 2

Exercise 6.9 A meta-interpreter mint is a program that takes as input: a speci�ca-

tion spec for a language S, an S-program p, and input data d. Then mint returns
the value of p on input d.

1. Write the de�ning equation for mint.

Exercises 143

2. Demonstrate compiler generation using mix, mint and spec.

3. Demonstrate generation of a program mcogen that generates an S-compiler

when applied to spec.

2

Exercise 6.10 Write a self-interpreter sint for the
ow chart language (hint: just

remove the code generation parts from mix, and the division input). 2

Exercise 6.11 Annotate this to obtain sintann, assuming the program input is

static and the data input is dynamic. Specialize sintann with respect to a small

source program using the
ow chart mix. 2

Exercise 6.12 Is the
ow chart mix optimal? Explain your answer, and what is

lacking if it is not optimal. 2

Chapter 7

Online, O�ine, and

Self-application

This chapter concerns the de�nition, use, and comparison of online and o�ine

partial evaluation techniques, as described in the next paragraph. All early par-

tial evaluators were online, but o�ine techniques seem necessary to allow self-
application and the generation of program generators (compilers, parser generators,
etc.). Both online and o�ine partial evaluation are still being actively researched,

with no conclusion that either one is the best approach.
The partial evaluators seen heretofore are all o�ine as described in Section 4.4.7.

This means that they treat their static data in a rather uniform way, based on

preprocessing the subject program. The general pattern is that given program
p and knowledge of which of its inputs are to be static but not their values, an
annotated program pann is constructed (or a division is computed, which amounts
to the same thing). Once static data values are available, specialization proceeds
by obeying the annotations (e.g. `compute this', `generate code for that'). In e�ect

pann is a program-generating program, and the static data is its input (just this
viewpoint is seen in Chapters 5 and 8).

Even though the static data determines the code that is generated, the partic-

ular static values computed during partial evaluation have no e�ect on the choice

of actions made by the partial evaluator. Thus an expression x+y, in which x,

y have been classi�ed respectively as static and dynamic, will always generate
code to perform the addition at run time, even in circumstances where y has a

known constant as value. In contrast, online partial evaluators typically have no

preprocessing, make more decisions on the
y, and so are better able to exploit
computational opportunities such as the one just given.

In the following we shall mostly use the framework and terminology from Chap-
ter 5, but the content of this chapter applies equally well to other languages.

144

Decision making as a prephase? 145

7.1 Decision making as a prephase?

A partial evaluator typically has to choose an action in the following situations:

1. For each operator (+, if, . . .), should/can the operator be reduced at partial

evaluation time or should residual code be generated?

2. For each variable/parameter at each program point, should/can it be consid-

ered static or should it be dynamic?

3. For each function call/jump should it be unfolded/compressed or should it

be residualized?

All o�ine specializers (to our knowledge) rely on a prephase (see Figure 7.1),

including binding-time analysis and possibly other analyses, to resolve the problem

of choosing the proper actions independently of the concrete static values. (An

exception which we will not discuss here is by Gl�uck [98].) Not shown in the �gure
is the postphase, often used by both online and o�ine specializers to perform last-
minute reductions, unfoldings, or other transformations.

Chapters 4 & 5 presented typical o�ine program specializers. Static and dy-
namic computations were distinguished by a division or by program annotations
constructed independently of the concrete values. Transition compression (Sec-

tion 4.4.4) was applied everywhere except in the branches of a dynamic conditional
statement (dynamic by the division, that is). In Section 5.5 a similar o�ine unfold-

ing strategy was proposed for Scheme0. Section 5.5.6 suggested a hybrid strategy.
The o�ine part: a call was annotated as `de�nitely dynamic' (calld) if it ap-
peared in a branch of a dynamic conditional or if it had a duplicable, non-variable,

dynamic actual parameter. The online part: for calls annotated `perhaps static'
(calls) it was tested during specialization whether all duplicable, dynamic pa-
rameters would by bound to variables by a possible unfolding. If so, the unfolding

would be performed.

Many partial evaluators use a combination of online and o�line techniques. Al-

most all specializers called `o�ine' (including those in the previous chapters; Chap-

ter 8 presents an exception) use an online technique to ensure that multiple ap-
pearances of the same specialized program point share residual code. Concretely,

the manipulation of the sets pending and marked involves comparison of values,

and the choice of action depends on the outcome.

7.2 Online and o�ine expression reduction

In this section we compare the reduction of expressions as performed by online and

o�ine specializers. We compare typical online and o�ine reduction algorithms and

give examples of the advantages of the respective methods. The o�ine expression

146 Online, O�ine, and Self-application

Online partial evaluation is (usually) a one-phase process:

��
��
p in1 Values of the static inputs

�
�

�
��=?

SPEC-ON

??

� Values are consulted during specialization
to avoid: violations of congruence,

code duplication, nontermination, etc.

pin1&%
'$

O�ine partial evaluation is (usually) a two-phase process:

��
��
p Which inputs will be static?

�
�

�
��=?

PRE

??

� binding-time separation for whole program p

� Program analyses (e.g. control
ow analysis)
� Annotate to avoid: violations of congruence,

code duplication, nontermination, etc.

?

pann

in1 Values of the static inputs
�

�
���

�
�

�
�

SPEC-OFF

??

� The specializer just obeys the annotations:
- compute static values, and
- generate code for dynamic expressions

&%
'$
pin1

Figure 7.1: Structure of online and o�ine partial evaluators.

reducer, OffPE, takes an annotated expression (two-level Scheme0, Figure 5.5) as
input and is in essence identical to the reduce-function de�ned in Section 5.4.2.

The online expression reducer, OnPE, takes a plain Scheme0 expression as input

and reduces it as much as possible.

In OffPE both values and residual expressions are represented as Scheme lists.

There is no risk of confusion since the annotated syntax, as opposed to inspection

of generated values/expressions, controls the actions of OffPE. This does not hold

Online and o�ine expression reduction 147

for OnPE: it is impossible to tell whether the three-element list (+ x y) represents

an expression to be reduced or a �nal value (which could occur if the program to be

specialized was a symbolic equation solver). The solution is to introduce coding or
tagging of the data manipulated by OnPE such that the tag distinguishes between

values and expressions.

Figure 7.2 shows the functions OnPE and OffPE. For clarity, the specializers

are written using syntactic sugar, so to be self-applied they would have to be

translated into Scheme0. We use case-expressions with simple pattern matching,

double brackets [[�]] around syntactic objects, and sum injections inVal(. . .) and

inExp(. . .) as in Section 2.2.3 to tag values and expressions as such in the sum

domain On-Value.

The auxiliary function build-cst constructs a residual constant expression from

a value (`adds a quote'). The functions build-car, build-cons, etc., construct

compound residual expressions, and the functions car, cons, etc., perform the

usual computations on ordinary values. Below are the domains of values used in

OnPE and OffPE. Again, note that input expressions to OffPE are annotated and

that the values computed by OnPE are tagged:

Expression = Scheme0 expressions (Figure 5.1)
2Expression = Two-level Scheme0 expressions (Figure 5.5)

On-Value = inVal Value + inExp Expression

Off-Value = Value [Expression

On-Env = Var ! On-Value

Off-Env = Var ! Off-Value

Now consult Figure 7.2 to see the fundamental di�erence: OnPE chooses its action
on the basis of input syntax and computed values, OffPE only examines input

syntax.

7.2.1 Advantages of online methods

The main advantages of online over o�ine methods stem from their non-approxi-

mative distinction between static and dynamic calues.

A safe (o�ine) binding-time analysis always produces a congruent division, en-

suring that there is su�cient information to do static computations. Binding-time

improvements allow improvements in binding-time separation as in Chapter 12,
but BTA still has to do a `worst-case' analysis before the static input is given. For
computability reasons it will inevitably classify some expressions as dynamic even
though they may sometimes assume values computable by the specializer.

Online partial evaluators have more information available to inspect for static-

ness during specialization, to exploit for better binding-time determination. Online

partial evaluators can thus perform some static computations which o�ine strate-

gies would rule dynamic. Below we shall show a couple of examples (for more see

148 Online, O�ine, and Self-application

Online expression reduction:

OnPE: Expression ! On-Env ! On-Value

OnPE[[x]]� = lookup [[x]] �

OnPE[[car e]]� = case (OnPE[[e]]�) of

inVal(val): inVal(car val)

inExp(re): inExp(build-car re)

OnPE[[cons e1 e2]]� =

case (OnPE[[e1]]�),(OnPE[[e2]]�) of

inVal(v1),inVal(v2) : inVal(cons v1 v2)

inVal(v1),inExp(re2) : inExp(build-cons (build-cst v1) re2)

inExp(re1),inVal(v2) : inExp(build-cons re1 (build-cst v2))

inExp(re1),inExp(re2): inExp(build-cons re1 re2)

OnPE[[if e1 e2 e3]]� =

case (OnPE[[e1]]�) of

inVal(true) : (OnPE[[e2]]�)

inVal(false): (OnPE[[e3]]�)

inExp(re1): (build-if re1 (resid(OnPE[[e2]]�))(resid(OnPE[[e3]]�)))

resid pv = case pv of

inVal(v) : build-cst v

inExp(re): re

O�ine expression reduction:

OffPE: 2Expression ! Off-Env ! Off-Value

OffPE[[x]]� = lookup [[x]] �

OffPE[[card e]]� = build-car (OffPE[[e]]�)

OffPE[[cars e]]� = car (OffPE[[e]]�)

OffPE[[consd e1 e2]]� = build-cons (OffPE[[e1]]�) (OffPE[[e2]]�)

OffPE[[conss e1 e2]]� = cons (OffPE[[e1]]�) (OffPE[[e2]]�)

OffPE[[ifd e1 e2 e3]]� = build-if(OffPE[[e1]]�)(OffPE[[e2]]�) (OffPE[[e3]]�)

OffPE[[ifs e1 e2 e3]]� = if(OffPE[[e1]]�)(OffPE[[e2]]�)(OffPE[[e3]]�)

Figure 7.2: Fragments of online and o�ine partial evaluators

Ruf and Weise [230]).

Greater opportunities for static computation correspondingly increase the risk
of non-termination or useless specialization. Examples are given in the literature,

explaining the sometimes conservative and usually complex online methods used

to avoid in�nite unfolding. This should not be held against the online approach,

because solution of these problems using an approximative BTA can be even more

Online and o�ine expression reduction 149

conservative. The real solution appears to be more powerful program analyses

which, although exploited at di�erent times, can improve the results of both online

and o�ine partial evaluators.

Conditionals with mixed binding times

With monovariant BTA an expression must be classi�ed as `always dynamic' or

`always static'. This can lead to undesired generalization if, say, a function is

sometimes called with static and sometimes with dynamic arguments. A polyvari-

ant BTA can often handle this particular problem for o�ine methods, but other

instances of mixed binding times are harder to deal with.

Consider a conditional expression e = (if e1 e2 e3) where e1 and e2 are static

and e3 is dynamic. BTA must classify e as dynamic but an online test would

discover that e is static if e1 evaluates to true. If expression e was the argument to

a function f, an online partial evaluator could apply the function whenever e1 was

true, but it would take more than just polyvariance to make an o�ine specializer

do that.

In the expression (f (if e1 e2 e3)), polyvariant analysis of function f is of

no use because the argument is ruled dynamic by BTA. A transformation to (if

e1 (f e2) (f e3)) with subsequent polyvariant analysis would solve the problem.

Another possibility is to convert the program to continuation passing style [56].

Static knowledge about `dynamic' conditionals/calls

Consider a conditional expression e = (if e1 e2 e3) and assume that e1 is dy-
namic. Hence the conditional is dynamic and must appear in the residual program.

In general, neither o�ine nor online specializers can infer any static information
about the result of the dynamic conditional, but online methods can do this in
a special case: when both e2 and e3 are static and have common characteristics.

The extreme case where e2 and e3 have the same value is perhaps uncommon,
but the values may have a common structure [230,281]. For example, suppose an

interpreter for a language with dynamic typing is to be specialized with respect to

a well-typed source program. Tagged values are pairs of type tags and `raw' values,
dynamic choices between tagged values with identical tags are not uncommon. An

o�ine specializer cannot detect this in general because the equality of the tags

depends on the well-typedness of the source program.

Very similar remarks apply to dynamic function calls. It can be possible to infer

static information about the return value of a function call even though the call is

dynamic. In an interpreter for an imperative language with recursive procedures,

it could be that the evaluation function for recursive calls should not be unfolded

for termination reasons. Still, it is very likely that the return value, an updated
store, would have the same structure (an array, an association list, etc.) for all

possible dynamic inputs. This would be easier to detect in an online specializer.

For o�ine specializers the pattern is the usual one: there exist binding-time im-

provements to reclaim some of the lost territory. For an example of tag elimination

150 Online, O�ine, and Self-application

by o�ine partial evaluation, see Consel and Danvy [57].

Generating optimizing compilers

Section 7.3 gives detailed reasoning why o�ine methods lead to e�cient self-appli-

cation, and reading that section might help to clarify the claims below.

The introduction of o�ine methods made it possible to self-apply partial eval-

uators, and compiler generation has been by far the favourite application for self-

applicable partial evaluators. To our knowledge, the generated compilers seen in

the literature have in common the fact that they do not perform compile-time

optimizations such as constant folding. This is due to the o�ine strategy: prior

to compiler generation by self-application all interpreter actions are classi�ed as

either compile-time (= static) or run-time (= dynamic). The classi�cation is done

at compiler generation time and is thus source program independent. This con-

tradicts the idea of constant folding which is to evaluate expressions which are

variable independent, a property which holds for some source programs and not for

others.

Switching to pure online techniques is no real solution because compilers gen-
erated by self-application of an online specializer are large and slow. We believe
that the solution is to �nd a compromise between o�ine and online methods, as

suggested by,for example, Bondorf [26]. Ruf and Weise [230] have taken a step
in another direction and used a strong and large online specializer to specialize a

weaker and simpler online specializer with respect to an interpreter thus obtaining
compiler generation [230].

7.2.2 Advantages of o�ine methods

O�ine partial evaluation was invented in 1984 and made self-application of partial
evaluators feasible in practice [135]. It was realized as early as 1971 that it would
in principle be possible to generate compilers by self-application, but all computer

experiments achieved little apart from using enormous amounts of memory and disk

space. Section 7.3 shows in detail why the o�ine technique leads to compact and

e�cient compilers; here we will review other advantages of o�ine partial evaluation.

Problem factorization

The component of an o�ine partial evaluator that performs the reduction of the

annotated program (= function OffPE in Figure 7.2) is often called the special-
ization kernel. The other principal component in an o�ine partial evaluator is

the BTA. The splitting of partial evaluation into two separate phases has proven
helpful in both the design and implementation phases of several partial evaluation
projects. (Section 7.4 presents a recipe which has been successfully followed a

number of times.)

Much research in the �eld has been concentrated on the phases one at a time,

Online and o�ine expression reduction 151

and this has contributed to a better understanding of central problems in par-

tial evaluation. A specialization kernel can be tested without BTA by supplying

suitable annotations manually, and the results of a new BTA can be evaluated by

inspecting the annotations it produces.

E�ciency
Given recent developments in BTA technology (work by Henglein, see [114] and

Chapter 8), the o�ine approach BTA + specialization kernel is also more e�cient

than online. The reason is obvious by inspection of Figure 7.2: for each reduction

or code generation step OnPE does twice as much testing as OffPE in addition to

the overhead introduced by tagging all values.

Fast multistage specialization
Specializing the specializer can speed up the partial evaluation process. (An anal-

ogy: compilation followed by target code execution can be faster than interpreta-

tion.) If the specialized specializer is used several times, the gain can be substantial.

Fast multistage specialization follows the scheme below. BTA is the binding-time

analyser, SPEC is the annotated specialization kernel.

1. pann := [[BTA]] p Preprocessing time

2. p-gen := [[mix]][SPEC, pann]

3. pin1 := [[p-gen]] in1 Specialization time

4. output := [[pin1]] in2 Run time

The main goal is to make stage 4 fast, i.e. to generate a good specialized program.

The second goal is to make stage 3 fast, i.e. to specialize fast. It is not a problem
if Stages 1 and 2 are slow, if that speeds up stage 3: the result is slow generation
of a good specializer, and the generation is performed only once.

As the table indicates, the automatically generated specializer p-gen contains
no preprocessing. A special case is generation of a compiler comp = int-gen from

an interpreter int.

Binding-time annotations as a user interface
Explicit binding times in the form of divisions or annotations have been used

in several tools that are useful to the user of a partial evaluator. The binding-
time analyser itself can be considered such a tool because the annotations allow

the user to see whether the program has the desired binding-time properties. If
the analysed program were an interpreter, something is probably rotten if the

interpreter's program argument is classi�ed as dynamic. This would be much
easier to detect by inspection of an annotated interpreter than by inspection of a
residual program produced by a partial evaluator.

A re�nement of this idea is the binding-time debugger, which is roughly a stepwise
binding-time analysis, allowing the user to see more clearly when things `go wrong'

[60,196].

152 Online, O�ine, and Self-application

Annotated programs can also be used to estimate the feasibility of partial evalu-

ation. One example is the automatic speedup analysis presented in Section 6.3. In

Chapter 13 the classes of `oblivious' and `weakly oblivious' programs are de�ned

in terms of binding-time properties of programs (restrictions on the dynamic con-

ditionals). The class of oblivious programs will be seen to yield compact, linear

residual programs.

Program analysis

Binding-time analysis is often combined with other program analyses to satisfy

other requirements than just congruence. Typical goals are to achieve �niteness,

to avoid computation duplication, and to avoid specialization with respect to dead

static variables. Though it is natural to combine these analyses with plain binding-

time analysis, they are not all dependent on the availability of binding-time infor-

mation. An example is liveness analysis, which can be used by online partial

evaluators as well. The online partial evaluator then uses the rule: `dead vari-

ables are de�nitely dynamic and live variables are checked online as usual', which

achieves the same bene�cial generalization as the o�ine partial evaluator without
sacri�cing the online potential.

On the other hand, some analyses do depend on binding-time information. An
example is Holst's poor man's generalization, which is a re�nement of liveness
analysis: a variable should be generalized if no control decisions depend on its

value [116]. This is clearly a combination of liveness and binding-time analysis.

Online partial evaluators often test a large part of the computation history to

determine whether the partial evaluator is possibly entering an in�nite loop. If
a certain `danger criterion' (e.g. a growing parameter in a recursive function) is
observed, then an online generalization is performed [235,281]. O�ine partial eval-

uators cannot, by de�nition, do this. At best the binding-time analysis can be
re�ned to classify, in advance, enough variables as dynamic to ensure �niteness.

This requires a more complicated program analysis (see Chapter 14).

In general, the use of various program analyses is much more widespread in the

o�ine than in the online community. This must be so by de�nition for certain
kinds of analyses (BTA, poor man's generalization [116]), but the di�erences in
culture seem to matter too. We feel that there is good use for program analysis in

online partial evaluators.

7.2.3 Which `line' is better?

Clearly, it is impossible to say which is best: online or o�ine partial evaluation.
Above we listed a number of advantages of the respective methods, but it depends

greatly on the concrete problem to solve by partial evaluation how the advantages

should be weighted. It would be hard to make general statements about this, and

it would be more fruitful to study how the two schools of partial evaluation can

BTA and the taming of self-application 153

learn from each other.

A compromise strategy, mixline partial evaluation, results from augmenting the

usual binding-time domain, fS,Dg, with a third binding time M . Now S should

be interpreted as `always static' as usual, D should mean `always dynamic' as

opposed to the usual `sometimes dynamic', and the new binding time M means

`mixed binding times' to be tested online. This idea is not new (e.g. [26,53]), but

large scale experiments have not been reported.

As brie
y mentioned above we feel that many of the program analyses often used

in o�ine partial evaluators would also be useful in the online world. Examples

include: liveness, duplication, control
ow, and termination.

7.3 BTA and the taming of self-application

In this section we argue that it is no accident that only o�ine specializers have

been successfully self-applied. By `successfully' we mean that the resulting program
generators (typically compilers) have been reasonably small and e�cient. Self-

application of online specializers is of course possible in principle, but all such
experiments have yielded large and slow program generators. For example, Lars
Ole Andersen changed the o�ine partial evaluator described in [136] into being

online. The generated compilers then became around 2 to 3 times larger in code
size and 2 to 6 times slower.

In this section we make a case study of compilation and compiler generation
by online partial evaluation. We �nd that result of compiler generation is not
satisfactory and show how o�ine partial evaluation provides a simple solution.

7.3.1 Compilation by online partial evaluation

Let us compile program source by computing target = [[mix]]
L
[int, source] ,

where int interprets an imperative language. We use the online partial evaluator
OnPE as our mix-program. Assume that the following expression appears in the

interpreter int:

E = (cons (car names) (car values))

The role of this part of the interpreter is to bind a source program name to its run
time value, where names and values are interpreter variables: names is a list of

variable names from source and values is a list of values bound to these. The
important thing to note is that names and values have di�erent binding times.

The value of names can be computed given source alone, but the value of values

cannot.

At specialization time the symbolic environment � in the OnPE may bind the

interpreter's variable names to the On-Value inVal((a b c)), say, and the inter-

154 Online, O�ine, and Self-application

preter's variable values to the On-Value inExp(exp), where exp is some residual

expression. Here a, b, and c correspond to variable names from the interpreted

program source.

The value of OnPE[[E]]� is the specialized version of the interpreter fragment E

= (cons (car names) (car values)). In concrete residual syntax this could be

written:

(cons (quote a) (car exp))

7.3.2 Self-application of an online partial evaluator

By the second Futamura projection, mixint = [[mix]]
L
[mix,int] is a compiler

from the language interpreted by int into L. We shall consider operationally what

happens when we apply the program specializer mix to itself in this manner, with

int being the interpreter discussed above.

Consider again the expression E = (cons (car names) (car values)). This
expression is part of int, and function OnPE in mix deals with expressions, so the
compiler mixint contains the result of specializing the function OnPE with respect

to E. This compiler fragment is shown in Figure 7.31. Compare this specialized
OnPE with the original OnPE shown in Figure 7.2. The dispatch on the input

expression syntax has been reduced away by the program specialization, but the
case-expressions testing for staticness have completely dynamic arguments and
hence they appear in the specialized OnPE.

We make two observations on this compiler. The �rst observation is the lack of

distinction between binding times. The compiler treats all parts of the expression
from the interpreter alike, although some parts are always `compile time' and oth-
ers always `run time'. This behaviour is inherited from the online mix program,

which handles both static and dynamic expressions by the OnPE function. This
function can return both values and residual expressions, injected into the do-

main On-Value: values (inVal(. . .)) for static arguments and residual expressions

(inExp(. . .)) for dynamic arguments. However, in the running compiler, the value
of lookupnames will actually always have the form inVal(v). Hence (reduce-car

(lookupnames �)) will always evaluate to a constant value inVal(. . .). This can

be inferred at compiler generation time | and that is precisely the goal of using

explicit binding-time information.

The second observation concerns excessive generality. The compiler fragment

above can be used to specialize int in at least two ways. First, it can generate

the usual target program target when given a source program but not the source
program's input. Second, it could generate a strange `target' program crazy when

given as static data the input data to the source program, but not the source

1Many immaterial details, e.g. unfolding strategy, are left unspeci�ed about the online par-
tial evaluator used here. For readability, we have introduced two functions reduce-car and
reduce-cons in the generated compiler.

BTA and the taming of self-application 155

OnPE(cons (car names) (car values)): On-Env ! On-Value

OnPE(cons (car names) (car values)) � =

reduce-cons (reduce-car (lookupnames �)) (reduce-car (lookupvalues �))

reduce-car: On-Value ! On-Value

reduce-car pv =

case pv of

inVal(v): inVal(car v)

inExp(e): inExp(build-car(e))

reduce-cons: On-Value ! On-Value ! On-Value

reduce-cons pv1 pv2 =

case pv1,pv2 of

inVal(v1),inVal(v2) : inVal(cons v1 v2)

inVal(v1),inExp(re2) : inExp(build-cons (build-cst v1) re2)

inExp(re1),inVal(v2) : inExp(build-cons re1 (build-cst v2))

inExp(re1),inExp(re2): inExp(build-cons re1 re2)

Figure 7.3: A fragment of an overly general compiler.

program itself! The resulting program would take a source program and produce
the result of running the source program on the given input data:

[[crazy]]
L
source = [[int]]

L
[source,data] = [[source]]

S
data = output

This compiler feature is a very useless one. Conclusion: the compiler mixint is

much more general than necessary.
The generality of the compiler mixint is due to the lack of distinction between

interpreter actions traditionally done at compile time (syntax analysis, environment
manipulation, etc.) and those traditionally done at run time (evaluating source

program expressions, etc.). Each time mix meets a cons operator, for example, it

will decide online whether it is doing a compile time action or a run time action,
and the compiler generated from the online mix inherits this behaviour.
To get the e�ciency of traditional compilation, the expression (car names) in

the interpreter fragment should be evaluated directly by the compiler since this is

an instance of environment manipulation. On the other hand, residual code for

(car values) should be generated directly by the compiler. In neither case should
it bother to check whether or not the values are constant.

156 Online, O�ine, and Self-application

7.3.3 Removing generality by annotations

Below mix1 and mix2 may or may not be identical. The indexes are introduced for

easier reference only.

During compiler generation

comp = [[mix1]]L [mix2,int]

mix2 is partially evaluated with respect to incomplete input, int. Recall that

mix2 constantly tests whether the partial values are constants inVal(...) or

residual expressions inExp(...), and that these tests are dynamic and appear in

the generated compiler. This is intuitively wrong because it should be known at
compiler generation time that the syntactic dispatch in the interpreter will be static
at compilation time. To make these tests static in mix2, extra information must

be supplied because there is no way a priory that mix2 can infer that comp should

produce only normal target programs and no crazy programs as shown above.

The interpreter int has two arguments, source and data, and mix2 must know

that the compiler is only intended for application to source. One convenient way
to communicate this information to mix2 is to annotate the actions of int as either
static or dynamic. This makes the binding times of int apparent as syntax,2 and
the syntactic dispatch in mix2 is certainly reduced by mix1.

The claim is thus that mix2 should be an o�ine partial evaluator and that

accordingly int should be annotated. In the annotated interpreter, intann, the
annotated version of the subexpression E considered above, would be:

(consd (lift (cars names)) (card values))

Recall from the beginning of Section 7.2 that the Off-Values handled by OffPE

are untagged. It is the correctness of the annotations ensures that lookup returns
a constant value when applied to names and a residual expression when applied to
names.

Let offmix be an o�ine partial evaluator which uses OffPE to reduce expres-
sions. Consider generation of a compiler from the annotated interpreter intann by

computing [[offmix]]
L
[offmixann,intann] . The decisions in offmixann whether

to do evaluation or to generate code will not depend on offmixann's unavailable
input (the source program source), but only on the annotations in the interpreter.

Thus the decision can be made when the compiler is generated and need not be
made anew every time the compiler is applied to a source program.

A fragment of the compiler is given in Figure 7.4. We see that it simply

generates code, as expected of a compiler. It does not contain any tests on residual
expressions as did the corresponding fragment of the mix-generated compiler in

Figure 7.3; it is de�nitely shorter and quite a lot faster. So the use of binding-time

annotations is indeed be very bene�cial.

2Equipping the interpreter with an explicit division for each function would have the same
e�ect.

A recipe for self-application 157

OffPE(cons (car names) (car values)): 2Environment ! Exp

OffPE(cons (car names) (car values)) � =

build-cons(build-cst(car(lookupnames �)))(build-car(lookupvalues �))

Figure 7.4: A fragment of a compiler generated by o�ine partial evaluation.

One might note that OffPE does not always produce exactly the same residual ex-

pressions as OnPE does. Given another interpreter fragment, OffPE might produce

a residual expression such as (build-+ (build-cst 1) (build-cst 2)) | if the

+ expression leading to this were a run time action according to the annotations.

The function OnPE would reduce this to (build-cst 3), but the experiments per-

formed so far have shown that this rarely occurs when OffPE is used for compiling.

Furthermore, since most operations in an interpreter are compile time actions, ex-

tending OffPE by adding reductions on dynamic data would not increase the size

(or decrease the speed) of the compiler dramatically, and it would then give the

same result as OnPE, as also mentioned in Section 7.2.3.
Compiler generation is just one application where binding-time information gives

a speedup in self-application. The essential point is that self-application stages
programs. Self-application is analogous to applying cogen. Annotations attached
to a program expression contain information on how to stage the expression: when

the annotation says `static', cogen produces a program piece which, when executed,
evaluates the expression. When the annotation says `dynamic', cogen produces an
expression which, when executed, generates residual code.

7.4 A recipe for self-application

Constructing a self-applicable partial evaluator for a new language is a tricky task

and one that may require several iterations, both to re�ne the subject language

and to develop methods su�cient to specialize it well. Following is a pattern that

we have found to work well in practice, using o�ine specialization. There are,

however, always unexpected complications for each new language.
The recipe suggests that a self-interpreter is written as the �rst programming

step. We �rst explain why this starting point is so very appropriate for constructing

program generators by the second Futamura projection:

p-gen = [[mix]] mix p

The reasoning, well supported by practical experience, is as follows.

� Getting [[mix]] mix p to give good results, or any at all, is very tricky.

� Advice by Polya: to solve a hard problem, �rst solve a similar but simpler
problem. Then generalize the simpler problem's solution.

158 Online, O�ine, and Self-application

� Related observation: in order to be able to perform its static computations,

a non-trivial mix must contain a self-interpreter. Call this sint.

� Thus a simple problem similar to obtaining p-gen = [[mix]] mix p is to com-

pute

p0 = [[mix]] sint p

� An good solution to this problem is the `optimality' criterion of Section 6.4,

that p0 should essentially be identical to p. If one cannot at least make p0 very

similar to p, an e�cient [[mix]] mix p will be hard or impossible to construct.

The recipe
1. Think carefully through general questions, particularly:

� What is known data, and what is unknown?

� Can each variable be thought of as completely static or completely dy-

namic, or are partially static and dynamic values needed?

� What is a specialized program point?

2. Write a clean self-interpreter sint, perhaps for a small subset of the language.

3. Use ad hoc hand methods to see how it could be specialized to some very
simple program p.

4. Devise a set of annotations, such as the s/d annotations used in Chapter 5
or the underlines from Chapter 8. These give extra information attached to

parts of a subject program, so specialization can be done as follows:

� do (perform, evaluate, execute) those parts annotated as mix-time (e.g.

evaluate static expressions, unfold function calls, etc.);

� generate code for those parts annotated as run-time.

5. See whether you can annotate the program p of step 3 and get the right

specialized program (again by hand).

6. Annotate the self-interpreter.

7. Program a specializer to behave as in step 4, not necessarily written in the

same language.

8. Use it to specialize the annotated self-interpreter to various simple programs;
and then to itself. If the optimality criterion is not violated too much, all the

hardest hurdles have been cleared.

Exercises 159

9. Program a specializer to behave as in step 4, in the language being specialized.

10. Introspect on the way the annotations were added, and devise a way to do

as much as possible of it by machine.

11. Try [[mix]] mix p for various p.

Warning: high-level control constructs such as while loops, pattern matching,

and some deeply nested constructions can give problems. It is important to cut

the language down to the bare bones before beginning, otherwise much time will

be wasted on problems that distract attention from the hard central core of the

exercise, especially steps 2 to 6. In our experience, many of these problems are

easily cleared up in retrospect after the core is working, and many more can be

dealt with by liberal usage of `syntactic sugaring' and `desugaring', done using the

computer to translate into and out of a rudimentary core language.

Final Comment. This approach provides a very convenient factorization of the

problem:

1. What should the annotations be? This is a problem of expressiveness |
they must contain su�cient information to be able to do specialization. The
solution is often a two-level syntax, e.g. as used in Chapters 4, 5, 8, and in

[202] by Nielson and Nielson.

2. How can one �nd appropriate annotations? This is a program analysis prob-
lem, solvable by abstract interpretation or type inference. Consult the ma-
terial on binding-time analysis found in this book.

7.5 Exercises

Exercise 7.1 Write a simple online partial evaluator for Scheme0. Compare it to
the o�ine partial evaluator in Chapter 5 in the following areas: quality of residual

programs, partial evaluation-time e�ciency, termination properties, and unfolding

strategy. 2

Exercise 7.2 Write a simple online partial evaluator for
ow charts, as done in
Chapter 4. Compare it to the o�ine partial evaluator in Chapter 4 in the following

areas: quality of residual programs, partial evaluation-time e�ciency, termination

properties, unfolding strategy. 2

Exercise 7.3 In Section 7.2.3 mixline, a compromise between o�ine and online, is

suggested. De�ne the domains to be used by a mixline expression reducer and then
de�ne the mixline expression reducer itself. 2

160 Online, O�ine, and Self-application

Exercise 7.4 Consider the residual program in Figure 4.5. What residual program

would be generated by a simple online partial evaluator which reduces and unfolds

whenever possible? 2

Exercise 7.5 A general parser gen-parser is a program that, given a grammar and

a character string, returns a parse tree:

parse-tree = [[gen-parser]]
L

grammar char-string

1. Show how to use a partial evaluator mix to generate a parser and a parser

generator.

2. Will it make a di�erence to the structures of the parser and the parser gen-

erator whether mix is o�ine or online?

2

Part III

Partial Evaluation for Stronger

Languages

Chapter 8

Partial Evaluation for the

Lambda Calculus

This chapter describes partial evaluation for the lambda calculus (Section 3.2),

augmented with an explicit �xed-point operator. The techniques used here diverge
from those used in Chapters 4 and 5 in that they are not based on specializa-

tion of named program points. The algorithm essentially leaves some operators
(applications, lambdas, etc.) untouched and reduces others as standard evaluation

would do it. This simple scheme is able to handle programs that rely heavily on
higher-order facilities. The requirements on binding-time analysis are formulated
via a type system and an e�cient binding-time analysis via constraint solving is

outlined. The partial evaluator is proven correct.

History and recent developments

Self-applicable partial evaluation was �rst achieved in 1984 for a simple �rst-order
functional language. This promising result was not immediately extendable to a
higher-order language, the reason being that a specializer, given incomplete input

data, in e�ect traces all possible program control
ow paths and computes as many
static values as possible. This seemed hard to do, since
ow analysis of programs

that manipulate functions as data values is non{trivial.

Breakthroughs occurred independently in 1989 by Bondorf (then at Dortmund)

and by Gomard and Jones (Copenhagen). The latter, called Lambdamix and the

subject of this chapter, is conceptually simpler, theoretically motivated, and has

been proven correct. Bondorf's work is more pragmatically oriented, led to the

now widely distributed system Similix, and is the subject of Chapter 10.

In common with the partial evaluators of earlier chapters, Lambdamix represents

the concrete syntax of programs as constants (in fact Lisp S-expressions are used,

though this is not essential). The natural question of whether partial evaluation

is meaningful and possible in the classical pure lambda calculus without constants
has recently been answered a�rmatively.

Brie
y: Mogensen devised a quite e�cient self-interpreter for the pure lambda

calculus, using `higher-order abstract syntax' to encode lambda expressions as nor-

163

164 Partial Evaluation for the Lambda Calculus

mal form lambda expressions. These are not di�cult to interpret and even to spe-

cialize, although they are rather hard for humans to decipher. The ideas were later

extended to give a self-applicable partial evaluator for the same language, using

essentially the two level type system to be seen in this chapter. The partial eval-

uator was implemented, self-application gave the usual speedups, and it has since

been proven correct by Wand using the technique of `logical relations' [191,279].

8.1 The lambda calculus and self-interpretation

The classical lambda calculus (extended with constants, conditionals, and a �x-

point operator) is used here for simplicity and to allow a more complete treatment

than would be possible for a larger and more practical language.

A lambda calculus program is an expression, e, together with an initial environ-
ment, �, which is a function from identi�ers to values. The program takes its input

through its free variables. The expression syntax given below di�ers from that of
Section 3.2 in that we have introduced an explicit �xed-point operator.

hLami ::= hConstanti Constants
j hVari Variables

j �hVari.hLami Abstraction
j hLami hLami Application

j fix hLami Fixed point operator
j if hLami then hLami else hLami Conditional
j hOpi hLami . . . hLami Base application

hVari ::= any identi�er

Examples of relevant base functions include =, *, cons, etc. The �xed-point op-
erator fix computes the least �xed point of its argument and is used to de�ne

recursive functions. For example, a program computing xn can be de�ned by

(fix �p.�n'.�x'.

if (= n' 0)

then 1

else (* x' (p (- n' 1) x'))) n x

Note that fix �f.e is equivalent to the Scheme constructs (rec f e) and (letrec

((f e)) f). Why introduce an explicit �xed-point operator instead of using the

Y-combinator written as a lambda expression (Section 3.2.6) to express recursion?
This is because an explicit fix allows a simpler binding-time analysis.

As a �rst step towards partial evaluation we show a self-interpreter for the
lambda calculus in Figure 8.1. Below we explain the notation used in Figure 8.1

and the remainder the chapter.

The lambda calculus and self-interpretation 165

Value domains

v :Val = Const + Funval
Funval = Val ! Val
� : Env = Var ! Val

E : Expression ! Env ! Val
E [[c]]� = V[[c]]"Const
E [[var]]� = �(var)

E [[�var.e]]� = (�value.(E [[e]]�[var 7! value]))"Funval
E [[e1 e2]]� = (E [[e1]]�#Funval) (E [[e2]]�)
E [[fix e]]� = �x (E [[e]]�#Funval)
E [[if e1 then e2 else e3]]� = (E [[e1]]�#Const) ! E [[e2]]�, E [[e3]]�

E [[op e1. . . en]] = (O[[op]] (E [[e1]]�#Const)
. . . (E [[en]]�#Const))"Const

Figure 8.1: Lambda calculus self-interpreter.

Notation
Const is a `
at' domain of constants large enough to include concrete syntax repre-
sentations of lambda expressions (as input to and output from mix) and booleans
for use in conditionals. As in earlier chapters (and in our implementation) a suit-

able choice is the set of Lisp S-expressions. Further, we assume there are enough
base functions to test equality, and to compose and decompose abstract syntax.
The separated sum of domains Const and Funval is written Val = Const +

Funval. Given an element b 2 Const, v = b"Const 2 Val is tagged as originating
from Const. In SML or Miranda this would be written v = Const b. We have

introduced the " notation for symmetry with v#Const. This strips o� the tag
yielding an element in Const if v is tagged as originating from Const. If v has any
other tag, then v#Const produces an error.

We assume that all operations are strict in the error value but omit details. The
domain Funval = Val ! Val contains partial functions from Val to Val. Function
V computes the value (in Const) of a constant expression (in Exp). Function

O links names to base functions. The notation �[var 7! value] is, as in Section

2.1, a shorthand for �x.if (x=var) then value else (� x) and is used to update

environments. Expression v1 ! v2, v3 has the value v2 if v1 equals true and value

v3 if v1 equals false, else the error value.
Since we use lambda calculus both as an object level programming language

and as a meta-language, we distinguish notationally between the two for clarity.

Object level lambda expressions are written in typewriter style: e e, �var.e,

fix e etc., and the meta-language is in italics: e e, �var.e, �x e etc.

166 Partial Evaluation for the Lambda Calculus

The self-interpreter
The structure of the self-interpreter is not much di�erent from that of the lambda

calculus interpreter written in ML and presented in Section 3.3.1. First-order

structures have been replaced by functions in two places:

� The environment is implemented by a function from variables to values.

Looking up the value of a variable var thus amounts to applying the en-

vironment �. This replaces the parallel lists of names and values seen in the

interpreters from earlier chapters.

� The value of an abstraction �var.e is a function which, when applied to an

argument value, evaluates e in an extended environment binding var to the

value. The value of an application e1 e2 is found by applying the value of

e1, which must be a function, to the value of e2. This mechanism replaces

the use of explicit closures.

It should be clear that, despite the extensive use of syntactic sugar, Figure 8.1 does
de�ne a self-interpreter, as the function E can easily be transformed into a lambda

expression: fix �E.�e.��.if

8.2 Partial evaluation using a two-level lambda calculus

As in the previous chapters we divide the task of partial evaluation into two phases:
�rst we apply binding-time analysis, which yields a suitably annotated program,

then reduce the static parts, blindly obeying the annotations. An annotated pro-
gram is a two-level lambda expression. The two-level lambda calculus has two
di�erent versions of each of the following constructions: application, abstraction,

conditionals, �xed points, and base function applications. One version is dynamic,
the other is static. The static operators are those of the standard lambda calcu-

lus: if, fix, �, etc. and the dynamic operators are underlined: if, fix, �, @. (@

denotes a dynamic application.) The abstract syntax of two-level expressions is

given in Figure 8.2.

Intuitively, all static operators �, @, . . . are treated by the partial evaluator
as they were treated by the self-interpreter. The result of evaluating a dynamic

operator (�, @, . . .) is to produce a piece of code for execution at run-time | a

constant which is the concrete syntax representation of a residual one-level lambda

expression, perhaps with free variables.

The lift operator also builds code | a constant expression with the same

value as lift's argument. The operator lift is applied to static subexpressions

of a dynamic expression.

A two-level program is a two-level expression te together with an initial environ-

ment �s which maps the free variables of te to constants, functions, or code pieces.

We shall assume that free dynamic variables are mapped to distinct, new variable

Partial evaluation using a two-level lambda calculus 167

h2Lami ::= hConstanti Constant

j hVari Variable

j lift h2Lami Lifting

j �hVari.h2Lami Abstraction

j h2Lami h2Lami Application

j fix h2Lami Fixed point

j if h2Lami then h2Lami else h2Lami Conditional

j hOpi h2Lami . . . h2Lami Base application

j �hVari.h2Lami Dyn. abstraction

j h2Lami @ h2Lami Dyn. application

j fix h2Lami Dyn. �xed point

j if h2Lami then h2Lami else h2Lami Dyn. conditional

j hOpi h2Lami . . . h2Lami Dyn. base appl.

Figure 8.2: Two-level lambda calculus syntax.

names. The T -rules (Figure 8.3) then ensure that these new variables become the
free variables of the residual program.

Variables bound by �, will also (eventually) generate fresh variable names in the
residual program, whereas variables bound by � can be bound at specialization
time to all kinds of values: constants, functions, or code pieces.

The T -rule for a dynamic application is

T [[te1 @ te2]]� = build-@(T [[te1]]�#Code, T [[te2]]�#Code)"Code

The recursive calls T [[te1]]� and T [[te2]]� produce the code for residual operator
and operand expressions, and the function build-@ `glues' them together to form

an application to appear in the residual program (concretely, an expression of the
form (te1' te2')). All the build-functions are strict.
The projections (#Code) check that both operator and operand reduce to code

pieces, to avoid applying specialization time operations (e.g. boolean tests) to resid-
ual program pieces. Finally, the newly composed expression is tagged ("Code) as
being a piece of code.

The T -rule for variables is

T [[var]]� = �(var)

The environment � is expected to hold the values of all variables regardless of

whether they are prede�ned constants, functions, or code pieces. The environment

is updated in the usual way in the rule for static �, and in the rule for �, the formal
parameter is bound to an as yet unused variable name, which we assume available

whenever needed:

T [[�var.te]]� = let nvar = newname(var)
in build-�(nvar, T [[te]]�[var 7! nvar]#Code)"Code

168 Partial Evaluation for the Lambda Calculus

Two-level value domains

2Val = Const + 2Funval + Code
2Funval = 2Val ! 2Val
Code = Expression
2Env = Var ! 2Val

T : 2Expression ! 2Env ! 2Val
T [[c]]� = V[[c]]"Const
T [[var]]� = �(var)

T [[lift te]]� = build-const(T [[te]]�#Const)"Code

T [[�var.te]]� = (�value.(T [[te]] �[var 7! value]))"2Funval
T [[te1 te2]]� = T [[te1]]�#2Funval (T [[te2]]�)
T [[fix te]]� = �x (T [[te]]�#2Funval)
T [[if te1 then te2 else te3]]�

= T [[te1]]�#Const ! T [[te2]]�, T [[te3]]�
T [[op e1. . . en]]� = (O[[op]] (T [[e1]]�#Const) . . . (T [[en]]�#Const))"Const

T [[�var.te]]� = let nvar = newname(var)
in build-�(nvar, T [[te]] �[var 7! nvar]#Code)"Code

T [[te1 @ te2]]� = build-@(T [[te1]]�#Code, T [[te2]]�#Code)"Code
T [[fix te]]� = build-�x(T [[te]]�#Code)"Code
T [[if te1 then te2 else te3]]�

= build-if(T [[te1]]�#Code
, T [[te2]]�#Code, T [[te3]]�#Code)"Code
T [[op e1. . . en]] = build-op((T [[e1]]�#Code) . . . (T [[en]]�#Code))"Code

Figure 8.3: Two-level lambda calculus interpreter.

Each occurrence of var in te will then be looked up in �[var 7! nvar], causing

var to be replaced by the fresh variable nvar. Since �var.te might be duplicated,

and thus become the `father' of many �-abstractions in the residual program, this

renaming is necessary to avoid name confusion in residual programs. Any free dy-
namic variables must be bound to their new names in the initial static environment

�s. The generation of new variable names relies on a side e�ect on a global state

(a name counter). In principle this could be avoided by adding an extra parameter
to T , but for the sake of notational simplicity we have used a less formal solution.

The valuation functions for two-level lambda calculus programs are given in Fig-
ure 8.3. The rules contain explicit tagging and untagging with " and #; Section 8.3

will discuss su�cient criteria for avoiding the need to perform them.

Congruence and consistency of annotations 169

Example 8.1 Consider again the power program:

(fix �p.�n'.�x'.

if (= n' 0)

then 1

else (* x' (p (- n' 1) x'))) n x

and suppose that n is known and x is not. A suitably annotated power program,

power-ann, would be:

(fix �p.�n'.�x'.

if (= n' 0)

then (lift 1)

else (* x' (p (- n' 1) x'))) n x

Partial evaluation of power (that is, two-level evaluation of power-ann) in envi-

ronment �s = [n 7! 2"Const, x 7! xnew"Code] yields:

T [[power-ann]]�s

= T [[(fix �p.�n'.�x'.if ...) n x]]�s

= * xnew (* xnew 1)

In the power example it is quite clear that for all d2, � = [n 7! 2, x 7! d2], �s =
[n 7! 2, x 7! xnew], and �d = [xnew 7! d2] (omitting injections for brevity) it holds
that

E [[power]]� = E [[T [[power-ann]]�s]]�d

This is the mix equation (see Section 4.2.2) for the lambda calculus. Section 8.8

contains a general correctness theorem for two-level evaluation. 2

8.3 Congruence and consistency of annotations

The semantic rules of Figure 8.3 check explicitly that the values of subexpressions
are in the appropriate summands of the value domain, in the same way that a
type-checking interpreter for a dynamically typed language would. Type-checking

on the
y is clearly necessary to prevent partial evaluation from committing type

errors itself on a poorly annotated program.

Doing type checks on the
y is not very satisfactory for practical reasons. Mix is
supposed to be a general and automatic program generation tool, and one wishes
for obvious reasons for it to be impossible for an automatically generated compiler

to go down with an error message.

Note that it is in principle possible | but unacceptably ine�cient in practice

| to avoid partial evaluation-time errors by annotating as dynamic all operators

170 Partial Evaluation for the Lambda Calculus

(Const) � ` c : S

(Var) � [x 7! t] ` x : t

(Lift)
� ` te : S

� ` lift te : D

(Abstr)
� [x 7! t2] ` te : t1
� ` �x.te : t2 ! t1

(Apply)
� ` te1 : t2 ! t1 � ` te2 : t2

� ` te1 te2 : t1

(Fix)
� ` te : (t1 ! t2) ! (t1 ! t2)

� ` fix te : t1 ! t2

(If)
� ` te1 : S � ` te2 : t � ` te3 : t
� ` if te1 then te2 else te3 : t

(Op)
� ` te1 : S . . . � ` ten : S
� ` op te1 . . . ten : S

(Abstr-dyn)
� [x 7! D] ` te : D
� ` �x.te : D

(Apply-dyn)
� ` te1 : D � ` te2 : D

� ` te1 @ te2 : D

(Fix-dyn)
� ` te : D

� ` fix te : D

(If-dyn) � ` te1 : D � ` te2 : D � ` te3 : D
� ` if te1 then te2 else te3 : D

(Op-dyn) � ` te1 : D . . . � ` ten : D
� ` op te1 . . . ten : D

Figure 8.4: Type rules checking well-annotatedness.

in the subject program. This would place all values in the code summand so all

type checks would succeed; but the residual program would always be isomorphic

to the source program, so it would not be optimized at all.

The aim of this section is to develop a more e�cient strategy, ensuring before

specialization starts that the partial evaluator cannot commit a type error. This

strategy was seen in Chapters 4 & 5. The main di�erence now is that in a higher-

order language it is less obvious what congruence is and how to ensure it.

Congruence and consistency of annotations 171

8.3.1 Well-annotated expressions

A simple and traditional way to preclude type check errors is to devise a type

system. In typed functional languages, a type inference algorithm such as algorithm

W checks that a program is well-typed prior to program execution [184]. If it is,

then no run-time summand tags or checks are needed. Type checking is quite well

understood and can be used to get a nice formulation of the problem to be solved

by binding-time analysis [104,202].

We saw in Section 5.7 that type rules can be used to check well-annotatedness,

and we now apply similar reasoning to the lambda calculus.

De�nition 8.1 The two-level types t are as follows, where � ranges over type vari-

ables:

t ::= � j S j D j t ! t

A type environment � is a mapping from program variables to types. 2

De�nition 8.2 Let � be a type environment mapping the free variables of a two-

level expression te to their types. Then te is well-annotated if � ` te : t can be
deduced from the inference rules in Figure 8.4 for some type t. 2

For example, the two-level expression power-ann of Example 8.1 is well-annota-
ted in type environment � = [n 7! S, x 7! D]. The whole expression has type D,

and the part (fix p ...) has type S ! D! D.
Our lambda calculus is basically untyped, but the well-annotatedness ensures

that all program parts evaluated at partial evaluation time will be well-typed,
thus ensuring specialization against type errors. The well-annotatedness criterion
is, however, completely permissive concerning the run-time part of a two-level

expression. Thus a lambda expression without static operators is trivially well-
typed | at partial evaluation time.
Two-level expressions of type S evaluate (completely) to �rst-order constants,

and expressions of type t1 ! t2 evaluate to a function applicable only at partial
evaluation time. The value by T of a two-level expression te of type D is a one-

level expression e. For partial evaluation we are only interested in fully annotated

programs p-ann that have type D. In that case, T [[p-ann]]�s (if de�ned) will be a

piece of code, namely the residual program.

In our context, the result about error freedom of well-typed programs can be

formulated as follows. Proof is omitted since the result is well-known.

De�nition 8.3 Let t be a two-level type and v be a two-level value. We say that t
suits v i� one of the following holds:

1. t = S and v = ct"Const for some ct 2 Const.

2. t = D and v = cd"Code for some cd 2 Code.

172 Partial Evaluation for the Lambda Calculus

3. (a) t = t1 ! t2, v = f"2Funval for some f 2 2Funval, and

(b) 8 v 2 2Val: t1 suits v implies t2 suits f(v).

A type environment � suits an environment � if for all variables x bound by �, � (x)

suits �(x). 2

The following is a non-standard application of a standard result [184].

Proposition 8.1 (`Well-annotated programs do not go wrong') If � ` te : t, and �
suits �s, then T [[te]]�s does not yield a projection error. 2

Of course T can `go wrong' in other ways than by committing type errors.

Reduction might proceed in�nitely (so T [[p-ann]]�s is not de�ned) or residual code

might be duplicated. We shall not discuss these problems here.

8.4 Binding-time analysis

De�nition 8.4 The annotation-forgetting function �: 2Exp!Exp, when applied to
a two-level expression te, returns a one-level expression e which di�ers from te

only in that all annotations (underlines) and lift operators are removed. 2

De�nition 8.5 Given two-level expressions, te and te1, de�ne te v te1 by

1. �(te) = �(te1)

2. All operators underlined in te are also underlined in te1

2

Thus v is a preorder on the set of two-level expressions. Given a �-expression
e, let a binding-time assumption for e be a type environment � mapping each free

variable of e to either S or D.

De�nition 8.6 Given an expression e and a binding-time assumption � , a comple-
tion of e for � is a two-level expression te1 with �(te1) = e and � ` te1 : t for
some type t. A minimal completion is an expression te2 which is a completion of

te ful�lling te2 v te1 for all completions te1 of e. 2

Minimal completions are in general not unique. Assume � = [y 7! D], and e =

(�x.x+y) 4. There are two minimal completions, te1 = (�x.x+y) (lift 4) and

te2 = (�x.(lift x)+y) 4 which yield identical residual programs when partially
evaluated. The de�nition of v does not distinguish between (minimal) completions

which di�er only in the choice of lift-points. Residual programs are identical for

completions te1 and te2 if te1 v te2 and te2 v te1, and the impact of di�erent

choices on e�ciency of the partial evaluation process itself is of little importance.

Simplicity versus power in Lambdamix 173

The requirement that � be a binding-time assumption implies that all free vari-

ables are �rst-order. This ensures the existence of a completion. Note that a

�-bound variable x can get any type in completions, in particular a functional

type. Possible con
icts can be resolved by annotating the abstraction(s) and ap-

plication(s) that force x to have a functional type.

The task of binding-time analysis in the �-calculus is brie
y stated: given an

expression e and a binding-time assumption � �nd a minimal completion of e for

� . In Section 8.6 we show by example that this can be done by type inference, and

in Section 8.7 we show how to do it in a much more e�cient way.

Proposition 8.2 Given an expression e and a binding-time assumption � there ex-

ist(s) minimal completion(s) of e for � .

Proof Follows from the properties of the constraint-based binding-time analysis

algorithm in Section 8.7 2

8.5 Simplicity versus power in Lambdamix

A value of type t 6= D can only be bound to a variable by applying a function
of type t ! t0. The partial evaluation time result of such a statically performed

application is found by evaluating the function body, no matter what the type of
the argument or the result is. This corresponds closely to unfolding on the
y of
all static function calls (see Section 5.5).

Lambdamix does not perform specialization of named program points. Rather,

generation of multiple variants of a source expression can be accomplished as an
implicit result of unfolding a fix operator, since static variables may be bound to

di�erent values in the di�erent unfoldings.

The only way to prevent a function call from being unfolded is to annotate
the function as dynamic: �. All applications of that function must accordingly

be annotated as dynamic. Dynamic functions �. . . can only have dynamic argu-

ments (Figure 8.4). Note that this restriction does not exist in Chapter 5 where
named functions are specialized. As an example, consider the append function,

app, written as a lambda expression:

(fix �app.�xs.�ys.

if (null? xs)

then ys

else (cons (car xs) (app (cdr xs) ys))) xs0 ys0

Partial evaluation with xs0 = '(a b) and dynamic ys0 yields (cons 'a (cons

'b ys0)), a result similar to that produced by the Scheme0 specializer from Chap-

ter 5 (with any reasonable unfolding strategy). Lambdamix handles this example

well because the recursive calls to app should be unfolded to produce the opti-

mal residual program. Unfolding the calls allows Lambdamix to exploit the static

argument, (cdr xs).

174 Partial Evaluation for the Lambda Calculus

Now assume that xs0 is dynamic and that ys0 is static with value '(c d). When

applied to a corresponding problem, the techniques from Chapter 5 would produce

the residual Scheme0 program

(define (app-cd xs)

(if (null? xs)

'(c d)

(cons (car xs) (app-cd (cdr xs)))))

where the recursive call to app-cd is not unfolded. Now consider this problem

in the Lambdamix framework. With dynamic ys0, a minimal completion of the

append program is:

(fix �app.�xs.�ys.

if (null? xs)

then (lift ys)

else (cons (car xs) (app (cdr xs) ys))) xs0 ys0

Note that even though xs0 and xs are dynamic the function �xs.�ys.. . . is still
static in the minimal completion. Lambdamix will loop in�nitely by unfolding
the recursive applications of app. To avoid in�nite unfolding, the recursive ap-

plication (app (cdr xs) ys) must be annotated as dynamic, which forces the
whole expression fix �app.. . . to be annotated as dynamic. This means that no

computation can be done by terminating partial evaluation.

In this particular example, specialization of the named function app with respect

to �rst-order data ys0 = '(c d) could be obtained by simple methods but to get a
general solution to this class of problems we must also consider specialization with

respect to higher-order values, i.e., functions. We shall return to this in Chapter 10.

8.5.1 Optimality of Lambdamix

Lambdamix has been tested on several interpreters derived from denotational lan-

guage de�nitions [106]. Such interpreters are compositional in the program argu-

ment, which means that recursive calls in the interpreter can be safely unfolded

when the interpreter is specialized with respect to a concrete source program.

Lambdamix often performs well on interpreters ful�lling compositionality, and is
often able to specialize away interpretive overhead such as syntactic dispatch, en-

vironment lookups, etc.

A compelling example: when the self-interpreter from Figure 8.1 (after removing

all tagging and untagging operations) is specialized with respect to a lambda ex-

pression e, the residual program is an expression e0 which is identical to e modulo

renaming of variables and insigni�cant coding of base function applications. Thus

Lambdamix is nearly optimal as de�ned in Chapter 6. (A small di�erence: the

call: (+ e1 e2) is transformed into (apply '+ e1 e2), etc. The problem can be

fully eliminated by treating base functions as free variables, bound in the initial

Binding-time analysis by type inference 175

environment [106] or by a simple post processing like in Chapter 11.)

8.6 Binding-time analysis by type inference

An intuitively natural approach to binding-time analysis for the lambda calculus

uses a variant of the classical Algorithm W for polymorphic type inference [106,

185,202]. The guiding principle is that the static parts of an annotated program

must be well-typed. This naturally leads to an algorithm that tries to type a given

program in its given type environment.

If this succeeds, all is well and specialization can proceed. If type inference fails,

the application of a user-de�ned or base function that led to the type con
ict is

made dynamic (i.e. an underline is added), and the process is repeated. Eventually,

enough underlines will be added to make the whole well-typed and so suitable for

specialization.

We only give an example for brevity, since the next section contains a much more

e�cient algorithm. Recall the power program of Example 8.1:

(fix �p.�n'.�x'.

if (= n' 0) then 1

else (* x' (p (- n' 1) x'))) n x

with initial type environment � = [n 7! S, x 7! D]. At the if, AlgorithmW works

with the type environment:

[p 7! (S ! D ! �); n0 7! S; x0 7! D; n 7! S; x 7! D]

where � is an as yet unbound type variable. Thus expression (p (- n' 1) x') has

type �, which is no problem. This leads, however, to a type con
ict in expression
(* x' (p (- n' 1) x')) since static operator * has type S � S ! S, in con
ict
with x', which has type D.

The problem is resolvable by changing * to *, with type D�D ! D. This forces
� = D so the else expression has type D. The single remaining con
ict, that 1

has type S 6= D, is easily resolved by changing the 1 to lift 1, or by underlining

it. The �rst solution leads to the annotation of Example 8.1.

8.7 BTA by solving constraints

In this section we shall show an elegant and e�cient solution to the problem of

binding-time analysis for the lambda calculus. The key observation is that the

requirement that a two-level expression is well-annotated can be formulated as a
set of constraints on the types of the individual subexpressions. These constraints

can be e�ciently reduced to a normal form from which the minimal completion is

176 Partial Evaluation for the Lambda Calculus

easily computed. The description is adapted from a paper by Fritz Henglein [114].

That paper also gives the details of the e�cient constraint reduction and proofs of

the stated propositions.

The de�nition of completions places no restriction on the insertion of lifts

(apart from the obvious demand that the expression must be well-annotated). To

simplify the exposition, we shall assume for now that no lifts are allowed. Once

the basic concepts are treated we present the modi�cations needed to account for

lift-insertion (Section 8.7.3).

8.7.1 Combining static and dynamic type rules

Consider the type rules for � and �:

(Abstr)
� [x 7! t2] ` te : t1
� ` �x.te : t2 ! t1

(Abstr-dyn)
� [x 7! D] ` te : D
� ` �x.te : D

Compare these rules with a combined rule, which we call Abstr-comb:

(Abstr-comb)
� [x 7! t2] ` e : t1 ((t2 ! t1) = t _ t = t1 = t2 = D)

� ` �x.e : t

An application of rule (Abstr-comb) corresponds exactly to an application of either
(Abstr) or (Abstr-dyn), depending on which disjuncts hold in (t2 ! t1 = t _ t = t1
= t2 = D). By making combined rules for the other operators that have both static
and dynamic versions we get a type system, TypeComb, in which an expression e

is typable if and only if e has completions. Given the type of all subexpressions

of e in TypeComb, we immediately have the corresponding completion of e. For
example, if a subexpression of form �x.e1 has type D, then in the corresponding

completion the lambda will be annotated �. We �nd completions for an expression
e by �nding typings of e in TypeComb.

8.7.2 Constraints on expression types

Let e be a �-expression and � a binding-time environment for e. We associate a

unique type variable �x with every �-bound variable x occurring in e and a unique

type variable �e1 with every subexpression e1 in e. We assume that all �-bound

variables are distinct.

As an informal example consider the expression (�x.x y) z and assume binding-

time environment � = [y 7! D, z 7! D]. Let � be the type variable associated with

(�x.x y). All other expressions must have type D, but both � = D and � = D

! D would give correct typings. The corresponding completions are respectively

BTA by solving constraints 177

(�x.x @ y) @ z and (�x.x @ y) z.

Our strategy is to translate the inference rules of the system TypeComb into

constraints on the type variables � associated with the subexpressions and bound

variables of a given e to be analysed. The next step is to �nd the most general

substitution of type terms for type variables such that all constraints are satis�ed.

This substitution characterizes all possible completions of e, and among these we

choose a minimal completion.

We de�ne �b and �f to be the `
at' partial orders on type terms whose only

strict inequalities are

S <b D

D ! D <f D

Note that (t2 ! t1 = t _ t = t1 = t2 = D) , t2 ! t1 �f t.

A constraint system C is a multiset1 of constraints of the form

� �0 ! �00 �f �,

� � �b �,

� � = �0, and

� � > �0.

where �, �0, �00, � are type variables or a type constant S or D. A substitution V
(of ground type expressions for type variables) is a solution of C if the following
two conditions are ful�lled:

1. For every constraint of form V ful�ls

�0 ! �00 �f � V (�0 ! �00) �f V (�)
� �b � V (�) �b V (�)

� = �0 V (�) = V (�0)

� > �0 V (�) = D) V (�0) = D

2. For every type variable � not occurring in C we have V (�) = �.2

We write Sol(C) for the set of all solutions of C.

We de�ne the constraint system C� (e) by induction as follows.

1Using multisets instead of sets leads to a simpler formulation and faster implementation of
the constraint transformations rules

2This condition guarantees that solutions V and V 0 are equal whenever their restrictions to
the variables occurring in C are equal.

178 Partial Evaluation for the Lambda Calculus

Form of e C� (e) =

�x.e1 f �x ! �e1 �f �e g [C� (e1)

e1 e2 f �e2 ! �e �f �e1 g [C� (e1) [C� (e2)

fix e1 f �e ! �e �f �e1 g [C� (e1)

if e1 then e2 else e3 f S �b �e1 , �e = �e2 , �e = �e3 , �e1 > �e g

[C� (e1) [C� (e2) [C� (e3)

c f S = �e g

op e1 e2 f S �b �e1, �e1 = �e2 , �e2 = �e g [C� (e1) [C� (e2)

A �-bound variable x f �x = �e g

Free x with �(x) = t f t = �e g

Every type derivation for a �-expression e corresponds uniquely to a type labelling
of the syntax tree of e; that is, to a mapping of (�-expression) occurrences in e into

type expressions. A type labelling that arises from a type derivation in this fashion

can, however, equally well be viewed as a mapping from the canonical type variables
associated above with the occurrences in e to type expressions. Consequently every
(implicit) type derivation for a �-expression e determines uniquely a substitution on
these type variables by mapping every other type variable to itself. By induction
on the syntax of �-expressions e it can be shown that such a substitution is a

solution of the constraint system C� (e) and vice versa | every solution of C� (e)
is a substitution determined by a type derivation for e. Since every implicit type
derivation of e corresponds to a unique completion of e we have the following

proposition.

Proposition 8.3 For every �-expression e and binding-time assumption � for e there

is a one-to-one correspondence between the completions of e and the solutions of
C� (e). 2

8.7.3 Inserting lift expressions

The de�nition of a completion allows any subexpression e of type S to be replaced

by lift e of type D. When given an unannotated expression e there is no obvious
a priori way to determine where to insert lifts to obtain completions. Our solution
is to associate two type variables �e1 and ��e1 with each subexpression e1 of e. As

above, �e1 represents the `immediate' type of e1, and ��e1 represents its type after
possible lifting. Given a solution V , the relation between the two variables must

be V (�e1) �b V (��e1), where equality means `no lift inserted' and <b indicates

insertion of a lift. Below is the revised de�nition of C� (e).

It could be argued that it would be conceptually cleaner to introduce a separate

class of constraints, say �l, to control lift insertion instead of using �b which was

introduced for other purposes. Running the risk of unnecessary confusion, we have

BTA by solving constraints 179

chosen to use �b anyway because its properties also capture lift insertion. Leaving

out a separate �l makes the presentation shorter.

Form of e C� (e) =

�x.e1 f �x ! ��e1 �f �e, �e �b ��e g [C� (e1)

e1 e2 f ��e2 ! �e �f ��e1, �e �b ��e g [C� (e1) [C� (e2)

fix e1 f �e ! �e �f ��e1 , �e �b ��e g [C� (e1)

if e1 then e2 else e3 f S �b ��e1 , �e = ��e2, �e = ��e3 , ��e1 > �e, �e �b ��e g

[C� (e1) [C� (e2) [C� (e3)

c f S = �e, �e �b ��e g

op e1 e2 f S �b ��e1 , ��e1 = ��e2, ��e2 = �e, �e �b ��e g

[C� (e1) [C� (e2)

A �-bound variable x f �x �b ��e g

Free x with �(x) = t f t = �e, �e �b ��e g

Note that an abstraction �x.e can never get type S and thus never be lifted.
This insight could yield a small `optimization' of the constraint set generated above.

8.7.4 Normalization of type constraints

In Section 8.7.2 we have seen that the type derivations for a �-expression e under
binding-time assumption � | and thus its completions | can be characterized

by the solutions of a constraint system C� (e). In this section we present trans-
formations that preserve the set of solutions of such a constraint system. A con-

straint system in normal form with respect to these transformations (i.e., cannot be
transformed any further) will have the property that it directly de�nes a minimal
solution.

Our transformation rules de�ne a labelled reduction relation C
V
) C 0, where C

and C 0 are constraint systems and V is a substitution. If the substitution is the
identity substitution we simply write C) C 0. For substitution V and constraint

system C, the result of the application of V to all type expressions in C is written

V (C). Let G(C) be the directed graph, where the nodes are the variables appearing
in constraint system C and where the edge (�, �) is included if and only if there

is an inequality constraint of the form � ! �0 �f � or �0 ! � �f � in C. If
G(C) contains a cycle we say C is cyclic; acyclic otherwise.3 The transformation

rules are given in Figure 8.5. The �rst two inequality constraint rules show how

inequality constraints with identical right-hand sides are eliminated: if the left-
hand sides have the same type constructor then these left-hand sides are equated

3Constraints of the form � = �0 and � �b �
0 need not be considered in the de�nition of

cyclicity since our transformation rules eliminate all equational constraints, and �b-inequality
constraints remaining in a normal form constraint system are irrelevant.

180 Partial Evaluation for the Lambda Calculus

in the `reduced' system (Rule 1a); if the left-hand sides have di�erent left-hand
side type constructors then the right-hand side is equated with D (Rule 1b) and

the inequalities are eventually eliminated by Rules 1g and 1h.

The transitive closure of the transformation rules is de�ned by: C
V
)+ C 0 if C

V
) C 0 and C

V 0�V
)+ C 0 if C

V
)+ C 0, C 0

V 0

)+ C 0 for some C 0, where V 0 �V denotes the

composition of V 0 and V . We say C is a normal form (or normalized) constraint

system if there is no C 0 such that C
V
) C 0 for any V . We say C has a normal form

if there is a normal form C 0 such that C
V
)+ C 0 for some substitution V . The

correctness of the transformations is captured in the following proposition, which

is easily proved by induction on the length of transformation sequences and by case

analysis of the individual rules using elementary properties of �b;�f .

Proposition 8.4 (Soundness and completeness of transformations)

Let C
V
)+ C 0. Then Sol(C) = f(V 0

� V) j V 0
2 Sol(C 0)g. 2

The transformations can be used to derive an algorithm for normalizing con-
straint systems based on the following proposition.

Proposition 8.5 (Normalization of constraint systems)

1. The transformations of Figure 8.5 are weakly normalizing; that is, every C
has a normal form.

2. If C 0 is a normal form constraint system then

(a) it has no equational constraints;

(b) it is acyclic;

(c) its constraints are of the form � ! �' �f �,
 �b � or � > �0 where �,
�0 are type variables; � is a type variable or the type constant D; and

 is a type variable or the type constant S.

(d) for every inequality constraint of the form �! �'�f � the type variable

� does not occur on the right-hand side of other �f -inequalities or on

the left-hand side of �b-inequalities;

(e) for every inequality constraint of the form S �b � the type variable �

does not occur on the right-hand side of �f -inequalities or on either side
of �b-inequalities.

3. If C contains no constraints of the form � �b �
0 where � is a type variable

and C
S
)+ C 0 then C 0 contains no constraint of that form either.

BTA by solving constraints 181

1. (inequality constraint rules)

(a) C [f � ! �0 �f
, � ! �' �f
g

) C [f � ! �0 �f
, � = �, �0 = �' g if
 is a type variable

(b) C [f � ! �0 �f
, S �b
g

) C [f � ! �0 �f
, S�b
,
 = Dg if
 is a type variable

(c) C [f � ! �0 �f �, � �b �' g

) C [f � ! �0 �f �, � = �' g

(d) C [f S �b �, � �b �
0 g

) C [f S �b �, S �b �
0, � > �0 g if �, �0 are type variables

(e) C [f S �b �
0, � �b �

0 g

) C [f S �b �, S�b �
0, � > �0 g if �, �0 are type variables

(f) C [f S �b �, S �b � g) C [f S �b � g

(g) C [f � ! �0 �f D g) C [f � = D, �0 = D g

(h) C [f S �b D g) C

(i) C [f S �b S g) C

(j) C [f D �b � g) C [f D = � g

(k) C [f � �b D g) C [f S �b � g if � is a type variable

2. (equational constraint rules)

(a) C [f � = � g) C

(b) C [f � = �0 g
V
) V (C) if � is a type variable and V = f � 7! �0 g

(c) C [f �0 = � g
V
) V (C) if � is a type variable and V = f � 7! �0 g

3. (dependency constraint rules)

(a) C [f � > D g) C

(b) C [f S > � g) C

(c) C [f D > � g) C [f � = D g

4. (occurs check rule)

(a) C) C [f � = D g if C is cyclic and � is on a cycle in G(C).

Figure 8.5: Transformation rules for constraint systems.

182 Partial Evaluation for the Lambda Calculus

Proof

1. De�ne a megastep as follows: apply any applicable rule and then apply the

equational constraint transformation rules exhaustively. It is easy to see

that every megastep terminates and that after it terminates all equational

constraints have been eliminated. Let c be the number of constraints; n

the number of variables occurring in them; and v the number of inequality

constraints with a variable on the left-hand side. It is easy to check that

every megastep decreases the sum c + n + 2v by at least one. Consequently

every sequence of megasteps terminates.

2. By de�nition of normal form.

3. None of the rules introduce �b-inequalities with a variable on the left-hand

side.

2

From a constraint system C in normal form we can �nd a solution that character-
izes a minimal completion of the original expression e. Consider two completions
te1 and te2. If an operator is static in te1 and dynamic in te2, then there will be

at least one subexpression of type D in te2, where the corresponding subexpression
in te1 has a type t 6= D.

Now let C be a normal form constraint system. The normalization process
can have forced subexpressions to have type D, but these subexpressions must

be dynamic in all completions (cf. Proposition 8.4). To ensure that no other
subexpressions get type D, we interpret all inequalities in C as equations. Since
C is a normal form constraint system, by Proposition 8.5, part 2, these equations

have a most general uni�er U [163]. Let BS be the substitution that maps every
type variable occurring in U(C) to S. Since neither U nor BS substitutes D for
any type variable, all the dependency constraints in C are trivially satis�ed.

Note that there may be other ways of choosing a minimal completion, since some
substitutions of D for a type variable correspond to moving a lift-expression (see

Section 8.4). Avoiding type D whenever possible is a simple way to choose one
minimal completion.

8.7.5 Binding-time analysis algorithm

Given an expression e and a binding-time assumption � , do the following:

1. Generate the constraint system C = C� (e) (Section 8.7.3).

2. Compute normal form constraint system Cnf such that C
V
)+ Cnf (Sec-

tion 8.7.4).

Correctness of Lambdamix 183

3. Solve Cnf equationally with most general uni�er U and map `remaining' type

variables to S with substitution BS (Section 8.7.4).

4. The substitution BS � U � V is a mapping from the type variables �e0 and

��e0 used to decorate e to ground types. BS � U � V characterizes a minimal

completion.

8.8 Correctness of Lambdamix

This section is devoted to the formulation and proof of a correctness theorem

for Lambdamix. The existence of a correctness theorem guarantees that the

specializer-generated target programs, compilers etc., are all faithful to their spec-

i�cations. For readability we assume well-annotatedness, and so omit domain

injections and projections in this section. (The equations are hard enough to read

without them.)

For readers who are not interested in technical details we sketch the correctness
result before we state formally and prove the `real' theorem. Suppose we are given

1. a two-level expression te;

2. an environment � mapping the free variables of te to values;

3. an environment �s, mapping the free variables of te to their specialization-
time values (constants, functions, or fresh variable names);

4. an environment �d, mapping these fresh variables to values;

5. � ` te : D whenever � suits �s.

Suppose furthermore that for variables x of type S: �s(x) = �(x), that for variables

y of type D: �d(�s(y)) = �(y), and that base functions and higher-order values
bound in the environments are handled `correctly' (the formalization of this is in

De�nitions 8.7 and 8.8). It then holds that if both E [[T [[te]]�d]]�s and E [[�(te)]]�

are de�ned then

E [[T [[te]]�s]]�d = E [[�(te)]]�

What we prove is thus that our partial evaluator ful�ls the mix equation.

8.8.1 Correctness and termination properties

Non-trivial partial evaluators often have problems with the termination properties
of the partial evaluator itself or with the generated residual programs. This partial

evaluator is no exception. Consider again the equation

184 Partial Evaluation for the Lambda Calculus

E [[T [[te]]�s]]�d = E [[�(te)]]�

There may be two reasons why one side is de�ned while the other is not.

1. If a call-by-value strategy is used then the right side may be unde�ned while

the left side is de�ned. This is because unfolding can discard non-terminating

expressions (Section 5.5.2). Suppose we have

(�x.2) bomb

where bomb is a non-terminating expression made residual thus trivially ter-
minating at partial evaluation time. Partial evaluation will discard the bomb,
but evaluation of �((�x.2) bomb) will loop under call-by-value. What has

been said elsewhere in the chapter does not rely on any speci�c evaluation

strategy, but the correctness result does rely on our lambda calculus being

non-strict. For a strict language, a weaker result holds: if both sides are

de�ned, they are equal.

2. As often mentioned it is hard to guarantee termination for a non-trivial par-
tial evaluator as Lambdamix, and it is easy to construct an example where
T loops on te where normal evaluation of �(te) would terminate. When

proving E [[T [[te]]�s]]�d = E [[�(te)]]� we shall assume that T is well-de�ned
on all subexpressions of te. To get a smoother proof we shall make an even
stronger assumption, namely that the binding-time analysis ensures that T

is total. (Given any one concrete program to partially evaluate the two as-
sumptions are identical.) If we lift this restriction our correctness result will

be weakened to: if both sides are de�ned, they are equal. To get such a
non-trivial binding-time analysis ensuring termination of Lambdamix, the
techniques from Chapter 14 must be generalized to a higher-order language

and this has not yet been done.

The rest of the section is devoted to the formalization and proof of the correctness

result outlined above. Readers who are not interested may go straight to the next
section without loss of continuity.

8.8.2 The correctness theorem

The relation R to be de�ned below (De�nition 8.7) is central to the correctness
proof. Intuitively, the relationR expresses that the function T handles a given two-

level expression te correctly. For an expression of type S, let the initial environment

� be split into a specialization-time part �s and a run-time part �d. Relation R

implies that the result of partial evaluation must be the right answer:

T [[te]]�s = E [[�(te)]]�

Correctness of Lambdamix 185

expressing that if te has type S then normal evaluation of the unannotated expres-

sion yields the same result as partial evaluation of the annotated expression. For

an expression of type D, relation R implies that the result of partial evaluation

must be an expression, the residual program, which when evaluated yields the right

answer:

E [[T [[te]]�s]]�d = E [[�(te)]]�

For expressions of a function type, R expresses that the result of applying the

function to a proper argument yields a proper answer.

De�nition 8.7 The relation R holds for (te, �s, �d, �, t) 2 2Exp �2Env �Env
�Env �Type i�

1. � ` te : t if � suits �s,

2. One of the following holds

(a) te has type S and T [[te]]�s = E [[�(te)]]�

(b) te has type D and E [[T [[te]]�s]]�d = E [[�(te)]]�

(c) te has type t = t1 ! t2 and for all te1: R(te1, �s, �d, �, t1) implies
R(te te1, �s, �d, �, t2)

2

Note that the recursive de�nition of R has �nite depth since in the de�nition of

R(te, �s, �d, �, t), the recursive applications of R, concern tuples (te0, �0s, �
0
d, �

0,
t0) where t0 has fewer type constructors than t.
Since an expression may have free variables, the environments involved �s, �d,

� must in some sense be well-behaved. It turns out that the condition on the
environments can also be formulated in terms of R.

De�nition 8.8 Given a set of identi�ers, VarSet, and three environments, �, �s, �d
and a type environment � that suits �s, we say that �s, �d, � agree on VarSet i�
for all var 2 VarSet: R(var, �s, �d, �, � (var)). 2

Suppose �s, �d, � agree on VarSet. Then for all variables of type S: �s(x) =
�(x), and for variables y of type D: �d(�s(y)) = �(y). For a higher-order example:

Suppose �s maps identi�er f to a function of type S ! S. By expanding the

de�nitions of `agreement' and R we �nd that 8 te1: T [[te1]]�s = E [[te1]]� implies
T [[f te1]]�s = E [[f te1]]�.

Theorem 8.1 (Main Correctness Theorem) Assuming that binding-time analysis

ensures that T is de�ned on all arguments to which it is applied, the following
holds:

For all �s, �d, �, � , simultaneous ful�lment of the following three conditions

186 Partial Evaluation for the Lambda Calculus

1. � suits �s,

2. �s, �d, � agree on FreeVars(te),

3. � ` te : t for some type t,

implies that R(te, �s, �d, �, t) also holds.
Proof The proof proceeds by induction on the structure of te. The proofs for the

most interesting cases are found below. The remaining cases are proven elsewhere

[105]. 2

Corollary 8.1 Assume te, �s, �d, �, � given such that � suits �s, and �s, �d, � agree

on FreeVars(te).

1. If � ` te : S then T [[te]]�s = E [[�(te)]]�

2. If � ` te : D then E [[T [[te]]�s]]�d = E [[�(te)]]�

2

We now introduce a name, H, for the property expressed by Theorem 8.1. H is

also used as induction hypothesis in the proof. H expresses that if environments
agree on the free variables of a well-annotated two-level expression then the relation

R will hold for the expression, the environments, and the type.

De�nition 8.9 Given a two-level expression te, H(te) holds if 8 �s, �d, �, � the
following three conditions

1. � suits �s,

2. �s, �d, � agree on FreeVars(te),

3. � ` te : t for some type t,

imply that R(te, �s, �d, �, t) also holds. 2

The proofs of the di�erent cases all proceed in the same way. Assume te, �s,

�d, �, � are given such that the three conditions of De�nition 8.9 are ful�lled. The
inductive assumption gives that H(te0) for the subexpressions of te. Except in the

case of abstraction the free variables of te are exactly those of the largest proper

subexpressions of te. Thus �s, �d, � agree on the free variables of these expressions
too (in the case of abstraction we have to construct some new environments �0s, �

0
d,

�0). By well-annotatedness of te the subexpressions are also well-annotated and

the inference rules of Figure 8.4 give us types for the subexpressions. This gives
us some facts of the form R(sub-texp, �s, �d, �, t

0) which then leads (with more

or less trouble) to the goal: R(te, �s, �d, �, t).

Case: �x.te

Proof Assume �s, �d, �, � are given satisfying the conditions in De�nition 8.9.
It thus holds that � ` �x.te : t00 where t00 must have the form t0 ! t. Assume

furthermore that te0 is given such that R(te0, �s, �d, �, t
0). By alpha conversion

of �x.te we can assume without loss of generality that x does not occur in any

expressions other than the subexpressions of �x.te.

Correctness of Lambdamix 187

De�ne �0s = �s[x 7! T [[te0]]�s] and

�0 = �[x 7! E [[�(te0)]]�] and

� 0 = � [x 7! t0]

and observe that 8 id 2 FreeVars(te): R(id, �0s, �d, �
0, � 0(id)) since 8 id 2

FreeVars(�x.te): R(id, �s, �d, �, �(id)) and R(x, �
0
s, �d, �

0, t0) where R(x, �0s, �d,
�0, t0) follows from the assumption that R(te0, �s, �d, �, t

0). We now have that �0s,

�d, �
0 agree on FreeVars(te), that � 0 suits �0s (clear), and that � 0 ` te : t. Hence

R(te, �0s, �d, �
0, t) by the induction hypothesis.

We are now close to the desired conclusion: R((�x.te) te0, �s, �d, �, t). The

last step is Lemma 8.1. 2

Lemma 8.1 Assume, with the above de�nitions and assumptions, that R(te, �0s,

�d, �
0, t) holds. Then R((�x.te) te0, �s, �d, �, t) also holds.

Proof The type t must either have form t1 ! ... ! tn ! S or t1 ! ... ! tn !
D. We assume that t = t1 ! ... ! tn ! S. (The opposite assumption leads to a

very similar development.) Now R(te, �0s, �d, �
0, t) may be written:

8 te1, . . . , ten: (8 i 2 [1..n]: � ` tei : ti and R(tei, �
0
s, �d, �

0, ti))
implies

E [[�(te te1 ... ten)]] �
0

= T [[te te1 ... ten]] �
0
s

where the equation may be rewritten to

(E [[�(te)]]�0) (E [[�(te1)]]�
0) . . . (E [[�(ten)]]�

0)

= (T [[te]]�0s) (T [[te1]]�
0
s) . . . (T [[ten]]�

0
s)

Since x is not free in tei we may again rewrite to get

(E [[�(te)]]�0) (E [[�(te1)]]�) . . . (E [[�(ten)]]�)

= (T [[te]]�0s) (T [[te1]]�s) . . . (T [[ten]]�s)

Now use the de�nitions of �0s and �
0 and the application rules for T and

E to get

(E [[�((�x.te) te0)]]�) (E [[�(te1)]]�) . . . (E [[�(ten)]]�)

= (T [[(�x.te) te0]]�s) (T [[te1]]�s) . . . (T [[ten]]�s)

More uses of the application rules yield

E [[�((�x.te) te0 te1 ... ten)]] �s

= T [[(�x.te) te0 te1 ... ten]] �

Now step back and see that the property which we want to establish, R((�x.te)

te0, �s, �d, �, t), may be written:

188 Partial Evaluation for the Lambda Calculus

8 te1, . . . , ten: (8 i 2 [1..n]: � ` tei : ti and R(tei, �s, �d, �, ti))
implies

E [[�((�x.te) te0 te1 ... ten)]] �s

= T [[(�x.te) te0 te1 ... ten]] �

Since x does not appear free in tei, R(tei, �s, �d, �, ti) is equivalent to R(tei, �
0
s,

�d, �
0, ti) and the claim follows from the above development. 2

Case: �x.te

Proof Let �s, �d, �, � be given, and assume they satisfy the conditions in De�-

nition 8.9. Then it holds that � ` �x.te : D, and by the inference rules it holds

also that � [x 7! D] ` te : D.

We shall assume that we have at hand an in�nite list of variable names which

have not previously been used, and when we write xnew we refer to an arbitrary

variable from this list.

Lemma 8.2 For all w 2 Val it holds that

8 id 2 FreeVars(te): R(id, �s[x 7! xnew], �d[xnew 7! w], �[x 7! w],
� [x 7! D](id))

since 8 id 2 FreeVars(�x.te): R(id, �s, �d, �, �(id)) and R(x, �s[x 7! xnew],
�d[xnew 7! w], �[x 7! w], D). 2

Since � [x 7! D] clearly suits �s[x 7! xnew] and � [x 7! D] ` te : D we may con-

clude from Lemma 8.2 and the induction hypothesis that 8 w 2 Val: R(te,
�s[x 7! xnew], �d[xnew 7! w], �[x 7! w], D). To �nish the proof for this case we
must show that

E [[T [[�x.te]]�s]]�d = E [[�(�x.te)]]�

We rewrite the left-hand side of the equation:

E [[T [[�x.te]]�s]]�d

= E [[�xnew.(T [[te]]�s[x 7! xnew])]]�d

= �v.E [[T [[te]]�s[x 7! xnew]]]�d[xnew 7! v]

and the right-hand side:

E [[�(�x.te)]]�

= E [[�x.�(te)]]�

= �v.E [[�(te)]]�[x 7! v]

It now remains to show that

�v.E [[T [[te]]�s[x 7! xnew]]]�d[xnew 7! v] = �v.E [[�(te)]]�[x 7! v]

Correctness of Lambdamix 189

When the two functions are applied to the same (arbitrary) w 2 Val the equality
to be shown is

E [[T [[te]]�s[x 7! xnew]]]�d[xnew 7! w] = E [[�(te)]]�[x 7! w]

which follows directly from 8 w 2 Val: R(te, �s[x 7! xnew], �d[xnew 7! w], �[x 7! w],
D). 2

Case: fix te

Proof The proof is by �xpoint induction. The basic idea is to use the structural

induction hypothesis H(te) to show the induction step in the �xpoint induction.

Assume �s, �d, �, � are given satisfying the conditions in De�nition 8.9. It

thus holds that � ` fix te : t and � ` te : t ! t. Since FreeVars(fix te) =

FreeVars(te) it follows from the induction hypothesis that R(te, �s, �d, �, t ! t).
By the inference rules of Figure 8.4 t is of form t1 ! . . . ! tn ! S, n > 0 or t1

! . . . ! tn ! D, n > 0. For now we shall assume that t = t1 ! . . . ! tn ! S.

We will take tet? to be an (arbitrary) closed two-level expression of type t such
that

T [[tet?]]�s = �x1.. . .�xn.? = E [[�(tet?)]]�

Thus R(tet?, �s, �d, �, t1 ! . . . ! tn ! S) holds. By induction on m, repeatedly
using R(te, �s, �d, �, t ! t) we see that R(te (te (. . . tet?)), �s, �d, �, t) where
there are m applications of of te holds for any m.
Since t is of form t1 ! . . . ! tn ! S, R(fix te, �s, �d, �, t) may also be written:

8 te1, . . . , ten: (8i 2 [1::n]: � ` tei : ti and R(tei, �s, �d, �, ti)) implies

T [[(fix te) te1 . . . ten]]�s

= E [[�((fix te) te1 . . . ten)]]�

This equation is shown by

T [[(fix te) te1 . . . ten]]�s

= (T [[fix te]]�s) (T [[te1]]�s) . . . (T [[ten]]�s)

= t(T [[te]]�s)((T [[te]]�s). . . (T [[tet?]]�s))| {z }
m te's

(T [[te1]]�s) . . . (T [[ten]]�s)

Distribute applications over t, and use T 's rule for application

= t(T [[(te (te (. . . tet?))) te1 . . . ten]]�s)

Use that for all m

R(te (te (. . . tet?)) te1 . . . ten, �s, �d, �, t)

= t(E [[�(te (te (. . . tet?))) te1 . . . ten]]�)

= t (E [[�(te)]]�) ((E [[�(te)]]�) . . . (E [[�(tet?)]]�))

(E [[�(te1)]]�) . . . (E [[�(ten)]]�)

= (E [[�(fix te)]]�) (E [[�(te1)]]�) . . . (E [[�(ten)]]�)

= E [[�((fix te) te1 . . . ten)]]�

190 Partial Evaluation for the Lambda Calculus

If t is of form t1 ! . . . ! tn ! D, the proof proceeds in a very similar manner

and we omit the calculation. 2

8.9 Exercises

Some of the exercises involve �nding a minimal completion. The formal algorithm

to do this is targeted for an e�cient implementation and is not suited to be executed

by hand (for other than very small examples). So if not otherwise stated just use

good sense for �nding minimal completions.

Exercise 8.1 Find a minimal completion for the lambda expression listed below

given the binding-time assumptions � = [m0 7! S, n0 7! D]. Specialize the pro-

gram with respect to m0 = 42.

(�m.�n.+ m n) m0 n0
2

Exercise 8.2 Find a minimal completion for the lambda expression listed below
given the binding-time assumptions � = [x0 7! S, xs0 7! S, vs0 7! D]. Specialize

the program with respect to x0 = c and xs0 = (a b c d).

(fix �lookup.�x.�xs.�vs.

if (null? xs)

then 'error

else if (equal? x (car xs))

then (car vs)

else (lookup x (cdr xs) (cdr vs))) x0 xs0 vs0
2

Exercise 8.3 In previous chapters, a self-interpreter sint has been de�ned by

[[sint]]
L

p d = [[p]]
L
d

De�ne sint, basing it on E for instance, such that this equation holds for the

lambda calculus. 2

Exercise 8.4

1. Write a self-interpreter sint for the lambda calculus by transforming the
function E into a lambda expression fix �E.�e.��.if . . . e' �' with free

variables e' and �'.

2. Find a minimal completion for sint given binding-time assumptions � =

[env' 7! S, �' 7! D].

3. Find a minimal completion for sint given binding-time assumptions � =

[env' 7! S, �' 7! (S ! D)].

Exercises 191

4. Specialize sint with respect to the power program in Section 8.1. The free

variables e' and �' of sint shall have the following static values:

e' = ((fix �p.�n'.�x'.. . .) n x) and �' = [n 7! n, x 7! x].

2

Exercise 8.5 Implement the partial evaluator from Figure 8.3 in a programming

language of your own choice. 2

Exercise 8.6 * Implement the partial evaluator from Figure 8.3 in the lambda

calculus. It might be a good idea to implement the self-interpreter �rst and then

extend it to handle the two-level expressions. Use the partial evaluator to specialize

sint with respect to various lambda expressions. Is the partial evaluator optimal?

Try self-application of the partial evaluator. 2

Exercise 8.7 Given the expression (�x.x) y with �(y) = S, generate constraints,

normalize the constraint set, and then give a minimal completion for the expression.

Repeat the process for the same expression but with �(y) = D. 2

Exercise 8.8 * Implement the binding time analysis for the lambda calculus by

constraint solving as described in Section 8.7. The `sledgehammer' approach for
normalizing the constraint set is perfectly suited for a prototype implementation.

Just note that it can be done in almost-linear time, O(n�(n; n)), where � is an
inverse of Ackermann's function [114]. 2

Exercise 8.9

1. At the end of Section 8.1 is listed how the lambda calculus interpreter in
Section 3.1 has been revised to obtain that in Figure 8.1. How do these

revisions a�ect the residual programs produced by partial evaluation of these
interpreters?

2. What further revisions would be necessary to achieve optimality?

2

Exercise 8.10 Assume that a self-interpreter op-sint is available with the property

that Lambdamix is ruled optimal when this particular self-interpreter is used in
the De�nition 6.4. Does it follow from this optimality property and Theorem 8.1

that op-sint is a correct self-interpreter when E is used as the canonical semantics
for lambda expressions? 2

Exercise 8.11 Elaborate the proof for Theorem 8.1 by proving the cases for static
and dynamic applications, static and dynamic conditionals, and dynamic �xed-

point operators. 2

Exercise 8.12 Prove that residual programs are identical for completions te1 and
te2 if te1 v te2 and te2 v te1. Discuss the impact of di�erent choices on e�ciency

of the partial evaluation process itself. 2

Chapter 9

Partial Evaluation for Prolog

Torben Mogensen

Prolog was developed as an implementation of a formal logical system (�rst-order

Horn clauses) on a computer. Programming in this logic language was supposed

to consist of stating the relevant facts and laws about a given subject as logical
formulae, which would allow the computer to answer similarly formulated questions
about the subject by using logical inference. As with Lisp, the pure mathematical

formalism was seen as too limited for `real programming' and various features were
added to the language, including control operators, side-e�ects, and the ability to
make self-modifying programs. It is, however, considered bad style to overuse these

features, so to a large extent Prolog programs will have the properties of the logic
formalism.

One of the most pleasing aspects of Prolog is the ability to run programs `back-
wards' or with incomplete input. The program de�nes a relation among query
variables with no clear indication of which are considered input and which are

output. When running the program, values are provided for some of these vari-
ables and the computer will attempt to �nd values of the other variables such

that the relation holds. If no values are given a priori, the computer will attempt
to enumerate all combinations of values that satisfy the relation. An example of

this is shown below. The predicate ap speci�es that the third argument is the list

concatenation of the two �rst arguments. Calling ap with all parameters instan-
tiated simply tests whether the third argument is the concatenation of the �rst

two. Calling with the �rst two parameters instantiated to lists results in a solution

where the third parameter gets bound to the concatenation of these. Calling with
only the last parameter instantiated causes Prolog to enumerate all combinations

of values for the �rst two parameters that satisfy the relation. Note that Prolog
answers `no' when no further solutions exist.

ap([],L,L).

ap([A|L],M,[A|N]) :- ap(L,M,N).

192

Partial Evaluation for Prolog 193

?- ap([1,2],[3,4],[1,2,3,4]).

yes

?- ap([1,2],[3,4],N).

N = [1,2,3,4] ? ;

no

?- ap(L,M,[1,2,3]).

L = [],

M = [1,2,3] ? ;

L = [1],

M = [2,3] ? ;

L = [1,2],

M = [3] ? ;

L = [1,2,3],

M = [] ? ;

no

On the surface, partial evaluation of Prolog seems almost trivial, as Prolog has

this ability to run programs with `unknown' input: any parameter can be replaced
with a variable and the program can be run anyway.

There are, however, several problems with this approach. One is that Prolog
programs with insu�ciently instantiated parameters tend to go into in�nite loops;
and even when they terminate, the result is not a residual program, but a list of an-

swer substitutions1. A partial evaluation strategy di�erent from normal resolution
is thus needed. Another problem is that in full Prolog the presence of meta-logical

predicates, control operators, and `negation by failure' makes execution with some

input replaced by variables incorrect with respect to execution with full input. A
simple example of this is the program

p(X,Y) :- var(X), X=7, Y=3.

p(7,5).

If we run this with the input goal p(A,B) we get the answers A=7, B=3 and A=7,

B=5. This could lead us to believe that running with the goal p(7,B) would yield

B=3 and B=5. This is not the case, as the �rst clause fails, making the only solution

B=5. Often this problem is side-stepped by considering only pure Horn clauses.

1These can, however, be seen as equivalent to a list of Prolog facts.

194 Partial Evaluation for Prolog

In the previous chapters we have generated specialized function names for resid-

ual functions, using the static parameters to generate them. There is not as much

need for the generation of specialized predicate names in Prolog, as the static pa-

rameters to a clause can become patterns in the specialized clauses, distinguishing

these as easily as di�erent names can. Renaming specialized clauses with respect

to their static arguments can, however, reduce the size and the time requirement

of the residual programs.

The earliest example of partial evaluation of Prolog was given by Jan Ko-

morowski in the early 1980s [151]. The subject has been investigated by several

people since then, for making the use of meta-interpreters more e�cient, in essence

compiling programs by partially evaluating the meta-interpreters with respect to

them. As such, the early attempts at partial evaluation were in
uenced by the

style of the meta-interpreters, both in the way the partial evaluators are written

and in the programs that they are able to handle well.

An example of this is Fujita and Furukawa's work [88], which extends the classical

three-line meta-interpreter to perform partial evaluation, yielding a very short

partial evaluator. It is claimed to be self-applicable, but as noted in a paper

by Bondorf, Frauendorf, and Richter, the operational semantics are not always
preserved when self-application is attempted [33]. The main problem is that values
in the partial evaluator that is running and the partial evaluator that is being

specialized are not kept su�ciently separate.
Fuller uses a di�erent approach [89]: the source program is represented as a

ground term, which is given as input to the partial evaluator. The language is

restricted to pure logic but care is taken to preserve semantics when self-application
is performed. Run-time terms with variables are represented by ground terms in the

partial evaluator and uni�cation is simulated by meta-uni�cation on these. Though
self-application is successful, it is very ine�cient and the resulting compilers are
very large and slow.

The �rst e�ciently self-applicable and semantically safe partial evaluator for

Prolog appears to be the one reported in the paper by Bondorf et al. [33]. Source
program and values are represented as ground terms, as in Fuller's work. By using
binding-time annotations as in Section 5.3, e�cient self-application is achieved:

compiling by using a stand-alone compiler generated by self-application is several

times faster than by specializing an interpreter. The language is extended to
include meta-logical predicates and limited side-e�ects. The operational semantics
is preserved, even at self-application.

Logimix [192] improves on this by refraining from representing values as ground

terms (though the program still is). This speeds up the execution by simulating

uni�cation meta-circularly by uni�cation in the underlying system. This gives
signi�cant e�ciency improvements. Also, more of Prolog's control and meta-logical
features are treated.

Fujita and Furukawa's partial evaluator [88] requires the input program to be

stored in the data base. To avoid the scope problems this gives at self-application

time and to make e�ective use of polyvariant specialization (see Section 4.4.2),

An example 195

Fuller's partial evaluator, the one by Bondorf et al., and Logimix all require the

input program as a parameter in the goal of the partial evaluator [89,33,192].

Most work on partial evaluation of Prolog has not addressed self-application at

all, either because it has not been considered relevant or because of the practical

problems involved. Sahlin's Mixtus system [236] is a powerful partial evaluator for

almost all of Prolog, but it is not clear whether it could be made self-applicable

without major rewriting.

A theory of partial evaluation of Prolog is presented by Lloyd and Shepherdson

[174]. They de�ne partial evaluation to be an incomplete SLD resolution of a goal

with respect to a set of clauses: a partial resolution tree is generated by unfolding

selected subgoals repeatedly. At the end, the goal at the root of the tree is replaced

by the sequence of the goals at the leaves. The clauses for these goals can then be

partially evaluated in a similar fashion. No strategy for how to decide unfolding

is given, nor is there any concept of specialization of predicates to some of their

arguments. Negation is considered, but no other meta-logical or control features.

As a consequence, few existing implementations of partial evaluators are covered

by this theory.

9.1 An example

Let us illustrate some points by an example: compiling regular expressions into

deterministic �nite automata by partial evaluation. The partial evaluation was
done using Logimix.

The program in Figure 9.1 takes as input a regular expression and a string (a list
of characters) and tests whether the string is generated by the regular expression.
The program uses the predicates generate_empty, first, and next.

The predicate generate_empty tests whether a regular expression generates the
empty string. The predicate first(R,S) tests whether a particular symbol S
can begin some string which is generated by the regular expression R. Predicate

next(R,S,R1) is used to move one step forward in a regular expression: R1 is a

regular expression that generates the string S1 ... Sn if and only if R generates

the complete string S S1 ... Sn. Predicate next(R,S,R1) thus tests whether the
strings generated by the regular expression R1 are exactly the tails of the strings

that R generates, which begin with the symbol S.

Figure 9.2 shows the result of using Logimix to specialize the program in Fig-
ure 9.1 with respect to the regular expression (a|b)�aba. The predicate generate

occurs in four di�erent specialized versions, generate_0 . . . generate_3. This

illustrates polyvariant specialization: each predicate is specialized according to
di�erent values of the static (known) input (the regular expression). The remain-

ing parameter (the string) is dynamic (not known at partial evaluation time),
and is thus still present as a parameter in the residual program. All calls to

generate_empty, first, and next have been fully evaluated and are thus not

196 Partial Evaluation for Prolog

present in the residual program. The use of ; (`or' in Prolog) in the residual rules

stems from di�erent results of calls to first. The residual program is equivalent to

a deterministic �nite automaton, and is in fact identical to the automaton derived

for the same regular expression in [4].

generate(R,[]) :- generate_empty(R).

generate(R,[S|Ss]) :- first(R,S1),S=S1,next(R,S1,R1),generate(R1,Ss).

Figure 9.1: Testing whether a string is generated by a regular expression.

generate_0([]) :- fail.

generate_0([S|Ss]) :- S=a, generate_1(Ss) ; S=b, generate_0(Ss).

generate_1([]) :- fail.

generate_1([S|Ss]) :- S=a, generate_1(Ss) ; S=b, generate_2(Ss).

generate_2([]) :- fail.

generate_2([S|Ss]) :- S=a, generate_3(Ss) ; S=b, generate_0(Ss).

generate_3([]).

generate_3([S|Ss]) :- S=a, generate_1(Ss) ; S=b, generate_2(Ss).

Figure 9.2: Residual program.

9.2 The structure of Logimix

The Logimix partial evaluator consists of two parts: a meta-circular self-interpreter

to perform the static parts of the program, and a specializer that unfolds dynamic
goals or specializes them with respect to their static arguments. The specializer

calls the interpreter to execute the static subgoals. This division of the partial

evaluator re
ects the di�erent behaviours of interpretation and specialization: in-

terpretation can fail or return multiple solutions, whereas specialization should
always succeed with exactly one specialized goal.

9.2.1 The interpreter

The meta-circular interpreter has the program as a ground parameter, but simu-

lates uni�cation, backtracking, and other control directly by the same constructs

in the underlying Prolog system. Only those control features that are possible to

interpret in this way are included, that is (_,_), (_;_), (not_), (_->_;_),. . . ,

The structure of Logimix 197

but not ! (cut). Predicates not de�ned in the program are assumed to be basic

(prede�ned) predicates.

9.2.2 The specializer

The specializer requires annotation of variables and goals as static or dynamic and
annotation of whether or not to unfold calls to user-de�ned predicates. During

partial evaluation, static variables will be neither more nor less bound than they

would be during normal (full) evaluation. This ensures that even meta-logical

predicates (like var/1) have the same behaviour at specialization time as during

a normal evaluation. Goals are considered static if they can be fully evaluated at

partial evaluation time while preserving semantics. This means that they contain

only static variables and that they neither have side-e�ects, nor depend on a state

that can be modi�ed by side-e�ects. Dynamic goals are specialized with respect

to the values of the static variables. This involves evaluating static subgoals and

unfolding some user-de�ned predicates (depending on their annotation) and cre-

ating specialized predicates for the calls that are not unfolded. Calls to primitives
are executed only if they are static.
Binding of static variables happens only when evaluating static goals, and these

bindings will be visible only to later static goals (which may be parts of dynamic
goals). This means that backwards uni�cation is not possible. Such backwards
uni�cation could change the behaviour of non-logical predicates like var/1 as we

saw in the example at the start of this chapter. Evaluation of a static goal will
return a list of possible solutions, each consisting of values for the variables in the

goal. Each element of this list is used to generate a specialized version of the goals
following the static goal. These are then combined with ; to produce a single
residual goal. This is seen in the residual program from the regular expression

example, where residual goals corresponding to S1 = a and S1 = b are combined

with a ;.

Additionally, static goals are annotated by the potential number of solutions (`at
most one' or `any number'). This is not essential, but allows the cases with at most

one solution to be handled by a simpler procedure.

Due to unfolding, the residual programs can contain long chains of explicit uni-
�cations, e.g.

X=[A|B], B=[C|D], D=[E|F], F=[].

These are folded to single uni�cations in a post-processing stage. When this will not
change the semantics of the program, the chains are folded, even across predicate

calls. The example above becomes

X=[A,C,E].

198 Partial Evaluation for Prolog

The binding-time analysis is a combination of a dependency analysis, a groundness

analysis, a determinacy analysis, and a side-e�ect analysis. The dependency analy-

sis is used to trace which variables will depend on others by uni�cation. Combined

with groundness analysis this is used to determine in which cases the uni�cation of

a static and a dynamic variable should cause the static variable to be reclassi�ed

as dynamic, i.e. when the static variable can be non-ground. The determinacy

analysis is used to �nd out whether a static goal has at most one solution, or pos-

sibly more than one. The side-e�ect analysis is used to classify goals containing

side-e�ecting primitives as dynamic. All this information is used when annotating

the program. At partial evaluation time the annotations are used to guide the

actions of the partial evaluator, as sketched above.

The regular expression program in Figure 9.1 is annotated with the regular ex-

pression classi�ed as static and the string dynamic, to yield the annotated program

in Figure 9.3, which is used as input to Logimix to make the residual program in

Figure 9.2. Dynamic variables and patterns and predicate calls that are not to be

unfolded are underlined. In addition to this, static goals that can return at most

one solution are marked with a superscript `1'.

generate(R,[]) :- generate_empty1(R).

generate(R,[S|Ss]) :- first(R,S1), S=S1, next1(R,S1,R1),

generate(R1,Ss).

Figure 9.3: Annotated regular expression program.

The variable S1 in the last clause seems super
uous, as it will be equal to S.
However, if S were used in place of S1 in the call to first/2, the goal would no

longer be static (due to the presence of the dynamic variable S). As it is, S1 is
static and unbound when calling first/2, and static and ground after the call.

This means that the uni�cation of S and S1 will not make S1 dynamic. Thus S1 is
a static parameter to next/3, which makes this a static goal. This again makes R1

a static parameter to the recursive call to generate/2, which is specialized with

respect to it. Using S1 has no e�ect on the semantics of the program, and it will
make normal execution somewhat slower due to unnecessary backtracking, but it

improves the result of partially evaluating the program by making more things

static. Modi�cations of programs to improve the results of partial evaluation are
called binding-time improvements and are discussed in more detail in Chapter 12.

9.2.3 Specialization of goals

Figure 9.4 shows the kinds of goals that Logimix allows in the subset of Prolog that

it handles. If a list of terms is empty, the parentheses are omitted. The keywords

basic and call will be shown only where it is necessary to distinguish calls to

prede�ned and user-de�ned predicates. Figures 9.5 and 9.6 show specialization

The structure of Logimix 199

Goal ! basic Name(Term,. . . ,Term) | call prede�ned predicate

j call Name(Term,. . . ,Term) | call user-de�ned predicate

j true j fail

j Goal , Goal j not Goal

j Goal ; Goal

j (Goal -> Goal ; Goal)

j if(Goal,Goal,Goal)

Term ! Variable j Name(Term,. . . ,Term)

Figure 9.4: Syntax for Prolog goals.

of dynamic goals. The static goals are executed normally. Evaluation rules are

called from the specialization rules when static subgoals are encountered. The

specialization rules do not address the annotation (shown with superscript 1) of

single versus multiple solutions to static subgoals. These annotations merely cause

application of simpli�ed instances of the general rules, and are mostly interesting
in self-application, where the simpli�ed rules are easier to specialize.
The notation � ` G ! G0 states that, with the substitution �, the dynamic

goal G specializes to the residual goal G0. � ` G) �1; . . . �n states that the
static goal G evaluates to a list of possible answer substitutions �1; . . .�n. If this

list is empty (�) the goal failed. StT � � states that S and T unify with � as the
most general uni�er. The rules for evaluation of static goals are not shown here.
Since all completely static goals are handled by the �rst two rules, the remaining

rules only handle goals with some static part. Hence, the rule for calls to basic
predicates doesn't try to evaluate the calls. The control structures that have several

subgoals may treat some combinations of static and dynamic subgoals di�erently.
This is the case for _,_, where the substitutions for the �rst subgoal are passed on
to the second subgoal when the �rst is static. Note that the di�erence between the

two conditionals _->_;_ and if(_,_,_) is re
ected in the treatment of these when

their �rst argument is static. In the rules for calls to user-de�ned predicates, it is

assumed that the static parameters are the �rst n parameters. This is not required

in Logimix, but it makes the notation in the description easier. When a call is
unfolded the variables in the clause de�nition are renamed to new distinct names.

This corresponds to the mechanism used in normal Prolog execution. When a goal

is not unfolded, a call to a residual predicate is generated. The residual predicate
is renamed as a function of the values of the static parameters. In the rule this is

shown by having the static parameters as a subscript to the predicate name.
After the rules have been applied some local reductions, not described here, are

applied to the residual goal.

200 Partial Evaluation for Prolog

� ` G) �1; . . . ;�n

� ` G ! true ; . . . ; true
If G is static. true occurs n times

� ` G) �

� ` G ! fail
If G is static

� ` basic N(T1; . . . ; Tn) ! basic N(�(T1); . . . ;�(Tn))

�((S1; . . . ; Sn)) t (P11; . . . ; P1n) � �1 �0
1 = � ��1 �0

1 ` R1 ! R
0
1

� � � � � � � � �

�((S1; . . . ; Sn)) t (Pk1; . . . ; Pkn) � �k �0
k = � ��k �0

k ` Rk ! R
0
k

� ` call N(S1; . . . ; Sn;D1; . . . ;Dm) ! (P1n+1=�0
1(D1); . . . ; P1n+m=�0

1(Dm); R0
1)

; . . . ;

(Pkn+1=�0
k(D1); . . . ; Pkn+m=�0

k(Dm); R0
k)

where Si are the static parameters, Di are the dynamic parameters and

N(P11; . . . ; P1n; P1n+1; . . . ; P1n+m): �R1

. . .

N(Pk1; . . . ; Pkn; Pkn+1; . . . ; Pkn+m): �Rk

are the clauses for N that unify with static parameters of the call.

� ` call N(S1; . . . ; Sn;D1; . . . ;Dm) ! fail

If no clauses for N unify with the call

� ` call N(S1; . . . ; Sn;D1; . . . ;Dm) ! call N(�(S1);...;�(Sn))(�(D1); . . . ;�(Dm))

where Si are the static parameters and Di are the dynamic parameters. A de�nition

of the residual predicate N(�(S1);...;�(Sn)) is added to the residual program.

Figure 9.5: Specialization of Prolog goals (part I).

9.3 Conclusion

Logimix has been successfully applied to interpreters, yielding compiled programs

where virtually all interpretation overhead is removed. Self-application of Logimix
yields stand-alone compilers and compiler generators (see the table below). The

�gures are for execution under SICStus Prolog version 0.6 on a SPARCstation 2.
Here sint is the self interpreter used in Logimix to execute static subgoals, used as

a stand-alone program, and mix is Logimix itself. The size of the generated compiler

generator cogen is approximately 30KB of non-pretty-printed Prolog source.

Conclusion 201

� ` G1) �1; . . . �n �1 ` G2 ! G21 . . . �n ` G2 ! G2n

� ` G1 ; G2 ! G21 ; . . . ; G2n
if G1 is static

� ` G1) �

� ` G1 ; G2 ! fail
if G1 is static

� ` G1 ! G
0
1 � ` G2 ! G

0
2

� ` G1 ; G2 ! G
0
1 ; G

0
2

� ` G ! G
0

� ` not G ! not G0

� ` G1 ! G
0
1 � ` G2 ! G

0
2

� ` G1 ; G2 ! G
0
1 ; G0

2

� ` G1) �1; . . . �n �1 ` G2 ! G21

� ` G1 -> G2 ; G3 ! G21
if G1 is static

� ` G1) � � ` G3 ! G
0
3

� ` G1 -> G2 ; G3 ! G
0
3

if G1 is static

� ` G1 ! G
0
1 � ` G2 ! G

0
2 ` G3 ! G

0
3

� ` G1 -> G2 ; G3 ! G
0
1 -> G

0
2 ; G0

3

� ` G1) �1; . . . �n �1 ` G2 ! G21 . . . �n ` G2 ! G2n

� ` if(G1; G2; G3) ! G21; . . . ;G2n
if G1 is static

� ` G1) � � ` G3 ! G
0
3

� ` if(G1; G2; G3) ! G
0
3

if G1 is static

� ` G1 ! G
0
1 � ` G2 ! G

0
2 ` G3 ! G

0
3

� ` if(G1; G2; G3) ! if(G0
1; G

0
2; G

0
3)

Figure 9.6: Specialization of Prolog goals (part II).

job time=s speedup

output = sint(sint; data) 2:25 13:7

output = target(data) 0:16

target = mix(sintann; sint) 19:2 1:78

target = comp(sint) 10:8

comp = mix(mixann; sintann) 19:3 1:35

comp = cogen(sintann) 14:4

cogen = mix(mixann; mixann) 172:0 1:14

cogen = cogen(mixann) 152:0

202 Partial Evaluation for Prolog

The speedup gained from compilation by partial evaluation is of the same order as

for functional languages, but the speedup from self-application is relatively small.

This is because a large part of the operations in the specializer are dynamic at

self-application time. The main culprits are the folding of sequences of dynamic

uni�cations into single uni�cations (which, as described above, is a completely

dynamic postprocess) and comparison of static values (which is static at partial

evaluation time but dynamic at self-application time).

Improving Logimix

In general, Logimix is fairly sensitive to how a program is written. The regular

expression example showed one example of this, but the fact that values are not

propagated from dynamic goals to static goals also plays a part. As an example,

consider the goal (s1,(d,s2)), where s1 and s2 are static subgoals and d is a

dynamic subgoal. The binding of static variables in s1 are propagated to the

second subgoal (d,s2), and through this to s2. If we instead write ((s1,d),s2),

the binding of static variables in s1 are still propagated to d, but since the subgoal
(s1,d) is dynamic, no static bindings are propagated from this to s2. This is
normally not a problem, as one usually omits parentheses and writes s1,d,s2,

which is parsed the `right' way.
When unfolding a call to a dynamic predicate, the bindings that occur in its static

subgoals are not propagated out to later goals in the clause where it was called
from. Essentially, there are parentheses around the unfolded goal that prohibit the
propagation of static bindings. Solving this problem either requires thought when

writing the programs that are to be specialized, or alternatively rewriting Logimix
to be less restrictive. The requirement that specialization returns exactly one spe-
cialized goal (and no bindings) will have to be lifted, so specialization instead

returns a list of pairs (residual goal, static bindings). The static bindings can then

be used to produce specialized versions of the subsequent subgoals. An alternative

approach that achieves the same e�ect is to pass the following goals as a parameter
to the procedure that specializes a goal, specifying a kind of continuation. When-

ever a static binding occurs, it will have an a�ect on the entire continuation. This

is similar to the strategy used for improving the results of Similix [31,28].

9.4 Exercises

Exercise 9.1 Consider the ap predicate for appending lists:

ap([],L,L).

ap([A|L],M,[A|N]) :- ap(L,M,N).

Assume that the intended call pattern to ap is with the �rst two parameters in-

stantiated and the third possibly (but not always) uninstantiated.

Exercises 203

1. Given that we want to specialize ap with respect to a static �rst parameter,

annotate the predicate by underlining dynamic variables. Use the rule that

static variables must have exactly the same value during normal evaluation

and partial evaluation.

2. Consider whether it is safe (with respect to termination of specialization) to

unfold the recursive call during specialization, using the assumptions above.

Annotate the call accordingly, underlining it if it should not be unfolded.

3. By hand, specialize ap to the static �rst parameter [1,2,3]. Use the rules

in Figures 9.5 and 9.6.

4. The specialized program will contain super
uous chains of uni�cations. Re-

duce these by using forwards uni�cation only.

2

Exercise 9.2 As Exercise 9.1, but specializing with the second parameter static and
equal to [1,2,3]. 2

Exercise 9.3 As Exercise 9.1, but specializing the predicate generates shown be-
low with the second parameter static and equal to [a,b,b]. It can be assumed

that the basic predicates generates_empty, first and next don't use side-e�ects.

generates(R,[]) :- generates_empty(R).

generates(R,[S|Ss]) :- first(R,S),next(R,S,R1),generates(R1,Ss).
2

Exercise 9.4 Assuming that the operations generates_empty, first, and next are
relatively expensive, estimate the speedup of the residual program from Exercise

9.3 over the original. Would a binding-time improving reformulation of the program
(as discussed in the example in the text) improve the result? 2

Chapter 10

Aspects of Similix: A Partial

Evaluator for a Subset of Scheme

This chapter describes partial evaluation of a subset of the dynamically typed

functional language Scheme, including higher-order functions and limited side ef-

fects. The presentation is based on the approach taken by Bondorf and Danvy
in the partial evaluator Similix, but we focus here on the principles and do not
give a completely faithful description of the actual Similix system. Similix uses

polyvariant specialization of named functions and is an o�-line partial evaluator,
as is the Scheme0 specializer from Chapter 5. However, in addition to handling
a more complex language, Similix also handles the problems of in�nite unfolding

and duplication in a new and illuminating way, and emphasizes preserving the
termination properties of programs.

The binding-time analysis handles higher-order functions, using the closure ana-
lysis described in Chapter 15.

The Similix partial evaluator is rather more practical than those described in

the preceding chapters. For instance, the set of basic functions is extensible, basic
functions can be classi�ed according to their e�ects, side e�ects are handled cor-

rectly, and the termination properties of residual programs are better. Moreover,
the Similix system contains a binding-time debugger which provides useful feed-

back concerning the binding-time properties of programs. The result is a partial

evaluator which is more complicated than those described earlier, but one which
has had many practical applications.

Similix was initially developed by Bondorf and Danvy; the recent versions are

due mainly to Bondorf. This chapter is based on their papers [28,30,31,32] and on
Bondorf's thesis [27].

10.1 An overview of Similix

Our version of the Similix subject language is called Scheme1. It extends Scheme0

from Chapter 5 with lambda abstractions (higher-order functions) and let bind-

204

An overview of Similix 205

ings. Lambda abstractions require some changes to the binding-time analysis and

specialization, mainly because they may be partially static. Specialization with

respect to higher-order values and partially static lambdas is explained in Sec-

tion 10.2. Handling let-expressions requires a new occurrence counting!analysis to
decide whether the let may be unfolded without risk of duplication.

In addition, the real Similix has a
exible way to de�ne new base functions,

and allows limited side e�ects in base functions. All side e�ects must be dynamic

(that is, they must take place after specialization). Moreover, expressions with

side e�ects cannot be discarded, nor duplicated, nor reordered. Base functions and

side e�ects will not be further discussed in this chapter.

Recent versions of Similix use continuation-based reduction, which improves the

binding times of many programs. It is explained in Section 10.5. Continuation-

based reduction also allows the handling of partially static data structures without

duplicating or discarding expressions (see Section 10.6).

10.1.1 The structure of Similix

Similix works in three main phases: preprocessing, specialization, and postpro-
cessing. The preprocessing phase analyses, transforms, and annotates the subject

program, based on a description of its input only. The specialization phase spe-
cializes the annotated subject program with respect to the given static input. The
postprocessing phase unfolds calls to trivial residual functions.

1. Preprocessing The preprocessing is done in four main steps.

1.1 Insert an identity let-binding (let (x x) . . .) around the body of

each function and lambda, for every variable x. The purpose is to isolate
the problem of duplication from that of in�nite unfolding.

1.2 Do binding-time analysis, including detection of lambdas that may ap-
pear in dynamic contexts. Such lambdas must have dynamic parameters

and body, and cannot be applied at specialization time.

1.3 Create a new named function, called an sp-function, for each dynamic if
and for each dynamic lambda. All sp-functions (and the goal function)

are called by dynamic calls (calld); all other functions are called by

static ones (calls).

1.4 Analyse the number of occurrences of dynamic let-bound variables;

annotate let expressions as dynamic (letd) or static (lets).

2. Specialization Starting with the program point (g, vs0) where g is the goal
function and vs0 is the static input, repeatedly construct specialized func-

tions until the program is complete (if ever), as for Scheme0.

206 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

Specializing a function with respect to static base values (non-closures) works

as for Scheme0. Specializing a function f with respect to a static lambda ab-

straction, the residual function must have a new parameter for each dynamic

free variable in the lambda, and for each dynamic free variable of static

lambdas bound in static free variables of the lambda, and so on, recursively.

3. Postprocessing Unfold the call to every residual function which is called at

most one place (except the goal function). This eliminates trivial unshared

functions.

10.1.2 The higher-order language Scheme1

The subject language Scheme1 which we use is similar to but simpler than the

subject language of Similix. It is just Scheme0 from Figure 5.1 extended with let-

bindings and lambda abstraction and application, that is, a dynamically typed

functional language with call-by-value. For notational simplicity, the lambda ab-
stractions are restricted to one argument.

As for Scheme0, a Scheme1 program pgm is a list of de�nitions of named functions
f1, . . . , fn:

(define (f1 x11 . . . x1a1) body1)
...

(define (fn xn1 . . . xnan) bodyn)

hExpri ::= hConstanti Constant
j hVari Variable

j (if hExpri hExpri hExpri) Conditional
j (call hFuncNamei hArglisti) Function application
j (hOpi hExpri . . . hExpri) Base application

j (lambda` (hVari) hExpri) Lambda abstraction

j (hExpri hExpri) Lambda application
j (let (hVari hExpri) hExpri) Let-binding

hArglisti ::= hExpri . . . hExpri Argument expressions

hConstanti ::= hNumerali

j (quote hValuei)

Figure 10.1: Syntax of Scheme1, a higher-order functional language.

Each function body bodyi is a Scheme1 expression. The syntax of expressions is
shown in Figure 10.1. We distinguish named functions such as f1 from labelled

lambda abstractions such as (lambda` (x) e). Named functions must always be

fully applied. For a given lambda (lambda` (x) e), FreeVars(`) denotes its free

variables, listed in some �xed order (e.g. alphabetically sorted).

An overview of Similix 207

10.1.3 Two-level Scheme1 expressions

As usual partial evaluation is done in phases. The preprocessing phase yields an

annotated two-level Scheme1 program which is then submitted to the specialization

phase. The annotations follow the pattern from Chapters 5 and 8 in that every

operator if, call, hOpi, lambda, application, and let, comes in a static and a dy-

namic version in the two-level Scheme1 syntax. In addition it has lift-expressions

(Figure 10.2).

hExpri ::= hConstanti Constant

j hVari Variable

j (ifs hExpri hExpri hExpri) Static conditional

j (ifd hExpri hExpri hExpri) Dynamic conditional

j (calls hFuncNamei hSDArgsi) Static function appl.

j (calld hFuncNamei hSDArgsi) Dynamic function appl.

j (hOpis hExpri . . . hExpri) Static base appl.

j (hOpid hExpri . . . hExpri) Dynamic base appl.

j (lift hExpri) Lifting a static expr.
j (lambdas` (hVari) hExpri) Static lambda
j (lambdad` (hVari) hExpri) Dynamic lambda

j (hExpri hExpri) Static lambda applic.
j (hExpri @d hExpri) Dynamic lambda appl.

j (lets (hVari hExpri) hExpri) Static let-binding
j (letd (hVari hExpri) hExpri) Dynamic let-binding

hSDArgsi ::= (hArglisti) (hArglisti) Argument lists

Figure 10.2: Syntax of two-level Scheme1 expressions.

10.1.4 Binding-time analysis for Scheme1

The Scheme1 binding-time analysis is an extension of the Scheme0 binding-time

analysis Be given in Section 5.2. However, there are three new problems: (1) higher-

order applications (e0 e1), (2) static lambda abstractions in dynamic contexts, and
(3) let-expressions.

(1) Higher-order applications
When analysing a higher-order application (e0 e1) it is useful to know which
function is applied, or more generally, which functions may be applied. The closure
analysis presented in Section 15.2 provides such information: the possible values

of e0. Using this information, binding-time analysis of higher-order applications

is basically rather similar to that of �rst-order applications. The binding-time

analysis will be presented in Section 15.3, after the closure analysis.

208 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

(2) Lambdas in dynamic contexts

In Scheme0, all values were base values, and therefore a static value v could al-

ways be converted into a dynamic value, namely the expression (quote v). This

conversion is called lifting and was indicated in the two-level Scheme0 syntax by

the operator lift. Lifting is necessary when the static value appears in a dynamic
context. A branch of a dynamic ifd is a typical example of a dynamic context: we

must generate code for the if expression and therefore also for each branch, even

when its value v is static.

It is far more complicated to lift functional values. In fact, such values are never

lifted during specialization. Instead, all lambda abstractions that might need to be
lifted are classi�ed as dynamic lambdad before specialization. The reason is that

lifting in
uences the binding times of other functions in the program.

To see this, consider lifting a functional value. The lifting should result in a

lambda expression (lambda (x) e), that is, a piece of Scheme1 code. But then

the lambda variable x must be dynamic: it will not be bound to a static value

during specialization. Furthermore, if e contains a call (f x) of a named function,

then (re)classifying x as dynamic will in
uence the binding times of function f

and thus the rest of the program. Therefore the binding-time analysis must detect
all lambdas that need to be lifted, and must reclassify their bound variables as
dynamic, before specialization.

A lambda needs to be lifted if it appears in a dynamic context. A lambda is

in a dynamic context if it is a possible value of: a (sub)expression whose binding
time is dynamic, a dynamic variable (whether function-, lambda- or let-bound),
the argument of a dynamic lambda application, or the body of a dynamic lambda.

(3) Binding-time analysis of let-expressions

It is tempting to think that the result of (let (x e1) e) is static when the result

of e is, even if e1 is dynamic (for instance, when x does not appear in e). However,
this is not safe, as it would require the specializer to discard the dynamic expression
e1. If the evaluation of e1 is non-terminating, then discarding it would change the

termination properties of the program. Therefore the binding-time analysis must
assume that the result of (let (x e1) e) is dynamic if e1 is dynamic, even when

e is static.

Thus Be[[(let (x e1) e)]] �� equals Be[[e1]] �� t Be[[e]] �� in the Scheme1

binding-time analysis to be presented in Section 15.3. However, Section 10.5 shows
one way to improve the handling of let-expressions.

10.1.5 Specialization of Scheme1 programs

As in Scheme0, the named program points are the named functions, and a special-

ized program point is a pair (f . vs) of a named function and values for its static

parameters. We generate a residual function for each specialized program point as

An overview of Similix 209

in the Scheme0 specializer (Chapter 5). Lambda abstraction and application are

treated as in Lambdamix (Chapter 8) with one exception: a named function f can

now be specialized with respect to a static functional value.

When no static lambda (lambdas (x) . . .) has any free dynamic variables, the

Scheme1 specializer can reuse the main loop of the Scheme0 specializer (Figure 5.6)

with no modi�cation.

When a static lambda may have free dynamic variables, function specialization

becomes more complicated. This is explained in Section 10.2.2 below.

10.1.6 Representation and equality of functional values

To generate a reasonable program with polyvariant program point specialization it

is necessary to compare the values of static parameters. The Scheme0 specializer

does this comparison when computing newpending in Figure 5.6.

In Similix and in this chapter, the value of a static parameter may be a function,

so we need to compare functions for equality. Therefore we shall represent func-
tional values by closures, essentially as in Section 3.3.1. Here, a closure (closure `

vv) contains the label ` of a lambda abstraction, and values vv of the lambda's free
variables. Values of variables not free in the lambda could also be included in vv,

but such variables would be dead and cause code duplication, as in Section 4.9.2.
Note that the Lambdamix specializer (Chapter 8) did not use polyvariant spe-

cialization and thus never had to compare functional values: the only operations on
functions were de�nition and application. Therefore in Lambdamix it was su�cient
to represent functions in the subject program by functions in the specializer.

Let the map function be de�ned in Scheme1 as follows:

(define (map f xs)

(if (null? xs)

'()

(cons (f (car xs)) (map f (cdr xs)))))

Consider specializing the call (calld map (lambda (x) (+ 1 x)) xs) where xs

is dynamic. Naming the specialized function map1+, the residual program should
include a de�nition of form:

(define (map1+ xs)

(if (null? xs)

'()

(cons (+ 1 (car xs)) (. . .))))

To generate the proper code for (. . .), namely a recursive call (map1+ (cdr xs)),

we must discover that the functional argument f has the same value as in the

previous call to map.

Two functions f and g are extensionally equal if and only if 8x : f(x) = g(x).

Extensional equality is undecidable, so we must settle for an approximation: closure

equality. Two closures are equal when (1) their labels ` are equal and (2) their

210 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

environment components vv are equal. Equal closures de�ne extensionally equal

functions. The converse does not hold.

10.1.7 Reduction of two-level Scheme1 expressions

Reduction of two-level Scheme1 expressions is almost as simple as that for Scheme0

(Figure 5.7). The only complicated case is dynamic function application (calld),

which involves function specialization. Since we may need to specialize with respect

to higher-order values, we discuss calld separately in Section 10.2 below.

The function reduce for reduction of Scheme1 expressions is shown in Fig-

ure 10.3. The auxiliary function successors (not shown) must be extended to

traverse Scheme1 expressions. The new cases of reduce are explained as follows.

A static lambda (lambdas` (x) e) reduces to a closure (closure ` vv) where

vv is a list of the (static and dynamic) values of the variables free in the lambda.

A dynamic lambda (lambdad` (x) e) reduces to a residual lambda expression

(lambda (z) e0) where the body e0 is the reduced form of e, and z is a fresh

variable.

A static lambda application (e0 e1) is reduced by reducing e0 to a closure
(closure ` vv), then reducing the corresponding lambda body e` in an environ-

ment where x is bound to the reduced form e01 of e.

A dynamic lambda application (e0 @d e1) reduces to the residual application
(e00 e01) where e00 is the reduced form of e0 and e01 is the reduced form of e1.

A static let-binding (lets (x e1) e) reduces to the result of reducing e in an

environment where variable x is bound to the reduced form e01 of e1.

A dynamic let-binding (letd (x e1) e) reduces to the residual let-binding
(let (z e01) e0) where e01 and e0 are the reduced forms of e1 and e, respectively,
and z is a fresh variable.

10.2 Specialization with respect to functional values

10.2.1 Specialization with respect to fully static functions

Let us �rst consider the simple case where no static lambda (lambdas` (x) . . .)
has any free dynamic variables. Then every static lambda reduces to a static

closure, consisting of a label ` and values for its free variables (which are all static
by assumption). For example, consider the program

(define (f b)

(g (lambda1 (z) (+ z b))))

(define (g h)

(h 3))

and assume that b, z, and h are static. The superscript 1 is a label. Further assume

Specialization with respect to functional values 211

The environment is represented by a list vn = (y1 . . . yk) of the variables
that may occur in e, and a list vv = (v1 . . . vk) of corresponding values.

(define (reduce e vn vv)

case e of

number n => n

(quote c) => c

yj => vj

where (y1 . . . yj . . . yk) = vn

(v1 . . . vj . . . vk) = vv

(ifs e1 e2 e3) => if (reduce e1 vn vv)

then (reduce e2 vn vv)

else (reduce e3 vn vv)

(ifd e1 e2 e3) => (list 'if (reduce e1 vn vv)

(reduce e2 vn vv)

(reduce e3 vn vv))

(calls f (e1 . . . em) (em+1 . . . ea)) =>

(reduce ef (x1 . . . xa) (e01 . . . e0a))

where e0j = (reduce ej vn vv) for j = 1; . . . ; a

(define (f (x1. . . xm) (xm+1. . . xa)) ef)

= (lookup f program)

(calld f (e1 . . . em) (em+1 . . . ea)) =>

(list 'call (f :: (e01 . . . e0m)) e0m+1 . . . e0a)

where e0j = (reduce ej vn vv) for j = 1; . . . ; a

(ops e1 . . . ea) => (op (reduce e1 vn vv) . . . (reduce ea vn vv))

(opd e1 . . . ea) => (list 'op (reduce e1 vn vv). . . (reduce ea vn vv))

(lift e) => (list 'quote (reduce e vn vv)))

(lambdas` (x) e)=> (list 'closure ` (vi1 . . . vij))

where (yi1 . . . yij) = FreeVars(`)

(y1 . . . yk) = vn

(v1 . . . vk) = vv

(lambdad` (x) e)=> (list 'lambda (z) (reduce e (x::vn) (z::vv)))

where z is a fresh identi�er

(e0 e1) => (reduce e` (x y1 . . . yi) (e01 v1 . . . vi))

where (closure ` (v1. . . vi)) = (reduce e0 vn vv)

(y1 . . . yi) = FreeVars(`)

(lambdas` (x) e`) = (lookup ` program)

e01 = (reduce e1 vn vv)

(e0 @d e1) => (list (reduce e0 vn vv) (reduce e1 vn vv))

(lets (x e1) e) => (reduce e (x :: vn) (e01 :: vv))

where e01 = (reduce e1 vn vv)

(letd (x e1) e) => (list 'let (z e01) e0)

where e01 = (reduce e1 vn vv)

e0 = (reduce e (x :: vn) (z :: vv))

z is a fresh identi�er

Figure 10.3: Reduction of Scheme1 expressions.

212 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

for the sake of argument that g is to be specialized with respect to the fully static
function (lambda1 (z) (+ z b)). If the static value of b is 10, then the residual

program could be:

(define (f x)

(g1))

(define (g1)

13)

In this case code generation for specialized functions can proceed exactly as for

Scheme0. All static parameters are removed from the called function's parameter

list, no matter whether their values are �rst-order or higher-order.

10.2.2 Specialization with respect to partially static functions

Specialization with respect to a partially static lambda (one having free dynamic

variables) is more involved. Consider again the program

(define (f x)

(g (lambda1 (z) (+ z x))))

(define (g h)

(h 3))

but now assume that x is dynamic, while z and h are still static. Then g's argument
(lambda1 (z) (+ z x)) is a partially static function, and reducing the application
(h 3) in the body of g would give the residual expression (+ 3 x). The dynamic
variable x appears in the specialized version g1 of g, and therefore x must be passed
to g1 in the residual program.

The residual program could be:

(define (f x)

(g1 x))

(define (g1 x)

(+ 3 x))

For a slightly more complicated example, consider

(define (f x)

(g (let (w (* x x)) (lambda2 (z) (+ z w))))

)

(define (g h)

(h 3))

Assume that x and w are dynamic and that z and h are static. The let binds w to

the dynamic expression (* x x), and returns a closure (closure 2 (* x x)) in
which w is a free dynamic variable, bound to (* x x).

Specializing g with respect to the closure (closure 2 (* x x)), we have to

pass the dynamic value (* x x) of w to the residual version of g:

Specialization with respect to functional values 213

(define (f x)

(g2 (* x x)))

(define (g2 w)

(+ 3 w))

10.2.3 Finding the free dynamic variables

When specializing a function g with respect to a static closure (closure ` vv)

as above, every free dynamic variable w of lambda ` gives rise to a new formal

parameter of the specialized function. The corresponding new argument expression

is the dynamic value bound to w in the closure's environment vv.

Observe that the static variables in vv may bind other static closures. These

in turn may have dynamic free variables, and (partially) static closures, which in

turn have dynamic free variables, and so on. Thus the closure's environment vv

must be traversed recursively to �nd all dynamic free variables and their values.

In general, fresh names must be used for the new formal parameters to avoid
name clashes. This is because a function may take as arguments (via di�erent
parameters) two closures (closure ` vv) and (closure ` vv0) generated by the

same lambda. Also, a closure (closure ` vv) may contain in vv another closure
(closure ` vv0) generated by the same lambda abstraction, and thus having the

same (dynamic) variable names.

The recursive traversal (and renaming) of partially static closures is done by
the auxiliary functions new-names and get-dynamic below. The parameter newx

is used in the generation of fresh names. The fresh names themselves are not
important, but they must be generated systematically, and must be the same as
those used by function get-static when constructing the static skeleton of a

closure (see next section).

(define (new-names v newx)

case v of

hA static base valuei => ()

hA dynamic valuei => (list newx)

(closure ` (v1 . . . vk)) =>

(append (new-names v1 (cons x1 newx))

. . . (new-names vk (cons xk newx))))

where (x1 . . . xk) = FreeVars(`)

(define (get-dynamic v)

case v of

hA static base valuei => ()

hA dynamic valuei => (list v)

(closure ` (v1 . . . vk)) =>

(append (get-dynamic v1) . . . (get-dynamic vk)))

Function new-names returns the list of (renamed) dynamic free variables that are to

214 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

become new formal parameters of the specialized function. Function get-dynamic

returns the corresponding list of dynamic values that become new arguments in

the residual call.

When specializing a call (calls f . . .) the fresh variable names returned by

new-names have the general form (zh (z2 . (z1 . z0)) . . .), h � 1. Here

z0 is a static formal parameter (of f), whose value is a partially static closure

(closure `0 vv0). For j = 1; . . . ; h � 1, variable zj is a static free variable of

closure `j�1 and its value is a partially static closure (closure `j vvj). Finally,

zh is a dynamic free variable of `h�1.

10.2.4 Finding the static skeleton

A specialized program point (f . vs) is a pair of a function name f and values

vs of its static parameters. A specialized program point should contain only static

information that can actually be used (cf. Section 4.9.2).

Only the static `skeleton' of a partially static closure (closure ` vv) is useful

for specialization. More precisely, the label ` is useful, as are the values of fully
static variables in vv. The dynamic value of a dynamic variable in vv is not useful
during specialization. For partially static closures in vv, the useful parts are found

recursively as for the top-level closure.
The recursive extraction of the static skeleton of a closure is done by function

get-static:

(define (get-static v newx)

case v of

hA static base valuei => v

hA dynamic valuei => newx

(closure ` (v1 . . . vk)) =>

(list 'closure `

(get-static v1 (cons x1 newx))

. . . (get-static vk (cons xk newx)))

where (x1 . . . xk) = FreeVars(`))

Function get-static extracts the static `skeleton' of a closure, recursively replac-

ing every dynamic value in the closure's environment component vv with a fresh

variable. The resulting new environment maps a static base-type variable to its
value, maps a dynamic variable to its fresh name, and maps a static closure-type

variable to the static skeleton of its value. The fresh variables used by get-static

are precisely those returned by new-names.

Note that get-dynamic extracts all dynamic values bound in the closure's envi-

ronment component vv, whereas get-static throws them away. Thus their results
are complementary.

Avoiding duplication 215

10.2.5 Revised handling of function specialization

Function specialization has two aspects: the generation of a call to the specialized

function (in the calld case of reduce), and the generation of a residual function

de�nition (in the main loop of the specializer). To handle specialization with

respect to partially static lambdas, changes are needed in those two places.

The revised treatment of a dynamic call calld in reduce is shown below. The

function get-dynamic is used to build a list (a1 . . . ak) of the new dynamic ar-

guments to the specialized function. The function get-static returns the static

parts of partially static closures.

(define (reduce e vn vv)

case e of

. . .

(calld fi (e1 . . . em) (em+1 . . . ea)) =>

(list 'call (fi::(e
00
1. . . e

00
m)) a1. . . ak e0m+1. . . e

0
a)

where e0j = (reduce ej vn vv) for j = 1; . . . ; a

e00j = (get-static e0j xij) for j = 1; . . . ;m

and (a1 . . . ak) = (append (get-dynamic e01)

. . . (get-dynamic e0m))

. . .)

The revised generation of residual functions (the revised main specialization loop)
is shown in Figure 10.4. The only changes from the main loop of the Scheme0 spe-

cializer (Figure 5.6) are that new-names �nds the new formal parameters (y1 . . .
yk), and that they are added to the specialized function (f . vs). The new for-

mal parameters (y1 . . . yk) correspond to the new arguments (a1 . . . ak) found
by get-dynamic in reduce above.

To obtain good results when self-applying the Scheme1 specializer, the revised

main loop in Figure 10.4 still has to be rewritten in the manner of the self-applicable

Scheme0 specializer in Figure 5.8.

10.3 Avoiding duplication

Duplication is avoided as outlined in Section 5.5.4. For every free variable x, an

identity let-binding (let (x x) body) is inserted around every function body

and every lambda body. Then these let-bindings are annotated as static `lets'

(unfoldable) or dynamic `letd' (residual) after an occurrence counting analysis.

The occurrence counting analysis �nds an upper limit on the number of times

the let-bound variable x may occur in the residual expression. This can be done

by analysing the subject program, because the occurrence counting is done after

binding-time analysis, so it is known which parts of the program are static and

which are dynamic. Using the results of the occurrence counting analysis, a let

216 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

The modi�ed lines are marked with an asterisk * below.

(define (specialize program vs0)

let ((define (f1 _ _) _) . _) = program

in (complete (list (f1 :: vs0)) () program)

)

(define (complete pending marked program)

if pending is empty then

()

else

let (f . vs) 2 pending

let (define (f (x1. . . xm) (xm+1. . . xa)) e) = (lookup f program)

let (vs1 . . . vsm) = vs

* let (y1. . . yk) = (append (new-names vs1 x1). . . (new-names vsm xm))

let evs = (reduce e (x1. . . xm xm+1. . . xa) (vs1. . . vsm xm+1. . . xa))

let newmarked = marked [f(f . vs)g

let newpending = (pending [(successors evs)) n newmarked

* let newdef = (list 'define (list (f . vs) y1. . . yk xm+1. . . xa) evs)

in (newdef :: (complete newpending newmarked program))

)

Figure 10.4: Main loop of Scheme1 specialization algorithm.

is annotated as lets if the bound value x is static or occurs at most once in the

residual code, otherwise it is annotated as letd.
The insertion of let-bindings means that a function call can be unfolded without

risk of duplication: the function parameter is always used exactly once, namely in

the let-binding. The annotation on the let-binding governs unfolding of the let,
and unfolds only if no code duplication is possible.
The classi�cation of a let as static or dynamic does not a�ect its binding time.

In particular, making it letd does not mean that its body changes from a static to
a dynamic context. To see this, note that a let expression can be classi�ed as a

dynamic letd only if the bound variable is dynamic. In this case the binding-time

analysis has already deemed the result of the entire let expression dynamic (cf.

Section 10.1.4), so its body is in a dynamic context already.

For an example, consider (let (x e1) (lambda (x) e)). Assume that e1 (and

thus x) is dynamic, so the binding-time analysis classi�es the result of the entire

let as dynamic. The lambda in the let body is a possible result of the entire let

expression, and therefore is in a dynamic context. Classifying the let as lets or

letd does not change this.

Call unfolding on the
y 217

10.4 Call unfolding on the
y

Similix uses a new strategy for call unfolding on the
y, creating a so-called spe-
cialization point for each dynamic conditional and for each dynamic lambda. The

specialization point is a new named function (here called an sp-function) whose
parameters are the free variables of the conditional or lambda, and whose body is

the entire conditional or lambda.

A call to an sp-function (or to the goal function) is never unfolded: it must be a

calld. A call to an existing function (except the goal function) is always unfolded:

it must be a calls. If the subject program does not contain any loop which is

controlled only by static data (or not controlled at all), then this approach avoids

in�nite unfolding; namely, in this case an in�nite unfolding loop must involve a

dynamic conditional or recursion via the Y combinator (or similar), which must

involve a dynamic lambda.

The insertion of specialization points corresponds to the insertion of special-

ization points around dynamic conditionals in Scheme0 (cf. Section 5.5.4). In

Scheme0, if we do not unfold dynamic conditionals, then in�nite unfolding can

happen only because of static in�nite loops. In Scheme1 (but not in Scheme0),
recursion can be expressed using the Y combinator (written as a lambda abstrac-
tion), and the truth values (true and false), and conditionals can be encoded as

lambda expressions also:

true as (lambda (x) (lambda (y) x))

false as (lambda (x) (lambda (y) y))

(if e1 e2 e3) as (((e1 (lambda (z) e2)) (lambda (z) e3)) ())

The new variable z must not occur in e2 and e3. Thus controlled recursion need
not involve any conditionals, but a dynamic truth value is now represented by a

dynamic lambda. By specializing also at every dynamic lambda we therefore avoid
in�nite unfolding except when it corresponds to a static in�nite loop.

In the residual program generated by the specializer, conditionals and lambda

abstractions can appear only outermost in residual function bodies. However, after
the residual program has been generated, a postprocessing phase unfolds the call to

every residual function (except the goal function) which is called exactly one place,
thus eliminating many trivial functions. The postunfolding must stop, as shown by
the following argument. All in�nite unfolding involves a cycle of functions (possibly

just one function) calling each other cyclically. Consider such a cycle. If the goal
function is on the cycle, then the unfolding stops there. If the goal function is not

on the cycle, then there is a function on the cycle which can be called from outside

the cycle. Thus there are at least two calls to that function, and none of them is
unfolded, thus stopping the unfolding at that function.

218 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

10.5 Continuation-based reduction

The goal of continuation-based reduction is to exploit static subexpressions of

dynamic expressions.

Example 10.1 Consider the expression

(+ 3 (let (x e) 10))

and assume that e is dynamic. Then the result of the entire let-expression will be

considered dynamic by the binding-time analysis, even though the body is static.

With the ordinary reduce function above, the residual program will be

(+ 3 (let (x e0) 10))

where e0 is the reduced form of e. That is, the addition of 3 and 10 has not been

done. However, if the context `(+ 3 . . .)' were propagated to the static expression

10, a better residual expression could be obtained:

(let (x e0) 13)

The context was propagated to a static subexpression, resulting in a binding-time
improvement. 2

Expression reduction with context propagation is called continuation-based re-
duction. However, the example is very simple, and the same improvement could

be obtained just by local (intraprocedural) transformation of the let-expression
to (let (x e0) (+ 3 10)) before reduction.

General continuation-based reduction allows context propagation also across un-
foldable (static) function calls. This may improve the binding times of a program
considerably, and cannot be achieved by local transformations.

Consel and Danvy have shown that general continuation-based reduction can
be obtained by a global transformation of the subject program: converting the

subject program to continuation passing style (CPS) before reduction [56]. For a

presentation of the CPS conversion itself, see Fischer [87], Plotkin [219], or Danvy
and Filinski [68].

Consel and Danvy's technique allows propagation of contexts under dynamic

conditionals as well as under dynamic let-bindings. In this case the residual

programs will also be in CPS, which is sometimes not desirable. However, Danvy

has shown that, subject to certain restrictions, programs in continuation passing

style can systematically be converted back to direct style, thus eliminating the

continuation parameters [67].

Bondorf has shown that some bene�ts of continuation-based reduction can be

obtained by modifying the specializer, thus avoiding the transformation to CPS

[31]. When applying the reduce function to an expression e, the context K of the

reduced value is also passed to reduce. Modifying the handling of dynamic letd

then propagates the context K to the (possibly static) body of the let. This is

Continuation-based reduction 219

built into recent versions of Similix, but (currently) does not allow propagation

of contexts under dynamic conditionals. The reason is that Similix encapsulates

dynamic conditionals in sp-functions and hence in dynamic function calls, and

contexts cannot be propagated across dynamic function calls.

The remainder of this section presents the idea in more detail. It is based on

Bondorf's paper, which gives precise de�nitions, theorems, and proofs [31]. In the

remainder of this section, keep in mind that Scheme1 has call-by-value semantics.

10.5.1 Continuation passing style

In continuation passing style (CPS) every function takes an extra argument: a

continuation. The continuation is a function which consumes the result of the

function and produces the �nal result of the computation. Thus the continuation

represents the remainder of the current computation, or the context of the current

subexpression reduction.

For example, the ordinary factorial function

(define (fac n)

(if (zero? n)

1

(* n (fac (- n 1)))))

has the following form in CPS:

(define (faccps n K)

(if (zero? n)

(K 1)

(faccps (- n 1) (lambda (r) (K (* n r))))))

The K argument is the continuation. It is applied to the result of the function
call, as seen in the �rst branch (K 1). In the second branch, the continuation of
the recursive call is (lambda (r) (K (* n r))). This continuation will take the

result r of the recursive call, multiply it by n, and pass the result to the original

continuation K. Note that the program in CPS has the same operational behaviour

as the original one.

The relation between fac and faccps is the following for every function (con-

tinuation) K and non-negative integer n:

(K (fac n)) = (faccps n K)

In particular, (fac n) = (faccps n id), where id denotes the identity function

(lambda (r) r). It also follows that (faccps n K) = (K (faccps n id)).

Continuations were invented in the late 1960s and used for transformation, proof,

and mathematical description of programming languages; see e.g. [223]. Continu-
ations are used also in implementations of functional programming languages such

as Scheme and Standard ML.

220 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

10.5.2 Continuation-based reduction of Scheme1

The idea in continuation-based reduction of Scheme1 is to replace function reduce

from Figure 10.3 in continuation-passing style. This in itself achieves nothing, but

it allows us later to improve the handling of dynamic letd; this will be done in

Section 10.5.4 below.

The continuation-based version redcps of reduce is shown in Figure 10.5. In

the �gure, id denotes the identity function (lambda (r) r). For brevity, the cases

for dynamic function call, dynamic base function, static lambda abstraction, and

lambda application have been left out, as they present no new problems.

The main loop of the specializer in Figure 10.4 must be changed to call function

redcps as (redcps e (x1. . . xm xm+1. . . xa) (vs1. . . vsm xm+1. . . xa) id) where

id is the identity function (lambda (r) r). This achieves the same as the old call

to reduce, since (redcps e vn vv id) = (reduce e vn vv).

10.5.3 Well-behaved continuations

It holds that

(redcps e vn vv K) = (K (redcps e vn vv id))

for every function K. This equivalence has been used in the cases for ifd, lambdad,

and letd to make the continuations of the recursive calls well-behaved. Roughly,
a continuation K is well-behaved if whenever (K r) is an expression, then (1) K

embeds its argument r in a strict position, that is, the evaluation of (K r) implies
the evaluation of r; and (2) K does not introduce new variable bindings visible to
r. The precise de�nition can be found in [31, Section 4].

The importance of well-behaved continuations will be clear in the improved
handling of let shown in Section 10.5.4.

In the `natural' CPS version of the ifd case, there would be a continuation K

of form (lambda (r3) (K0 (list 'if r1 r2 r3))) which would embed the argu-

ment expression r3 in a branch of an if expression. Since that branch may not be

evaluated when the if is, K would not be well-behaved.
Likewise, in the `natural' CPS version of the letd case, there would be a contin-

uation K of form (lambda (r) (K0 (list 'let (x r1) r))) which would embed

the argument expression r in a let-expression. Since that makes the binding of x

visible to r, K would not be well-behaved.

In the `natural' CPS version of the lambdad case, there would be a continuation
which would embed its argument r in a non-strict position, and introduce new
variable bindings visible to r, thus violating requirement (1) as well as (2).

Using the equivalence shown above, all ill-behaved continuations have been

avoided.

Continuation-based reduction 221

(define (redcps e vn vv K)

case e of

number n => (K n)

(quote c) => (K c)

yj => (K vj) where (y1 . . . yj . . . yk) = vn

(v1 . . . vj . . . vk) = vv

(ifs e1 e2 e3) =>

(redcps e1 vn vv

(lambda (r1) (if r1 (redcps e2 vn vv K)

(redcps e3 vn vv K))))

(ifd e1 e2 e3) =>

(redcps e1 vn vv

(lambda (r1)

(K (list 'if r1 (redcps e2 vn vv id)

(redcps e3 vn vv id)))))

(calls f (e1 . . . em) (em+1 . . . ea)) =>

(redcps e1 vn vv

(lambda (r1) . . .
(redcps ea vn vv

(lambda (ra)

(redcps ef (x1. . . xa)(r1. . . ra) K)))

. . .))
where (define (f (x1. . . xm)(xm+1. . . xa)) ef)=(lookup f program)

(calld f (e1 . . . em) (em+1 . . . ea)) => . . .
(ops e1 . . . ea) =>

(redcps e1 vn vv

(lambda (r1) . . .
(redcps ea vn vv

(lambda (ra)

(K (op r1 . . . ra)))) . . .))
(opd e1 . . . ea) => . . .
(lift e) => (redcps e vn vv

(lambda (r) (K (list 'quote r))))

(lambdas` (x) e) => . . .
(lambdad` (x) e) =>

(K (list 'lambda (z) (redcps e (x :: vn) (z :: vv) id)))

where z is a fresh identi�er
(e0 e1) => . . .
(e0 @d e1) => . . .
(lets (x e1) e) =>

(redcps e1 vn vv

(lambda (r1) (redcps e (x :: vn) (r1 :: vv) K)))

(letd (x e1) e) =>

(redcps e1 vn vv

(lambda (r1) (K (list 'let (z r1)

(redcps e (x::vn) (z::vv) id)))))

where z is a fresh identi�er

Figure 10.5: Continuation-based reduction of Scheme1 expressions.

222 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

10.5.4 Extracting static information from a dynamic let

So far, nothing has been achieved by constructing the CPS version redcps of

reduce; the two functions are equivalent. However, now we can improve the treat-

ment of letd by using the equivalence

(K (let (x r1) r)) = (let (x r1) (K r))

which holds only when K is well-behaved. It does not hold for ill-behaved K, because

(1) if r1 is unde�ned, then the right hand side is unde�ned, yet if K does not embed

its argument in a strict position, then the left hand side might be de�ned; and (2)

if K could introduce new bindings, then these would be visible to r1 on the left

hand side but not on the right hand side.

Using the equivalence, we replace the right hand side of the letd case by

(redcps e1 vn vv

(lambda (r1)

(list 'let (z r1)

(K (redcps e (x :: vn) (z :: vv) id)))))

Then we use the equivalence (K (redcps e vn vv id)) = (redcps e vn vv K)

to transform it again, and obtain the following right hand side for the letd case

of redcps:

(redcps e1 vn vv

(lambda (r1)

(list 'let (z r1) (redcps e (x::vn) (z::vv) K))))

Note that the continuation K of the entire dynamic expression (letd (x e1) e)

is propagated to the body e. This is advantageous when e is static and e1 is

dynamic. Propagating K to e in this case allows the exploitation of the static
information from e when reducing the context of the let-expression, as illustrated
in Example 10.1.

It is signi�cant that the context K of a static function call (calls) is propa-

gated to the body of the called function when it is being reduced with redcps in

Figure 10.5. This means that the context may propagate to a let-expression in an-
other function, and in practice this turns out to greatly improve the binding times

of programs. This cannot be achieved with local (intraprocedural) transformations

of the source program.

10.5.5 Improved binding-time analysis for Scheme1

The binding-time analysis must re
ect the improved handling of (let (x e1) e).

So far, the result of the let-expression has been deemed dynamic when either e1 or

e were dynamic (cf. Section 10.1.4). However, now the result of the let-expression

is deemed dynamic precisely when e is, regardless of e1, so now Be[[(let (x e1)

Handling partially static structures 223

e)]] �� = Be[[e]] �� in the Scheme1 binding-time analysis.

10.6 Handling partially static structures

Assume that e1 is static and e2 is dynamic in the expression

(let (z (cons e1 e2)) (car z))

In the Scheme1 specializer as presented above, the expression (cons e1 e2) would

be considered dynamic because e2 is dynamic. Hence z would be dynamic, the

expression (car z) would be dynamic, and so would the result of the entire let-

expression. This is because base values must either be completely static, or else

dynamic.

10.6.1 Partially static structures

If we allow partially static base values, then the value of z would be a pair whose

�rst component is static, and whose second component is dynamic. Hence (car z)

would be static, and if the value of e1 were 10, say, then the entire let-expression
could be reduced to 10.

Clearly, handling partially static base values will require considerable changes
to the binding-time analysis as well as the specializer. Recursive partially static
structures are particularly interesting. For example, consider the function mkenv

that builds an environment association list from a (static) list of variable names
and a dynamic list of corresponding values (the superscripts on cons are labels,
called cons points):

(define (mkenv names values)

(if (null? names)

()

(cons1 (cons2 (car names) (car values))

(mkenv (cdr names) (cdr values)))))

Function mkenv returns a list of pairs, whose �rst components are all static and

whose second components are all dynamic. The function is likely to be used this

way in an interpreter being specialized with respect to a source program but with-
out its input. The example is due to Mogensen, who used grammars to describe

partially static binding times in an untyped language [187]. The result of mkenv
could be described by the grammar

mkenv ! S | cons1

cons1 ! P(cons2, mkenv)

cons2 ! P(S, D)

Here S denotes a static value, D denotes a dynamic value, and P denotes a pair of

224 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

values. Nonterminal mkenv describes all possible results of the function, nontermi-

nal cons1 describes all structures built by the cons operator labelled 1, etc. Thus

the grammar says that a result of mkenv is either completely static (namely, ()) or

a result of cons1. A result of cons1 is a pair of a value built by cons2 and a result

of mkenv. A result of cons2 is a pair of a static and a dynamic value.

Using grammars of this form, Mogensen designed the �rst binding-time analysis

with partially static binding times. Consel used a cons point analysis to collect es-
sentially the same information for an untyped higher-order language [53]. Launch-

bury used projections to analyse a typed language [165,167]. In Section 15.4 we

shall explain Launchbury's approach.

Mogensen also showed how to preprocess a subject program, using (partially

static) binding-time information to separate static and dynamic computations.

Every function parameter whose value is a partially static structure is split into

(essentially) one static and one dynamic parameter. Every function returning a

partially static result is split into two functions, one returning the static part, and

one returning the dynamic part. The static part depends only on static arguments

and thus can be fully computed at specialization time. After this preprocessing a

simple specializer (not handling partially static structures) can be used [190].

10.6.2 Arity raising

Specialization of a program with partially static structures implies arity raising.
With arity raising, one dynamic (or partially static) function parameter in the sub-
ject program may give rise to several function parameters in the residual program.

For example, if a dynamic function parameter in the subject program is always a
list of three elements, then it may be replaced by three simple parameters in the

residual program, possibly raising the arity of the function.

Arity raising was originally done with hand annotations which guided the split-
ting of a dynamic variable according to the value of a static variable [245]. Then

Sergei Romanenko gave an automatic forwards analysis of the structure of dynamic
variables, and a backwards analysis of their use, for an untyped functional language

[228]. Using a closure analysis (Section 15.2), Steensgaard and Marquard extended

Romanenko's work to a higher-order language [253].

10.6.3 Safe specialization of partially static structures

Recall the expression (let (z (cons e1 e2)) (car z)) from above. If the value

of e1 is 10, say, then it could be reduced to 10. However, this would discard

the dynamic expression e2 entirely, which is undesirable: it might change the
termination properties of the program.

Similarly, the expression

The Similix implementation 225

(let (z (cons e1 e2)) (+ (cdr z) (cdr z)))

is a dynamic expression which could reduce to the residual expression (+ e02 e02),

where e02 is the reduced form of e2. However, this would duplicate the dynamic

expression e2, which is also undesirable.

The problem can be solved by binding every dynamic cons argument in a dy-

namic (non-unfoldable) letd, as in:

(let (z (letd (y e2) (cons e1 y))) (car z))

Using an ordinary specializer, this would achieve little, as the letd expression will

give rise to a residual let, so z and hence (car z) would be dynamic.

Using the new continuation-based redcps function from Section 10.5, the modi-

�cation makes sense. Now the context (let (z . . .) (car z)) will be propagated

to the expression (cons e1 y), as if the expression had been written

(letd (y e2) (let (z (cons e1 y)) (car z)))

Then reduction gives (let (y e02) 10), assuming that e1 reduces to 10. The

dynamic expression e2 has not been discarded. Note that with continuation-based
reduction it is not necessary to actually transform the source expression this way.
Also, with continuation-based reduction this works even if the expression (letd

(y e2) . . .) were hidden in the body of a function called by a static call (calls).

Similarly, the second expression above would reduce to (let (y e02) (+ y y)),

in which e2 has not been duplicated.

Recent versions of Bondorf's Similix include safe handling of partially static
structures.

10.7 The Similix implementation

Bondorf's partial evaluator Similix (version 5.0 at the time of writing), includ-
ing user manual, can be obtained by anonymous ftp from ftp.diku.dk as �le

pub/diku/dists/jones-book/Similix-5.0.tar.Z | see page 123 of this book.

Similix version 5.0 is written in Scheme and complies to the (uno�cial) `R4RS'

standard [49], and so is highly portable. It has been tested under Unix with
Aubrey Ja�er's free `scm' system (which is available for Unix, VMS, MS-DOS, and

MacOS), and with R. Kent Dybvig's commercial `Chez Scheme' system.

10.8 Exercises

Exercise 10.1 For each higher-order application in the following program (the two

applications of g in h) identify which closures can be applied. Insert identity let-

226 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

expressions and do binding-time analysis under the assumption that x is dynamic.

Annotate the program accordingly. Analyse the number of occurrences of dynamic

let-bound variables, and annotate the let expressions accordingly.

(define (f x)

(if (zero? x)

(+ (h (lambda (y) (+ y 1))) 42)

(+ (h (lambda (y) (+ y 1))) (h (lambda (y) (+ y x))))))

(define (h g)

(+ (g 17) (g 42)))

2

Exercise 10.2 Execute the preprocess phase for the following program, and spe-

cialize f1 under the assumption that x is dynamic. Repeat the process with x

static and specialize with respect to x = 25.

(define (f1 x)

(f2 (lambda (y) (if (< x y) x y))))

(define (f2 g)

(+ (g 17) (g 42)))

2

Exercise 10.3 Specialize f in the following program with x dynamic without in-

serting identity let-expression. Then specialize again now with the identity let-
expressions inserted. What is gained by inserting identity let-expression?

(define (f x)

(g (fak x) (fak (+ x 5)) (power 2 8)))

(define (g x y z)

(+ x x y y z z))

(define (fak x)

(if (equal? x 1) 1 (* x (fak (- x 1)))))

(define (power x n)

(if (equal? n 0) x (* x (power x (- n 1)))))

2

Exercise 10.4 Consider the append function below and assume that truth values
and conditionals are encoded as described in Section 10.4, that is, (null? xs) re-

turns either (lambda (x) (lambda (y) x)) or (lambda (x) (lambda (y) y)).
Try specializing (while doing call unfolding on the
y) with respect to xs dynamic

and ys static without inserting specialization points for dynamic lambdas. Why

does the strategy for call unfolding on the
y fail?

(define (append xs ys)

((((null? xs)

(lambda (z) ys))

(lambda (z) (cons (car xs) (append (cdr xs) ys)))) '()))

2

Exercises 227

Exercise 10.5 Consider the following program, where n (which is dynamic) is in-

dexed in a static environment (ns holds the names and vs holds the values). For

simplicity we have assumed that the indexing always succeeds. Since the static ns

decreases for every recursive call to lookup it is safe to unfold completely; termi-

nation is guaranteed. Thus it is not necessary to insert a specialization point at

the dynamic if. Execute the preprocess phase, without inserting a specialization

point for the dynamic if, and specialize f using the direct style specializer. Special-

ize again using the CPS style specializer. What is gained by using the CPS style

specializer?

(define (f n)

(+ 1 (lookup n '(a b c) '(1 2 3))))

(define (lookup n ns vs)

(if (null? (cdr ns))

(car vs)

(if (equal? n (car ns))

(car vs)

(lookup n (cdr ns) (cdr vs)))))
2

Exercise 10.6 Write a program to perform bubble sort. The input parameters must
be an array a and its length n. Use Similix to specialize the program with respect
to a known n. Comment on the length and e�ciency (complexity) of the residual

program. 2

Exercise 10.7 Consider the following program to �nd a path of length n from node

x to node y in the directed graph G.

(define (sons G a) (cdr (assoc a G)))

(define (path G n x y)

(if (< n 0)

'#f

(if (= n 0)

(if (equal? x y)

(list y)

'#f)

(let ((p (path* G (- n 1) y (sons G x))))

(if (null? p)

'#f

(cons x p))))))

(define (path* G n y xs)

(if (null? xs)

'#f

(let ((p (path G n (car xs) y)))

(if (null? p)

(path* G n y (cdr xs))

'()))))

228 Aspects of Similix: A Partial Evaluator for a Subset of Scheme

Using Similix, try specializing path to y dynamic, x = 1, n = 1, and

G = ((a . (b c)) ;; edges from a to b and c

(b . (d)) ;; edge from b to d

(c . (d)) ;; edge from c to d

(d . (e)) ;; edge from d to e

(e . ())) ;; no edges from e

Specialize again now with n = 3. Notation: a !n b means that there exists a

path from a to b of length n. A better algorithm can be based on the following

observation: a!m b if and only if eitherm = 0 and a = b, orm > 0 and there exists

a node c with a !m div 2 c and c !m�(m div 2) b. Implement the better algorithm

in Scheme, and specialize it to various combinations of known arguments. 2

Exercise 10.8 Implement the interpreter for the call-by-value lambda calculus in

Figure 3.1 in Scheme. Use Similix to specialize the interpreter to various lambda ex-

pressions, thereby compiling them to Scheme. Specialize Similix to the interpreter,

thereby generating a lambda-to-Scheme compiler. Use the generated compiler on
the same lambda-expressions as before. Which is the most e�cient way to compile?
Why? 2

Exercise 10.9 Elimination of type checking by partial evaluation. Assume that a
hypothetical, very advanced partial evaluator supermix is available. It is the inten-
tion to use supermix to compile a statically typed (like Pascal, C, ML, Miranda)

language S to L given an interpreter sint for that language S.

1. Apply supermix to the interpreter sint, an S-program p, and the type of
the input to p. How much type checking will be left in the residual program?

2. Same question, but for a dynamically typed (like Lisp, Scheme) language D.

2

Chapter 11

Partial Evaluation for the C

Language

Lars Ole Andersen

This chapter describes o�ine partial evaluation for a subset of the pragmatically

oriented C programming language. C is a widely used imperative language with

several features not available in the languages studied in the previous chapters.
There are data structures such as structs, multidimensional arrays, and pointers;
a rich variety of statements and expressions; and functions.

Partial evaluation for large-scale imperative languages is currently an active
research area. Here we present principles suitable for automatic specialization of
a substantial subset of C, but the techniques carry over to related languages such

as Pascal and Fortran. The chapter ends with a description of the kernel of a C
specializer.

11.1 Introduction

The goal of partial evaluation is e�ciency : by specializing a program to parts

of its input, a faster specialized version can often be constructed. The aim of this
chapter is to describe partial evaluation applied to a realistic large-scale imperative
programming language. We shall see that several of the basic techniques from the

previous chapters can be employed, but new aspects must be considered because of

the more complicated semantics of C. These include, in particular, specialization
of functions with side-e�ects, and pointers and dynamic memory allocation.

We shall consider only o�ine partial evaluation where the specialization is per-
formed in two stages: �rst the program is binding-time analysed, and subsequently

it is specialized. We argue that the explicit separation of the binding times is an
important stepping stone for successfully processing programs that exploit pointers

and addresses. Without a prior binding-time analysis, the partial evaluator must

be overly conservative, reducing the potential gain of a specialization.

Some knowledge and experience with the C programming language is expected,

e.g. corresponding to Kernighan and Ritchie [147].

229

230 Partial Evaluation for the C Language

11.1.1 What is partial evaluation for C?

The language we consider is a substantial subset of the C programming language

[124,147], including global variables, functions with both parameters and local

variables, the usual statements and expressions, and data structures such as structs,

multidimensional arrays, and pointers.

Given only partial input, not all statements can be executed during the special-

ization. Those that can be executed are called static and those that cannot are

called dynamic, and similar for expressions. The goal of the binding-time analysis

is to mark all statements as either static or dynamic. Given an annotated pro-

gram, specialization proceeds by a symbolic execution where static statements are

executed and code is generated for the dynamic ones.

Example 11.1 Consider a mini-version of the formatted print function printf()1

where for simplicity we assume that only integers can be printed out.

void mini_printf(char *fmt, int *value)

f

int i;

for (i = 0; *fmt != 'n0'; fmt++)

if (*fmt != '%') putchar(*fmt);

else switch (*++fmt) f

case 'd': printf("%d", value[i++]); break;

case '%': putchar('%'); break;

default: abort(); /* Error */

g

g

The function could for instance be found in a program implementing scienti�c
computation, where there would be several calls such as mini printf("Result is

%dnn", v). Since the format string is given (static) it makes sense to specialize
mini printf() with respect to a static fmt.

Consider each statement of mini printf(). Clearly, the for loop is entirely
controlled by the fmt string and so are the if and switch. These can thus be
classi�ed as static. On the other hand, the output functions must be deemed

dynamic since output is supposed to be delivered at run time.

Suppose a non-standard symbolic execution given as input the value "n = %d"

of the format string fmt but no value for value. Static statements are executed as

usual, and code is generated for dynamic statements. Static expressions, that is,

expressions depending solely on static values, are evaluated, and dynamic expres-
sions are reduced. This results in the following residual program.

1This example can be found in Kernighan and Ritchie [147], and has also been demonstrated
in the Scheme language [58]

Introduction 231

/* Computes mini_printf("n% = %d", v) for all v */

void mini_printf_fmt(int *value)

f

putchar('n');

putchar(' ');

putchar('=');

putchar(' ');

printf("%d", value[0]);

g

The cost of run time interpretation of the format string is often named the in-
terpretation overhead. By specialization the interpretation overhead is completely

eliminated. Evidently, the specialized version will be faster than the general ver-

sion. 2

Automatic binding-time analysis of C is a major problem which we brie
y con-

sider in Section 11.6. The focus of this chapter, however, will mainly be on the spe-
cialization phase, so we henceforth simply assume for the most part that binding-

time annotations are present in the programs we consider. In Section 11.2 the
specialization of statements and expressions is described. Function specialization
is problematic due to side-e�ects and global data structures | it is important that

the order of side-e�ects is preserved, and sharing of residual functions is complex
due to `hidden' side-e�ects. This is the subject of Section 11.3. Next, in Sec-
tion 11.4 we address the treatment of data structures and in particular pointers.

We describe specialization of structs to static �elds, dynamic memory allocation
via malloc(), and how the binding-time separation can be improved by the means

of pointer information.

11.1.2 The C language

The standard of C imposes only a few restrictions upon its users. We are solely

interested in automatic methods, and clearly this restricts the kind of `nasty' fea-
tures that can be allowed. For example, it is di�cult to handle programs exploiting

uninitialized pointers that the programmer happens to know will point to some-
thing sensible. Thus a certain `clean' programming style is required.

We reject programs using features such as casting void pointers to di�erent

types. The recurring problem is binding-time analysis, which must then be overly

conservative and in the worst case assume that a pointer can point to any dynamic
object in a program. Naturally, one cannot expect good results when this is the

case. On the other hand, if the goal is to process programs written in a larger
subset of C, this can be done by our methods, the risk being that the bene�t from

specialization may be limited.

232 Partial Evaluation for the C Language

In general, a C program can be seen as a set of modules: there are �les with the

main() function, functions for opening and reading �les, functions implementing

computation, etc. We propose to apply partial evaluation to the latter functions,

and for simplicity we assume that all static input is through the parameters of a

goal function. In practice, reading of input from �les is convenient and possible,

but it requires additional attention.2

11.2 Specialization of control
ow

The statements making up the body of a function can by simple transformations be

brought into a form resembling the
owchart language of Chapter 4. For example, a

while loop can be transformed into L: if () . . . goto L. The abstract syntax of

a mix language is de�ned in Section 11.5; for now, though, we leave the convertion

implicit. Suppose that all statements are consistently marked as being either static

or dynamic.

11.2.1 Polyvariant program-point specialization

Consider �rst specialization of statements where the control
ow is entirely static.
This implies that test expressions can be evaluated and branches performed.

Example 11.2 The well-known function power()3 computes base to the n'th.

int power(int base, int n)

f

int pow;

for (pow = 1; n; n--)

pow *= base;

return pow;

g

Assume that power is to be specialized with respect to n. Then the for loop can
be executed during the specialization since it solely depends on the static n. The

local variable pow must be dynamic due to the assignment pow *= base, forcing

the initialization pow = 1 to be suspended as well.

Let n be equal to 3 and suppose that power is symbolically executed on this

input. The test in the for loop is determined by the static n, so the loop can be
unrolled three times. In the body of the loop, the dynamic assignment to pow gives

rise to generation of a residual statement, as shown below.

2For example, to avoid a stream being read repeatedly whereas normal execution only would
read it once.

3See Kernighan and Ritchie, Chapter 1 [147].

Specialization of control
ow 233

/* This program computes base to the 3'rd. */

int power_3(int base)

f

int pow;

pow = 1;

pow *= base;

pow *= base;

pow *= base;

return pow;

g
2

This program can, of course, be further optimized via traditional optimizations

such as folding and constant propagation, but this can be accomplished by a good

optimizing C compiler. On the other hand, since C compilers lack binding-time

information, it is unreasonable to expect a compiler to execute static statements.

The example also illustrates the typical tradeo� between speed and size. The size
of the residual program grows with the size of the static input n, and for huge n

specialization may be undesirable.
Consider now the processing of a dynamic control
ow statement, e.g. an if

where the test expression is dynamic. The branch cannot be determined at spe-
cialization time and hence both branches must be specialized with respect to the
values of the static variables.

Example 11.3 The strcmp() function returns 0 if two strings are equal.

int strcmp(int *s, int *t)

f

for (; *s == *t; s++, t++) if (*s == 'n0') return 0;

return *s - *t;

g

The for loop can be considered as syntax for the equivalent:

L: if (*s == *t) f

if (*s == 'n0') return 0;

s++; t++;

goto L;

g

else return *s - *t;

Assume that the string s is static ('ab') but t is dynamic. Then the if inevitably

must be annotated dynamic, and thus both branches of it must be specialized just

like a compile compiles both branches even though only one will be executed at

run time. The inner if is completely static, but note that both return statements

must be dynamic since the function is supposed to return at run time.

234 Partial Evaluation for the C Language

int strcmp_s(int *t)

f

L_0: if ('a' == *t)

f t++; L_1: if ('b' == *t)

f t++; L_2: if ('n0' == *t) return 0;

else return 'n0' - *t;

g

else return 'b' - *t;

g

else return 'a' - *t;

g

In this particular example, the specialization is nothing more than loop unrolling.

In other cases some static computations could appear in the branches and thus

disappear. 2

In general, a dynamic if (e) S1 else S2 is specialized as follows. The ex-

pression e is reduced as far as possible using the values of the static variables. Then
copies of the static values are made (one for each branch), and both S1 and S2 are
specialized with respect to these. Finally a residual statement if (e0) S 01 else

S 02 is generated. Notice the similarities with the specialization algorithm for the

owchart language given in Chapter 4. An algorithm for C is given in Section 11.5.

11.2.2 Managing a mutable memory

As described above, every time a specialization point is processed, a copy of the
memory, or the store, has to be made. The presence of pointers complicates this

process since these must be adjusted to re
ect possibly new locations of the objects
they originally pointed to, and cyclic data structures must be taken into account.
In order to implement sharing of specialization points, i.e. to detect that a certain

program point already has been specialized with respect to particular values of
static values, it must be possible to `compare' di�erent copies of the store against

each other [6]. We consider this again below.

11.3 Function specialization

By function specialization we mean the generation of a function fs, specialized
with respect to static data s. For example, in Section 11.1 the power() function

was specialized to 3 yielding power 3(). In the previous section we considered

specialization of the body of a function. In this section we address issues such as

side-e�ects, sharing, and specialization strategy. Due to the semantics of C this is

considerably more involved than seen in the foregoing chapters.

Function specialization 235

11.3.1 Function specialization, pointers, and sharing

Functions must naturally be specialized with respect to both static parameters and

static global variables.4 Since the only way to refer to heap-allocated objects is

via pointer variables, no special action needs to be taken. What, however, does it

mean to specialize with respect to a pointer?

Suppose a function foo(int *p) has a static formal parameter of pointer

type, and is to be specialized due to a call foo(e) giving the residual function

foo'(). The specialization must be with respect to both the address (of e) and

the indirection, that is, the content of all the locations that p legally can point to

when the actual parameter expression is e. For example, if e is a where a is a static

array int a[10], then p can refer to a[0],. . . ,a[9].

Suppose another call of foo() in the program. If the call signatures of the two
calls are equal, that is, the values of the static variables at the call are equal to

those to which foo() was specialized, then seemingly foo'() can be shared.
To decide this, the specialization time stores have to be compared. Notice that in

general it can �rst be determined at specialization time which locations that must

be compared | consider for example the di�erence between two calls foo(a) and
foo(&x) | and thus information about the size of static objects must thus be
present during the specialization. One way to achieve this is to maintain a table

of the start and end addresses of all objects allocated at specialization time.

11.3.2 Functions and non-local side-e�ects

Functional languages are characterized by referential transparency, meaning that
two calls to a function with the same arguments always yield the same result. As
is well known, this property is not valid in C due to global variables and nonlocal

side-e�ects.

Example 11.4 Assume a global integer stack int stack[STACK SIZE] and an

integer stack pointer sp.

int main(void) void push(int v)

f f

int x; stack[++sp] = v;

push(e1); g

push(e2); int pop(void)

x = pop() + pop(); f

push(x); return stack[sp--];

g g

In many situations the content of the stack is dynamic while the stack pointer is

static. Suppose we want to specialize the push() and pop() functions.

4Much of the discussion in this subsection carries over to specialization of control
ow.

236 Partial Evaluation for the C Language

First observe that function specialization must be depth-�rst in order to preserve
the order of side-e�ects. This means that a function must be specialized before the

statements following the call. In this example, when the dynamic call to push(e1)

is met, push() must be specialized before the remaining statements in main().

Thus sp will be incremented properly before the next push() is considered. Since

the value of sp now di�ers from the �rst call, push() must be specialized again.

However, at the third call, it seems that the �rst residual version of push()

can simply be shared since sp possesses the same value as originally. By doing

so, though, the static value of sp will not be incremented, which is semantically

wrong. To remedy this, it is necessary to update the value of static variables after

sharing a residual function.

int main(void) void push_0(int v)

f int x; f stack[4] = v; g

/* sp = 3 */

push_0(e01); void push_1(int v)

push_1(e02); f stack[5] = v; g

x = pop_0() + pop_1();

push_0(x) int pop_0(void)

/* sp = 4 */ f return stack[5]; g

g

int pop_1(void)

f return stack[4]; g

At specialization time, after the last call to push 0() the static value of sp has
been updated to 4.

In practice the calls to push() and pop() would, of course, be unfolded. Fur-
thermore, as described in the next section, the array representing the stack could

be split. 2

Without a mechanism for updating the static values of variables after sharing a

call, every dynamic call must either cause the function to be specialized again (or
at least the static part to be re-executed) with consequent risk of non-termination;

or all non-local side-e�ects must be suspended.

11.3.3 Non-local static side-e�ects under dynamic control

In the previous subsection problems with static (non-local) side-e�ects in residual

functions were illustrated. However, the side-e�ects can even be under dynamic

control, as shown below. The scenario is that in a function, a non-local variable is
assigned static values under a dynamic if. At specialization time, the if cannot be
executed and hence both the branches are specialized. This means that eventually

both the static assignments will be evaluated.

Function specialization 237

Example 11.5 Suppose global is classi�ed as static and the function foo() below

is specialized.

int global;

int main(. . .) int foo(. . .)

f f

global = 0; if (dyn) global = 1;

foo(. . .); else global = -1;

S return dyn;

g g

where dyn represents a dynamic expression. Observe that even though global is

assigned static values in each branch of the dynamic if in foo(), the concrete
value is unknown (at specialization time) after the call. 2

This is called non-local static side-e�ects under dynamic control. The problem
is that after processing a residual call, i.e. specializing a function, seemingly static
variables becomes dynamic. When specializing a sequence of statements

if (e) S1 else S2; S,

where e is dynamic, the problem is solved by unfolding the remaining statements
S into the branches, but this solution is not immediately applicable here since

the if is hidden in another function. Either the power of the specializer must
be strengthened to handle such situations, or non-local variables under dynamic

control must be classi�ed dynamic.

Suspension of side-e�ects under dynamic control
The immediate solution is to suspend all (non-local) side-e�ects under dynamic

control. Thus specialization can proceed as normal after a call, since possibly side-
e�ected static variables can at most assume one value after a call. The reader
should be aware that heap-allocated data structures are in the same category as

global variables, so this strategy may have a major impact on the results gained

by specialization.

A slightly improved strategy is to change the binding time of variables under

dynamic control from static to dynamic by insertion of so-called explicators [85],
i.e. assignments global = 1 . This is, however, in con
ict with the monovariant

division of variables into static and dynamic, and we shall not pursue this idea any

further.

Unfolding of functions with side-e�ects under dynamic control
Suppose that all calls to a function containing static side-e�ects under dynamic

control are unfolded. Then we can unfold the statements after the call into the
now revealed dynamic if, and specialize these with respect to the di�erent values

of side-e�ected variables.

238 Partial Evaluation for the C Language

Example 11.6 Reconsider Example 11.5. By unfolding foo() into main(), the

following residual program could be generated:

int main(. . .)

f

if (dyn0) /* global = 1 */ S0

else /* global = -1 */ S00

g

where an attached prime indicates `specialized'. Notice in particular that the

remaining statements S have been specialized with respect to global being 1 and

-1, respectively. 2

The unfolding strategy fails when the candidate function is recursive and the

recursion is under dynamic control, and even when the recursion is statically con-

trolled, termination problems can occur. Moreover, unrestricted unfolding may

lead to code size explosion since no sharing of functions occurs.

Online function unfolding is addressed in Section 11.5.

Handling static side-e�ects under dynamic control by specialization
Observe that if specialization terminates, a static variable can assume only �nitely
many values. A tempting idea is to specialize the statements following a function

call with respect to the �nitely many di�erent values, but without unfolding the
function. For instance, in the running example, we would specialize S with respect
to global being 1 and -1. We then need some machinery in the residual program

which, at run time, can lead the control
ow to the right specialized version of S.
Notice that the decision to execute a particular version is determined by return

statements in the called function, leading to a simple idea: to introduce the C

equivalent of a continuation variable, to be set to a unique value before each
return.

Example 11.7 Following is an example of a residual program using a continuation

variable.

int endconf; /* Continuation variable */

int main(. . .) int foo_0(. . .)

f f

foo_0(. . .); if (dyn0)

switch (endconf) f endconf = 1; return dyn0;

case 1: /* global = 1 */ else

S0; break; endconf = 2; return dyn0;

case 2: /* global = -1 */ g

S00; break;

g

g

Data structures and their binding-time separation 239

In the specialized version of foo(), the continuation variable endconf is set to a

unique value before every return. After the call, a branch is made to the code

corresponding to the path through foo 0() actually taken. Note that this allows

sharing of residual functions. 2

More generally, the idea is to record the values of non-local static variables

immediately after every return. For instance, in the example we would record

global to be 1 at return statement 1, and -1 at return statement 2.

Then, after processing a call, we specialize the remaining statements to the

stores obtained by updating the store active before the call with respect to the

accumulated end-con�gurations. For example, global would be updated to 1, since

this is the value it has when the called function returns. In the residual program, we

generate an assignment to a continuation variable before every return statement,

and after the call, we generate code to branch on the continuation variable to the

various specialized versions.

The end-con�guration can also be used to update the static store after shar-

ing a residual function (cf. Section 11.3.1). We just have to omit the function
specialization.
Similar to the unfolding strategy, this method fails to handle recursive functions.

The reason is that in order to specialize a function call, the called function must
have been completely processed. Moreover, an extra call overhead is introduced
in the residual program. In most cases, though, the overhead will be compensated

for by other savings. More problematic is the copying of possibly huge static data
structures which are side-e�ected under dynamic control. Pragmatic reasons may

require such structures to be suspended.

11.4 Data structures and their binding-time separation

In this section we consider specialization of data structures and in particular point-
ers. Pointers are central to C: they occur in connection with arrays, the address

operator &, and dynamically allocated memory can only be referred to by means

of pointers.
The main problem is the binding-time separation. Consider for example a

program which dynamically allocates a list p = malloc(sizeof(struct Node))

where Node is a struct with a `next' pointer �eld. If all pointers assigned to the

next �eld are static, then we can allocate the list at specialization time and use

it. However, suppose an assignment p->next = dynamic-value occurs later in the
program. This implies that the structure of the list becomes dynamic and thus all
the allocation calls must be suspended. Without a global analysis this cannot be

determined when looking at the malloc() call in isolation. However, a binding-

time analysis can, prior to the specialization, mark all those allocation calls that

can be evaluated and those which must be suspended.

240 Partial Evaluation for the C Language

11.4.1 Partially static arrays

Consider a program containing an array a[n+1] whose elements are dynamic, but

where all of a's subscript expressions are static. It is then, under some restrictions,

possible to split a into separate variables a 0,. . . ,a n. The objective is to eliminate

subscript calculations and an indirection, enable register allocation, etc.

Example 11.8 Consider the following code fragment implementing addition of two

numbers using a stack.

stack[++sp] = 2;

stack[++sp] = 3;

sp--;

stack[sp] = stack[sp+1] + stack[sp];

It is often the case that the content of the stack is dynamic but the stack pointer

itself is static. This means that the stack can be split into separate variables as
illustrated below.

stack_13 = 2;

stack_14 = 3;

stack_13 = stack_14 + stack_13;

During partial evaluation, all the operations on the stack pointer have been per-
formed and the stack has been split into separate variables.5

2

It is crucial that every index expression e in a[e] in the program is static, oth-
erwise a[e] cannot be replaced by a 3 (assuming that e evaluates to 3). This is
not su�cient, though. Assume that there is a dynamic pointer p. Unless it can

be established that p newer will point to a, the array cannot be split since an

expression *p cannot be replaced by the proper variable, say, a 7.

Next, recall that arrays are passed by reference in C. Suppose that a is passed

to a residual function f and it is split. If, in the residual program, it is passed as

f(a 1,. . . ,a n), there is a change in the passing semantics from call-by-reference
to call-by-value which in general is unsound.6 Thus, it seems reasonable to prohibit

splitting of arrays which are passed to functions.

The decision whether or not to split an array depends on global information, and
is thus hard to make online during the specialization. The binding-time analysis

can, however, reveal the needed information and mark those arrays that can be
split safely.

5Furthermore, applying constant folding in another postphase would give 3 + 2 = 5.
6Passing pointers to the variables are not desirable either, since it increases the call overhead.

Data structures and their binding-time separation 241

11.4.2 Struct specialization

Consider a word count program counting the number of occurrences of words in

an input stream.7 A natural data representation is an array of structs

struct key f char *word; int count; g keytab[NKEYS];

Suppose that the words are static but the number of occurrences is dynamic. If

the struct key is treated as a single entity, the staticness of word will be lost, and

we thus have to split the data structure into two separate arrays:

char *keyword[NKEYS]; int keycount[NKEYS];

in order to recover the static information.8

To avoid this it seems desirable to assign to each �eld in a struct an individual

binding time, and then to specialize the struct type to the static �elds. Refer-

ences to static �elds are evaluated during partial evaluation, while all others are

suspended to run time.

Example 11.9 Assume that we employ a binary search routine to look up the index
of a word in the keytab.

struct key f char *word; int count; g;

struct key keytab[NKEYS];

/* Update word with count and return count */

int update(char *word, int count)

f

int n = binsearch(word); /* Find index of word */

return keytab[n].count = count;

g

When specializing the update() function to a static word, the call to binsearch()
can be fully evaluated since it depends on nothing but the static word in keytab.

Only references to the dynamic count �eld appear in residual program.

struct key_word f int count; g keytab[NKEYS];

int update_word(int count)

f return keytab[13].count = count; g

2

Postprocessing can remove singleton structs such as struct f int count; g.

Another strategy is to split structs into separate variables. Notice, however, that

it is in general unsound to perform online splitting of structs that encapsulate

arrays, since this may change the parameter passing semantics from call-by-value

to call-by-reference.

7See Kernighan and Ritchie, Section 6.3 [147].
8Recall the two-list representation of the environment in the
owchart mix, Chapter 4.

242 Partial Evaluation for the C Language

11.4.3 The taming of pointers

A pointer is classi�ed as static if it solely points to objects with a specialization

time known location. Otherwise a pointer is said to be dynamic. For example, if x
is a local variable, then p in p = &x can be classi�ed as static, even though x may

be dynamic. Let all dynamic objects contain their symbolic address, for instance,
x could contain the symbolic address (or run time address) loc-x. Consider partial
evaluation of the following lines of code:

int x, *p;

p = &x; /* Take address of dynamic x */

p = 2; / Assign constant to x */

The �rst expression can be evaluated completely, and thus p can be bound to the

specialization time address of x. Dereferencing p subsequently yields the symbolic

run time address loc-x which can be used to generate the residual expression x =

2 as expected.

Example 11.10 In the program fragment below the pointer p must necessarily be

classi�ed as dynamic.

int a[10], *p;

p = &a[dynamic expression]

Even though a exists during specialization, the assignment cannot be evaluated
statically. 2

Similarly, objects of struct type contain their symbolic run time addresses. For
example, a variable struct key s can be bound to loc-s. The expression s.word

can be evaluated completely at specialization time since word is static. In the case
of a selector expression s.count, a residual expression s.count can be generated
from the symbolic address loc-s and count.9

The same technique carries over to pointers. Let static p be a pointer to a struct
key with symbolic address loc-s1. The expression p->count, which is semantically
equivalent to (*p).count, can then be reduced to s1.count. First *p is evaluated

to the struct object loc-s1, and then the residual struct indexing expression is

generated.

Example 11.11 Pointers to non-local objects must be treated with care. Suppose

that a global pointer p is assigned the address of a local dynamic variable x, and
then a function foo() is called. In foo(), any dereferencing of p will evaluate

to loc-x and thus x will appear in the residual version of foo(), which is clearly

wrong. Similar problems occur when partially static variables are passed using call-
by-reference. Hence pointers to variables otherwise out of scope must be suspended,
and name clashes must be avoided. 2

9Recall that a partially static struct is not split but specialized.

Data structures and their binding-time separation 243

As we have seen, when pointers have been classi�ed as either static or dynamic,

the specialization is straightforward, provided no pointer can point to objects with

di�erent binding times, and that the specializer simulates the runtime memory

management. The real problem is to obtain a safe binding-time separation. For

example, when must a pointer be suspended due to (possibly) non-local references,

and when is it safe to split an array?10

Consider an analysis that can say which objects a pointer may point to during

program execution. If the analysis says that no dynamic pointers can point to

an array a, the array can be marked to be split. Similarly, if the analysis says

that a pointer may reference a non-local variable, this variable can be classi�ed as

dynamic if needed. Without detailed information about pointers, the binding-time

analysis must conservatively assume that any pointer can point to all objects and

thus most pointer operations would be suspended.

11.4.4 Replacing dynamic memory allocation by static allocation

In C dynamic memory allocation is performed, directly or indirectly, via calls to
the library function malloc(). Since the heap management must be known to the
specializer, we shall, for simplicity, assume that all memory allocation is achieved

through a mix function alloc(S), where S is the name of the desired struct.11

Example 11.12 The following program dynamically allocates a list of n elements.

Suppose the key and next �elds are static but data is dynamic.

struct Node f int key, data; struct Node *next; g *p, *list;

/* Built a list */

for (list = p = alloc(Node); n--;)

f p = p->next = alloc(Node); p->key = n; p->data = . . . ; g

list = list->next;

/* Look up the N element */

for (p = list; p != NULL && p->key != N; p = p->next);

printf("Key = %dnn", p != NULL ? p->data : -1);

The key observation is that even though struct Node is a partially static struct,
eventually the whole list will be allocated and built at specialization time. This

allow us to replace dynamic allocation by static allocation:

struct Node_key f int data; g alloc_0, . . . , alloc n;

alloc_0.data = . . . ;

. . .

alloc_n.data = . . . ;

printf("Key = %dnn", alloc_N.data);

10Recall that an array cannot be split if it is addressed by a dynamic pointer.
11The discussion carries over to dynamic allocation of base type and array objects.

244 Partial Evaluation for the C Language

During specialization the list has been allocated and in the residual program the

nodes appear as separate variables. Moreover, struct Node has been specialized

to the static key and next �elds. All pointer chaining has been resolved, so the

desired node can be referred to directly. 2

The bene�t of the optimization is two fold. The expensive calls to alloc() are

replaced by cheaper static allocation, and all pointer indirections are performed

during specialization.

If the result of an alloc() is assigned a dynamic pointer, the call is suspended.

For example, suppose that a next �eld is assigned a dynamic pointer. Then the

allocation of the whole list would be suspended. This is reasonable because then

the list cannot be traversed at specialization time.

11.4.5 Improving the separation of binding times

Without detailed knowledge of pointer usage, binding-time analysis must imple-

ment the most conservative assumption | that any pointer potentially can point
to all objects of its type. For example, consider variable declarations struct key

k, l, *p. If the word �eld in k is dynamic then also the word �eld in l must
be classi�ed as dynamic, as it could be that p might point to either of the two
variables. However, if it can be revealed that p at most can point to one of them,

for example k, then word in l can be classi�ed as static.
As a variable can be characterized by its name, a heap-allocated object can be

named from the alloc() from which it originates.
Let all alloc() calls be labelled uniquely. A call allocl(S) is said to be the

l'th birthplace of an S object. Generalizer such that the birthplace of a statically

allocated variable is its (unique) name.

Example 11.13 Let P(p) mean the set of objects, identi�ed by their birthplaces,

that pointer variable p may point to during program execution. We have: P(p) =

P(list) � f0; 1g, P(q) � f2g, P(1:next) � f1g,

list = p = alloc0(Node);

for (; n--;) f p = p->next = alloc1(Node); . . . ; g

list = list->next;

q = alloc2(Node);

where 1.next means next in 1-objects. 2

The binding-time congruence principle can then be re�ned to read: for all pointer

variables p it holds that any variable in P(p) possesses the same binding time.12 A

analysis in which pointer analysis and binding-time analysis are partly intermingled

is outlined in Section 11.6.
12This is similar to the use of closure analysis in higher-order partial evaluation (Chapter 10).

Partial evaluation for C by two-level execution 245

id, �d, eid 2 Identi�ers

lab 2 Labels

const 2 Constants (int, char, double, . . .)

uop, bop 2 Unary and binary operators

base 2 Base types (int, char, double, . . .)

hCCi ::= hdecli� hfundefi+ Core C
hdecli ::= htypei id htypespeci Declarations
htypei ::= base j htypei � j struct id f hdecli+ g
htypespeci ::= � j htypespeci [const]
hfundefi ::= htypei �d (hdecli�) f hdecli� hstmti+ g Functions
hstmti ::= lab : expr hexpi Statements

j lab : return hexpi
j lab : goto lab
j lab : if (hexpi) lab lab
j lab : call id = �d (hexpi�)

hexpi ::= cst const j var id Expressions
j struct hexpi . id
j index hexpi [hexpi] j indr hexpi
j addr hexpi
j unary uop hexpi j binary hexpi bop hexpi
j ecall eid (hexpi�) j alloc (id)
j assign hexpi = hexpi

Figure 11.1: Abstract syntax of Core C.

11.5 Partial evaluation for C by two-level execution

In this section we illustrate partial evaluation for C by means of a two-level ex-

ecution of Core C. First we de�ne a kernel language Core C and extend it to a
two-level Core C language with explicit binding-time separation. Then we state
well-annotatedness requirements and �nally we present the specialization kernel.

The subset of C we consider in this section excludes function pointers and unions.

11.5.1 The Core C kernel language

A good way to partially evaluate a large-scale language is by `syntactic desugaring':

to translate it into a smaller kernel language capturing the essential constructs of
the subject language. The abstract syntax of Core C is displayed in Figure 11.1. All

syntactic matters such as type name declarations, scoping, nested declarations, etc.

are assumed to be solved during transformation from C to Core C. Obviously, most
Ansi C conforming programs can automatically be transformed into an equivalent

Core C representation, and even so that the structure of the program is preserved.

246 Partial Evaluation for the C Language

A Core C program consists of an optional number of global variable declarations

followed by at least one function de�nition. Functions can declare both parameters

and local variables, but further nesting of scopes is not possible. A variable can

be of base or struct type, a multidimensional array, or a pointer. The semantics of

Core C is as expected [6].

The body of a function is a sequence of labelled statements. A statement can

be an expression (expr), a conditional jump (if), an unconditional jump (goto),

a function return (return), or a function call (call). In contrast to ordinary C,

calls to user de�ned functions are all at the statement level rather than at the

expression level. This has been done in order to separate the control
ow from the

evaluation of expressions. Clearly, the `lifting' of calls out of expressions can be

done automatically by introduction of new local variables.

An expression can be a constant, a variable, a struct or array indexing, a pointer

dereferencing, an application of the address operator, an application of a unary

or binary operator, a call to an external function, the memory allocation call

alloc(), or an assignment.

Example 11.14 The power() function from Example 11.2 can be represented as a

Core C program as follows.

int power(int base int n)

f

int pow

1: expr assign var pow = cst 1

2: if (var n) 3 6

3: expr assign var pow = binary var pow * var base

4: expr assign var n = binary var n - cst 1

5: goto 2

6: return var pow

g

2

11.5.2 Binding time made explicit

Aiming at making binding times explicit, we extend the Core C language into a
two-level version where dynamic constructs are annotated by an underline. The
abstract syntax of two-level Core C is depicted in Figure 11.2.

Underlined versions of statements and expressions have been added to the Core C

syntax. Intuitively, in the two-level language, the semantics of non-underlined
constructs is the standard semantics, while the meaning of underlined constructs
is `generate code'.

Suppose a two-level Core C program is given. An assign is evaluated in the

normal way, while a residual assignment is generated in case of an assign, where

both the subexpressions have been reduced.

Partial evaluation for C by two-level execution 247

h2CCi ::= h2decli� h2fundefi+ 2-level Core C
h2decli ::= h2typei id h2typespeci j decl 2-level declarations
h2typei ::= base j h2typei � j struct id f h2decli+ g

j type

h2typespeci ::= h2typespeci [const] j typespec
h2fundefi ::= h2typei �d(h2decli�) fh2decli�h2stmti+g 2-level functions
h2stmti ::= hstmti 2-level statements

j lab : expr h2expi
j lab : return h2expi
j lab : goto lab
j lab : if (h2expi) lab lab
j lab : call id = �d (h2expi�)

h2expi ::= hexpi j lift hexpi 2-level expressions
j struct h2expi . id
j index h2expi [h2expi] j indr h2expi

j addr h2expi

j unary uop h2expi j binary h2expi bop h2expi
j ecall eid (h2expi�) j alloc (id)
j assign h2expi = h2expi

Figure 11.2: Abstract syntax of two-level Core C.

A lift operator has been added to the set of two-level expressions. Its purpose

is to indicate static values appearing in dynamic contexts. The two-level meaning
is: evaluate the expression and generate a residual constant. There is no under-

lined var since all dynamic variables are supposed to be bound to their symbolic
addresses, and thus can be evaluated.

Example 11.15 The Core C version of the power() function from Example 11.14

is below shown in a two-level version.

int power(int base int n)

f

int pow

1: expr assign var pow = lift cst 1

2: if (var n) 3 6

3: expr assign var pow = binary var pow * var base

4: expr assign var n = binary var n - cst 1

5: goto 2

6: return pow

g

Notice that a lift has been inserted in the �rst statement since the static constant

1 appears in a dynamic context. 2

248 Partial Evaluation for the C Language

The meaning of a jump is to continue (two-level) program execution at the target

label. The meaning of a goto is to generate a residual goto and to specialize the

target statements to the current values of the static variables. The meaning of a

call statement is to execute the function (which must be completely static), and

the meaning of a call is to specialize the call.

To indicate the desired processing of function calls, the two-level language is

furthermore extended with the forms:

rcall and ucall.

In the former case, the function is specialized under the assumption that no static

side-e�ects under dynamic control occur in the called function (cf. Section 11.3).13

The ucall form indicates that the function is to be unfolded.

11.5.3 Well-annotated two-level Core C

Not all two-level Core C program specialize well. The indispensable congruence
requirement, that static computation must be independent of dynamic values, is
not captured by the purely syntactic de�nition of the two-level language. A pro-

gram ful�lling this principle is said to be well-annotated. A set of rules is needed
such that if a program satis�es them, then no binding time error can occur during

specialization.

Binding times can be seen as types in the two-level language. For instance, a

constant has type static S, an expression depending on a dynamic value has type
dynamic D. This can be formalized by the means of a two-level binding-time type
system. A binding-time type (BTT) T is given inductively by the grammar:

T ::= S j D j T � � � � � T j �T

where S and D are ground types. The constructor � describes the components of

a value of struct type. For example, a struct f int x, y; g could be assigned
the binding time S �D meaning that x is static but y dynamic. Finally, the star
constructor �T denotes a static pointer to an object of binding time T .

Example 11.16 Consider the struct Node de�ned in Section 11.4, and suppose

that key and next are static �elds but data dynamic. Thus the type TNode is

TNode = S �D � �TNode

where the recursive de�nition is due to the fact that the struct Node is recursively
de�ned. Formally we would have to add a �xed-point operator � to the two-level

type system, de�ned by �T:T = T [�T:T =T], but this is omitted for simplicity. 2

13This is an example of a well-annotatedness requirement which is treated in the next
subsection.

Partial evaluation for C by two-level execution 249

� ` cst c : S

� ` var v : �(v)
� ` e : S

� ` lift e : D

� ` e1 : T1 � � � � � Tn
� ` struct e1:i : Ti

� ` e1 : D

� ` struct e1:i : D

� ` e1 : �T � ` e2 : S

� ` index e1[e2] : T

� ` e1 : D � ` e2 : D

� ` index e1[e2] : D

� ` e : �T

� ` indr e : T

� ` e : D

� ` indr e : D

� ` e : T T 6= D

� ` addr e : �T

� ` e : D

� ` addr e : D

� ` e1 : T1 O(op) = (T1)! T

� ` unary op e1 : T

� ` e1 : D

� ` unary e1 : D

� ` ei : Ti O(op) = (T1; T2)! T

� ` binary e1 op e2 : T

� ` e1 : D � ` e2 : D

� ` binary e1 op e2 : D

� ` ei : Ti O(f) = (T1; . . . ; Tn)! T

� ` ecall f(e1; . . . ; en) : T

� ` ei : D

� ` ecall f(e1; . . . ; en) : D

� ` alloc(S) : �TS � ` alloc(S) : D

� ` e1 : T � ` e2 : T T 6= D

� ` assign e1 = e2 : T

� ` e1 : D � ` e2 : D

� ` assign e1 = e2 : D

Figure 11.3: Well-annotatedness rules for two-level expressions.

Let � : Id ! BTT be a type assignment mapping identi�ers to binding-time

types. For example, �(base) = D in case of the power() function. Moreover, let
O : OId ! BTT�

! BTT map operators and external functions to their static
binding-time types. For example, `+' maps static base values to a static base value:

O(+) = (S; S)! S.

Suppose that e is a two-level expression and that all identi�ers in e are in the

domain of � . Then e is well-annotated i� there exists a binding-time type T such

that � ` e : T where the relation ` is de�ned in Figure 11.3.

A constant is static and the binding-time type of a variable is given by the

environment � . The lift operator converts a static base value to a dynamic

constant.14

In any indexing of a dynamic struct, the subexpression must be dynamic. Other-

wise the type of the result is given by the corresponding �eld. An index expression

is static if its left expression is of static pointer type and the index expression is

static. Otherwise both the subexpressions must be dynamic and the indexing sus-

pended. In the case of a deference operator, the subexpression must be of static

14Notice that values of struct or pointer type are not allowed to be lifted.

250 Partial Evaluation for the C Language

pointer type for the application to be non-underlined.

The cases for application of unary and binary operators and external functions

are all similar. Either the arguments are static as given by the type assignment, or

all the arguments are dynamic and the application is suspended. The alloc call

returns a static pointer, and an assignment is non-underlined if both the subex-

pressions are non-dynamic.

The rules for structs are more liberal than assumed in the previous sections.

Recall that we do not want to split structs but to specialize their static �elds. We

could therefore additionally require any struct expression whose relevant �eld is

non-static to be underlined.

Given the de�nition of well-annotatedness of expressions, well-annotatedness of

statements can be de�ned. For example, an if is static if the test expression is

static. A function de�nition is static if it does not contain a dynamic statement.

In a dynamic function, every return must be dynamic since a residual function

is supposed to return a value at run time | not at specialization time. The last

step is to impose conditions regarding the treatment of recursive functions and

non-local side-e�ects: e.g. to make all assignments to non-local variables dynamic

[6,10]. To this end the output of a pointer analysis is useful to detect whether and
| in the a�rmative case | which non-local variables a function may refer to.

11.5.4 Two-level execution of Core C

In this section we present the core of a specializer for two-level Core C. It comes
in two parts: the two-level execution of statements, and the surrounding kernel for

polyvariant specialization of program points.

Two-level execution of statements
Let the value of parameters, local variables, and global variables be represented
by three separate arrays pstore, lstore, and gstore respectively. The heap is

represented by an array heap, which alloc() administrates.

The program representation is assumed to be encapsulated via external func-
tions. An example is stmt kind(), which returns the tag of a particular statement

in a function. The whole program is represented by the variable pgm.
The residual code is generated by external library functions such as gen (),

which adds a statement to the residual function currently being made.

The two-level execution of two-level statements is given in Figure 11.4. The
variable pp is the current program point, and func the current function index.

Given the label of a statement, all following statements up to the next dynamic
control statement (goto, if, call, return) are specialized.

The function eval() evaluates an expression yielding a value, and the function

reduce() reduces an expression giving a residual expression.15

15We assume that suitable data types for representation of expressions and values exist.

Partial evaluation for C by two-level execution 251

while (pp != HALT) /* Two-level execution of statements/ */
switch (stmt_kind(func,pp,pgm))

f
case EXPR: /* Static expression */

eval(exp, pstore, lstore, gstore);
pp += 1; break;

case _EXPR_: /* Dynamic expression */
gen_expr(reduce(exp, pstore, lstore, gstore));
pp += 1; break;

case GOTO: /* Static jump */
pp = target-label; break;

case _GOTO_: /* Dynamic jump */
lab = seenB4(target-label, pstore, lstore, gstore);
if (!lab) lab = insert_pending(target-label, pstore, lstore, gstore);
gen_goto(lab);
pp = HALT; break;

case IF: /* Static conditional */
if (eval(test-exp, pstore, lstore, gstore)) pp = then-lab;
else pp = else-lab;
break;

case _IF_: /* Dynamic conditional */
lab1 = seenB4(then-lab, pstore, lstore, gstore);
if (!lab1) lab1 = insert_pending(then-lab, pstore, lstore, gstore);
lab2 = seenB4(else-lab, pstore, lstore, gstore);
if (!lab2) lab2 = insert_pending(else-lab, pstore, lstore, gstore);
gen_if(reduce(test-exp, pstore, lstore, gstore), lab1, lab2);
pp = HALT; break;

case CALL: /* Static function call */
store = eval_param(parameters, pstore, lstore, gstore);
*eval_lexp(var, pstore, lstore, gstore) = exec_func(fun, store);
pp += 1; break;

case _CALL_: /* Residual call: specialize */
store = eval_param(parameters, pstore, lstore, gstore);
if (!(lab = seen_call(fun, store, gstore)))

f code_new_fun(); spec_func(fun,store); code_restore_fun(); g
gen_call(var, fun, store);

for (n = 0; n < # endcon�gurations; n++) f
update(n'th endconf, pstore, lstore, gstore);
insert_pending(pp+1, pstore, lstore, gstore);

g
gen_callbranch();
pp = HALT; break;

case _RCALL_: /* Recursive residual call: specialize */
store = eval_param(parameters, pstore, lstore, gstore);
if (!(lab = seen_call(fun, store, gstore)))

f code_new_fun(); spec_func(fun, store); code_restore_fun(); g
update(end-conf, pstore, lstore, gstore);
gen call(var, fun, store);
pp += 1; break;

case _UCALL_: /* Residual call: unfold */
store = eval_param(parameters, pstore, lstore, gstore);
gen_param_assign(store);
spec_func(fun, store);
pp = HALT; break;

case _RETURN_: /* Dynamic return */
n = gen_endconf_assign();
gen_return(reduce(exp, pstore, lstore, gstore));
save_endconf(n, func, pstore, gstore);
pp = HALT;

g

Figure 11.4: Two-level execution of statements.

252 Partial Evaluation for the C Language

Static expressions are evaluated and dynamic expressions are reduced.

In the case of a dynamic goto, the target program point is specialized. If it has

not already been specialized with respect to the current values of static variables, it

is inserted into a pending list (insert pending()). A residual jump to the residual

target point is �nally generated.

Dynamic if is treated in a similar way. Both branches are checked to see whether

they have been specialized before, and a residual if is added to the residual code.

Consider function specialization. First it is checked to see whether the function

already has been specialized with respect to the static values. If so, the residual

function is shared, otherwised it is specialized via a recursive call to spec fun (de-

�ned below). Next the end-con�guration branch is generated (gen callbranch()),

and the following program point is inserted into the pending list to be specialized

with respect to each of the static stores obtained by an updating according to the

saved end-con�gurations (update()).

To generate a new residual function corresponding to the called function, a

library function code new fun() is used. This causes the output of the gen()

to be accumulated. When the function has been specialized, the code generation

process is returned to the previous function by calling (code restore fun()).

Online function unfolding can be accomplished as follows. First, assignments of

the dynamic actual parameters to the formal parameters (gen param assign()) is
made. Next, the called function is specialized but such that residual statements
are added to the current function. By treating returns in the called as goto

to the statement following the call, the remaining statements will be specialized
accordingly. In practice, though, the process is more involved since care must be
taken to avoid name clashes and the static store must be updated to cope with

side-e�ects.

In case of a return, the expression is reduced and a residual return made.

Furthermore, the values of static variables are saved (save endconf()) as part of
the residual function.

The pending loop

The pending loop driving the polyvariant specialization is outlined in Figure 11.5.

As parameter it takes the index of a function to be specialized and the parameter

store. It then allocates storage for local variables and initializes the specialization

by inserting the �rst program point into the pending list.

Let hp; si be a specialization point in the pending list, where p is a program point

and s a copy of the static store. To specialize p with respect to s, pp is initialized to

p, and the values of static variables restored according to s (pending restore()).

Finally, the specialization point is marked as `processed' (pending processed())

such that later specializations of the same program point are shared.

The actual specialization is done by a two-level execution (see Figure 11.4). This

is repeated until all pending specialization points have been processed, i.e. until

the pending list is empty.

Separation of the binding times 253

Value *gstore; /* Global store */
Value heap[HEAP] /* Heap */

int spec_func(int func, Value *store)

f
int pp; /* Program point */
Value *store; /* Store for actual parameters */

/* Initialize */
lstore = alloc_store(func);
pending_insert(1, pstore, lstore, gstore);

/* Specialize all reachable program points */
while (!pending empty())

f /* Restore con�guration according to pending */
pending_restore(pstore, lstore, gstore);
pp = pending_pp();
pending_processed(pp);

/* Two-level execution */
hFigure 11:4i

g
return function index;

g

Figure 11.5: Function specialization.

11.6 Separation of the binding times

In this section we brie
y consider binding-time analysis of C with emphasis on basic
principles rather than details [10]. Due to the semantics of C, and the involved

well-annotatedness conditions, the analysis is considerably more complicated than
of the lambda calculus (for example), but nevertheless the same basic principles

can be employed. The analysis consists of three main steps:

1. Call-graph analysis: �nd (possibly) recursive functions.

2. Pointer analysis: appromixate the usage of pointers.

3. Binding-time analysis: compute the binding times of all variables, expres-
sions, statements, and functions.

11.6.1 Call-graph analysis

The aim of the call-graph analysis is to annotate calls to possibly recursive functions

by rcall. This information is needed to suspend non-local side-e�ects in residual
recursive functions. The analysis can be implemented as a �xed-point analysis.

The analysis records for every function which other functions it calls, directly

or indirectly. Initially the description is empty. At each iteration the description
is updated according to the calls until a �xed point is reached [4]. Clearly the

analysis will terminate since there are only �nitely many functions.

254 Partial Evaluation for the C Language

11.6.2 Pointer analysis

The aim of the pointer analysis is for every pointer variable to approximate the set

of objects it may point to, as introduced in Section 11.4.

The pointer analysis can be implemented as an abstract interpretation over the

program, where (pointer) variables are mapped to a set of object identi�ers [121].

In every iteration, the abstract store is updated according to the assignments, e.g.

in case of a p = &x, `x' is included in the map for p. This is repeated until a

�xed-point is reached.

11.6.3 Binding-time analysis

The binding-time analysis can be realized using the ideas from Chapter 8 where

the type inference rules for the lambda calculus were transformed into a constraint

set which subsequently was solved.

The analysis proceeds in three phases. Initially, a set of constraints is collected.
The constraints capture the requirements stated in Figure 11.3 and the additional

conditions imposed by the handling of recursive functions with non-local side-
e�ects. Next, the constraints are normalized by applying a number of rewriting
steps exhaustively. Finally, a solution to the normalized constraint set is found.

The output is a program where every expression is mapped to its binding time.

We introduce �ve syntactic constraints between binding time types:

T1 = T2 T1 � T2 � T1 v T2 T1 � � � � � Tn v T T1 � T2 T1 > T2

which are de�ned as follows. The `�' represents lift: S � D. The `<' represents

splitting of dynamic arrays: �D < D. Furthermore, it captures completely dy-
namic structs: D � � � � � D < D. The `< ' is for expressing the binding time of
operators. Its de�nition is given by T1 � T2 i� T1 = T2 or T2 = D. The last

constraint `>' introduces a dependency: given T1 > T2, if T1 = D then T2 = D.

The constraints for an expressions e are inductively de�ned in Figure 11.6.

The constraints capture the dependencies between the expression itself and its

subexpressions. A unique type variable is assigned to each variable16, expression
node, statement node and function.

A constant e is static, captured by the constraint Te = S. The binding time of

a variable reference e is given by a unique type variable for every variable v, thus

Te = Tv.

Consider the two-level typing of an index expression e1[e2]. Either the left

expression is a static pointer and the index is static, or both subexpressions are
dynamic. This is contained in the constraint �Te v Te1 , and the constraint Te2 >Te1
assures that if e2 is dynamic then so is e1.

16Contrary to the analysis for the lambda calculus (Chapter 8), we only assign one variable Te
to each expression e. Instead we introduce a `lifted' variable T e when needed.

Separation of the binding times 255

Cexp(e) = case e of
[[cst c]])fS = Teg

[[var v]])fTv = Teg

[[struct e1.i]])fT1 � � � � � Te � � � � � Tn v Te1g [Cexp(e1)
[[index e1[e2]]])f�Te v Te1 ; Te2 > Te1g [Cexp(ei)
[[indr e1]])f�Te v Te1g [Cexp(e1)
[[addr e1]])f�Te1 v Te; Te1 > Teg [Cexp(e1)
[[unary op e1]])fTop1 � T e1 ; Te1 � T e1 ; T e1 > Te; Top � Te; Te > T e1g [Cexp(e1)
[[binary e1 op e2]])fTopi � T ei ; Tei � T ei ; T ei > Te; Top � Te; Te > T eig [Cexp(ei)
[[ecall f(e1,. . .,en)]])fTfi � T ei ; Tei � T ei ; T ei > Te; Tf � Te; Te > T eig [Cexp(ei)
[[alloc(S)]])f�Ts v Teg

[[assign e1 = e2]])fTe = Te1 ; Te2 � Te1g [Cexp(ei)

Figure 11.6: Constraints for expressions.

The constraints generated for applications of unary, binary and external func-

tions are analogous. Consider the case for ecall. In the typing rule it is de�ned

that either the arguments are all static or they are all dynamic. In the latter case it

may be desired to insert a lift to avoid forcing a static computation dynamic. We
introduce n `lifted' variables T ei corresponding to possibly lifted arguments. The

are constrained by the static binding time type of the called function Tfi � T ei,
cf. the use of O map in the well-annotatedness rules. Next, via lift constraints
Tei � T ei capture the fact that the actual parameters can be lifted. Finally, de-

pendency constraints are added to assure that if one argument is dynamic, then
the application is suspended.

In the case of assignments, it is captured that a static right expression can be
lifted if the left expression is dynamic, by Te2 � Te1 .

The constraints for statements are given in Figure 11.7. For all statements,
a dependency between the binding time of the function Tf and the statement is

made. This is to guarantee that a function is made residual if it contains a dynamic
statement.

Cstmt(s) = case s of
[[expr e]]) fTe > Tfg [Cexp(e)
[[goto m]]) fg

[[if (e) m n]]) fTe > Tfg [Cexp(e)
[[return e]]) fTe � T e; T e > Tf ; Tfs � T e; Tf > T eg [Cexp(e)
[[call x = f 0(e1,. . .,en)]]) fTei � Tf 0

i
; Tf 0 = Tx; Tx > Tfg [Cexp(x) [

S
i Cexp(ei)

Figure 11.7: Constraints for statements.

Using the information collected by the call graph analysis and the pointer anal-

ysis, additional constraints can be added to assure, for example, suspension of
non-local side-e�ects in recursive functions. For example, if a pointer p is set to

point to a global variable v in a recursive function, a constraint Tv = D must be

added.

Given a multiset of constraints, a solution is looked for. A solution is a sub-

256 Partial Evaluation for the C Language

stitution mapping type variables into binding time types which satis�es all the

constraints (Chapter 8) [10]. From this it is easy to derive a well-annotated two-

level program.

11.7 Self-application, types, and double encoding

So far we have not considered self-application. Contrary to the languages studied

previously, C has typed data structures, and this interferes with self-application.

A partial evaluator is a general program expected to work on programs taking

all kinds of input, for example integers and characters. To ful�l this, it is necessary

to encode the static input into a single uniform data type Value. In C, Value could

be a huge struct with �elds for int, char, doubles, etc. Let the notation d
t
denote

an unspeci�ed representation of a datum d (of some type) in a data structure of

type t. The proper extensional type of mix (ignoring annotations for simplicity)

can then be written as follows:

[[mix]]C(p
Pgm; sValue) = ps

Pgm

where the result is a representation of the residual program, and the subscripts
indicate the languages in use.

Consider self-application [[mix]]C(mix; int), where int is an interpreter. As input

to mix, int must of course be encoded into the program representation int
Pgm

.

As for any program input to the running mix, this must be encoded into the Value
type. The result may be a huge data structure slowing self-application down and

causing memory problems.

This is also seen in the Futamura projections, which can be restated as follows.

1. Futamura [[mix]]C(int
Pgm

; pPgm
Value

) = target
Pgm

2. Futamura [[mix]]C(mix
Pgm

; int
Pgm

Value

= compiler
Pgm

3. Futamura [[mix]]C(mix
Pgm

; mix
Pgm

Value

) = cogenPgm

Notice the double encoding of the second argument to mix, and in particular the

speculative double encoding of programs. To overcome the problem, the type of
the program representation can be added as a new base type. Hereby a level of

encoding can be eliminated, a technique also used elsewhere [6,69,169].

11.8 C-mix: a partial evaluator for C programs

C-mix is a self-applicable partial evaluator based on the techniques described in

this chapter [6,9,10]. It can handle a substantial subset of the Ansi C programming

language, and is fully automatic. In this section we report some benchmarks. The

C-mix: a partial evaluator for C programs 257

specialization kernel, described in Section 11.5, takes up 500 lines of code. The

whole specializer including library functions consists of approximately 2500 lines

of C code.

11.8.1 Benchmarks

All experiments have been run on a Sun Sparc II work station with 64M internal

memory. No exceptionally large memory usage has been observed. The reported

times (cpu seconds) include parsing of Core C, specialization, and dumping of the

residual program, but not preprocessing.

Specialization of general programs

The program least square implements approximation of function values by or-

thogonal polynomials. Input is the degree m of the approximating polynomial, the

vector of x-values, and the corresponding function values. It is specialized with

respect to �xed m and x-values. The program scanner is a general lexical analyser

which as input takes a de�nition of a token set and a stream of characters. Output
is the recognized tokens. It is specialized to a �xed token set.

Program run Run time Code size
time ratio size ratio

[[least square]](m; Input) 6.3 82

[[least squarem]](Input) 3.7 1.9 1146 0.07

[[scanner]](Table; Input) 1.9 65

[[scannerTable]](Input) 0.7 2.7 1090 0.06

The least square program was specialized to degree 3 and 100 �xed x-values.
The speedup obtained was 1.9.17 It is rather surprising that specialization to

the innocent looking parameters of the least-square algorithm can give such a

speedup. Furthermore, it should be noted that the so-called `weight-function',

which determines the allowed error, is completely static. Thus, more involved

weight-functions give larger speedup. The price paid is the size of the residual
program which grows linearly with the number of static x-values.

The scanner was specialized to a subset of the C keywords, and applied to a
stream with 100 000 tokens. The speedup was 2.7. This is also rather satisfactory,

and it shows that e�cient lexers can be generated automatically from general scan-

ners. The residual program is rather large, but is comparable to a lex-generated

lexical analyser for the same language.18

17The programs were run 100 times on the input.
18This example was also used in Chapter 6, where the scanner was specialized to two-character

tokens.

258 Partial Evaluation for the C Language

Compiler generation by self-application

The C mix specializer kernel is self-applicable. Compiler generation is demon-

strated by specialization of spec to an interpreter int for an assembly language.

This example is taken from Pagan who by hand makes a generating extension of

the interpreter [213]. The interpreted program Primes computes the �rst n'th

primes.

Program run Run time Code size
time ratio size ratio

[[Int]](Primes; 500) 61.9 123

[[IntPrimes]](500) 8.9 7.0 118 1.0

[[spec]](Int; Primes) 0.6 474
[[specInt]](Primes) 0.5 1.2 760 0.6

[[spec]](spec; Int) 2.2 474

[[cogen]](Int) 0.7 3.1 2049 0.2

The compiled primes program (in C) is approximately 7 times faster than the
interpreted version. Compiler generation using cogen compared to self-application

is 3 times faster. The compiler generator cogen is 2000 lines of code plus library
routines.

11.9 Towards partial evaluation for full Ansi C

In this chapter we have described partial evaluation for a substantial subset of C,
including most of its syntactical constructs. This does not mean, however, that an

arbitrary C program can be specialized well. There are two main reasons for this.

Some C programs are simply not suited for specialization. If partial evaluation
is applied to programs not especially written with specialization in mind, it is often

necessary to rewrite the program in order to obtain a clean separation of binding

times so as much as possible can be done at specialization time. Various tricks
which can be employed by the binding-time engineer are described in Chapter 12,

and most of these carry over to C. Such transformations should preferably be

automated, but this is still an open research area.

A more serious problem is due to the semantics of the language. In C, program-

mers are allowed to do almost all (im)possible things provided they know what

they are doing. By developing stronger analyses it may become possible to handle
features such as void pointers without being overly conservative, but obviously

programs relying on a particular implementation of integers or the like cannot be

handled safely. The recurring problem is that the rather open-ended C semantics

is not a su�ciently �rm base when meaning-preserving transformations are to be

performed automatically.

Exercises 259

11.10 Exercises

Exercise 11.1 Specialize the mini printf() in Example 11.1 using the methods

described in this chapter, i.e. transform to Core C, binding-time analyse to obtain

a two-level Core C program, and specialize it. 2

Exercise 11.2 In the two-level Core C language, both a static and a dynamic goto

exists, even though a goto can always be kept static. Find an example program

in which it is useful to annotate a goto dynamic 2

Exercise 11.3 In the Core C language, all loops are represented as L: if () . . .

goto L;. Consider an extension of the Core C language and the two-level algorithm

in Figure 11.4 to include while. Discuss advantages and disadvantages. 2

Exercise 11.4 Consider the binary search function binsearch().

#define N 10

int binsearch(int n)

f

int low, high;

low = 0; high = N - 1;

while (low <= high) f

mid = (low + high) / 2;

if (table[mid] < n)

high = mid - 1;

else if (table[mid] > n)

low = mid + 1;

else

return mid;

g

g

Assume that the array table[N] of integer is static. Specialize with respect to
a dynamic n. Predict the speedup. Is the size of the program related to N? 2

Exercise 11.5 The Speedup Theorem in Chapter 6 states that mix can at most

accomplish linear speedup. Does the theorem hold for partial evaluation of C?

Extend to speedup analysis in Chapter 6 to cope with functions. 2

Exercise 11.6 Consider the inference rule for the address operator in Figure 11.3.

Notice that if the expression evaluates to a dynamic value, then the application is

suspended. This is desirable in the case of an expression &a[e] where e is dynamic,

but not in case of &x where x is dynamic. Find ways to remedy this problem. 2

Exercise 11.7 Formalize the well-annotatedness requirements for statements, func-

tions, and Core C programs. 2

Exercise 11.8 Develop the call-graph analysis as described in Section 11.6. Develop

the pointer analysis. 2

Part IV

Partial Evaluation in Practice

Chapter 12

Binding-Time Improvements

Two programs that are semantically, and even operationally, equivalent with re-

spect to time or space usage may specialize very di�erently, giving residual pro-
grams with large di�erences in e�ciency, size, or runtime memory usage. Thus

partial evaluator users must employ a good programming style to make their pro-
grams specialize well. The purpose of this chapter is to give some hints about
`good style', based on examples and experience.

Good style depends on the particular partial evaluator being used, but it is a

common pattern that binding times should be mixed as little as possible: partially
static items are harder to handle than fully static, a dynamic choice between static

items is harder to use than a static choice, etc. A simple example (in SML):

fun f1 x y = (x+1)+y;

fun f2 x y = (x+y)+1;

If x is static and y is dynamic, a partial evaluator will typically manage to reduce
x+1 in f1 but be unable to reduce the body of f2. To do the latter, commutative

and associative laws for addition must be applied, either during partial evaluation
or in a prepass. A suitable prepass could, for example, transform function de�nition
f2 into f1, semantically equivalent but more amenable to partial evaluation.

A program transformation that preserves semantics but makes the program more

suited for partial evaluation is called a binding-time improvement. Binding-time

improvements are transformations applied, automatically or by hand, to a source

program prior to the specialization phase. We do not, however, consider transfor-

mations such as car(cons E1 E2)) E1 that may change program semantics (E2

could loop, assuming call-by-value).

For one example, we outlined in Section 4.9.3 how a simple program transforma-

tion could make a simple partial evaluator mimic the use of polyvariant divisions.

This is a natural example of a binding-time improvement which is often applied
manually, and occurs automatically in the Schism system [60].

Binding-time improvements are rapidly being automated and incorporated into

263

264 Binding-Time Improvements

systems (Similix and Schism in particular), so there are
oating boundaries among

hand improvements; automated improvements achieved by preprocessing; and au-

tomated improvements that are incorporated into the specialization algorithm it-

self. For instance, the introduction of a binding-time improvement prepass provides

a very modular way to squeeze more power out of a simple specializer. Thus just

which binding-time improvements can make programs run faster depends critically

on the strength of the specializer and its BTA.

This complicates objective discussion, since the same example may specialize

di�erently on di�erent systems. In order to clarify the problems involved and their

solution, we assume the improvements are applied by hand, and that a very simple
specializer is used.
Below we describe several strategies. All the examples presented are in Scheme

and have been run with Similix1. When residual programs or fragments thereof

are presented, these are shown exactly as they were produced by Similix.

The role of binding-time analysis
Binding-time improvements are of course relevant to both online and o�ine spe-
cializers. Binding-time analysis is especially helpful for seeing global improvements,
since the information it provides is visible (in the form of annotations) and can
help determine where changes really do a di�erence in binding times. One strategy
could be to obtain good o�ine binding-time separation with the aid of BTA, and

then specialize the same program by online methods to get still better results.

12.1 A case study: Knuth, Morris, Pratt string matching

This section shows how partial evaluation and binding-time improvements can

generate Knuth, Morris, and Pratt's pattern matching algorithm [150] from a naive
pattern matcher. The original version of this much-referenced example of binding-

time improvements is due to Consel and Danvy [54]. We present a simpler version

which produces the same result.

The Scheme program of Figure 12.1 implements the �rst (very) naive attempt.

It takes a pattern p and a subject string d and returns yes if the pattern occurs

inside the subject string, otherwise no. The variable pp is a copy of the original

pattern and dd a copy of the rest of the string from the point where the current

attempt to match started. Its time is O(m �n), where m is the length of the pattern

and n is the length of the subject string.

If the function kmp is specialized with respect to some static pattern p and

dynamic string d, the result still takes time O(m � n). A better result can be

obtained by exploiting the information that when matching fails, the characters

up to the mismatch point in d and p are identical. The trick is to collect this
information, i.e. the common static pre�x of p and d that is known at a given

1Version 5.0

A case study: Knuth, Morris, Pratt string matching 265

(define (kmp p d) (loop p d p d))

(define (loop p d pp dd)

(cond

((null? p) 'yes)

((null? d) 'no)

((equal? (car p) (car d))

(loop (cdr p) (cdr d) pp dd))

(else (kmp pp (cdr dd)))))

Figure 12.1: Naive string matcher.

time, and to �rst compare the pattern against this pre�x, switching over to the

rest of d only when the pre�x is exhausted. Improvement is possible because the

test against the pre�x is static.

In the improved version of Figure 12.2, pre�x ff is clearly of bounded static

variation. The variable f plays the same role in relation to ff as d in relation to
dd. The function snoc adds an element to the end of a list and is not shown.

(define (kmp p d) (loop p d p '() '()))

(define (loop p d pp f ff)

(cond

((null? p) 'yes)

((null? f)

(cond

((null? d) 'no)

((equal? (car p) (car d))

(loop (cdr p) (cdr d) pp '() (snoc ff (car p))))

((null? ff)

(kmp pp (cdr d)))

(else

(loop pp d pp (cdr ff) (cdr ff)))))

((equal? (car p) (car f))

(loop (cdr p) d pp (cdr f) ff))

(else

(loop pp d pp (cdr ff) (cdr ff)))))

Figure 12.2: String matcher good for specialization.

Because the character causing the mismatch is ignored we can expect some
redundant tests in the residual program. These can be eliminated by a minor

change in loop, making it possible to exploit this `negative' information as well, i.e.

that a certain character is de�nitely not equal to a known static value. Figure 12.3

shows a program that does this, where variable neg is a list of symbols that the

266 Binding-Time Improvements

(define (kmp p d)

(loop p d p '() '() '()))

(define (loop p d pp f ff neg)

(cond

((null? p) 'yes)

((null? f)

(cond

((and (not (null? neg)) (member (car p) neg))

(if (null? ff)

(kmp pp (cdr d))

(loop pp d pp (cdr ff) (cdr ff) neg)))

((and (null? neg) (null? d)) 'no)

((equal? (car p) (car d))

(loop (cdr p) (cdr d) pp '() (snoc ff (car p)) '()))

((null? ff)

(kmp pp (cdr d)))

(else

(loop pp d pp (cdr ff) (cdr ff) (cons (car p) neg)))))

((equal? (car p) (car f))

(loop (cdr p) d pp (cdr f) ff neg))

(else

(loop pp d pp (cdr ff) (cdr ff) neg))))

Figure 12.3: Matcher with negative information.

�rst symbol of d cannot match.

Figure 12.4 shows the result of specializing the matcher with negative informa-

tion to p = (a b a b). The residual program is identical in structure to that
yielded by Knuth, Morris, and Pratt's clever technique [150]. The complexity of

the specialized algorithm is O(n), where n is the length of the string. The naive

algorithm has complexity O(m � n), where m is the length of the pattern. Perhaps
counterintuitively, this speedup is considered linear since for each static m it is

constantly faster than the naive algorithm (see Section 6.2).

This example is particularly interesting because a clever algorithm is generated

automatically from a naive one using binding-time improvements and partial eval-

uation. This is thought-provoking even though such binding-time improvements

may be hard to automate.

12.2 Bounded static variation

A more easily systematized technique was applied in earlier chapters to both

ow chart and Scheme0 programs (Sections 4.8.3 and 5.4.3 respectively). The

Bounded static variation 267

(define (kmp-0 d_0)

(define (loop-0-1 d_0)

(cond ((null? d_0) 'no)

((equal? 'a (car d_0)) (loop-0-2 (cdr d_0)))

(else (loop-0-1 (cdr d_0)))))

(define (loop-0-2 d_0)

(cond ((null? d_0) 'no)

((equal? 'b (car d_0))

(let ((d_1 (cdr d_0)))

(cond ((null? d_1) 'no)

((equal? 'a (car d_1))

(let ((d_2 (cdr d_1)))

(cond ((null? d_2) 'no)

((equal? 'b (car d_2))

(begin (cdr d_2) 'yes))

(else (loop-0-5 d_2)))))

(else (loop-0-1 (cdr d_1))))))

(else (loop-0-5 d_0))))

(define (loop-0-5 d_0)

(if (equal? 'a (car d_0))

(loop-0-2 (cdr d_0))

(loop-0-1 (cdr d_0))))

(loop-0-1 d_0)))

Figure 12.4: Specialized matcher to pattern `abab'.

technique2 can be employed when a dynamic variable d is known to assume one

of a �nite set F of statically computable values. To see how it works, consider an
expression context C[d] containing d. Assuming F has already been computed, the
idea is to replace C[d] by

1. code that compares d with all the elements of F, certain to yield a successful
match d = d1 2 F; followed by

2. code to apply the context C[] to static d1.

We shall see later (Section 12.3) that the same e�ect can sometimes be realized by
conversion to continuation passing style.

As an example of its use we show how a general regular expression matcher can

be specialized with respect to a speci�c regular expression to obtain a dedicated

matcher in the form of a DFA (deterministic �nite automaton). The example from
Bondorf's PhD thesis [27] was developed by Mogensen, J�rgensen, and Bondorf,

and appears in Prolog in Section 9.1.

2So popular among partial evaluation users that it is sometimes called `The Trick'.

268 Binding-Time Improvements

Regular expressions are built up as in [4] from symbols, and the empty string

" using concatenation, union and the Kleene star �. For example, the regular

expression a"(b�jc) will generate the strings abb and ac, but not the string aa.
The programs below work on a concrete Scheme representation of regular expres-

sions. The concrete representation is less readable than the abstract one, so in the

descriptions of regular expression operations we use the abstract form. Symbol r
denotes a regular expression in abstract syntax whereas r (used in program texts)

denotes a regular expression in concrete syntax. The same distinction is made

between sym and sym. Dually, any operation Op working on the abstract forms r
or sym corresponds to a concrete operation Op working on the concrete forms r or

sym. Op is used in the descriptions, Op in program texts.

The Scheme program below interprets regular expressions. It takes a regular

expression r and a string s as input and returns the boolean true (#t) if the

regular expression generates the string, otherwise false (#f).

(define (match r s)

(if (null? s)

(generate-empty? r)

(let ((sym (car s)))

(and (member sym (first r))

(match (next r sym) (cdr s))))))

We assume that certain functions are available without including their de�nition:
generate-empty?, first, and next. Function generate-empty? checks whether

a regular expression generates the empty string. Function first computes the
list of all symbols that appear as the �rst of some string generated by the regular
expression. Given a regular expression r and a symbol sym that is the �rst in some

generable string, (next r a0) computes a regular expression r1 which generates
all strings a1a2...an such that r generates a0a1a2...an.

Some examples of the use of these functions (in the abstract notation):

generate-empty? a� = true
generate-empty? (a j c) = false
�rst ((a j ") (c d)�) = fa,cg
next ((a j ") (c d)�) c = d (c d)�

If we specialize the match program above with respect to some static regular ex-

pression r and dynamic string s, the resulting target program is not very good. The

problem is that sym is a dynamic value because it is computed from s. Therefore,

the regular expression (next r sym) cannot be computed at partial evaluation

time, and all static information is `lost'.

We therefore wish to improve the binding times of match. Observe that sym is a

member of the statically computable (first r). Applying `the trick', the program

is rewritten as:

Bounded static variation 269

(define (match r s)

(if (null? s)

(generate-empty? r)

(let ((f (first r)))

(and (not (null? f))

(let ((sym (car s)))

(let loop ((f f))

(and (not (null? f))

(let ((A (car f)))

(if (equal? A sym)

(match (next r A) (cdr s))

(loop (cdr f)))))))))))

Now the static A is used instead of the dynamic sym. We have sneaked in another

very common improvement into this program. If one can statically determine not

to perform some dynamic computation, this can be used to improve the size and

speed of the residual program. If the list f is empty, there is clearly no need to

perform the operation (car s), explaining the �rst test of (not (null? f)) in
match.
Let us take, as an example, the regular expression (abjbab)�. When specializ-

ing the binding-time improved interpreter just given with respect to this regular
expression, the target program of Figure 12.5 is generated by Similix.

(define (match-0 s_0)

(define (match-0-1 s_0)

(if (null? s_0)

#t

(let ((sym_1 (car s_0)))

(cond ((equal? 'a sym_1) (match-0-3 (cdr s_0)))

((equal? 'b sym_1) (let ((s_2 (cdr s_0)))

(and (not (null? s_2))

(equal? 'a (car s_2))

(match-0-3 (cdr s_2)))))

(else #f)))))

(define (match-0-3 s_0)

(and (not (null? s_0))

(equal? 'b (car s_0))

(match-0-1 (cdr s_0))))

(match-0-1 s_0))

Figure 12.5: Specialized matching program.

There are no r variables in the target program since r was static and has vanished

at partial evaluation time. The specialized versions of match correspond to di�erent

values of the static r. All operations on r have been reduced, so the target program

contains no generate-empty?, first, or next operations.

270 Binding-Time Improvements

The target program corresponds exactly to a three-state deterministic �nite3

automaton as derived by standard methods [4]. There are, however, only two

procedures (besides the start procedure) in the target program, not three. This

is because the procedure representing the state with only one in-going arrow is

unfolded.

12.3 Conversion into continuation passing style

A simple method that often improves a program's binding-time separation is to

convert it into continuation passing style [219,68], introduced in Section 10.5 and

from now on abbreviated to CPS. Although indiscriminate CPS conversion is to

be avoided (see a counterexample below), it is more easily automated than many

other binding-time improvements.

CPS conversion has the e�ect of linearizing program execution, and can bring

together parts of a computation that are far apart in its direct (non{continuation)

form. Further, continuation style has practical advantages for functions that return

multiple values, as these can be programmed without the need to package their
results together before return, just to be unpackaged by the caller.

We mentioned earlier that the relevance of a given binding-time improvement

depends on the partial evaluator being used. As explained in Section 10.5 Similix
implicitly performs some CPS conversion during specialization (see Section 10.5),
so not all the improvements discussed in this section are relevant for Similix.

Plotkin describes a general CPS transformation for lambda expressions, and
Danvy and Filinski do it for Scheme [219,68]. Other work includes a simple �rst-

order CPS transformation for binding-time improvements by Holst and Gomard
and a detailed discussion of CPS for binding-time improvements by Consel and
Danvy [118,56].

A very simple example. Consider the expression

(+ 7 (if (= x 0) 9 13))

where x is dynamic. As the expression stands, the + operation is dynamic. Con-

version into CPS yields:

(let ((k (lambda (temp) (+ 7 temp))))

(if (= x 0) (k 9) (k 13)))

Using Lambdamix notation, the continuation k has binding time S ! S and the

+ operation is now static. Partial evaluation yields the residual expression:

(if (= x 0) 16 20)

3Finiteness follows from the fact that any regular expression has only �nitely many di�erent
`derivatives', where a derivative is either r itself, or an expression obtained from a given derivative
r' by computing (next r' a).

Conversion into continuation passing style 271

An example involving function calls. Consider the problem encountered in Sec-

tion 5.4.3 where a dynamic function name f was looked up in a static program by

the call (lookup f program). Assuming for simplicity that the search is always

successful, lookup can be programmed:

(define (lookup f p)

(cond

((null? (cdr p)) (take-first-body p))

((is-first-function? f p) (take-first-body p))

(else (lookup f (remove-first-definition p)))))

Unless we use `the trick', all computations depending on the result returned by

the lookup call will be dynamic because n is dynamic. This may be circumvented

by introducing a continuation parameter to lookup, yielding lookup1:

(define (lookup1 f p k)

(cond

((null? (cdr p)) (k (take-first-body p)))

((is-first-function? f p) (k (take-first-body p)))

(else (lookup1 f (remove-first-definition p) k))))

A call (C (lookup f program)) in context C is transformed into (lookup1 f

program (lambda (val) (C val))). Again, k gets binding time S ! S, so C

is called with a static argument | and the problem is solved by automatic CPS
conversion without smart reprogramming.

Functions returning partially static structures. CPS transformation is also very
useful for handling functions returning partically static structures; say, a pair (s; d)

consisting of a static and dynamic item. We introduce a continuation k de�ned
by (lambda (s d) . . .) where s is to be bound to the static component of the
answer and d to the dynamic component.

Example 12.1 Suppose an expression e is either the variable x or a sum of two
expressions. Then we can write a function eval, which, given an expression and

the value of x, returns the size of the expression and its value.

(define (eval e v)

(cond

((equal? e 'x) (cons 1 v))

(else

(let ((t1 (eval (cadr e) v)) (t2 (eval (caddr e) v)))

(cons (+ 1 (car t1) (car t2)) (+ (cdr t1) (cdr t2)))))))

Here the binding times are mixed and it will not specialize well. In the following

example we have introduced a continuation k, which is applied to the size of the

expression and its value. To get the ball rolling eval1 must be called with the

continuation (lambda (s v) (cons s v)).

272 Binding-Time Improvements

(define (eval1 e v k)

(cond

((equal? e 'x) (k 1 v)) ; Apply k to size 1 and value v

(else (eval1 (cadr e) ; Evaluate 1st subexpression

v

(lambda (s1 v1) ; Name its two results

(eval1 (caddr e) ; Evaluate 2nd subexpression

v

(lambda (s2 v2)

(k (+ 1 s1 s2) (+ v1 v2)))))))))

We assume e static but the value v of x to be dynamic. Then continuation k gets

binding time S �D ! D, so a call to eval1 with expression (+ x (+ x x)) will

specialize to (cons 5 (+ v (+ v v)). Note that the size computation has been

done statically even though intermixed with dynamic operations. 2

Larger-scale applications. J�rgensen has used the CPS transformation and self-

application of Similix to generate a pattern-matching compiler producing better
code than that by methods of Peyton Jones [137,138]. Danvy uses CPS to compile

non-linear patterns [66]. Another experiment by J�rgensen using CPS led to the
generation of a compiler for a lazy functional language. The speed of compiled
code equalled that of a commercially available compiler [140].

12.3.1 Advantages and disadvantages

Transformation into CPS is not always desirable. The resulting programs are of

higher-order than the original ones and higher-order facilities are generally harder
to manipulate by partial evaluation. A worse problem is that the CPS conver-

sion can a�ect termination properties of partial evaluation. A call to the append

function (append xs ys) is transformed into (append1 xs ys (lambda (t) t)),
where the transformed append1 is de�ned by:

(define (append1 xs ys k)

(if (null? xs)

(k ys)

(append1 (cdr xs) ys (lambda (t) (k (cons (car xs) t))))))

If xs is dynamic and ys is static then partial evaluation will loop in�nitely because
the lambdas in the continuation parameter will become more deeply nested for

each recursive call, yielding an in�nite residual program. This is an accumulating

parameter under dynamic control.

Eta conversion 273

12.4 Eta conversion

In the lambda calculus community one often uses �-conversion: �x.Mx , M, if x

is not free in M. Although in a certain sense computationally trivial (no operations

are performed), it can in some cases improve binding-time separation.

Consider an expression

(let ((f (lambda (x) ...)))

(+ (f ...) (g f)))

where g is dynamic and hence the application (g f) is dynamic. The occurrence

of f in the application (g f) is known as a residual code context4 in [28]: f becomes
dynamic and the lambda expression also becomes dynamic. Consequently no �-

reduction of the application (f ...) will take place either. This problem can be

overcome by �-conversion:

(let ((f (lambda (x) ...)))

(+ (f ...) (g (lambda (z) (f z)))))

As f no longer occurs in a residual code context both (f ...) and (f z) can be

�-reduced during specialization. Hence the lambda expression (lambda (x) ...)

becomes reducible. Note that the new lambda expression inserted by �-conversion
becomes dynamic.

Eta conversion can also be used for another kind of binding-time improvement.
Consider the following expression:

((if (equal? a 2) x y) 3)

Now suppose x and y are higher-order values with x being a static closure and y

dynamic. Furthermore suppose that a is static. The conditional will be classi�ed

as dynamic, because one of the branches is dynamic. This means that we will not
be able to reduce the application, not even if a is equal to 2. Using eta conversion
the expression can be rewritten into

((if (equal? a 2) x (lambda (z) (y z))) 3)

Now both branches of the condition will be classi�ed as static closures, and so will

the conditional. Hence we are now able to reduce the application: if a = 2 then

specializing the expression will be the result of evaluating (x 3), otherwise if a 6=
2 specializing the expression will result in (y 3).

The two examples demonstrate two di�erent kinds of binding-time improve-

ments. In the �rst example we had a static closure (f). We encapsulated it with
a lambda, which was classi�ed as dynamic. In this case eta conversion was used

to protect the binding-time of an expression from being classi�ed as dynamic. In

the second example we had something dynamic (y) in a context where we would

like something with the binding-time static closure. In this case eta conversion

4Also known as dynamic code context

274 Binding-Time Improvements

was used to hide the fact that an expression was dynamic. Note that we cannot

change the binding time of an expression, which is dynamic for other reasons: y is

still dynamic after the transformation.

12.5 Improvements derived from `free theorems'

From a function's polymorphic type, a `free theorem' may be derived [222,275].

Holst and Hughes have proposed deriving binding-time improvements from these

theorems. Here we show how their technique applies to the standard problem of

dynamic lookup in a static list (using ML syntax):

For any natural number i, let select i be the function that selects the ith
element of a list. Then select has the type:

8� :N ! List(�)! �

Holst and Hughes show that the free theorem for functions of this type is:

f (select i xs) = select i (map f xs)

for any function f : � ! �. If i is dynamic and xs is static, a binding-time
improvement is obtained by replacing the left hand side by the right hand side.

The `improved' version appears to be the less e�cient, since it applies f to all
the elements of the static list, while the original version only applies f to the

selected element. A partial evaluator would indeed apply f to all the elements of
the static list, but this computation is now entirely static and performed during
partial evaluation. The residual program would contain a precalculated list of

results f x for all x in xs and a residual selection of the needed result(s).
See papers by Holst and Hughes, and Nielson and Nielson, for more examples

and details [119,203,204].

12.6 Exercises

Exercise 12.1 Consider the following Scheme expression, where e1 is a static ex-

pression and e2 is a dynamic expression.

(if (and e1 e2) e3 e4)

If e1 evaluates to false, the test can be determined statically (at specialization

time) since e2 need not be evaluated. Suppose your partial evaluator classi�es the

entire test (and e1 e2) (and thereby also the conditional) as dynamic. Suggest a
transformation that will lead to a better residual program in case e1 evaluates to

false. Note that the transformation must not lead to code duplication, and it must
leave the strictness properties of the original expression unchanged.

Now consider the following expression:

Exercises 275

(if (or e1 e2) e3 e4)

As above, if e1 evaluates to true, the test can be determined statically. Suppose as

above that the entire test will be classi�ed as dynamic. Suggest a transformation to

solve the problem. Again you must avoid code duplication and leave the strictness

properties unchanged. 2

The following exercises require Similix. Hint: use some of Similix's utility functions

to show the binding times of the program, e.g. (showpall) shows all binding times

in the current program.

Exercise 12.2 Consider the following Scheme program, where you wish to specialize

f with respect to some known list xs and unknown n.

(define (f n xs)

(if (equal? (nth n xs) 42) 'yes 'no))

(define (nth n xs)

(if (null? xs)

'error

(if (equal? n 0)

(car xs)

(nth (- n 1) (cdr xs)))))

The binding-time analysis performed in Similix will classify the equal? operation
in f as dynamic. Because we know (nth n xs) will evaluate to one of the elements
of xs, we can apply The Trick to make the equal? operation static. Do this by

introducing a continuation. 2

Exercise 12.3 Consider the following Scheme program where you wish to specialize
f with respect to some known x and unknown y. Then z will be marked as dynamic

and none of the branches in the if-statement can be reduced.

(define (f x y)

(g (h x y)))

(define (h x y)

(cons (* x x) y))

(define (g z)

(if (equal? (cdr z) 0)

(+ (car z) 2)

(- (car z) 2)))

Introduce a continuation so the branches in the if-statement can be reduced. 2

Exercise 12.4 Extend the �nal version of the pattern matcher to handle wildcards
in patterns, e.g. * can match any symbol. In what way does this a�ect the binding

times? 2

276 Binding-Time Improvements

Exercise 12.5 Consider the following interpreter (written in CPS style) for a ver-

sion of the lambda calculus. The function run takes a lambda expression E and a

value w. The evaluation function ev takes an expression E, an environment env,

and a continuation k. An example of a lambda expression could be

(apply (apply (lambda x (lambda y

(+ (var x) (var y)))) (cst 2)) (cst 3))

Identify the place where the continuation k appears in a residual code context and

perform an eta conversion (this is the same kind of binding-time improvement as

in the �rst example in Section 12.4). Identify the place where ev is called with

a dynamic continuation and perform an eta conversion (this is the same kind of

binding-time improvement as in the second example in Section 12.4).

Try specializing run (with both the initial version and the improved version) with

respect to the lambda expression above and w dynamic. The e�ect of specializing

the improved version should be a conversion of the lambda expression into CPS-

style (the style of the interpreter), besides a translation to Scheme.

; E ::= (cst C) | (var V) | (+ E1 E2)
; | (lambda V E) | (apply E1 E2)

(define (run E w) (ev E (lambda (V) w) (lambda (x) x)))

(define (ev E env k)
(cond
((equal? (car E) 'cst) (k (cadr E)))
((equal? (car E) 'var) (k (env (cadr E))))
((equal? (car E) '+)
(ev (cadr E)

env
(lambda (w1)
(ev (caddr E)

env
(lambda (w2) (k (+ w1 w2)))))))

((equal? (car E) 'lambda)
(k (lambda (w1 c1)

(ev (caddr E)
(lambda (V1)
(if (equal? (cadr E) V1)

w1
(env V1)))

c1))))
((equal? (car E) 'apply)
(ev (cadr E)

env
(lambda (w1)
(ev (caddr E) env (lambda (w2) (w1 w2 k))))))

(else
(error 'ev "unknown syntactic form: ~s" E))))

2

Exercise 12.6 * Discuss the problems involved with automating the process of ap-

plying binding-time improvements. Which binding-time improvements can be au-
tomated and which can not? 2

Chapter 13

Applications of Partial

Evaluation

The purpose of this chapter is to show that a wide spectrum of apparently problem-

speci�c optimizations can be seen as instances of partial evaluation, and that partial

evaluation gives a systematic way to devise new optimizations. We shall not,
however, attempt a comprehensive coverage of applications to date since the full
potential of partial evaluation for solving various practical problems is as yet far

from realized, and the distribution of the examples we know of is quite uneven.

In the �rst section a selection of problem types that are well suited to opti-
mization by partial evaluation is described, with the hope that the reader may see

analogies in his or her own sphere of interest. The second section discusses in more
general terms circumstances under which partial evaluation can be of bene�t, and

points out some pitfalls and ways to overcome them.

Video games. First, an amusing small-scale example of program specialization by

hand [224]. The Nevryon game driver needed very fast execution for satisfactory
playing speed on an Archimedes personal computer. General code to display a

`sprite' in various sizes and motions, and to
ip a sprite horizontally and vertically,
was found to be too slow. The solution adopted was to write about 20 separate

sprite routines, each displaying sprites in slightly di�erent ways (moving up,
ipped

and moving left, etc.). Similar ideas were applied to scrolling and to plotting the
backdrop.

13.1 Types of problems susceptible to partial evaluation

13.1.1 Modularity and related issues

Modular programming is a `good thing' for many reasons. Small modules, each
with clearly de�ned goals, allow a separation of concerns that increases program

portability and eases program reuse and adaptation. This is especially important if

277

278 Applications of Partial Evaluation

programs are frequently changed or replaced, for instance in a scienti�c modelling

situation where several people or groups, possibly from di�erent disciplines, are

trying to �nd adequate computational models for an external phenomenon.

Modules are often highly parametrized to make them more
exible. Similarly,

functional programmers use high-level combining constructs such as map, fold,

and reduce as `glue' to combine modules in a variety of ways. Modules are of-

ten computationally trivial, for example containing only the values of certain key

parameters used by other parts of the system, and few or no commands.

There is a cost for a modular, parametrized, high-level programming style: e�-

ciency. Such programs can spend quite a lot of computation time calling modules,

transporting data, perhaps converting data across module interfaces, and creating

and invoking closures for functional objects.

Partial evaluation, even with no static data input at all, can speed up such pro-

grams. The e�ect is to compress modules by merging groups of them together,

expanding intermodular calls in place, propagating constants from modules where

they are de�ned into those where they are used, and precomputing wherever pos-

sible. The result is a smaller set of more complex modules, quite likely unsuited for
human reading, understanding and modi�cation, but signi�cantly more e�cient1.

13.1.2 Parameters with di�erent rates of variation

Partial evaluation can help in the following frequently occurring situation:

� a function f(x; y) is to be computed for many di�erent pairs (x; y),

� x is changed less frequently than y, and

� a signi�cant part of f 's computation depends only on x.

Following are a few examples of a non-interpretive nature to illustrate that these

conditions are often satis�ed; some interpretive examples appear in the next sec-

tion.

Computer graphics
Mogensen did an experiment at Copenhagen with the `ray-tracing' method of com-

puter graphics [186]. The method is known to give good picture rendition, but is
rather slow since it involves tracing the paths of thousands of light rays between

various points in a scene to be displayed.

The usual implementation is by a general algorithm which, given a scene and
a light ray, performs computations to follow its path. The scene (a collection of

3-dimensional objects) does not change while tracing the light rays, which makes
partial evaluation highly relevant.

1One might expect a good compiler to do `constant propagation' at compile time. While true

Types of problems susceptible to partial evaluation 279

Figure 13.1: Computer graphics by ray tracing.

One algorithm has the following overall structure (see Figure 13.1). Variable
Point ranges over pixels on a viewing screen, and Viewpoint is the location of
the observer's eye. Ray is the line from eye to screen point, extended into the

scene being drawn. For any object in the scene, intersect(Object,Ray) �nds its
intersection point (if any) with the given ray, and variable Intersections is the

set of all such intersection points.

The algorithm �nds the nearest intersection point Obpoint, i.e. the only point
visible to the observer along the current ray, and the object that the ray hits.

Finally the light intensity at Obpoint can be calculated using the object's properties
such as colour and re
ectivity, and this is plotted.

ray-trace(Scene, Screen, Viewpoint):

for Point in Screen do

plot(Point, colour(Scene, Viewpoint, Point));

colour(Scene, Viewpoint, Point) =

let Ray = line(Viewpoint, Point) in

let Intersections =

fintersect(Object, Ray) j Object in Sceneg in

let (Object, Obpoint) = closest(Viewpoint, Intersections) in

shade(Object, Obpoint)

Mogensen optimized this general ray-tracing program by specializing it to a single,

�xed scene. Concretely, variables Scene and Object were classi�ed as static. The

for a single function or procedure, few compilers if any do interprocedural constant propagation,
and even fewer do loop unrolling based on the values of constant data.

280 Applications of Partial Evaluation

result was a new program, only good for tracing rays through that particular scene.

In experiments the specialized ray tracer was from 8 to 12 times faster than the

original. Analysis of the results indicate speedups of about 2.5 from specializing

the intersection point computations, and of about 4 from specializing the colour

functions.

Sparse systems of linear equations
An early example of problem solving by program generation that amounts to spe-

cializing a general program is from 1970 by Gustavson and others [107]. They

described a program (called GNSO) which takes as input a sparse system Ax = b

of linear equations where A is an N �N matrix.

The novelty of their approach is that GNSO generates a program SOLVE from

A, which is then executed on input b. It has the form of a long loop-free sequence

of Fortran statements. If the input matrix is sparse, the generated program is

small and so quite fast. The method works for arbitrary sparsity structures, e.g. it

is not restricted to matrices with non-zero elements on a band along the diagonal.

This approach can clearly be thought of as specializing a general Crout algorithm

to a particular matrix, and then executing the resulting program. The following is
a shortened quote from the article:

In many instances we must solve the system with a �xed sparseness
structure but with varying numerical values of the elements of A . . . for

example (1) linear systems where A depends on parameters which vary
from case to case, (2) a system of nonlinear equations by iteration with
Newton's method, (3) an initial value problem for partial di�erential

equations or for a system of ordinary di�erential equations by an im-
plicit numerical integration method. . . . The gain is even greater if
only b changes from system to system. In this case the factorization of

A is done only once, and we just repeat the back substitutions.

Experimental modelling
We believe partial evaluation can substantially increase human and computer e�-
ciency in experimental modelling over a range of sciences. This section should be

taken with a grain of salt, as preliminary studies are under way but results and

evaluations have not yet been published.

Computational modelling has some common characteristics:

� a natural system is being studied, e.g. oceanographic, meteorological, or eco-

logical processes;

� mathematical models are developed to account for evolution of the system's

state variables over time and space; and

� repeated computer simulation of the model on various initial state conditions
is done to compare real-world observations of interesting state variables with

the values predicted by the model.

Types of problems susceptible to partial evaluation 281

Applications include real-world predictions (weather, pollution, etc.), and obtain-

ing information to identify where to make further observations, so as to gain a

more complete and faithful system description.

Such a computational model is often quite large, and is developed by several

researchers and/or groups from di�erent disciplines. Model building is a long

lasting and usually continuous process. If the model computes results disagreeing

with observed values, a natural �rst step is to `tune' critical parameters such as

exchange rates or conversion e�ciencies, and then rerun the simulation in the

hope of obtaining a better �t. (This is defensible since critical parameters are

often physically unobservable.)

If this fails, parts of the mathematical model may have to be changed, for in-

stance by modifying the di�erential equations to give a more sophisticated descrip-

tion of the phenomenon, or adding new equations to model processes not accounted

for before. These are programmed, and the whole process is repeated.

This scenario o�ers many opportunities to exploit partial evaluation. First, such

a system must necessarily be programmed in a modular way to separate scienti�c

concerns and to allow di�erent workers to concentrate on their specialities. As

argued above, partial evaluation can gain e�ciency.
Second, parts of the model and its parameters may change much less rapidly

than others, so it may be worthwhile to specialize the model with respect to them.

One example is the number and forms of the topographical cells used to model
an ocean basin. This is naturally a user-de�nable parameter, re�nable when more
precise simulations are needed; but not a parameter that is changed often. Thus

specializing a program suite with respect to the number and dimensions of to-
pographical cells could increase e�ciency by unfolding loops, and precomputing

values that do not change when doing repeated runs to tune boundary conditions
or exchange rates.

13.1.3 Improving recursive programs

The divide and conquer paradigm is used in constructing algorithms in a wide range
of areas. A problem instance is classi�ed as atomic or composite, and atomic prob-

lems are solved at once. A composite problem is decomposed into subproblems,

each is solved separately, and their results are combined to yield the entire prob-

lem's solution.

The approach naturally leads to recursive algorithms. E�ciency is often ob-

tained by decomposing composite problems into subproblems of nearly equal size,

so binary decompositions often lead to a near-balanced binary tree of subproblems.

Atomic instances are usually solved quite quickly, so the time spent at the lower

tree levels in calling functions, transmitting parameters, and related stack manip-

ulation can be large relative to the amount of computation actually done. Further,

in a binary tree half the nodes are leaves, and 15=16 are within distance 3 of a leaf.

A consequence is that an optimizing computation at the bottom-most levels

282 Applications of Partial Evaluation

will, in some cases, speed up the entire computation by a signi�cant factor. Just

when this occurs will depend on the recurrence equations describing the algorithm's

running time.

One strategy to exploit this phenomenon, assuming for simplicity that subprob-

lems form a balanced binary tree, is to let the program maintain a counter measur-

ing distance to the frontier. This code can be transformed by total call unfolding

for su�ciently small values of the counter by partial evaluation. For a simple

example, begin by rewriting de�nition

f(x) = if atomic?(x) then Base case code else

g(f(part1(x)),f(part2(x)))

g(u,v) = ...

by adding a level counter, assumed 0 for atomic subproblems:

f(x,k) = if k=0 then Base case code else

g(f(part1(x),k-1),f(part2(x),k-1))

g(u,v) = ...

Then add a new function f1, identical to f but called when k becomes 2 or less:

f(x,k) = if k=2 then f1(x,2) else

if k=1 then f1(x,1) else

if k=0 then Base case code else

g(f(part1(x),k-1),f(part2(x),k-1))

g(u,v) = ...

f1(x,k1) = if k=0 then Base case code else

g(f1(part1(x),k-1),f1(part2(x),k-1))

Argument k1 of f1 is constant and so static, giving the partial evaluator opportu-
nity for complete unfolding and simpli�cation and thus reducing call overhead.

Suppose that solving an atomic problem takes time a, that a composite prob-

lem of size n > 1 involves two subproblems of size n=2, and that combining two
subproblem solutions takes constant2 time b. This leads to a recurrence equation

whose solution is of the form (a+ b) � n+ . . . with coe�cient additively dependent

on a. The strategy above in e�ect reduces a and n since more subproblems are

solved without recursive calls, and problems for small n are solved faster.

13.1.4 Problems of an interpretive nature

It has become clear that partial evaluation is well suited to applications based
on programming language interpreters. It is perhaps less clear that many problem

solutions outside programming languages are also essentially interpretive in nature,
and so susceptible to automatic optimization using our methods. A few examples

2This is a correct assumption for some problems but not, for example, for sorting.

Types of problems susceptible to partial evaluation 283

follow, with some overlap with Sections 13.1.1 and 13.1.2 since the concepts of

modularity, varying rates of parameter variation, and interpretation are hard to

separate and often appear in the same program.

Interpretation evolves naturally in the quest for generality and modi�ability of

large-scale programming problems. We outline a common scenario. Once several

related problems in an applications area have been understood and solved individ-

ually, the next step is often to write a single general program able to solve any

one of a family of related problems. This leads to a program with parameters,

sometimes numerous, to specify problem instances.

Use of the program for new applications and by new user groups make it desir-

able to devise a user-oriented language, to specify such parameters in a way more

related to the problems being solved than to the programming language or the

algorithms used to solve them. The existing general program will thus be modi�ed

to accept problem descriptions that are more user-oriented. The result is a
ex-

ible and problem-oriented tool which may, in comparison with the time spent on

the underlying computational methods, spend relatively much of its time testing

and/or computing on parameters, and deciphering commands in the user-oriented
language. In other words it is an interpreter, and as such subject to optimization

by our methods.

Circuit simulation

Circuit simulators take as input an electrical circuit description, construct di�er-
ential equations describing its behaviour, and solve these by numerical methods.
This can be thought of as interpreting the circuit description. Berlin and Weise [21]

cite large speedups resulting from specializing a general circuit simulator written
in Scheme to a �xed circuit.

Neural networks

Training a neural network typically uses much computer time. Partial evaluation
has been applied to a simulator written in C for training neural networks by back-

propagation [126]. The resulting generator transforms a given network into a faster

simulator, specialized to the �xed network topology. Observed speedups were from

25% to 50% | not dramatic but signi�cant given the amount of computer time
that neural net training takes.

Computing in networks

Consider a problem to be solved by a MIMD (multiple instruction, multiple data)
network of processors connected together for communication along some topological

con�guration. This models some physical phenomena directly, e.g. solution of heat
equations or
uid dynamics, and is also a standard framework for general parallel

processing not directed towards particular concrete problems.

What code is to be stored in each processor? A complicating factor is that not

all processors appear in identical contexts, for example those modelling boundary

284 Applications of Partial Evaluation

situations may have fewer neighbours than those more centrally in the network3.

A simple approach is to write one piece of code which is given the processor's

network location as a parameter, and which can compute as required for processors

anywhere in the network. In our context it is natural use partial evaluation to

specialize this code to its location parameter, obtaining as many programs as there

are di�ering network environments. Pingali and Rogers report signi�cant e�ciency

gains using exactly this technique [225,217].

Table-directed input
Given a source program character sequence, it is well known that token scanning

(or lexical analysis) can be done using a state transition table that associates with

each pair (state, input-character-class) a transition, which is another pair

(action, next-state).

For example, a scanner might go into state Number when a sign or digit is seen

and, as long as are read, remain in that state, performing actions to accumulate

the number's value; with similar state and action transitions for other token types

such as identi�ers or strings. To illustrate, suppose numerical tokens have syntax:

hIntegeri ::= hSpacei� [+ j -] (hDigiti j hSpacei)�

hDigiti ::= 0 j 1 j . . . j 9

Following is a state transition table for numbers.

State hSpacei + - hDigiti End-of-line

0 no action sign := 1; sign := -1; sign := 1;

sum := 0 sum := 0 sum := hDigiti
next: 0 1 1 2 0

1 no action error error sum := hDigiti result :=

sign*sum

next: 1 0 0 2 0

2 no action error error sum := 10*sum result :=

+ hDigiti sign*sum

next: 2 0 0 2 0

In practice the transition table approach is useful as it ensures completeness, since
all combinations of state and input character must be accounted for; and ease of
modi�cation, since many corrections involve only a single table entry or a single

action routine.

This scheme is usually implemented by storing the transition table in memory as

data, and writing a small interpreter to follow its directives (an instance by Oliver

uses microprogramming [206]). Alternatively, one may `compile' the transition

table directly into code, for example with one label for each state, and with a state

transition being realized by a `goto'. The result is usually faster, but the program

3An exception is the hypercube, where every processor has an identical environment; but even
here asymmetry problems arise if some processors develop faults.

When can partial evaluation be of bene�t? 285

structure and logic may be more complex and so hard to modify.

Partial evaluation allows an automatic transformation of the �rst data-directed

program into the more e�cient alternate form. Experience shows a substantial

speedup (unless masked by input/outout operations).

A related example showing quite signi�cant speedup is due to Penello. His `very

fast LR parsing' method takes as starting point a parsing table as produced by the

Yacc parser generator [216]. The method compiles the table into assembly code,

yielding a specialized parser that runs 6 to 10 times faster than table interpretation.

Pattern matching

Section 12.2 showed that partial evaluation of a general regular expression matcher

with respect to a �xed regular expression R gave very e�cient residual programs.

All parts of R were `compiled' away and the residual program was essentially a

deterministic �nite automaton.

Logical meta-systems

As seen in Chapter 6, partial evaluation can be of considerable use when one uses
a high-level metalanguage to describe other systems or languages.

There are good reasons to believe that similar bene�ts will accrue from me-

chanical treatment of other high-level speci�cation languages. For example, the
Edinburgh/Carnegie-Mellon/Gothenburg Logical Framework activity involves a

combined theorem prover and reduction engine which might be much improved
in e�ciency by specialization to particular theories.

13.2 When can partial evaluation be of bene�t?

We now take another tack, trying to explore reasons for success or failure of partial

evaluation for automatic program improvement.

Suppose program p computes function f(s; d), where input s is static, i.e. known

at specialization time, and d is dynamic. Termination of partial evaluation, and
the size and e�ciency of the specialized program ps, depends critically on the way

p uses its static and dynamic inputs.

We now analyse these. A �rst case is that p has no static inputs. Even in this
case partial evaluation can be of bene�t, as discussed in Sections 13.1.1 and 13.2.1.

A second case generalizes an idea from complexity theory to see when partial
evaluation can give predictably good results. An oblivious Turing machine is one

whose read head motion depends only on the length of the machine's input tape,

and is independent of its contents.

Oblivious algorithms. We call program p oblivious (with respect to its input divi-

sion) if its control
ow depends only on the values of static inputs, i.e. if it never

286 Applications of Partial Evaluation

tests dynamic data4. Such programs are common and are discussed further in

Section 13.2.2.

The absence of dynamic tests implies that partial evaluation of an oblivious pro-

gram exactly parallels normal execution; just one thread of code is to be accounted

for. An important consequence is that termination depends on the values static

data assume in a single computation and not on many possible combinations of

static values, the choice among which will be determined by dynamic input.

The size and run time of ps are both proportional to the number of times code

in p containing dynamic commands or expressions is encountered. Specialization

time is proportional to the time to perform p's static computations plus the time

to generate ps.

Henceforth we shall assume o�ine partial evaluation, where every command or

expression in p has been annotated as static or dynamic. Predicting time and

size of ps appears to be harder when using online partial evaluation, since non-

obliviousness manifests itself only during specialization and not before.

Non-oblivious algorithms. A non-oblivious program may follow many possible
computation threads, depending on the values of dynamic inputs. A partial eval-
uator must account for all such possibilities, generalizing specialized code for each

combination (concretely it must specialize code for both branches of all dynamic
tests). This can result in large specialized programs ps, even though they are likely
to be faster than p.

Interpreters are non-oblivious due to their need to implement tests in the pro-

gram being interpreted. In later sections we shall discuss both non-oblivious pro-
grams as well as `weakly oblivious' ones.

13.2.1 Partial evaluation without static data

Partial evaluation can be of use even when there is no static program input at
all. One example: its utility for improving modularly written, parametrized high-

level programs was described at the beginning of this chapter. Another is that

partial evaluation encompasses a number of traditional compiler optimizations, as
explained by A.P. Ershov [79].

Constant propagation is a familiar optimization, and arises in practical situations
beyond user control. It is needed to generate e�cient code for array accesses, e.g.

intermediate code for A[I,1] := B[2,3] + A[I,1] will have many operations in-

volving only constants. Constant folding is clearly an instance of partial evaluation,
as are several other low-level optimizations.

Partial evaluation also realizes `interprocedural optimizations', in some cases

entirely eliminating procedures or functions. Finally, the technique of `procedure

cloning' is clearly function specialization, and Appel's `re-opening closures' [61,13]

4Alternative terms are `data independent' or `static' [21,173].

When can partial evaluation be of bene�t? 287

is another example of partial evaluation without static input data.

13.2.2 Oblivious algorithms

The natural program to compute the matrix product prod(p; A;B) where A;B are

p� p matrices is oblivious in dimension p.

prod(p,A,B):

for i := 1 to p do

for j := 1 to p do [

C[i,j] := 0;

for k := 1 to p do C[i,j] := C[i,j] + A[i,k] * B[k,j];

write C[i,j]]

A su�cient test for obliviousness. First do a binding-time analysis. Then p is

oblivious if pann contains no tests on dynamic variables.

Consequences of obliviousness. Let ps be the result of specializing program p to
static s. If p is oblivious then ps will contain no control transfers, since all tests
are static and thus done at specialization time. In general pn has size and running

time O(n3). For instance, p2 could be

prod_2(A,B):

write A[1,1] * B[1,1] + A[1,2] * B[2,1];

write A[1,1] * B[1,2] + A[1,2] * B[2,2];

write A[2,1] * B[1,1] + A[2,2] * B[2,1];

write A[2,1] * B[1,2] + A[2,2] * B[2,2]

Compiling. Partial evaluation of oblivious programs (or functions) gives long se-
quences of straight line code in an imperative language, or large expressions without
conditionals in a functional language. This gives large `basic blocks', and for these

there are well-developed compiling and optimization techniques [4].

In particular good code can be generated for pipelined architectures due to the

absence of tests and jumps. Basic blocks can also be much more e�ciently imple-

mented on parallel architectures than code with loops. Both points are mentioned
by Berlin and Lisper [21,173]. Further, exploitation of distributive laws can lead

to very short parallel computing times, for example log(n) time algorithms for

multiplying matrices of �xed dimension n.

An example in scienti�c computing. Oblivious programs are quite common, for

example numerical algorithms are often oblivious in dimensional parameters, and

otherwise contain large oblivious parts. This makes them very suitable for improve-

ment by partial evaluation. For a concrete example, consider a general Runge-

288 Applications of Partial Evaluation

Kutta program for approximate integration of ordinary di�erential equations5 of

form

dyi(t)

dt
= f 0i(t; y1; . . . ; yn): i = 1; . . . ; n

where f 0i(t; y1; . . . ; yn) is the derivative of fi with respect to t. Functions yi(t) are

often called state variables.

The goal is to tabulate the values of yi(t); yi(t + �); yi(t + 2�); . . . for a series

of t values and i = 1; . . . ; n, given initial values of the state variables and t. One

step of the commonly used fourth-order Runge-Kutta method involves computing

f 0i(t; y1; . . . ; yn) for four di�erent argument tuples, and for each i = 1; . . . ; n. The

inputs to an integration program Int might thus be

1. Eqns, the system of equations to be solved;

2. Coeffs, numerical coe�cients used in the equations;

3. Step, the step size to be used for integration (called � above) and M, the
number of steps to be performed; and

4. Init, initial values for the state variables and t.

Among the inputs, Eqns varies least frequently, and will either be interpreted, or
represented by calls to a user-de�ned function, say Fprime(I,Ys), where Ys is the

array of state variables and I indicates which function is to be called. If interpre-
tation is used, as has been seen in, for example, circuit simulators, specialization

with respect to Eqns and Coeffs will remove the often substantial overhead.

If a user-de�ned Fprime(I,Ys) is used, two improvements can be realized au-

tomatically. The �rst is splitting: specialization can automatically transform the

`bundled' code for Fprime(I,Ys) into n separate function de�nitions. Further,
splitting array Ys into n separate variables can reduce computation time. The

second improvement is that the code for f 0i(t; y1; . . . ; yn) can be inserted inline in
the integrator, avoiding function call, parameter passing, and return time.

It often happens that the same equations are to be integrated, but with di�er-
ent coe�cients, e.g. for experimental modelling. The generating extension of Int

with respect to Eqns yields a program that, when given Coeffs, will produce a

specialized integrator and precompute what is possible using the known coe�cient
values. Here optimizations such as x � 0 = 0 done at specialization time can give

signi�cant speedups.

5Runge-Kutta integration is also used as an example in [21].

When can partial evaluation be of bene�t? 289

13.2.3 Weakly oblivious programs

We call p weakly oblivious if changes in dynamic inputs cannot e�ect changes

in the sequences of values bound to static variables | a weaker condition than

obliviousness since p is allowed to contain dynamic tests.

A `bubble sort' program Bsort is weakly oblivious in the length n of the list to be

sorted since, even though dynamic comparison and exchange operations exist, they

do not a�ect the values assigned to any static variables. A specialized program

Bsortn is a linear sequence of comparisons and conditional element swaps, with

size and running time O(n2).

Partial evaluation of a weakly oblivious program p terminates on s if and only

if p terminates on this s and any d, since dynamic tests do not a�ect the value

sequences assigned to static variables. As before the size of ps is proportional to

the number of times code in p containing dynamic commands or expressions is

encountered. Its run time may be larger, though, due to the presence of dynamic

loops.

Weakly oblivious programs have much in common with oblivious ones. For
example, although not yielding straightline code, ps still tends to have large basic

blocks suitable for pipelined or parallel architectures; and its size is much more
predictable than for non-oblivious programs.

A simple program that is not weakly oblivious is

double(x) = f(x,0)

f(x,y) = if x = 0 then y else f(x-1, y+2)

where x is dynamic. The values of variable y are initially zero and thereafter
incremented by a constant, so a naive binding time analysis would classify y as

static (though less naive analyses as in Chapter 14 would classify it as dynamic).

Even though y does not directly depend on x, the sequence of values it assumes
is in fact determined by x. This is dynamic, so a partial evaluator will have to
account for both possibilities of the test outcome, leading to specialization with

in�nitely many values of y.

For another example let program p perform binary search in table T0,. . . ,T2n�1,
with initial call Find(T, 0, m, x) and m = 2n�1. The program is weakly oblivious

if we assume delta is static and i is dynamic, since the comparison with x does

not a�ect the value assigned to delta.

Find(T, i, delta, x) =

Loop: if delta = 0 then

if x = T[i] then return(i) else return(NOTFOUND);

if x >= T[i+delta] then i := i + delta;

delta := delta/2;

goto Loop]

Specializing with respect to static delta = 4 and dynamic i gives

290 Applications of Partial Evaluation

if x >= T[i+4] then i := i+4;

if x >= T[i+2] then i := i+2;

if x >= T[i+1] then i := i+1;

if x = T[i] then return(i) else return(NOTFOUND)

In general pn runs in time O(log(n)), and with a better constant coe�cient than

the general program. Moreover, it has size O(log(n)).

13.2.4 Non-oblivious algorithms

Many programs are not oblivious in either sense, and this can lead to unpredictable

results in partial evaluation. We have seen that ps can become enormous or in�nite

since all possible combinations of static variable values must be accounted for, even

though few of these may occur in any one computation of [[p]] [s,d] for any one

value of d.

To illustrate the problems that can occor, reconsider the binary search program

above with n static. One may certainly classify i as static since it ranges over
0; 1; . . . ; n� 1. The resulting program is, however, not oblivious since the test on

x a�ects the value of static i.
Specialization with respect to static delta = 4 and i = 0 now gives

if x >= T[4] then

if x >= T[6] then

if x >= T[7] then

[if x = T[7] then return(7) else return(NOTFOUND)] else

[if x = T[6] then return(6) else return(NOTFOUND)] else

if x >= T[5] then

[if x = T[5] then return(5) else return(NOTFOUND)]

[if x = T[4] then return(4) else return(NOTFOUND)] else

if x >= T[2] then

if x >= T[3] then

[if x = T[3] then return(3) else return(NOTFOUND)] else

[if x = T[2] then return(2) else return(NOTFOUND)] else

if x >= T[1] then

[if x = T[1] then return(1) else return(NOTFOUND)]

[if x = T[0] then return(0) else return(NOTFOUND)]

The specialized program again runs in time O(log(n)), and with a yet better con-
stant coe�cient than above. On the other hand it has size O(n) | exponentially

larger than the weakly oblivious version!
However, the consequences are not always negative. Following are two case

studies illustrating some problems and ways to overcome them.

When can partial evaluation be of bene�t? 291

Path �nding in a graph
Suppose one is given a program p to compute Find(G;A;B), where G is a graph

and A;B are a source and target node. The result is to be some path from A to

B if one exists, and an error report otherwise. The result of specializing p with

respect to statically known G and B is a program good for �nding paths from

the various A to B. This could be useful, for example, for �nding routes between

various cities and one's home.

Naively specializing p would probably give a slow algorithm since for example

Dijkstra's algorithm would trace all paths starting at dynamic A until static B

was encountered. Alternatively, one can use the fact that A is of bounded static

variation to get better results. The idea is to embed p in a program that calls the

Find function only on fully static arguments:

function Paths-to(G, A, B) =

let nodes = Node-list(G) in

forall A1 2 nodes do

if A = A1 then Find(G, A1, B)

function Find(G, A, B) = ...

Note that nodes and so A1 are static. The result of specializing to G, A could thus
be a program of form

function Paths-to-Copenhagen(A) =

if A = Hamburg then [Hamburg, C1, ..., Copenhagen] else

if A = London then [London, D1, ..., Copenhagen] else

... else

if A = Paris then [Paris, E1, ..., Copenhagen] else NOPATH

in which all path traversal has been done at specialization time. In fact most partial
evaluators, for example Similix, would share the list-building code, resulting in a

specialized program with size proportional to the length of a shortest-path spanning
tree beginning at A.

Sorting
Consider specializing a sorting algorithm with respect to the number of elements

to be sorted. This can be pro�table when sorting variable numbers of elements.

One can use traditional methods, e.g. merge sort, until the number of elements to
be sorted becomes less than, say, 100, at which point a specialized sorter is called.

Figure 13.2 contains an example, run on Similix (syntax rewritten for clarity),

resulting from specializing merge sort to n = 4.

The �rst program version used a function merge to merge two lists. This had
only dynamic arguments, so very little speedup resulted. To gain speedup, the

lengths of the two lists were added as statically computable parameters, giving

code like

292 Applications of Partial Evaluation

function merge-sort-4(A); A,B:array[0..3] of integer;

if A0 <= A1 then [B0:=A0; B1:=A1] else [B0:=A1; B1:=A0];

if A2 <= A3 then [B2:=A2; B3:=A3] else [B2:=A3; B3:=A2];

if B0 <= B2 then

[A0:=B0;

if B1<=B2 then [A1:=B1; A2:=B2; A3:=B3]

else [A1:=B2; merge-4(B,A)]] else

[A0:=B2;

if B0<=B3 then [A1:=B0; merge-4(B,A)]

else [A1:=B3; A2:=B0; A3:=B1]];

merge-sort-4:=A

end

procedure merge-4(A,B);

if A1<=A3 then [B2:=A1; B3:=A3] else [B2:=A3; B3:=A1]

end

Figure 13.2: Specialized merge sorting program.

procedure merge(A, Alength, B, Blength);

merge :=

if Alength = 0 then B else

if Blength = 0 then A else

if first(A) < first(B) then

cons(first(A), merge(rest(A), Alength - 1, B, Blength) else

cons(first(B), merge(A, Alength, rest(B), Blength - 1)

end

The length arguments of merge are static so all calls can be unfolded, resulting in
essentially the specialized code seen in Figure 13.2.

The good news is that this program is between 3 and 4 times faster than the

recursive version. The bad news is that specializing to successively larger values of

n gives program size growing as O(n2), making the approach useless in practice.

What went wrong? In general the question of which of Alength or Blength is
decreased depends on a dynamic test, so mix must account for all possible out-

comes. Each length can range from 0 to n. There are O(n2) possible outcomes,

so the specialized program will have size O(n2). (Its run time will still be of order

n � log(n) but with a smaller constant, so something has been gained.)

This problem is entirely due to non-obliviousness of the sorting algorithm. It

leads directly to the question: does there exist a comparison-optimal weakly obliv-
ious sorting algorithm?

Batcher's sorting algorithm [17] is both weakly oblivious and near optimal. It

runs in time time O(n � log2 n), and so yields specialized programs with size and

Exercises 293

speed O(n�log2 n). Ajtai's sorting algorithm [5] is in principle still better, achieving

the lower bound of n � log(n). Unfortunately it is not usable in practice due to an

enormous constant factor, yielding extremely large specialized sorters or sorting

networks.

Interpreters

Interpreters are necessarily non-oblivious if the interpreted language contains tests,

but we have seen that interpreters as a rule specialize quite well. This is at least

partly because much experience has shown us how to write them so they give good

results. Following are a few characteristics that seem important.

First, interpreters are usually written in a nearly compositional way, so the ac-

tions performed on a composite source language construction are a combination of

the actions performed on its subconstructions. Compositionality is a key assump-

tion for denotational semantics, where its main motivation is to make possible

proofs based on structural induction over source language syntax.

From our viewpoint, compositionality implies that an interpreter manipulates

only pieces of the original program. Since there is a �xed number of these they
can be used for function specialization.

In fact, compositionality may relaxed, as long as all static data is of bounded

static variation, meaning that for any �xed static interpreter program input, all
variables classi�ed as static can only take on �nitely many values, thus guaranteeing

termination. A typical example is the list of names appearing an environment
binding source variables to values which for any given source program can grow,
but not unboundedly in a language with static name binding (false for Lisp).

Interpreters written in other ways, for example ones which construct new bits
of source code on the
y, can be di�cult or impossible to specialize with good
speedup.

Second, well-written interpreters do not contain call duplication. An example
problem concerns implementation of while E do Command. A poorly written in-
terpreter might contain two calls to evaluate E or to perform Command, giving target

code duplication (especially bad for nested while commands).

13.3 Exercises

Exercise 13.1 Suggest three applications of partial evaluation to problems not dis-
cussed in this book.

2

Exercise 13.2 The following program p stores the smallest among Ai,. . . ,Aj in Ai,

and the largest in Aj, assuming for simplicity that j� i+1 is a power of 2. It uses

3n=2� 2 comparisons, provably the least number of comparisons that is su�cient

to �nd both minimum and maximum among n elements.

294 Applications of Partial Evaluation

procedure Minmax(i,j);

if j - i = 1 then

[if A[i] > A[j] then

[tem := A[i]; A[i] := A[j]; A[j] := tem]]

else

[i1 := (i+j-1)/2; j1 := (i+j+1)/2;

Minmax(i,i1); Minmax(j1,j);

A[i] := Min(A[i],A[j1]); A[j] := Max(A[i1],A[j]);]

1. Hand specialize p to i = 0; j = 7, unfolding all calls, to obtain program p07.

2. Compare the run time of p with that of p0n for n = 2m � 1, as a function of

n, including a constant time c to perform one procedure call.

3. How large is program p0n for n = 2m � 1, as a function of n? Given your

conclusion, under what circumstances would specialization of p be worth

while?

4. Let pkij be p specialized to j � i + 1 � 2k as in Section 13.1.3. Note that for
each k, program pkij has a �xed size independent of i, j. Compare the run

time for pk0n with those of p and pij. Does the speedup for �xed k `propagate'
to arrays of arbitrarily large size?

5. Does a similar speedup propagation occur when specializing a merge sort
program to �xed array size?

2

Exercise 13.3 The `table-directed input' of Section 13.1.4 can be implemented by
at least three methods:

1. by a general interpreter, taking as parameters the table, its dimensions, and
an array of action routine addresses;

2. by an interpreter tailored to a �xed table with known dimensions and known

action routines; or

3. by a `compiled' version of the table, realized by tests and goto's with inline

code for the actions.

Compare the run time of these three approaches. Which method is used by scanner
generators such as Yacc?

2

Exercise 13.4 Residual program size explosions as seen in Section 13.2.4 can make

partial evaluation unpro�table. Can the size explosion problem always be solved

by choosing a more conservative binding-time analysis (i.e. one with fewer static
variables)? Suggest a BTA tactic for avoiding such size explosions.

2

Part V

Advanced Topics

Chapter 14

Termination of Partial

Evaluation

Many partial evaluators have imperfect termination properties, the most serious

being that they are not guaranteed to terminate on all static input. Partial eval-
uators do speculative evaluation on the basis of incomplete information, giving

them a tendency to loop in�nitely more often than a standard evaluator would.
For example, a non-trivial partial evaluator reduces both branches of a conditional
when they cannot resolve the guarding condition. Another way to put this is that

partial evaluation is more eager than standard evaluation.

Non-termination is a most unfortunate behaviour from an automatic tool to
improve programs. The problem is exacerbated if a compiler generated from the

partial evaluator inherits its dubious termination properties. Such a compiler would
be close to worthless: a non-expert user would be without a clue as how to revise the

source program that made the compiler loop. An objection: some languages, e.g.
PL/I, may have static semantics that open up for compile-time looping, but in this
chapter our concern will be to ban non-termination of partial evaluation. In another
setting, one could imagine that a cognizant user could be allowed to override the
conservative assumptions of a specializer to obtain extra static computation.

After brie
y describing termination strategies used in online partial evaluators,

we analyse the problem of non-terminating partial evaluation in the o�ine frame-

work of Chapter 4. We then develop a binding-time analysis that solves termination
problems.

14.1 Termination of online partial evaluators

Online partial evaluators employ a number of techniques to ensure termination.

Most consult some form of computational history, maintained during the special-

ization process, to make folding and unfolding decisions. When a call is encountered

during specialization the decisions are: should this call be unfolded; and if not, how
specialized a residual call should be generated?

297

298 Termination of Partial Evaluation

There are several well-known tradeo�s. Unfolding too liberally can cause in�nite

specialization-time loops, even without generating any residual code. Generating

residual calls that are too specialized (i.e. contain too much static data) can lead

to an in�nitely large residual program; while the other extreme of generating too

general residual calls can lead to little or no speedup.

A variety of heuristics have been devised to steer online call unfolding, begin-

ning with the very �rst partial evaluation articles. In�nite unfolding cannot occur

without recursion; so specializers often compare the sizes and/or structures of ar-

guments encountered in a function or procedure call with those of its predecessors,

and use the outcome to decide whether to unfold and, if not, how much to general-

ize the call. A variety of strategies, some rather sophisticated, have been described

[19,75,112,158,178,230,235,267,269,281].

14.2 Termination of o�ine partial evaluators

In o�ine partial evaluation, essentially the same decisions have to be taken, with

the same tradeo�s. A di�erence is that this is preprocessing work, done by the BTA
(binding-time analysis). BTA computes a division for all program variables on the

basis of a division of the input variables. At specialization time this classi�cation of
variables (and thereby computations) as static or dynamic is blindly obeyed | so
all-important decisions of when to specialize are encapsulated within the computed

division.

In the literature on termination of o�ine partial evaluation, including this chap-
ter, emphasis is on the distinction between increasing and decreasing static vari-

ables [117,130,246]. (An exception is Holst's poor man's generalization, which gen-
eralizes all variables which do not have control decisions depending on them. This

does not guarantee termination, but the heuristic might have some practical merit.)

14.2.1 Problem formulation

How much freedom is there in the choice of division? An indispensable requirement
is that it must be congruent: any variable that depends on a dynamic variable

must itself be classi�ed as dynamic. (Without this, code generation is impossible.)

Further, some congruent divisions are bad in that they lead to in�nite residual
programs, as seen in the example of Section 4.4.5.

The division may also be used to make annotations indicating when it is safe

to compress transitions (unfold) without causing code duplication or computation
duplication. Usefulness is also practically relevant: if a variable is dead, i.e. if no

computation depends on it, then it should be classi�ed as dynamic. This prin-
ciple was found to be crucial for specialization of larger, imperative programs in

Chapter 4.

Termination of o�ine partial evaluators 299

Since ensuring �nite specialization is by far the hardest problem, we shall concen-

trate exclusively on it, and ignore the other problems. Recall from Chapter 4 that

the specialized program will be �nite if and only if its set of specialized program

points poly is �nite. We thus ignore questions of code generation and transition

compression. Consequently we have reduced the problem to the following:

Given a division of the program inputs, �nd a division of all variables that

1. is congruent;

2. is �nite, so for all input data, the set poly of reachable specialized program
points will be �nite; and in which

3. as many variables as possible are classi�ed as `static'.

A congruent �nite division is an achievable goal, since classifying all variables as
dynamic is congruent and will indeed ensure termination (a trivial solution that

yields no specialization at all.) The main problem is thus to classify `just' enough

variables as dynamic to ensure congruence and �niteness. Point 3 ensures per-
formance of a maximal amount of computation by the specializer, thus increasing

residual program e�ciency and avoiding the trivial solution when possible.

14.2.2 Problem analysis

Given a program p, a division, and static program input vs0, the set poly of all
reachable specialized program points was de�ned in Chapter 4 to be the smallest
set such that

� (pp0, vs0) is in poly, where pp0 is p's initial program point; and

� if (pp, vs) 2 poly, then successors((pp, vs)) is a subset of poly

where successors((pp, vs)) = f(pp1; vs
0); . . . ; (ppn; vs

0)g is the set of static parts
of program points reachable in computations beginning at (pp, vs) and continuing

to the end of the basic block begun by pp. Clearly, poly is �nite if and only if all

static variables assume only �nitely many di�erent values.

Bounded static variation
Certain source program variables can only assume �nitely many di�erent values.

One example is a static program input that is never changed. Another is a variable

that can change during execution, but always assumes values that are substructures
of a static input. The idea can be formalized as follows.

The binding-time analysis algorithm in Section 4.4.6 constructs a division div
which is congruent but not always �nite. Let us say that a variable xk is of bounded
static variation if (1) it is classi�ed as static by div; and (2) for any static program

input vs0, the following set is �nite:

300 Termination of Partial Evaluation

fvk j (pp; (v1 . . . vk . . . vn)) 2 polyg

Our goal is thus a program analysis to construct a better division by recognizing

certain variables as of bounded static variation, classifying them as `static', and

classifying all other variables as `dynamic'.

Example 14.1 Consider the following program and assume that x is known to be

static. How should y be classi�ed?

y := 0;

loop: x := x-1;

y := y+2;

if x6=0 goto loop else exit;

exit: ...

Classifying y as static violates neither congruence nor �niteness as the assignment

y:=y+2 is only performed n times if n is the initial value of x. The value of y

throughout the computation is thus bounded by 2n. Observe that though for any
one value for x there is a bound for y, there exists no uniform bound for y.

Things look di�erent if x is dynamic: we lose the bound on the number of itera-
tions. Thus y is unbounded, even though the binding-time analysis in Section 4.4.6
would call it static. Hence to comply with the �niteness criterion, y should be clas-

si�ed as dynamic. 2

Finite downwards closure
How can we choose the division to make poly �nite? A program analysis to rec-

ognize such properties as bounded static variation can be done using the fact that
many value domains used in practice are are �nitely downwards closed.

De�nition 14.1 A set D with partial ordering < is �nitely downwards closed i�
8x 2 D : fy j y < xg is �nite. 2

A trivial consequence is that there exists no in�nite descending chain, that is, a
sequence v1; v2; v3; . . . with vi 2 D and vi > vi+1 for i � 1.

Examples

� The set of natural numbersN with the usual ordering < is �nitely downwards

closed.

� The set of integers Z with the usual ordering < is not �nitely downwards

closed since 8x 2 Z : fy j y < xg is in�nite.

� De�ning x < y to mean x is a substructure of y, the set of �nite trees is

�nitely downwards closed. So are the sets of �nite lists and S-expressions,

together with other common �nite algebraic structures.

Binding-time analysis ensuring termination 301

Since a variable can only have its value decreased �nitely many times, we get a

bound on the number of iterations in a loop where a static variable is decreased

at every iteration. As seen in the �rst part of Example 14.1, this can bound the

number of times other variables can be increased in that loop.

The �nite downwards closure property is crucial for this reasoning, which means

that our methods do not work for, say, integer types. Therefore we assume all

numerals in the rest of this chapter to be natural numbers.

14.3 Binding-time analysis ensuring termination

In this section we develop a new algorithm that yields a congruent and always �nite

division, in contrast to that of Section 4.4.6. Variables will be classi�ed in one of

three categories: static, meaning that it is guaranteed to assume only �nitely many
values, and can be computed at partial evaluation time (congruence); or dubious,
meaning that it is not dependent on dynamic variables, but is not (yet) known to

be of bounded static variation; or dynamic.

(Note that previous chapters have taken a more relaxed attitude towards the
term `static'.) Our de�nition does not mean that a static variable cannot grow,

only that all variation must be bounded for any static program input.

To ensure �niteness it may be necessary to reclassify some dubious variables as

dynamic, and this may lead to yet more reclassi�cations to re-establish congruence.
For example, a variable is dubious if it is increased inside a loop. If a bounded
static variable is properly decreased in the same loop, then its growth is limited;

if not, it must be classi�ed as dynamic.

Below we present an analysis that collects information about dependencies and
size relations among variables in a program. From the result of this analysis, a

division ensuring termination will be found roughly in the following manner:

1. Classify all variables that depend on dynamic input variables as dynamic.
Classify all non-dynamic variables as dubious.

2. A dubious variable x that only depends on itself and on static variables is

reclassi�ed as static if

whenever x is increased in a loop, some static variable is decreased.

(Special case: x is never increased in a loop.)

3. When step 2 is no longer applicable, reclassify remaining dubious variables

as dynamic.

302 Termination of Partial Evaluation

14.3.1 Important concepts

Syntax and semantics
Recall that a
ow chart program with input variables x1 . . . xk consists of a read

statement read x1 . . . xk; followed by a sequence of labelled basic blocks: l0:bb0
l1:bb1 . . . ln:bbn. If the program has variables x1, . . . , xm (m � k) then a store
v is represented by an m-tuple of values v = (v1, . . . , vm). Below we shall use the

mathematical semantics for
ow chart programs shown in Section 3.3.3.

Dependency
Variable x depends on variable y over the one-assignment sequence x := e if y

occurs in e. Further, x depends on y over sequence seq1; seq2 if one of the

following conditions holds:

1. z depends on y over seq1 and x depends on z over seq2;

2. x depends on y over seq1 and x is not assigned in seq2.

Variable x depends on variable y along a path of labels l1, l2, . . . , li in the
ow

chart i� x depends on y over the concatenation of the assignments at l1,

Loops
A loop is a sequence of labels l1, l2, . . . , li where l1 = li. Note that we do
not disallow lj = l1 for 1 � j � i. A variable y is increased in a loop when y

depends on y along the loop and its value grows for each iteration. Similarly, x is
decreased in a loop if x depends on x along the loop and its value diminishes for
each iteration. In Example 14.1, y is increased and x is decreased in the loop.

Example 14.2 Consider the following program fragment:

a: x := x-1;

y := y+2;

if e1 goto a else b;

b: x := x+2;

y := y-1;

if e2 goto a else b;

x is decreased and y is increased in the loop a, a. Note that both variables are

increased in the loop a, b, a. Both variables should be classi�ed as dynamic no

matter what the rest of program looks like. 2

14.3.2 Size and dependency analysis

In this section we analyse the dependencies and size variances among the program

variables x1 . . . xm along various program control paths ppi, ppi+1, . . . , ppj in the

Binding-time analysis ensuring termination 303

ow chart. A
ow description is of form (ppi,ppj) : (d1, . . . , dm). Each dk describes

the dependency of the value of variable xk at the end of the path on the variables

x1 . . . xmat the beginning of the path.

Variable descriptions

A variable description has one of three forms: d = I(V), d = E(V), or d = D(V),

where V � VarIndex = f1; . . . ; mg. VDesc is the set of all variable descriptions.

When a variable xi is described by d, then it depends on those variables xj for

which j 2 V . The letter I, E, or D describes the relation between the size of xi
and the xj's: D denotes strictly Decreasing, E denotes non-increasing = less than
or Equal, and I denotes (possibly) Increasing. Also, when a value is both increased

and decreased we classify it as increasing.

Given a
ow description of form (ppi,ppj):d, the table below summarizes how to

interpret the elements of d(recall that v#k selects the k'th component of v):

dk = D(V) means vj#k < vi#s, for all s 2 V

dk = E(V) means vj#k � vi#s, for all s 2 V

dk = I(V) means vj#k depends on vi#s, for all s 2 V

We take ?(V) to mean either I(V), E(V), or D(V). Note the special case V = fg.
This implies that xi depends on no variables and thus is constant. Any description
?(fg) would correctly describe the e�ect of an assignment of constant value such
as xi := 42.

Flow descriptions

Associate with any two program points, ppi and ppj, a description of the variables
to get a
ow description of form (ppi, ppj) : d, where d = (d1, . . . , dm). The type

of a
ow description is thus PPoint � PPoint � Vdescm. A
ow description of this
form means that in one possible computation

(ppi, vi) ! . . . ! (ppj, vj)

the dependency of vj on vi is described by (d1, . . . , dm). Note that we also include

computations that do not start at the initial program point.

14.3.3 Flow description of all possible computations

We shall now de�ne a set of
ow descriptions FD: }(PPoint � PPoint � Vdescm)
that captures all possible computations. FD will be a set of triples (ppi, ppj) : d,

where d describes the dependency relations between program variables at the end

of one possible path from ppi to ppj, and the variables' values at the start of that

same path.

Note that FD is �nite since there are only �nitely many di�erent triples (even

though there are in�nitely many paths). We approximate the control function ci

304 Termination of Partial Evaluation

by aci (independent of the store), de�ned by:

aci = flj, lkg if bbi = . . . ; if e then goto lj else goto lk
aci = fljg if bbi = . . . ; goto lj
aci = fg if bbi = . . . ; return e

and de�ne FD inductively by the following two rules:

1. For all program points ppi, (ppi,ppi) : (E(f1g), . . . , E(fmg)) 2 FD

2. If (ppi,ppj) : d 2 FD, ppq 2 acj, and d0 = BlockDesc[[bbj]]d then (ppi,ppq) :
d0 2 FD.

The function BlockDesc which is de�ned below computes the e�ect of a basic block

on a store description d.

BlockDesc[[a1; . . . ; an]]d = (AsgDesc[[an]] � . . . � AsgDesc[[a1]]) d

AsgDesc[[xk := e]] d = (d1, . . . , dk�1, ExpDesc[[e]]d, dk+1, . . . , dm)

where d = (d1, . . . , dm)

ExpDesc[[e1 + e2]]d = I(V 1 [V 2)
where ?(V 1) = ExpDesc[[e1]]d

?(V 2) = ExpDesc[[e2]]d
ExpDesc[[sub1 e]]d = decrease(ExpDesc[[e]]d)
ExpDesc[[cons e1 e2]]d = ExpDesc[[e1 + e2]]d
ExpDesc[[hd e]]d = ExpDesc[[sub1 e]]d

ExpDesc[[xp]]d = d#p

ExpDesc[[<constant>]]d = ?(fg) (choice of I, E, or D immaterial)

d I(V) E(V) D(V)

decrease(d) I(V) D(V) D(V)

The cons case is typical of increasing functions, and the hd case is typical of
decreasing functions.

14.3.4 Binding-time analysis algorithm

Let a program with basic blocks pp0:bbpp0 pp1:bbpp1 . . . ppn:bbppn be given. In-
put variables are x1 . . . xk of which x1 . . . xs, s � k, are dubious. (We carefully

avoid the word static until the boundedness has been shown.) The algorithm below

computes a division that guarantees termination of partial evaluation.

1. Compute FD as described in the previous section.

2. Classify as dynamic xs+1 . . . xk as well as all variables xj for which there

exist q 2 f0; . . . ; ng and i 2 fs+ 1; . . . ; kg such that

Safety of BTA algorithm 305

(pp0,ppq):(d1, . . . , dj�1, ?(V), dj+1, . . . , dm) 2 FD, i 2 S

3. Classify all yet unclassi�ed variables as dubious.

4. Reclassify as static, any set W of dubious variables ful�lling both of the

following conditions:

(a) 8xj 2 W , 8 (ppp,ppq):(d1, . . . , dj�1, ?(V), dj+1, . . . , dm) 2 FD,
8i 2 V :

xi dubious implies xi 2 W

(b) 9g 2 f1; . . . ; mg, such that:1

8 (ppq,ppq):(d1, . . . , dj�1, I(V), dj+1, . . . , dm) 2 FD:

(j 2 V and xj 2 W) implies (xg is static and dg = D(T) and g 2 T)

5. When step 4 can no longer be used to reclassify dubious variables as static,

reclassify remaining dubious variables as dynamic.

Note that step 4 can reclassify a set of dubious variables at a time. This is useful
when dubious variables are mutually dependent and cannot be reclassi�ed `one at

a time'.

14.4 Safety of BTA algorithm

What needs to be proven about the above algorithm is that an application of

step 4 does not classify any variable that can assume in�nitely many values as
static. Assume that the division obtained by reclassifying all dubious variables as

dynamic guarantees �niteness of poly and prove that one application of step 4 does
not destroy this property.

Suppose the algorithm classi�es x1 . . . xs as static and xs+1 . . . xm as dynamic.

Let divs: Valuem ! Values be the function that selects the static part vs of a
store v. De�ne (ppi, vsi)) (ppj, vsj) to hold, i�

1. ppj 2 aci

2. 9 v: vsi = divs(v), vsj = divs(wi(v))

The relation) approximates the notion of being a `successor' as de�ned in Chap-

ter 4 since both branches are followed for static conditionals. Let a program and

static input vs0 be given. We shall demonstrate the �niteness of poly by showing

the following superset to be �nite:

1See Exercise 14.8 for a generalization of this step.

306 Termination of Partial Evaluation

f(pp, vs) j (pp0, vs0))
� (pp, vs)g

where (pp0, vs0) is the initial specialized program point.

The proof is by contradiction, so assume conversely that f(pp, vs) j (pp0,

vs0))
� (pp, vs)g is in�nite. Then there must exist an in�nite chain where all

(ppi, vsi) are di�erent:2

(pp0, vs0)) (pp1, vs1)) . . .

We shall refer to this in�nite chain as (�).

A dependency chain is a sequence of pairs of natural numbers (i1; k1) >(i2; k2) >

. . . satisfying:

1. (ppi1, vsi1))
+ (ppi2, vsi2))

+ . . .

2. For j = 1; 2; . . .:

(ppij ,ppij+1):d 2 FD, d = (d1, . . . , dkj+1�1, I(V), dkj+1+1, . . . , dm), kj 2
V

In the de�nition of dependency chains the is are indexes into (�). For each j, xkj+1
depends on and is larger than xkj . Observe that any subchain of a dependency
chain is itself a dependency chain.

There are arbitrarily long dependency chains. Justi�cation: suppose they had
a maximum length K. Variables are assigned constant values a �nite number

of places (initial binding of input variables and (possibly) assignments to constant
expressions). Also, a �nite number of store transformations are de�ned by the basic
blocks. By the �nite downwards closure property of the value domains, applying

at most K consecutive increasing store transformations can only lead to a �nite
number of di�erent values.3

From the existence of arbitrarily long dependency chains, we may conclude the

existence of arbitrarily long self-dependency chains of form (i1; k) > (i2; k) > . . .

with ppi1 = ppi2 = . . . , as there are only �nitely many di�erent program points

and variables. For a two-element self-dependency chain (i1; k) >(i2; k) we have (by

the de�nition of dependency chains) an element in FD of form (ppi,ppi):d, where d

= (d1, . . . , dk�1, I(V), dk+1, . . . , dm), k 2 V , and for such k step 4b in the

BTA provides a g such that dg = D(T), g 2 T , xg static.

This fact yields arbitrarily long chains

vsi1#g > vsi2#g > . . .

of unbounded length which contradicts the �nite downwards closure property and

concludes the proof.

2Not hard to show (K�onig's Lemma).
3See Exercise 14.6.

Exercises 307

14.5 Exercises

Exercise 14.1 Execute the binding-time analysis algorithm of Section 14.3.4 on the

programs in Example 14.1 and 14.2. 2

Exercise 14.2 In Section 4.4.5 it is claimed that there is no computable BTA that

always guarantees termination and never generalizes unnecessarily. Prove this

by reduction from the halting problem. Show that lifting any one of the two

requirements renders the problem computable. 2

Exercise 14.3 Consider the mix equation (De�nition 4.2). Assuming mix is the

partial evaluator described in Chapter 4, does there exist a program for which the

left hand side loops and the right hand side terminates? 2

Exercise 14.4 Prove that the 91 function and Ackermann's function terminate for

any input. The 91 function:

f(x) =

(
x� 10 if x > 100

f(f(x+ 11)) otherwise

Ackermann's function:

ack(m;n) =

8><
>:
n+ 1 if m = 0

ack(m� 1; 1) if m 6= 0 ^ n = 0
ack(m� 1; ack(m;n� 1)) if m 6= 0 ^ n 6= 0

2

Exercise 14.5 Construct a program and a �nite division such that reclassifying a
static variable as dynamic renders poly in�nite. 2

Exercise 14.6 Find a program and a division such that poly is in�nite but no there

is no in�nite dependency chain. 2

Exercise 14.7 Let B1 and B2 be divisions, let B1t B2 be the division that classi�es

variable xi as static if and only if xi is static by both B1 and B2, and let B1u B2

be the division that classi�es xi as static if xi is static by at least one of B1 and
B2. Assume that both B1 and B2 are congruent and �nite.

1. Is B1u B2 congruent? Is it �nite?

2. Is B1t B2 congruent? Is it �nite?

2

308 Termination of Partial Evaluation

Exercise 14.8 In the BTA algorithm, step 4b can be relaxed to:

8 (ppq,ppq):d 2 FD, d = (d1, . . . , dj�1, I(V), dj+1, . . . , dm), j 2 V

implies 9g 2 f1; . . . ; mg : dg = D(T); g 2 T , xg static

1. Find programs for which the relaxed algorithm produces a di�erent result

than the original algorithm.

2. Prove that the relaxed algorithm is still safe.

2

Chapter 15

Program Analysis

The purpose of automatic program analysis is to obtain some information about

the execution of a program without actually executing it, and without using its

input. Typical examples of such information are: `the value of variable y will
always be an even integer' and `the value of variable g will never be the lambda
abstraction �x`.e'. The information must be valid for all possible executions of

the program.
This chapter explains the program analysis methodology called abstract inter-

pretation, and discusses some program analyses relevant to partial evaluation: the

binding-time analysis for Scheme0 programs (Section 5.2) is revisited, and a closure
analysis for higher-order languages is presented. We show how to combine these

analyses to obtain a binding-time analysis for the higher-order language Scheme1.
Finally, we present Launchbury's projection-based binding-time analysis of par-
tially static structures.

15.1 Abstract interpretation

Consider an arithmetic expression such as 8 + 3 and suppose we want to know

whether its result is even or odd. We may evaluate it concretely, obtaining the

concrete number 11, which is odd. However, we may also abstract the values 8

and 3 by their parity (that is, even and odd), and consider instead the problem

even + odd. This may be evaluated abstractly, giving the abstract result odd.

Clearly, one could consider other abstractions instead to obtain di�erent infor-

mation about the expression, such as its sign. For this we would abstractly evaluate

positive + positive yielding positive.

The important observation is that we have abstract versions of the values (such
as 8) as well as of the operations on them (such as `+'). The following tables de�ne

abstract addition and multiplication on feven; oddg:

309

310 Program Analysis

+ even odd

even even odd

odd odd even

� even odd

even even even

odd even odd

Applying the idea of abstract evaluation to programs, we arrive at abstract inter-
pretation: programs may be interpreted concretely or abstractly. Abstract inter-

pretation of imperative programs was introduced by Sintzo� [251] and studied in

depth by Cousot and Cousot [65,64] and Nielson [198,200]. Here we outline the

abstract interpretation of functional programs, which was pioneered by Mycroft

[197].

15.1.1 Variables, conditionals, and functions

An expression may contain variables: x * 3 + 7. Ordinary evaluation of this

expression relies on an environment to supply a (concrete) value for x, say 8, and

evaluates the expression using this value. Abstract evaluation of this expression
naturally relies on an abstract environment to supply an abstract value for x, say

even.
Continuing the parity example, we let EvenOdd denote the set of abstract par-

ities. So far we have even; odd 2 EvenOdd, but we shall see that EvenOdd must
have two more elements: one because of conditionals (this section), and one because
of recursive de�nitions (next section).

Consider a conditional expression, such as if e then 3 else 2. Clearly the
abstract value of the �rst branch is odd and that of the second branch is even, but
what is the abstract value of the entire expression? If we could decide whether the

condition e is true or false, there would be no problem, but in general we cannot.
Thus the best description we can give is `it is either even or odd': we know

nothing, but so far we lack a way of saying this. We are forced to introduce a
new abstract value > 2 EvenOdd (pronounced `top') to represent the absence of
knowledge.

We also provide feven; odd;>g � EvenOdd with an ordering v, such that
even < > and odd < >. When s v t, that is, when s is less than or equal to

t, then clearly s is more precise (or more informative) than t. The relation be-

tween the three abstract values can be shown as follows, with the smaller (or more

informative) values below the larger (or less informative) one:

>

even odd
��
�

HH
H

Abstract interpretation 311

Let s; t be two abstract values. Then they have a least upper bound, denoted by stt.
This is the least element which is greater than or equal to both s and t. Now s v t

means that s is more precise (or more informative) than t, so s t t is the best (or

most informative) joint description of s and t. This allows us to abstractly interpret

the conditional expression if e then 3 else 2 by considering its branches in

isolation, obtaining the abstract values odd and even, then compute oddt even to

obtain the abstract value > of the entire conditional.

The least upper bound s t t is also called the lub or join of s and t.

Finally, consider a function de�nition f(x) = x + 1. When abstractly interpret-

ing a program involving this function, we simply use the corresponding abstract
function, written f#. In this case, f#(X) = X + odd, so

f#(X) = odd if X = even

= even if X = odd

In summary, we �nd the abstract value of an expression by �rst replacing each

operation (such as + or �) by its abstract version, and each conditional by the
least upper bound of its branches, then evaluate the resulting abstract expression.

If the expression involves a function application, we just apply the corresponding
abstract function, obtained by making its body into an abstract expression.

15.1.2 Recursively de�ned functions

This approach works even for recursively de�ned functions such as

g(x) = if x > 17 then x else 8 + g(3*x)

Since g is recursively de�ned, so is its abstract function g#:

g#(X) = X t (even+ g#(odd�X))

We now have a recursive equation describing the abstract function g#. Does it

have any solutions? The answer turns out to be `yes', if only we introduce yet a

new abstract value ? 2 EvenOdd (pronounced `bottom') to stand for `not de�ned'
or `no value'. Putting ? < s for all other abstract values s 2 EvenOdd, the full

set EvenOdd = f?; even; odd;>g of abstract values is:

>

even odd

?

��
�

HH
H

HHH
���

312 Program Analysis

That is, EvenOdd is a complete lattice: every set S of elements from EvenOdd

has a least upper bound
F
S and a greatest lower bound uS. Provided that the

abstract operations + and � are monotonic (and they are), there is therefore a

least solution to the equation de�ning g# (and indeed any abstract function) [261].

Recall that least means most informative. Since the lattice has �nite height, this

solution can even be found in �nite time, which is important since program analyses

should always terminate. For this reason the abstract values are usually required

to form a lattice of �nite height.

In the case of g# above, a tabulation of the (argument, result) pairs for the four

possible argument values shows that g# is the identity on EvenOdd:

g#(X) = > if X = >

= even if X = even

= odd if X = odd

= ? if X = ?

Abstract addition and multiplication on EvenOdd = f?; even; odd;>g is de�ned

by the tables below. Notice that these are extensions of the tables given at the

beginning of the section.

+ ? even odd >

? ? ? ? ?

even ? even odd >

odd ? odd even >

> ? > > >

� ? even odd >

? ? ? ? ?

even ? even even even

odd ? even odd >

> ? even > >

In summary, we have seen that expressions can be evaluated abstractly, for instance

to know whether the result of ordinary evaluation will be even or odd. We have
also seen that because of conditional expressions and recursively de�ned functions,
we need two more abstract values > and ?, which correspond to `no information'

and `not de�ned'.

15.1.3 Abstraction and concretization mappings

Informally, the abstract value even represents all even numbers, odd represents all

odd numbers, > represents all numbers, and ? represents no numbers. Also, if a

number is represented by some abstract value s 2 EvenOdd, then also by every

abstract value t which is greater than s, that is, which is less precise than s.

These notions can be formalized using an abstraction function � and a con-
cretization function
. Let N = f0; 1; . . .g be the set of natural numbers, and let

}(N) be the powerset of N , that is, the set of subsets of N , partially ordered by

set inclusion �.

Then the concretization function
 : EvenOdd! }(N) maps an abstract value

s to the set
(s) of concrete numbers represented by s. Conversely, the abstraction

Abstract interpretation 313

function � : }(N)! EvenOddmaps a set V of numbers to the (smallest) abstract

value �(V) representing all numbers in the set.

The abstraction and concretization functions must (1) be monotonic, and further

satisfy the following requirements:

(2) 8s 2 EvenOdd: �(
(s)) = s

(3) 8V 2 }(N):
(�(V)) � V

The monotonicity requirement (1) means that a larger abstract value represents

a larger set of concrete values. Requirement (2) means that every abstract value

represents something; there are no super
uous abstract values. Requirement (3)

means that abstracting and then concretizing a set V of concrete values gives a set

containing V . In other words, the abstraction of V safely represents all elements

of V .

In the EvenOdd example, the concretization function
 is

(?) = fg the empty set

(even) = f0; 2; . . .g the set of even numbers

(odd) = f1; 3; . . .g the set of odd numbers

(>) = f0; 1; 2; 3; . . .g the set of all numbers

Using � and
 we can now de�ne what it means for an abstract function f# :
EvenOdd! EvenOdd to safely abstract a concrete function f : N ! N . Namely,
let n 2 N be a concrete number; it is described by the abstract value �(fng). The

requirement on f# is that the concrete result f(n) is safely represented by the
abstract result f#(�(fng)):

8n 2 N : f(n) 2
(f#(�(fng)))

15.1.4 The Scheme0 binding-time analysis as an abstract interpreta-

tion

Looking back on the binding-time analysis for Scheme0 presented in Section 5.2,

we �nd that it is a very simple abstract interpretation. Consider the expression

x+8 and assume x is dynamic (clearly the constant 8 is static). That is, x has
binding time D and 8 has binding time S, so the entire expression has binding

time D + S which is D.

In Scheme0, every expression having a dynamic subexpression is itself dynamic,

so all abstract operators are very simple: the abstract value of an expression is the

least upper bound of the abstract values of all subexpressions. In particular, the

abstract evaluation of a function application (f e) does not use any abstraction of

f, only the binding time of e. Although the analysis is very simple, it gives reason-

ably good results because Scheme0 is a �rst-order language and has no partially

314 Program Analysis

static structures: a value is either fully static or dynamic. Thus if e is dynamic,

then (f e) will be dynamic (unless the function f always ignores its argument).

The set BindingT ime = fS;Dg of abstract values form the simple lattice

D

S

Another particular feature of the Scheme0 binding-time analysis is that the abstract

values do not represent the values used in standard evaluation, but the `values' used

during partial evaluation.

For a rough formalization of this, let Scheme0Val denote the set of (�rst-order)

values used during an ordinary Scheme0 computation: numbers such as 1, symbols

such as a, pairs such as (1 . a), lists such as (a b), and so on. Let SchemeExpr

denote the set of (Scheme0) expressions: numerals such as 1, constant expressions

such as (quote a) and (quote (1 . a)), expressions, and so on. Further assume

that the two sets are disjoint, so we can distinguish their elements. Then the set
of values used during partial evaluation is

PEValue0 = Scheme0Val [SchemeExpr

The binding time S describes an expression which must evaluate to an ordinary

value, and D describes an expression which may reduce to a residual expression or
an ordinary value. That is, S represents values in Scheme0Val and D represents

all specialization-time values, including residual expressions. Thus the abstraction
and concretization maps are

: BindingTime! }(PEValue0)

(S) = Scheme0Val

(D) = PEValue0

�: }(PEValue0) ! BindingTime

�(V) = S if V \ SchemeExpr = fg

= D if V \ SchemeExpr 6= fg

These functions satisfy the three requirements in Section 15.1.3 above. Namely,
(1) they are monotonic, and (2) �(
(S)) = �(Scheme0Val) = S and �(
(D)) =

�(PEValue0) = D. Requirement (3) is proved similarly.

15.2 Closure analysis

In a �rst-order language it is always clear which function is applied in an application

such as (f e). In a higher-order language this is not the case. What function is

applied in an application (e1 e2) is determined only when e1 is evaluated.

Closure analysis 315

The purpose of a closure analysis is to compute this information without actually
executing the program. That is, a closure analysis computes an approximation to

the set of functions that e1 may evaluate to [247].

First we present the components of the closure analysis, then we see how it can

be seen as an abstract interpretation.

15.2.1 The higher-order language Scheme1

We describe a closure analysis for the higher-order functional language Scheme1

used in Chapter 10. Recall that a Scheme1 program pgm has the form:

(define (f1 x11 . . . x1a1) body1)
...

(define (fn xn1 . . . xnan) bodyn)

Each function body bodyi is a Scheme1 expression. The syntax of expressions is

shown in Figure 10.1 on page 206. All lambda abstractions and the corresponding

lambda-bound variables are labelled by a superscript `. For brevity we say `lambda'
instead of `lambda abstraction', and write (�x`.e) instead of (lambda` (x) e) in

this chapter.
We distinguish three kinds of variables: function variables xij, lambda variables

x`, and let variables x. A function variable xij is a formal parameter of a named
function, a lambda variable x` is bound by a lambda abstraction, and a let variable
is bound in a let expression. All variable names must be distinct. The arguments

and results of the goal function and of base functions must be base values.

15.2.2 Closure analysis functions

Assume that a Scheme1 program pgm, of the form shown above, is given. We
want to know which lambdas can be applied in an application (e1 e2). Therefore

we need to know which lambdas e1 can evaluate to. An important step in that

direction is to �nd the set of lambdas that variables and applications can evaluate

to. The closure analysis is based on two maps � and � giving these two kinds of
information, where we identify a lambda expression �x`.e with its label `. Formally,
let

y 2 Var = f variables in pgm g

` 2 Label = f labels in pgm g

L 2 LabelSet = }(Label)
Names = ff1, . . . , fng [Label

� 2 ResEnv = Names ! LabelSet

� 2 VarEnv = Var ! LabelSet

The intended meanings of � and � are

316 Program Analysis

�fi = the set of lambdas that the body bodyi of fi can evaluate to.

�` = the set of lambdas that the body e of �x`.e can evaluate to.

�xij = the set of lambdas that function variable xij can get bound to.

�x` = the set of lambdas that lambda variable x` can get bound to.

�x = the set of lambdas that let variable x can get bound to.

As before, we must satisfy ourselves with approximate information, so we actually
just require that the set �fi contains all the lambdas that ei can evaluate to, and

similarly for the �. Thus the safety requirement is: closure analysis of expression
e1 must tell us at least all lambdas that e1 can evaluate to (and possibly some

more). Note that by the restrictions the goal function, �f1 = fg and �f1 = fg.

In the analysis, the label ` abstracts the set of all the closures that can be built

(at run time) from the expression �x`.e.

Example 15.1 Consider the following program (the superscript ` is a lambda label):

(define (f x n) ((�k`1.k x) (if (even n) (�y`2.y*y) (�z`3.2*z))))

We have �k = f`2; `3g since the expression (if . . .) can evaluate to �y`2.y*y as

well as �z`3.2*z. Also, �v = fg for all other variables v, �f = fg, and �` = fg for
all labels `.
Now consider the equivalent but more complicated program:

(define (f x n) (g ((�x1`1.�k`2.k x1) x)

(h (even n) (�x3`3.x3*x3) (�x4`4.2*x4))))

(define (g k1 z) (k1 z))

(define (h b c a) (if b c a))

Here we have �k1 = �`1 = f`2g, �z = �h = f`3; `4g, �c = f`3g, �a = f`4g, �v =

fg for all other variables v, �` = fg for all other labels `, and �f = �g = fg. 2

To compute � and � in general, we de�ne two analysis functions Pe and Pv, where

Pe is called the closure analysis function and Pv is called the closure propagation
function. The closure analysis function Pe is de�ned in Figure 15.1.

The intention is that Pe[[e]]�� is (a superset of) the set of lambdas that e may

evaluate to. The variable environment � is de�ned using the analysis function Pv,

to be shown shortly.
The equations de�ning Pe in Figure 15.1 are justi�ed as follows. A constant

can evaluate to no lambda. A variable x can evaluate only to those lambdas it

can be bound to, that is, (� x). A conditional can evaluate only to those lambdas
that the two branches can evaluate to. An application of a named function fi can

evaluate to those lambdas that the function's body can evaluate to, that is, (�fi).
A base function must return a base value and so cannot evaluate to a lambda. The

lambda expression labelled ` can evaluate only to itself. The application (e1 e2)

can evaluate to those lambdas which an application of lambda ` can, when �x`.. . .

is a possible value of e1. A let expression can evaluate to those lambdas that its

body can evaluate to.

Closure analysis 317

Pe[[c]]�� = fg

Pe[[x]]�� = � x

Pe[[if e1 e2 e3]]�� = Pe[[e2]]�� [Pe[[e3]]��

Pe[[(call fi e1 . . . ea)]]�� = �fi

Pe[[(op e1 . . . ea)]]�� = fg

Pe[[(�x
`.e)]]�� = f ` g

Pe[[(e1 e2)]]�� =
S
f � ` j ` 2 Pe[[e1]]�� g

Pe[[(let (x e1) e)]]�� = Pe[[e]]��

Figure 15.1: The closure analysis function Pe.

The closure propagation function Pv is shown in Figure 15.2. The application

Pv[[e]]��y is (a superset of) the set of lambdas that variable y can be bound to in

an evaluation of e. If y is a function variable xij, it can be bound to a lambda
only in an application of function fi. Similarly, if y is a lambda variable x`, it can

be bound to a lambda only in an application of the lambda expression �x`.. . .
labelled `. If y is a let variable, it can get bound only in the corresponding let.

Pv[[c]]��y = fg

Pv[[x]]��y = fg

Pv[[if e1 e2 e3]]��y = Pv[[e1]]��y [Pv[[e2]]��y [Pv[[e3]]��y

Pv[[(call fi e1 . . . ea)]]��y = L [Pe[[ej]]�� if y is xij
= L otherwise

where L =
Sa
j=1 Pv[[ej]]��y

Pv[[(op e1 . . . ea)]]��y =
Sa
j=1 Pv[[ej]]��y

Pv[[(�x
`.e)]]��y = Pv[[e]]��y

Pv[[(e1 e2)]]��y = L [Pe[[e2]]�� if y is x` and ` 2Pe[[e1]]��

= L otherwise

where L = Pv[[e1]]��y [Pv[[e2]]��y

Pv[[(let (x e1) e)]]��y = L [Pe[[e1]]�� if y is x

= L otherwise

where L = Pv[[e1]]��y [Pv[[e]]��y

Figure 15.2: The closure propagation function Pv.

The equations de�ning function Pv in Figure 15.2 are therefore justi�ed as fol-

lows. Evaluating a constant or a variable cannot bind variable y. Evaluating a

conditional can do those bindings that any of the three subexpressions can do.

Applying a named function fi binds y if it is one of the parameters xij of fi. In

318 Program Analysis

this case, y can get bound to whatever lambdas the argument ej can evaluate to.

Moreover, y can get bound by evaluating any of the argument expressions. In a

lambda abstraction, y can get bound in the body e. A lambda application (e1 e2)

binds y if it is a lambda variable x` and e1 can evaluate to the lambda labelled `.

In this case, y can get bound to whatever lambdas the argument e2 can evaluate

to. Finally, a let expression binds y if y is the same as the variable x being bound.

15.2.3 Closure analysis of a program

Closure analysis of a program should produce a safe description (�,�) which is as

precise as possible. The description is obtained as the least solution to a set of

equations specifying the safety requirement.

As described above, � should map a named function fi to the set of lambdas

that its body can evaluate to, that is, Pe[[bodyi]]��. Similarly, it should map a

lambda label ` to the set of lambdas that the body e of �x`.e can evaluate to,

that is, Pe[[e]]��.

The map � should map a function variable x to the set of lambdas that it can

be bound to, that is, the union of Pv[[bodyi]]��x over all function bodies bodyi.
Similarly, � should map a lambda variable x` to the set of lambdas it can be bound
to, that is, the union of Pv[[bodyi]]��x

` over all function bodies bodyi; and likewise

for the let-variables.

These requirements are summarized by the equations below:

�fi = Pe[[bodyi]]��
�` = Pe[[e]]�� where e is the body of �x`.e

�x =
Sn
i=1 Pv[[bodyi]]��x for every function variable x

�x` =
Sn
i=1 Pv[[bodyi]]��x

` for every lambda variable x`

�x =
Sn
i=1 Pv[[bodyi]]��x for every let-variable x

Any solution to these equations is a safe analysis result. The least solution is the

most precise, safe solution.

15.2.4 Closure analysis as an abstract interpretation

The closure analysis as described above can be understood as an abstract inter-

pretation. An abstract value L 2 LabelSet is a set of labels. The abstract values
are ordered by inclusion: L1 is smaller than L2 if and only if L1 � L2. This makes

LabelSet a lattice and is very reasonable, intuitively: a smaller lambda label set is
more informative, since it says: only these lambdas are possible.

Abstract interpretation of a program produces a description (�,�) 2 ResEnv �
VarEnv. Recall that ResEnv and VarEnv are mappings (from function and variable

names) to label sets, so the set ResEnv � VarEnv of descriptions can be ordered

Higher-order binding-time analysis 319

by pointwise inclusion, which makes it a lattice.

To roughly formalize the abstraction and concretization functions, we must de-

�ne the set Scheme1Val of values that can appear in an ordinary Scheme1 evalua-

tion. This is the set of (�rst-order) Scheme0 values, extended with closure objects:

Scheme1Val = Scheme0Val [Closure

Closure = f (closure ` vv) j ` 2 Label, vv 2 Scheme1Val� g

With this de�nition, the abstraction and concretization functions are

: LabelSet ! }(Scheme1Val)

(f`g) = f (closure ` vv) j vv 2 Scheme1Val� g

[Scheme0Val

(
S
i Li) =

S
i
(Li)

�: }(Scheme1Val) ! LabelSet

�(fvg) = fg when v 2 Scheme0Val

�(f(closure ` vv)g) = f`g

�(
S
iCi) =

S
i �(Ci)

It is clear that
 and � are monotonic, and not hard to see that they also satisfy

requirements (2) and (3) on abstraction and concretization functions.

15.3 Higher-order binding-time analysis

Using the closure analysis, the �rst-order Scheme0 binding-time analysis from Sec-
tion 5.2 can be extended to a higher-order binding-time analysis for Scheme1. This
gives a monovariant binding-time analysis without partially static structures.

In Section 10.1.4 we discussed three problems with binding-time analysis for
Scheme1. Problem (1) is the handling of lambda applications (e1 e2). To solve

this we use the closure analysis from Section 15.2 and let Pe[[e1]], simply, stand for

the set of lambdas that e1 may evaluate to.
Problem (2) is the detection of lambdas in dynamic contexts. If a lambda �x`.e

may appear in a dynamic context, then code must be generated for the lambda,

so x` must be dynamic and its body e is in a dynamic context. To detect lambdas

in dynamic contexts we introduce a new map � and a new analysis function Bd (in

addition to the maps and � and functions Be and Bv known from the Scheme0

binding-time analysis).

Problem (3) is the binding-time analysis of let. In this presentation we use the

conservative rule suggested in Section 10.1.4. This is unavoidable if the specializer

does not use continuation-based reduction (Section 10.5). If the specializer uses

continuation-based reduction, then we might use instead the more liberal rule in

Section 10.5.5.

320 Program Analysis

15.3.1 Binding-time analysis maps

As in the Scheme0 binding-time analysis, the binding-time domain is BindingTime

= fS;Dg with S < D. The analysis uses three maps , � , and �, whose intended

meanings are

 fi = the binding time of the body of fi
 x` = the binding time of the body e of �x`.e

�xij = the binding time of function variable xij
�x` = the binding time of lambda x`

�x = the binding time of let-variable x

�` = D if �x`.e needs to be lifted, S otherwise

Thus maps a lambda to the binding time of the result of applying it, and �

is a binding-time environment that maps a variable (whether bound by a named

function, a lambda, or a let), to its binding time. The use of these maps is similar

to that of � and � in the closure analysis above. The map � is used to record the
lambdas that may appear in dynamic contexts.

15.3.2 Binding-time analysis functions

The analysis consists of a binding-time analysis function Be and a binding-time
propagation function Bv, akin to the functions Be and Bv in the Scheme0 binding-

time analysis. In addition, there is a context propagation function Bd for detection
of lambdas in dynamic contexts.

An application Be[[e]] �� of the Be function �nds the binding time of expres-

sion e in binding-time environment � . The Be function is de�ned in Figure 15.3.
Equations one, two, three and �ve are explained as for Scheme0. Equation four
(function call) states that the result of a function call is dynamic if the called func-

tion's body is. The binding time can no longer be determined from the arguments,

since a static argument may be a partially static lambda containing free dynamic
variables. Equation six states that a lambda expression is dynamic if it may appear

in a dynamic context, and static otherwise. Equation seven says that the binding

time of a higher-order application (e1 e2) is dynamic if e1 is, or if any lambda

that e1 can evaluate to gives a dynamic result when applied. Equation eight says
that the binding time of a let expression is dynamic if the bound expression e1 or

the body e is.

An application Bv[[e]] ��y �nds the binding time of the values assigned to vari-
able y during evaluation of expression e, where y may be a function variable xij, a

lambda variable x`, or a let variable x. The Bv function is de�ned in Figure 15.4

and is very similar in structure and purpose to function Pv in the closure analysis.

An application Bdd[[e]] ��`t returns the context (S or D) of lambda �x`.. . .

Higher-order binding-time analysis 321

Be[[c]] �� = S

Be[[x]] �� = �x

Be[[if e1 e2 e3]] �� = Be[[e1]] �� t Be[[e2]] �� t Be[[e3]] ��

Be[[(call fi e1 . . . ea)]] �� = fi

Be[[(op e1 . . . ea)]] �� =
Fa
j=1 Be[[ej]] ��

Be[[(�x
`.e)]] �� = �`

Be[[(e1 e2)]] �� = Be[[e1]] �� t (
F
f ` j ` 2 Pe[[e1]] g)

Be[[(let (x e1) e)]] �� = Be[[e1]] �� t Be[[e]] ��

Figure 15.3: The Scheme1 binding-time analysis function Be.

Bv[[c]] ��y = S

Bv[[x]] ��y = S

Bv[[if e1 e2 e3]] ��y = Bv[[e1]] ��y t Bv[[e2]] ��y t Bv[[e3]] ��y

Bv[[(call fi e1 . . . ea)]] ��y = t t Be[[ej]] �� if y is xij
= t otherwise

where t =
Fa
j=1 Bv[[ej]] ��y

Bv[[(op e1 . . . ea)]] ��y =
Fa
j=1 Bv[[ej]] ��y

Bv[[(�x
`.e)]] ��y = Bv[[e]] ��y

Bv[[(e1 e2)]] ��y = t t Be[[e2]] �� if y is x` and ` 2 Pe[[e1]]
= t otherwise
where t = Bv[[e1]] ��y t Bv[[e2]] ��y

Bv[[(let (x e1) e)]] ��y = t t Be[[e1]] �� if y is x
= t otherwise
where t = Bv[[e1]] ��y t Bv[[e2]] ��y

Figure 15.4: The Scheme1 binding-time propagation function Bv.

in e, where t is the context of e. An application Bd[[e]] ��` returns the context
(S or D) of lambda �x`.. . . in e, where e is in a static context, so Bd[[e]] ��` =

Bdd[[e]] ��`S.

Except for the complications due to lifting of lambda abstractions (see Sec-
tion 10.1.4), the binding-time analysis functions Be and Bv for Scheme1 are rather

similar to those for Scheme0. Also, the results of the closure analysis Pe[[e]] are

used only in the higher-order applications (e1 e2). Closure analysis gives a very

simple, essentially �rst-order, extension of analyses to higher-order languages. This

approach works reasonably well for monovariant binding-time analysis, as in Sim-

ilix, but may be very imprecise for other program analyses.

322 Program Analysis

Bd[[c]] ��` = S

Bd[[x]] ��` = S

Bd[[if e1 e2 e3]] ��` = Bd[[e1]] ��` t Bd[[e2]] ��` t Bd[[e3]] ��`

Bd[[(call fi e1 . . . ea)]] ��` =
Fa
j=1 Bdd[[ej]] ��`(�xij)

Bd[[(op e1 . . . ea)]] ��` =
Fa
j=1 Bd[[ej]] ��`

Bd[[(�x
`0.e)]] ��` = Bdd[[e]] ��`(�`

0)

Bd[[(e1 e2)]] ��` = Bdd[[e1]] ��`(Be[[e1]] ��) t Bdd[[e2]] ��`t

where t =
F
f�x`j` 2 Pe[[e1]]g

Bd[[(let (x e1) e)]] ��` = Bdd[[e1]] ��`(�x) t Bd[[e2]] ��`

Bdd[[e]] ��`t = D if t = D and ` 2 Pe[[e]]

= Bd[[e]] ��` otherwise

Figure 15.5: The Scheme1 dynamic context function Bd.

15.3.3 Comparison with the real Similix

The present binding-time lattice is fS;Dg with S as least element. The binding-
time lattice used in Similix is f?; S; Cl;Dg, which distinguishes static �rst-order

values from static closure values [27, Section 5.7]. The new bottom element ?,
which describes non-terminating expressions, is needed because the elements S

and Cl are incomparable.

However, Cl plays the role of a type rather than a binding time in Similix. It
allows the specializer to distinguish static closures from other static data without

using type tags during specialization. Thus the distinction between S and Cl is
not important for pure binding-time reasons and has been left out here. Indeed, in
a binding-time analysis for Similix developed recently, the type and binding-time

aspects have been separated into two di�erent analyses.

15.3.4 Binding-time analysis of a Scheme1 program

Binding-time analysis of a program should produce a safe description (; �; �) which

is as precise as possible. This is obtained as the least solution to a set of equations

specifying the safety requirement.

First, must map a lambda label ` to the binding time Be[[e]] � of the body of
�x`.e.

Secondly, � should map a function variable x to its binding time, that is, the

least upper bound (lub) of the binding times of the values that it can be bound

to. But this is the lub of Bv[[e]] ��x over all function bodies bodyi in the program.

Also, � should map a lambda variable x` to its binding time, that is, the lub of

Projections and partially static data 323

Bv[[bodyi]] ��x
` over all function bodies bodyi. Third, � should map a lambda

label ` to D if the lambda �x`.e is in a dynamic context, that is, the lub of

Bd[[bodyi]] ��` over all function bodies bodyi in the program.

These requirements are embodied in the equations below:

 fi = Be[[bodyi]] �� where bodyi is the body of fi
 ` = Be[[e]] �� where e is the body of �x`.e

�x =
Fn
i=1 Bv[[bodyi]] ��x for every function variable x

�x` = �` t (
Fn
i=1 Bv[[bodyi]] ��x

`) for every lambda variable x`

�x =
Fn
i=1 Bv[[bodyi]] ��x for every let-variable x

�` =
Fn
i=1 Bd[[bodyi]] ��`

Note that if lambda ` is dynamic (�` = D), then so is its variable x` (that is �x`

= D), by virtue of the second � equation.

Any solution to these simultaneous equations is a safe analysis result. The least

solution is the most precise one.

15.4 Projections and partially static data

In the binding-time analyses shown so far, only functional values have been par-
tially static, whereas �rst-order values have been considered either completely
static, or else dynamic. However, as outlined in Section 10.6, it is possible to

allow partially static �rst-order data structures also.

For instance, a value may be a pair whose �rst component is static and whose
second component is dynamic. Another typical case is an association list used to

represent the environment in an interpreter. This is a list of (name, value)-pairs,
each with static left component and dynamic right component.

Below we explain a projection-based approach to binding-time analysis of par-
tially static data structures in strongly typed languages. The method is due to

Launchbury, and this description is based on his thesis and book [167]. Essentially

we shall exemplify Launchbury's approach, and for simplicity our rendering will be

less precise than his.

15.4.1 Static projections

Let X be a domain of values, equipped with an ordering < and a least element

? (meaning `unde�ned' or `not available'). A projection
 on X is a function

 : X ! X such that for x; y 2 X the following three conditions are satis�ed: (1)

x v x, (2)
(
x) =
x, and (3) x v y implies (
x) v (
y).

If we read y v x as `y is a part of x' (where ? is the `empty' or `void' part),

then requirement (1) says that
 maps a value x to a part of x.

324 Program Analysis

Now think of
x as the static part of x. Then requirement (1) says that the

static part of x must indeed be a part of x, requirement (2) says that the static

part of the static part
x of x is precisely the static part of x, and requirement (3)

says that when x is a part of y, then the static part of x is a part of the static part

of y. These are all intuitively reasonable requirements.

In this case, we call
 a static projection: the projection picking out the static

part of a value.

15.4.2 Projections on atomic type domains

First consider a type of atomic data, such as int or bool. If X is the domain of

values of type int, then X = f?; 0; 1;�1; . . .g. The ordering on X is very simple:

y v x if and only if y = ? or y = x, so the static part y of an integer x must either

be void or else x itself. This re
ects the fact that integers are atomic values.
There are in�nitely many projections on X. For instance, for each integer i,

there is a projection which maps i to itself and everything else to ?.

However, for binding-time analysis, only two projections on X are particularly
useful: ABS and ID, where for all x 2 X,

ABS x = ?

ID x = x

The absent projection ABS says that no part of x is static, and the identity projec-
tion ID says that the whole of x is static. It is clear that ABS and ID are precisely
the binding-times D and S from the Scheme0 binding-time analysis (Section 5.2).

It is conventional to de�ne the ordering on projections pointwise, as for other
functions. Thus ABS < ID, which is just the opposite of the ordering S < D on
fS;Dg, and also contrasts with the usual situation in abstract interpretation, where

the smaller abstract values are the more informative. This di�erence is purely a
formality, though. We just have to remember that a larger static projection is

better (more informative) than a smaller one.
Usually, only a few of the projections on a domain, such as ABS and ID above,

are useful for binding-time analysis. These `useful' projections are here called the

admissible static projections. We shall de�ne the set of admissible static projections

as we proceed, by induction on the structure of the types they work on (hence the
requirement of strong typing).

We de�ne: an admissible static projection on an atomic type domain is ABS or
ID. Thus it corresponds to one of the binding times D and S previously used.

15.4.3 Projections on product type domains

The above example shows that projections can describe binding times of atomic

values, but their real utility is with composite data, such as pairs, which can be

Projections and partially static data 325

partially static.

Consider a product type, such as int * bool. If X and Y are the value domains

corresponding to int and bool, then the domain of values of type int * bool is

X � Y = f(x; y)jx 2 X; y 2 Y g

A value v in product domain X�Y has form v = (x; y), and the values are ordered

componentwise, so (?;?) is the least element. The following four projections on

the domain are particularly useful:

v = (x; y)

a(v) = (?;?)

b(v) = (x;?)

c(v) = (?; y)

d(v) = (x; y)

Projection
a says that none of the components is static;
b says that the left

component is static;
c the right component; and
d that both are static. The four

projections could be given the more telling names ABS, LEFT , RIGHT , and ID.
The static projections on X � Y can often be written as products of projections

on X and Y . Namely, whenever
1 is a projection on X and
2 is a projection on

Y , their product
1 �
2 is a projection on X � Y , de�ned by

(
1 �
2)(x; y) = (
1 x;
2 y)

In particular, the four projections listed above are

a = ABS � ABS

b = ID � ABS

c = ABS � ID

d = ID � ID

We de�ne: an admissible static projection on a product type is the product of
admissible projections on the components.

15.4.4 Projections on data type domains

Consider the non-recursive data type

datatype union = Int of int | Bl of bool

where Int and Bl are the constructors or tags of the data type. If X and Y are

the value domains corresponding to types int and bool, then the value domain
corresponding to union is the tagged sum domain

Int X +Bl Y = f?g [fInt(x)jx 2 Xg [fBl(y)jy 2 Y g

326 Program Analysis

A value v of the sum domain either is ? or has one of the forms v = Int(x)

and v = Bl(y). The new value ? is less than all others, two values of the same

form are compared by the second component, and values of di�erent forms are

incomparable. There are �ve particularly useful projections on the sum domain:

v = ? Int(x) Bl(y)

a(v) = ? ? ?

b(v) = ? Int(?) Bl(?)

c(v) = ? Int(x) Bl(?)

d(v) = ? Int(?) Bl(y)

e(v) = ? Int(x) Bl(y)

Projection
a says that no part of the value is static;
b says that the tags are static

but nothing else is;
c says that the tags are static, and if the tag is Int, then the

argument is static too;
d says the tags are static, and if the tag is Bl, then the

argument is static; and
e says that the entire value is static. Thus
a and
e really

are ABS and ID on the sum domain, and a suitable name for
b would be TAG.

Note that there exist other projections on the union type, for instance
0b with

0b(Int(x)) = Int(?) and
0b(Bl(y)) = ?. However, such projections are unlikely
to be useful as binding times, since a specializer cannot easily exploit a static tag
such as Int unless all tags are static.
Some of the projections on Int X +Bl Y can be written as sums of projections

in X and Y . Whenever
1 is a projection on X and
2 is a projection on Y , their

tagged sum Int
1 +Bl
2 is a projection on Int X +Bl Y , de�ned by

(Int
1 +Bl
2)(?) = ?

(Int
1 +Bl
2)(Int(x)) = Int (
1 x)
(Int
1 +Bl
2)(Bl(y)) = Bl (
2 y)

Projection
a above cannot be written as a sum of projections, but the other four

can:

a = ABS

b = Int ABS +Bl ABS

c = Int ID +Bl ABS

d = Int ABS +Bl ID

e = Int ID +Bl ID

We de�ne: an admissible static projection on a data type is ABS, or the sum of

admissible projections on the constructor argument types.

The sum of projections
1; . . . ;
n over constructors c1; . . . ; cn is written
Pn

i=1 ci
i.

15.4.5 Projections on recursive data type domains

Consider the recursive data type

Projections and partially static data 327

datatype intlist = Nil j Cons of (int * intlist)

de�ning the type of lists of integers. It is rather similar to the datatype de�nition

in the preceding section, except for the recursion: the fact that intlist is used to

de�ne itself.

Writing instead datatype intlist = �T. Nil j Cons of (int * T), we can

emphasize the recursion, using the recursion operator �. If X is the value domain

corresponding to Int, then the value domain corresponding to intlist is the

recursively de�ned domain

�V:Nil + Cons (X � V) =
1[
k=0

F k(f?g)

where F (V) = Nil +Cons (X � V). That is, the values of this type are f?, Nil,

Cons(?;?), Cons(1;?), Cons(1; Nil), Cons(1; Cons(2; Nil)), . . . g, namely the

�nite and partial lists of values of type int.

There are three particularly useful projections on the recursively de�ned domain:

v = ? Nil Cons(x; v0)

a(v) = ? ? ?

b(v) = ? Nil Cons(?;
bv
0)

c(v) = ? Nil Cons(x;
cv
0)

Projection
a says that no part of the value is static;
b says that the tags are static
and that
b much of the list tail is static; and
c says that the tags, the list head,

and
c much of the list tail are static. Thus
a is ABS on the recursively de�ned
domain. Projection
b says that the tags are static and that the same holds for the

list tail, so the structure of the entire list must be known. An appropriate name
for
b therefore is STRUCT . Note that when the structure is static, in particular
the length of the list will be known during partial evaluation. Projection
c says

that the tags and the list head are static and that the same holds for the list tail,
so everything is static. Formally,
c = ID, the identity on the recursively de�ned

domain.

When considering projections over recursively de�ned datatypes, we require
them to be uniform projection in the same manner as
b and
c above. They

must treat the recursive component of type intlist the same as the entire list |

we want to consider only binding-time properties which are the same at every level

of recursion in the data structure.

A non-ABS uniform projection over intlist has form �
:Nil + Cons(
0 �
),
de�ned by

�
:Nil + Cons(
0 �
) =
1G
k=0

G(ABS)

where G(
) = Nil + Cons (
0 �
) and where
0 is a projection over type int.

The projections
b and
c above do have this form:

328 Program Analysis

a = ABS

b = �
:Nil + Cons (ABS �
)

c = �
:Nil + Cons (ID �
)

Note that ABS and ID are precisely the admissible static projections on the

component type int.

We de�ne: an admissible static projection on a recursive datatype is ABS, or

the uniform sum of admissible projections on the components. This completes the

inductive de�nition of admissible projections.

15.4.6 An example: Association lists

In Section 10.5.5 we considered a Scheme function mkenv building an association

list: a list of (name, value)-pairs. We also saw how one could use grammars to say

that all the name components were static and that the value components were not.

In a typed language the association list would belong to a recursive datatype

datatype assoc = End | More of ((name * value) * assoc)

where name and value are the types of names and values, assumed to be atomic.
The admissible projections on these component types (name and value) are ABS

and ID, and the admissible projections on name * value are ABS, RIGHT ,
LEFT , and ID shown in Section 15.4.3.
Following the section on recursive datatypes, we use the following �ve uniform

projections on the assoc type:

a = ABS

b = �
:End+More (ABS �
)

c = �
:End+More (LEFT �
)

d = �
:End+More (RIGHT �
)

e = �
:End+More (ID �
)

Projection
a = ABS says that nothing is static;
b says the structure is static;
c
says the structure and all the name (that is, left) components are static;
d says

the structure and all the value (that is, right) components are static; and
e = ID

says everything is static. Suitable names for
b,
c, and
d would be STRUCT ,

STRUCT (RIGHT), and STRUCT (LEFT).

The binding time of mkenv's result, which was described by a grammar in Sec-
tion 10.5.5, can now be described simply as STRUCT (RIGHT).

15.5 Projection-based binding-time analysis

We have introduced projections and have shown how they describe the binding

times of partially static data in a typed language. Now we outline a monovariant

Projection-based binding-time analysis 329

projection-based binding-time analysis for such a language. This analysis should

be compared to the Scheme0 binding-time analysis in Section 5.2.

15.5.1 The example language PEL

The example language is Launchbury's PEL (`partial evaluation language'). A

program consists of datatype de�nitions and simply typed �rst-order function def-

initions. Each function has exactly one argument (which may be a tuple):

datatype T1 = . . .

. . .

datatype Tm = . . .

fun f1 x1 = e1

. . .

and fn xn = en

The syntax of expressions is given in Figure 15.6.

hExpri ::= hVari Variable
j (hExpri, . . . , hExpri) Tuple

j hConstri hExpri Constructor applic.
j hFuncNamei hExpri Function application

j case hExpri of hMatchi. . . hMatchi Case expression
hMatchi ::= hConstri hVari => hExpri Case match

Figure 15.6: Syntax of PEL, a typed �rst-order functional language.

15.5.2 Binding-time analysis maps

Let FuncName be the set of function names, Var the set of variable names, and

Proj the set of admissible projections (on all types). The binding-time analysis

uses two maps and � to compute a third, namely the monovariant division �,

where

 : FunEnv = Fun ! (Proj ! Proj)

� : BTEnv = Var ! Proj
� : Monodivision = Fun ! Proj

When projection
 describes how much of f's argument is static, then (f)
 is a

projection describing how much of f's result is static; �x describes how much of
the value of variable x is static; and (�f) describes how much of f's argument is

static.

330 Program Analysis

Compare this with the Scheme0 binding-time analysis. The role of � is the same:

describing the binding time of variables. The Scheme0 binding-time analysis needs

no map, since the binding time of the result of f may safely be equated to that

of its argument. If the argument is static, then surely the result is static too, and

if the argument is dynamic, then the result may safely be assumed to be dynamic

too.

On the other hand, the Scheme1 binding-time analysis (Section 15.3) does use

a map. This is because in Scheme1 the result of a function may be dynamic

although its arguments are static. The reason is that Scheme1 allows partially
static functions: an argument may be a (partially) static lambda with dynamic

free variables.

15.5.3 Binding-time analysis functions

The projection-based binding-time analysis for PEL consists of two functions Bpe

and Bpv, analogous to Be and Bv in the Scheme0 binding-time analysis. That is,
Bpe[[e]] � is a projection describing how much of e's value is static, and Bpv[[e]] �g

is a projection describing how much of g's argument is static in the applications of
g found in e. Function Bpe is shown in Figure 15.7 and Bpv is shown in Figure 15.8.

In the �gures, [x 7!
] 2 BTEnv maps x to
 and everything else to ABS, and

� [x 7!
] denotes � updated to map x to
.

Bpe[[e]]: FunEnv ! BTEnv ! Proj

Bpe[[x]] � = �x

Bpe[[(e1,. . . ,em)]] � = Bpe[[e1]] � � � � �� Bpe[[em]] �

Bpe[[ci e]] � = c1 ID + � � � + ci (Bpe[[e]] �) + � � � + cm ID

Bpe[[f e]] � = (f) (Bpe[[e]] �)

Bpe[[case e of c1 x1=>e1 j . . . j cn xn=>en]] � =

case Bpe[[e]] � ofPn
i=1 ci
i => u

n
i=1 Bpe[[ei]] (� [xi 7!
i])

j ABS => ABS

Figure 15.7: The PEL binding-time analysis function Bpe.

15.5.4 Safety

When e is an expression with free variable x, let E [[e]][x 7! v] denote the (standard)

result of evaluating e with x bound to the value v. Also, recall that when � is a

division, then (�f) denotes the static part of f's formal parameter.

Projection-based binding-time analysis 331

Bpv[[e]]: FunEnv ! BTEnv ! FuncName ! Proj

Bpv[[x]] �g = ID

Bpv[[(e1,. . . ,em)]] �g = Bpv[[e1]] �g u . . . u Bpv[[em]] �g

Bpv[[ci e]] �g = Bpv[[e]] �g

Bpv[[f e]] �g = Bpe[[e]] � u Bpv[[e]] �g

Bpv[[case e of c1 x1=>e1 j . . . j cn xn=>en]] �g =

case Bpe[[e]] � ofPn
i=1 ci
i => Bpv[[e]] �g u (un

i=1 Bpv[[ei]] (� [xi 7!
i]))

j ABS => Bpv[[e]] �g u (un
i=1 Bpv[[ei]] (� [xi 7! ABS]))

Figure 15.8: The PEL binding-time propagation function Bpv.

We de�ne that � is a safe division if whenever the body of function f contains

a function call (g e),

fun f x = . . . (g e) . . .

it holds for every value v that

(�g) (E [[e]] [x 7! (�f)v]) = (�g) (E [[e]] [x 7! v])

The equation says: to compute the static part (�g) of g's argument e, we need
only the static part (�f)v of the value of f's parameter x.

Launchbury shows that his projection-based analysis is safe, and that safety is
equivalent to uniform congruence (see Section 4.4.1).

15.5.5 Binding-time analysis of a PEL program

The purpose of the analysis is to determine a division � mapping each function to

a static projection for its argument. To be safe, the division � must satisfy the

equations

(f)
 = Bpe[[body]] ([x 7!
]) for each function f x = body

�f = un
i=1 Bpv[[bodyi]] ([xi 7! �fi) for each function f x = body

Any solution to these equations is a safe division. Recall that larger static pro-

jections are the more informative, which implies that the greatest solution is the
most informative. This explains the use of greatest lower bound u above.

332 Program Analysis

15.6 Describing the dynamic data

A static projection describes the static part of a value, but what then is the dynamic

part? During partial evaluation we use the static part, and leave the dynamic in

the residual program. At �rst it seems that projection complements provide the

right mechanism for describing dynamic data.

Let
;
0 : X ! X be projections on X. If
x t
0x = x for all x 2 X, then
0 is

a complement of
 (and vice versa).

When
 is a static projection describing the static part of x, its complement

0 is supposed to describe the dynamic part of x. Between them, they describe

the whole of x as expected. The complement
0 is not uniquely de�ned. To

have as little dynamic data as possible, the complement should be as small as

possible. Requiring the complement to be an admissible projection (as for the

static projections in Section 15.4.1) ensures that there is a least complement.

To illustrate how the least complement describes the dynamic data, consider

again the assoc example (Section 15.4.6), and assume the static projection is

STRUCT (LEFT), which says that the structure is static and all the name com-

ponents are static. The least complement is the projection STRUCT (RIGHT),
which maps a list of (name,value)-pairs to a list containing only the value com-
ponents. This complement says that the structure and the value components are

dynamic. This is a useful result: it means that only the value list, not the name
components, will appear in data structures handled by the residual program.
However, for the datatype union from Section 15.4.4 the result is not so good.

Assume the static projection is TAG, saying that the tags are known. Then the
least complement is ID, saying that the whole value is dynamic, which means that

the tags Int and Bl will still be present in the residual program.
A closer look at the assoc example shows that it too is less than perfect. Namely,

when the static projection is STRUCT (LEFT), the structure and thus the length

of the list is known, but the complement STRUCT (RIGHT) says that the struc-
ture and length are dynamic. This prevents replacing the list by a tuple of its

components in the residual program.

In summary, a static projection and its complement give a useful but not optimal
factorization of a value into its static and dynamic components.

To improve on this, Launchbury describes dynamic data not by the complement,

but rather by the inverse images or �bres of the static projection. This allows an
exact factorization in the form of a dependent sum (over possible static values) of

the domains of dynamic data. Moreover, this gives a characterization of the types

of residual functions and a systematic approach to arity raising, since it allows

variable splitting and tag removal in residual programs [167, Chapter 5].

Summary 333

15.7 Summary

The theme of this chapter was automatic program analysis: how to obtain in-

formation about the execution of a program, without actually executing it. We

presented abstract interpretation: a systematic technique for program analysis,

and reconsidered the Scheme0 binding-time analysis (from Section 5.2) as an ab-

stract interpretation. We presented a closure analysis, which produces information

about function applications in higher-order languages, and used this to extend

the �rst-order Scheme0 binding-time analysis to a higher-order Scheme1 binding-

time analysis. Finally, we presented Launchbury's projection-based binding-time

analysis for partially static data.

15.8 Exercises

Exercise 15.1 Construct a program analysis that detects duplicable and discard-

able variables (the concept of duplicability and discardability can be used to control
unfolding, see Chapter 5). 2

Exercise 15.2 Modify the binding-time analysis presented in Section 5.2 to com-
pute polyvariant divisions. Indicate the necessary changes (if any) to the domains,
the analysis functions Be and Bv, the congruence requirement, the strategy for

�nding the best division, etc. 2

Exercise 15.3 Consider the program

(define (f xs)

(sum (map (lambda (x) (+ x 1)) xs)))

(define (sum ys)

(if (null? ys) 0 (+ (car ys) (sum (cdr ys)))))

(define (map g zs)

(if (null? zs)

'()

(cons (g (car zs)) (map g (cdr zs)))))

1. Do closure analysis and binding-time analysis of the function f, assuming
that xs is static.

2. Now assume the program also contains the function de�nition

(define (h ws) (map (lambda (w) w) ws))

where ws is dynamic. Redo the closure analysis and the binding-time analysis
of f and comment on the results.

2

334 Program Analysis

Exercise 15.4 Apply the closure analysis to the Y combinator. 2

Exercise 15.5 Apply the closure analysis to the lambda calculus interpreter in

Chapter 8. 2

Exercise 15.6 For monovariant binding-time analysis without partially static struc-

tures, the domain of abstract values containing just S and D is the obvious choice.

Explain why there is no `obvious choice' when partially static structures also must

be handled. 2

Chapter 16

Larger Perspectives

The possibility of program specialization, under the name of the s-m-n property, is
one of the cornerstones of computability (or recursive function) theory as developed
by Kleene, Rogers, and others [149,226]. We begin by relating the fundamental

assumptions of recursive function theory to programming language concepts as
studied in this book.

An alternative perspective is to see partial evaluation as an operation on program
texts that realizes the mathematical operation of `freezing' some of a multi-argu-
ment function's arguments to �xed values. This leads to a more general discussion
of symbolic operations, and to the development of a novel type system able to

describe the types of interpreters, compilers, and partial evaluators.

16.1 Relations to recursive function theory

The partial recursive functions have been studied extensively, using a framework
very similar to our own but usually with function arguments, results and program

encodings drawn from the natural numbers N = f0; 1; 2; :::g.

A wide variety of formalizations proposed in the 1930s as candidates to de�ne

the class of all computable partial functions have turned out to be equivalent.

This led to the famous Church-Turing thesis. Let pi be the ith Turing machine
in a standard enumeration p0, p1, p2,. . . of all Turing machines. For each i � 0,
let 'i : N ! N be the partial function that pi computes. The thesis: a partial

function f : N ! N is computable if and only if it equals 'i for some i.

Recursive function theory begins more abstractly: instead of an enumeration p0,

p1, p2,. . . of programs, one only assumes for each i � 0 there is given a partial

function 'i : N ! N which satis�es the natural conditions given below.

The �rst similarity with our framework is immediate, if we identify the ith

Turing machine `program' with its numerical index i. Then the given enumeration

of Turing machines de�nes a programming language with data domain D = N and

335

336 Larger Perspectives

semantic function [[]]
L
: N ! N ! N where [[pi]]Ld = 'i(d). This is extended to

multi-argument functions by de�ning the partial n-ary function �ni : N n ! N to

be

'n
i (x1; . . . ; xn) = 'i(<x1;. . . xn>)

where < ,. . . , > is a one-to-one `tupling function' that assigns a unique natural

number to each n-tuple of natural numbers1. The superscript of 'n
i is dropped

when the number of arguments is clear from context.

Actually, pairing is enough since tuples can be formed by repeated pairing: de�ne

<x1; x2; . . . ; xn> to be <x1;<x2;. . . ,<xn�1; xn>. . . >>.

We now revert to using D to denote the set of Lisp lists. D is certainly closed

under formation of pairs, and any pair in D can be uniquely decomposed into its

constituents, giving the e�ect of pairing functions. Further, programs are elements
of D, so the need to enumerate programs by assigning each one a numerical index

by an often complex G�odel numbering scheme is completely circumvented.

The following de�nition by Rogers captures properties su�cient for a develop-
ment of computability theory independent of any particular model of computation
[226]. Our version di�ers only in the use of D instead of the traditional N .

The programming language ' = [[]] is said to be an acceptable programming
system if it satis�es the following:

1. Completeness property: for any e�ectively computable partial function :

D! D there exists a program p 2 D such that 'p = .

2. Universal function property: there is a universal program up 2 D such that
for any program p 2 D, 'up(p; x) = 'p(x) for all x 2 D.

3. s-m-n function property: for any natural numbers m;n there exists a com-
putable function smn 2 D such that for any program p 2 D and any input

(x1; . . . ; xm; y1; . . . ; yn) 2 D

'm+n
p (x1; . . . ; xm; y1; . . . ; yn) = 'n

smn (p;x1;...;xm)(y1; . . . ; yn)

These properties correspond to quite familiar programming concepts. Complete-

ness says that the language is `Turing powerful' and so is at least as strong as any

other computing formalism. The universal function property amounts to the exis-

tence of a self- or meta-circular interpreter of the language, and the s-m-n function

property simply asserts the possibility of partial evaluation.

To see this, let m = n = 1. Since s11 is computable, by property 1 there must be

a program mix that computes it, so s11 = [[mix]]. The last equation above becomes,

after omitting sub- and superscripts:

1An example 2-tupling or pairing function is <x; y> = 2x � (2 � y + 1). This is obviously
computable, and it is easy to see that x and y may be computably extracted from z = <x; y>.

Types for interpreters, compilers, and partial evaluators 337

'p(x; y) = ''mix(p;x)
(y)

which is just the `mix equation' in another guise.

The standard proof of the s-m-n property for Turing machines in essence uses

a trivial construction that never gains e�ciency, but this su�ces for the purposes
of recursive function theory. E�ciency is very important in applications though,

so partial evaluation may be regarded as the quest for e�cient implementations of

the s-m-n theorem.

Clearly each of the languages we have studied in earlier chapters is an acceptable

programming system.

The traditional usage of natural numbers in recursive function theory is simple,

abstract and elegant, but involves a high computational price: all program struc-

tures and non-numeric data must be encoded by means of G�odel numbers, and

operations must be done on encoded values. Letting programs and data have the

same form allows the theory to be developed without the trick of G�odel numbering.

This is a substantial advantage when doing recursion theoretic constructions such

as needed to prove Kleene's s-m-n and Second Recursion theorems, and leads to
faster constructed programs.

16.2 Types for interpreters, compilers, and partial evalu-

ators

High-level operations in programming languages

Programming languages of higher and higher abstraction levels have evolved since
the �rst years of computing, when programming languages were just symbolic
codes re
ecting the computer's architecture. Due to higher level basic operations,

modern functional languages allow a mathematical style of thinking while pro-
gramming, for example using function composition, partial function application,

set comprehension, and pattern matching. This is possible since these operations
are all in the so-called `constructable' part of mathematics, known to give com-
putable results when applied to computable arguments.

Many operations on mathematical objects can be faithfully realized by corre-
sponding operations on symbolic expressions. Classically, algebraic manipulation

is used to organize arithmetic computations more e�ciently | possible because
algebra abstractly but correctly describes concrete operations on numbers. On dig-

ital computers, symbolic operations are speci�ed by textual objects, i.e. programs

and their subexpressions. The term `symbolic computation' often refers to alge-
braic manipulations when realized on the computer, but can be interpreted more

broadly to describe the entire theme of this book2.

2Much of this material is from [132].

338 Larger Perspectives

Operations on functions and programs

Two useful operations on (mathematical) functions are:

� Composition of f with g as in Chapter 2, written as f ; g or g � f .

� Function specialization of f(x; y), obtaining for example a one-argument func-
tion fjx=a(y) = f(a; y) by `freezing' x to a �xed value a.

Corresponding symbolic operations on programs (assuming for concreteness that

they are written in the �-calculus):

Symbolic composition. The symbolic composition of expressions ef and g could be
expression �x:eg(ef(x)).

Partial evaluation. The specialization of function f to x = a can be realized

symbolically as the program �y:ef(a; y). In the context of recursive function theory
this is Kleene's s-m-n theorem [149,226], and its e�cient realization is of course

the theme of this book.

E�cient operations on programs

The symbolic operations above, while computable, do not lead to particularly ef-
�cient programs. For example, the program above realizing function composition,

�x:eg(ef(x)), is no faster than just running the two programs from which it is
constructed, one after the other. A main theme of this book is the e�cient imple-
mentation of program operations that realize mathematical operations.

Deforestation as in Chapter 17 symbolically realizes function composition, and
partial evaluation is of course a symbolic realization of function specialization.

Data and program types

How can one describe the types of operations on symbolic expressions? A symbolic
composition operator (for example) takes programs pf , pg computing f : A ! B

and g : B ! C (respectively) into a program q computing f ; g : A! C. The same

symbolic composer works, independently of A;B;C. Thus a symbolic operation

should in some sense be polymorphic [185] in the types of its arguments.

A more subtle problem is the `level shift' that occurs when going from a program
text p to the function [[p]]

X
it denotes when regarded as a program in language X.

To describe this symbolically we assume assume given a �xed collection of pro-
gramming languages generically called X, and extend the usual concept of type

according to the following syntax:

t : type ::= t
X
j �rstorder j t� t j t ! t

Type �rstorder describes values in D, for example S-expressions, and function types

and products are as usual. For each language X and type t we have a type t
X
,

Types for interpreters, compilers, and partial evaluators 339

exp : t
X

[[exp]]
X
: t

exp1 : t2 !t1, exp2 : t2
exp1(exp2) : t1

�rstordervalue : �rstorder

exp : t
X

exp : �rstorder

Figure 16.1: Some type inference rules for closed expressions.

meaning the type of all X-programs which denote values of type t. For exam-

ple, atom 1066 has type �rstorder, and Scheme program (quote 1066) has type

firstorder
Scheme

.

The subscript X will often be dropped when the language being discussed is the

standard implementation language, always called L.

Semantics of types. The meaning of type expression t is a set T (t) de�ned as

follows, where [A! B] is the set of all functions from A to B:

T (�rstorder) = D

T (t1!t2) = [T (t1) ! T (t2)]

T (t1 � t2) = f(v1; v2) j v1 2 T (t1), v2 2 T (t2)g
T (t

X
) = f p 2 D j [[p]]

X
2 T (t)g

Polymorphism. We shall also allow polymorphic type expressions to be written

containing type variables �; �;
; Such a polymorphic type will always be un-
derstood as standing for the set of all the monomorphic instances obtained from
it by consistently replacing type variables by variable-free type expressions. To

emphasize this, we will often (informally) quantify type variables universally, e.g.
8�:(� ! �). The result of replacing type variables is called an instance of the

polymorphic type.

Type inference rules. Figure 16.1 contains some rules su�cient to infer the types
involved in program runs, i.e. evaluations of closed expressions. Note that an

object p of type t
X
is a program text and thus in itself a value in D, i.e. t

X
denotes

a subset of D. On the other hand, p's meaning [[p]]
X
may be any value, for example

a higher-order function.

Program equivalence. It is important to be able to say when two programs p, q

2 D are computationally equivalent. In recent years two views have developed,

semantic equivalence and observational equivalence [244,219]3. Both concepts make
sense in our framework, de�ned as follows. Let p, q 2 D. Then p and q are

3A denotational semantics is said to be fully abstract with respect to an operational semantics
if observational and semantic equivalence are the same.

340 Larger Perspectives

semantically equivalent if [[p]] = [[q]]

observationally equivalent if [[p]] � [[q]], where we de�ne f � g to mean that for

all n � 0 and for all d1; . . . ; dn 2 D and d 2 D,

(fd1 . . . dn = d) if and only if (gd1 . . . dn = d)

The �rst de�nition is the easier to formulate, but a case can be made that the

second is more relevant in practice. The reason is that establishing the �rst requires

verifying equality between two elements of a semantic function domain. This can

be a tricky task, and computationally speaking too strict if the semantic function

[[]] is not fully abstract.

The second de�nition is a version of the observational equivalence studied by

Plotkin, Milner, and others, limited to �rst-order applicative contexts. It only

involves assertions that can in principle be veri�ed by running the program on �rst-

order inputs and observing its �rst-order outputs or nontermination behaviour.

16.2.1 E�cient symbolic composition

Symbolic composition can be described as commutativity of the diagram in Figure
16.2, where �; �;
 range over all types. We now list some examples of symbolic

composition, and discuss what is saved computationally.

Vector spaces and matrix multiplication. Suppose M , N are n� n matrices over

(for example) the real numbers R. Each determines a linear transformation, e.g.
[[M]] : Rn ! Rn. If M �N is their matrix product, then

[[M �N]](~w) = [[M]]([[N]](~w))

The composite linear transformation can be computed in either of two ways:

� by applying �rst N and then M to ~w, taking time 2n2; or

� by �rst multiplyingM and N (time n3 by the usual algorithm), and applying

the result to ~w (time n2)

It may be asked: what if anything has been saved? The answer is: nothing, if the
goal is only to transform a single vector, since the second time always exceeds the

�rst. There is, however, a net saving if more than n vectors are to be transformed

since the matrix product need only be computed once.
The moral: an operation so familiar as matrix multiplication can be thought of

as symbolic composition, and composition can save computational time.
Other examples of e�cient symbolic composition include the fact that two �-

nite state transducers can be combined into one with no intermediate symbols;

deforestation, seen in Chapter 17; and composition of derivors or of attribute cou-
pled grammars. The latter two can be used automatically to combine multipass

compiler phases into a single phase.

Types for interpreters, compilers, and partial evaluators 341

(�!
)(�! �)� (� !
)

(�!
)(�! �)� (� !
)

[[-]] � [[-]]

;

[[-]]

;

-

-

??�
�

�
�

�
�

�
�

�
�

�
�

Semantic composition

Syntactic composition
�
�

�
�

Figure 16.2: Symbolic composition.

16.2.2 Symbolic function specialization = partial evaluation

Specializing (also called restricting) a two-argument function f(x; y) : � � � !

to x = a gives the function fjx=a(y) = f(a; y). Function specialization thus has
polymorphic type

fs : (�� � !
)� �! (� !
)

Partial evaluation is the symbolic operation corresponding to function specializa-
tion. Using peval = [[mix]] to denote the partial evaluation function, its correctness

is expressed by commutativity of the diagram in Figure 16.3. Partial evaluation
has polymorphic type

peval : (�� � !
)� �! (� !
)

Rede�nition of partial evaluation
The description of peval can be both simpli�ed and generalized by writing the

functions involved in curried form4. This gives peval a new polymorphic type:

peval : �!(�!
)!�!�!

which is an instance of a more general polymorphic type:

peval : �!�!�!�

Maintaining our emphasis on observable values, we will require � to be a �rst-order

type (i.e. base or a type t
L
).

4The well-known `curry' isomorphism on functions is (�!(�!
)) ' (� � �!
).

342 Larger Perspectives

(� !
)(�� � !
)� �

(� !
)(�� � !
)� �

[[-]] � Identity

fs

[[-]]

peval

-

-

??�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 16.3: Function specialization and partial evaluation.

Remark. The second input to peval is a value of type �, and not representation
of a value. In practice, especially if peval is programmed in a strongly typed
language, one may need to work with representations rather than directly with
values. We ignore this aspect partly because of notational complexity, and partly

because the use of representations leads quickly to problems of size explosion when
dealing with representations of representations of This problem has been

addressed by Launchbury [169], and appears in Chapter 11.

The mix equation revisited. mix 2 D is a partial evaluator if for all p, a 2 D,

[[p]] a � [[[[mix]] p a]]

Thus for any n+1 �rst-order values d, d1,. . . ,dn, we have [[p]] a d1. . . dn = d if and
only if [[[[mix]] p a]] d1. . . dn = d.

16.2.3 Compiler and interpreter types

Similarly, the de�nitions of interpreter and compiler of Section 3.1.1 may be ele-
gantly restated, a little more generally than before:

L

S
= fint j [[s]]

S
� [[int]]

L
sg

and

Types for interpreters, compilers, and partial evaluators 343

S T

L

-
= f comp j [[s]]

S
� [[[[comp]]

L
s]]

T
g

Can an interpreter be typed?
Suppose we have an interpreter up for language L, and written in the same language

| a universal program or self-interpreter. By de�nition up must satisfy [[p]] � [[up]]

p for any L-program p. Consequently as p ranges over all L-programs, [[up]] p can

take on any program-expressible type. A di�cult question arises: is it possible to

de�ne the type of up non-trivially5?

A traditional response to this problem has been to write an interpreter in an

untyped language, e.g. Scheme. This has the disadvantage that it is hard to verify

that the interpreter correctly implements the type system of its input language

(if any). The reason is that there are two classes of possible errors: those caused

by errors in the program being interpreted, and those caused by a badly written

interpreter. Without a type system it is di�cult to distinguish the one class of
interpret-time errors from the other.

Well-typed language processors
Given a source S-program denoting a value of some type t, an S-interpreter should

return a value whose type is t. From the same source program, a compiler should
yield a target language program whose T-denotation is identical to its source pro-
gram's S-denotation. This agrees with daily experience|a compiler is a meaning-

preserving program transformation, insensitive to the type of its input program
(provided only that it is well-typed). Analogous requirements apply to partial

evaluators.

A well-typed interpreter is required to have many types: one for every possi-

ble input program type. Thus to satisfy these de�nitions we must dispense with
type unicity, and allow the type of the interpreting program not to be uniquely

determined by its syntax.

Compilers must satisfy an analogous demand. One example: �x.x has type

t
L
!t

L
for all types t. It is thus a trivial but well-typed compiling function from L

to L. (Henceforth we omit the subscript L.)

A well-typed partial evaluator can be applied to any program p accepting at

least one �rst-order input, together with a value a for p's �rst input. Suppose p

has type �! � where � is �rst-order and a 2 [[�]]. Then [[mix]] p a is a program
pa whose result type is �, the type of [[p]]a. Thus pa has type �.

5This question does not arise at all in classical computability theory since there is only one
data type, the natural numbers, and all programs denote functions on them. On the other hand,
computer scientists are unwilling to code all data as numbers and so demand programs with
varying input, output and data types.

344 Larger Perspectives

1. Interpreter int 2
L

S
is well-typed if it has type6 8� : �

S
! �.

2. Compiler comp 2
S T

L

-
is well-typed if it has type

8� : �
S
! �

T
.

3. A partial evaluator mix is well-typed if it has type

8� : 8� : �! � ! �! �, where � ranges over �rst-order types.

Remark. The de�nition of a well-typed interpreter assumes that all observable

S-types are also L-types. Thus it does not take into account the possibility of

encoding S-values.

16.2.4 Self-application and types

De�nitions involving self-application often (and rightly) cause concern as to their
well-typedness. We show here that natural types for mix-generated compilers and

target programs (and even cogen as well) can be deduced from the few type rules
of Figure 16.1. Let source: �

S
be an S-program denoting a value of type �.

First Futamura projection
We wish to �nd the type of target = [[mix]] int source. The following inference

concludes that the target program has type � = �
L
, i.e. that it is an L program of

the same type as the source program. The inference uses only the rules of Figure
16.1 and instantiation of polymorphic variables.

mix : �!�!�!�

[[mix]] : �!�!�!�

[[mix]] : �
S
!�!�

S
!�

int : �
S
!�

[[mix]] int : �
S
!�

source : �
S

[[mix]] int source : �

Second Futamura projection
The previous inference showed that [[mix]] int has the type of a compiling function,
though it is not a compiler program. We now wish to �nd the type of compiler =

6As a consequence, [[int]]
L
has type 8� : �

S
! �, that is to say type t

S
! t for every type t.

Types for interpreters, compilers, and partial evaluators 345

[[mix]] mix int. It turns out to be notationally simpler to begin with a program p

of more general type �!� than that of int.

mix : �!�!�!�

[[mix]] : �!�!�!�

[[mix]] : �!�!�!�!�!�!�!�
mix : �!�!�!�

[[mix]] mix : �!�!�!�
p : �!�

[[mix]] mix p : �!�

Some interesting substitution instances. Compilers can be generated by the sec-
ond Futamura projection: compiler = [[mix]] mix int. The type of int is �

S
!�,

an instance of the type assigned to p above. By the same substitution we have

compiler : �
S
!�. Moreover, � was chosen arbitrarily, so [[compiler]] : 8� : �

S
!�

as desired.

The type of a compiler generator. Even cogen can be given a type, namely
�!�!�!� by exactly the same technique; but the tree is rather complex. One

substitution instance of cogen's type is the conversion of an interpreter's type into
that of a compiler.

The type of [[cogen]] is thus �!�!�!�, which looks like the type of the identity

function(!) but with some underlining. It is substantially di�erent, however, in that

it describes program generation. Speci�cally

1. [[cogen]] transforms a two-input program p into another program p-gen, such
that for any a2 D

2. p0 = [[p-gen]]a is a program which

3. for any d1,. . . ,dn 2 D computes

[[p0]]d1 . . . dn � [[p]]a d1 . . . dn

One could even describe the function [[cogen]] as an intensional version of currying,
one that works on program texts instead of on functions. To follow this, the type

of [[cogen]] has as a substitution instance

[[cogen]] : �!(�!
)!�!�!

346 Larger Perspectives

In most higher-order languages it requires only a trivial modi�cation of a program

text with type (���!
) to obtain a variant with type (�!(�!
)), and with the

same (or better) computational complexity. So a variant cogen0 could be easily

constructed that would �rst carry out this modi�cation on its program input, and

then run cogen on the result. The function computed by cogen0 would be of type:

[[cogen0]] : �� �!
!�!�!

which is just the type of the curry transformation, plus some underlining.

16.3 Some research problems

Exercise 16.1 Informally verify type correctness of a simple interpreter with integer

and boolean data 2

Exercise 16.2 Figure 16.1 contains no introduction rules for deducing that any
programs at all have types of form t

L
. Problem: for a �xed programming language,

�nd type inference rules appropriate for showing that given programs have given

types. 2

Exercise 16.3 For a familiar language, e.g. the �-calculus, formulate a set of type
inference rules that is su�ciently general to verify type correctness of a range of

compilers, interpreters and partial evaluators. 2

Exercise 16.4 Find a suitable model theory for these types (domains, ideals, etc.).
The type semantics given earlier uses ordinary sets, but for computational purposes

it is desirable that the domains be !-algebraic, and that the values manipulated
by programs should only range over computable elements. 2

Chapter 17

Program Transformation

Program transformation has been studied for many years since John McCarthy's

groundbreaking paper [180]. Burstall and Darlington devised a widely cited ap-

proach [43], and they and many others have developed computer-aided transfor-
mation systems. Their method can achieve asymptotic (superlinear) speedups, in
contrast to the constant speedups we have seen in partial evaluation. A recurring

problem with such systems is incomplete automation, resulting in the need for a
user to read (and evaluate the e�ciency of!) incompletely transformed programs.
Partial evaluation can be seen as an automated instance of Burstall and Dar-

lington's `fold/unfold' methodology. We describe their framework, and express a
simple and automatic online partial evaluator using their methodology. We also

describe Wadler's `treeless transformer'. This is an application of Turchin's `super-
compilation', and is another automated instance of fold/unfold transformations.

17.1 A language with pattern matching

For simplicity and elegance of presentation we use a program form based on pattern

matching, assuming all data are structured. Figure 17.1 shows the syntax, and

Figure 17.2 the semantics of the language. Here a program is a collection of rewrite
rules of form L -> R used to transform tree-structured values.

Additional syntactic restrictions: that function names, constructor names, and
variable names are pairwise disjoint; that every variable in the right side of rule

L -> R must also appear in its left side L; and left linearity: no variable appears
twice in the same left side.

347

348 Program Transformation

Pgm : Program ::= Defn1 . . . Defnn
Defn : Functionrule ::= L -> R

L : Leftside ::= f P1. . . Pn
P : Pattern ::= x j c P1. . . Pn
t,s,R : Term ::= x

j f t1. . . tn Function call

j c t1. . . tn Construct term

f,g,... : Fcnname

x,y,... : Variable

c,... : Constructor

Figure 17.1: Syntax of pattern-matching language.

17.1.1 Semantics

Informally the semantics may be stated as follows: suppose one is given a program
p and a ground term t, i.e. a term containing constructors and function names but
no variables. First pick any function call f t1...tn in t, together with a function

rule f P1...Pn-> R in p whose patterns match t1...tn. The call f t1...tn in
t is then replaced by the right side R of the chosen rule, after substituting the

appropriate terms for f's pattern variables. This may be done as long as any
function calls remain in the term.

To make this idea concrete, we introduce a few concepts. A substitution � is a
mapping from variables to ground terms. Term �t denotes the result of replacing
every variable X in term t by �X. (This is very simple since terms have no local
scope-de�ning operators such as �.) Term �t is called an instance of t. Alterna-
tively one may say that t0 matches t if it is an instance of t.

A context is a term t[] with exactly one occurrence of [] (a `hole') at a place

where another term could legally occur, for instance (f (g [] Nil) Nil). As a
special case, [] by itself is also a context. Further, we let t[t0] denote the result
of replacing the occurrence of [] in t[] by t0. So writing u = t[t0] points out a

particular occurrence of t0 in u, and t[t00] is the result of replacing that t0 in u by

t00.

Figure 17.2 de�nes assertion t) t0, meaning that t can be rewritten to t0 as

described informally above.

Determinacy. Term t00 in t = t0[t00] is called a redex if it can be rewritten by

the `function call' semantic rule 3. Further, t is said to be in normal form if it
contains no redex. Reduction t) . . . can be non-deterministic in two respects:

1. term t may contain several redexes; or

2. a redex may be reducible by more than one program rewrite rule.

A language with pattern matching 349

As for (1), the con
uence property of the lambda calculus and many functional

languages ensures that no two terminating computation sequences yield di�erent

results. Nonetheless, some deterministic strategy must still be taken in a computer

implementation. A common approach is to select an `attention point' by restricting

applicability of Rule 1 to certain contexts, i.e. to rede�ne the notion of context to

select at most one decomposition of a term t into form t0[t00] where t00 is a redex.

As for (2), many implementations apply program rules in the sequence they are

written until a match at the attention point is found. Another approach is only to

accept a program as well-formed if the left sides of no two rules L->R and L0->R0

have a common instance �L = �0L0.

We adopt the latter, to avoid tricky discussions concerning the order in which

rules can be applied when only partial data is available.

1. Context t0) t00

t[t0]) t[t00]

2. Transitivity t) t0, t0) t00

t) t00

3. Function call
L -> R 2 Pgm

�L) �R

Figure 17.2: Rewriting semantics.

Call-by-value semantics. This can be de�ned by restricting the context rule to

(Value context) t0) t00

t[t0]in) t[t00]in

Here t[t0]in denotes a leftmost innermost context, meaning that t0 is a call con-

taining no subcall, and that there is no complete call to its left. Thus calls within
constructor subterms are evaluated, and function arguments are fully evaluated
before substitutions are performed. Clearly any term containing a redex (i.e. not

in normal form) also contains a redex in a value context.

Lazy evaluation. This is a variant of call-by-name much used in functional lan-

guages. Its characteristic is that neither user-de�ned functions nor data construc-
tors evaluate their arguments unless needed, e.g. to perform a match or to print

the program's �nal output. It is de�ned by restricting the context rule as follows.

(Lazy context) t0) t00

t[t0]lazy) t[t00]lazy

where t[t0]lazy denotes a term with subterm t0 which is not contained in any

constructor, and that there is no call beginning to its left. Note that a term may

contain one or more redexes and still have no redexes in a lazy context (as in the

next example).

350 Program Transformation

Consequently, evaluation is outside-in as much as possible. Constructor com-

ponents of c E1. . . En are not evaluated at all, and function arguments are not

evaluated before substitutions are performed1. Further reductions will occur only

if there is a demand (e.g. by the printer) for more output. Following is an exam-

ple. The calls in the last line will not be not further evaluated unless externally

demanded.

append [append (Cons A Nil) (Cons B Nil)]lazy (Cons C Nil))

[append (Cons A (append Nil (Cons B Nil))]lazy (Cons C Nil))

Cons A (append (append Nil (Cons B Nil)) (Cons C Nil))

The following example illustrates that lazy semantics assigns meaningful results to

programs which would loop using call-by-value. Here, ones is intuitively an in�nite

list of 1's, and take u v returns the �rst n elements of v, where n is the length of

list u.

f n -> take n ones

ones -> Cons 1 ones

take Nil ys -> Nil

take (Cons x xs) (Cons y ys) -> Cons y (take xs ys)

In the following example, lazy evaluation stops after the �rst line. For illustra-
tion we assume that the printer demands the entire output, repeatedly forcing

evaluation of constructor argments:

f (Cons A (Cons B Nil))) Cons 1 (take (Cons B Nil) ones)

) Cons 1 (Cons 1 (take Nil ones))

) Cons 1 (Cons 1 Nil).

17.2 Fold/unfold transformations

Transformations as used by Burstall and Darlington [43] are shown in Figure 17.3,

which shows how one adds new rules to a given set Pgm. Transformation `de�ne'

allows a new function rule to be introduced, or it may extend an existing de�nition
and so cause the program to be de�ned on more inputs than before. `Instantiate'

allows an existing rule to be specialized. `Unfold', like the `function call' semantic

rule, replaces a call of a function de�nition by its right side, after performing the
needed substitutions. `Fold' does the converse.

Restrictions. If used too freely, the transformations of Figure 17.3 could lead to
inconsistent or badly formed programs. The `De�ne' restriction ensures that newly

de�ned function values cannot con
ict with old ones. Instantiation will always lead

1In practice implementations use `call-by-need' to avoid repeated subcomputations. This does
not change program meanings, just their e�ciency.

Fold/unfold transformations 351

to overlap, but not in con
ict with existing de�nitions. A transformed program

may thus contain many overlapping rules so a �nal pass may be performed to

remove unneeded or unreachable rules to obtain a complete and minimal set.

Finally, we restrict the `Instantiate' and `Fold' transformations to be applied

only in case the conclusion is a rule as de�ned in Figure 17.1. In particular one

disallows introduction in a left side of repeated variables or nested function calls,

or introduction in a right side of variables not found on the left.

(De�ne)
Pgm contains no rule L -> R where L overlaps L0

L0 -> R0 2 Pgm

(Instantiate)
L->R 2 Pgm

�L -> �R 2 Pgm

(Unfold)
L->R 2 Pgm and L0 -> R0[�L] 2 Pgm

L0 -> R0[�R] 2 Pgm

(Fold)
L->R 2 Pgm and L0 -> R0[�R] 2 Pgm

L0 -> R0[�L] 2 Pgm

Figure 17.3: Program transformations.

17.2.1 Examples

Figure 17.3 adds rules in a completely free way, so before discussing ways to auto-
mate the transformations we give some examples. A common usage pattern:

1. devise a new de�nition, and

2. instantiate it so as to enable

3. unfolding at various places, followed by

4. folding the resulting rules into earlier ones.

Devising new de�nitions requires the most creativity, whence it is sometimes called
a `eureka' step. The cycle may be repeated, followed by a �nal phase to remove

redundant or unreachable rules to obtain a complete and non-overlapping set.

Double append
The following program with pattern matching de�nes h:

1. h us vs ws -> append (append us vs) ws

2. append Nil ys -> ys

3. append (Cons x xs) ys -> Cons x (append xs ys)

352 Program Transformation

and traverses its �rst argument us twice. To transform it into a more e�cient one

pass program, we instantiate h's de�nition twice, followed by some unfolding and

�nally folding, as follows.

4. h Nil vs ws -> append (append Nil vs) ws (1,2)

5. h (Cons u us) vs ws -> append(append (Cons u us)vs) ws (1,3)

Unfolding the innermost append calls gives

6. h Nil vs ws -> append vs ws (4,2)

7. h (Cons u us) vs ws -> append (Cons u(append us vs)) ws (5,3)

and unfolding the outermost call in this gives

8. h (Cons u us) vs ws -> Cons u (append(append us vs) ws) (7,3)

Finally, folding with the original de�nition of h gives

9. h (Cons u us) vs ws -> Cons u (h us vs ws) (8,1)

Selecting a minimal complete set gives the desired program, which traverses the
�rst argument of h only once:

6. h Nil vs ws -> append vs ws

9. h (Cons u us) vs ws -> Cons u (h us vs ws)

2. append Nil ys -> ys

3. append (Cons x xs) ys -> Cons x (append xs ys)

First thoughts towards automation

The example above follows the cycle `de�ne, instantiate, unfold, fold,' and some
characteristics suggest how the process may be more fully automated. Suppose
we think of the transformation process as beginning with a program and a `rule

of interest' Linitial -> Rinitial, and that we separate the original program from the

newly constructed rules.

In the example we began with rule of interest and added new rules which were

then processed in turn. It is natural to describe this by a set Pending, of rules that
have been selected for attention, together with a set Out, of �nished rules that

have been added to the transformed program. In the example just seen, initially

Pending = fh us vs ws -> append(append us vs)wsg and Out = f g .

Transformation processes the rules in Pending. Some lead to new de�nitions

that are added to Pending for further processing, and others are added to Out
at once, to appear in the �nal transformed program. We have not yet described

the core problem: how new de�nitions are devised. Two special transformation

algorithms, one for partial evaluation and one for deforestation, and each with its
own de�nition strategy, will be seen in later sections. To our knowledge, however,

no one has successfully automated the full fold/unfold paradigm.

Fold/unfold transformations 353

Fibonacci
Applying the same approach to an exponential time program to compute the nth

Fibonacci number yields a more dramatic speedup. For simplicity n is represented

using constructors as 0+1+1...+1, writing the binary constructor + in in�x nota-

tion. This example follows the cycle `de�ne, instantiate, unfold, fold,' but a bit

more inventively.

1. fib x -> f x

2. f 0 -> 0

3. f 0+1 -> 0+1

4. f n+1+1 -> f(n+1) + f(n)

First introduce a new rule 5 by a so-called `eureka!' step, instantiate it twice,

and then unfold some f calls. Here (,) is a pair constructor, written in `out�x'

notation.

5. g x -> (f(x+1),f(x))

6. g 0 -> (f(0+1),f(0)) -> (0+1,0)

7. g x+1 -> (f(x+1+1),f(x+1))

8. g x+1 -> (f(x+1) + f(x), f(x+1))

Call f(x+1) occurs twice, suggesting a new de�nition to eliminate the common
subexpression:

9. h (u,v) -> (u + v, u)

Folding with de�nitions of h and then the original g gives:

10. g x+1 -> h(f(x+1), f(x))

11. g x+1 -> h(g(x))

The last transformation is to express fib in terms of g:

12. snd (u, v) -> v

13. snd (f(x+1),f(x)) -> f(x)

14. snd (g(x)) -> f(x)

15. fib x -> snd(g(x))

Selecting a minimal complete set gives the transformed program:

15. fib x -> snd(g(x))

6. g 0 -> (0+1,0)

11. g x+1 -> h(g(x))

9. h (u,v) -> (u + v, u)

A major improvement has occurred since the transformed program's running time

has been reduced from exponential to linear, assuming either call-by-value or call-

by-need evaluation.

354 Program Transformation

17.2.2 Correctness

For general optimization the rule of interest is just a call to the program's main

function, as in the examples above. For partial evaluation we are interested in

function specialization, so the rule of interest is a call giving values to some static
inputs, e.g. f5;7 y z -> f 5 7 y z.

Correctness means that any call to Linitial in the original program gives exactly

the same results in the transformed program. For some purposes this may be

relaxed so a transformed program is acceptable if it terminates on at least all the
inputs on which the original program terminates, and gives the same answers on

them. It is less acceptable that a transformed program terminates less often than

the original, and quite unacceptable if it gives di�erent answers.

A full discussion of correctness is beyond the scope of this book; see Kott and

Courcelle for formal treatments [154,63]. Intuitively, unfolding is correct since it

follows execution as described in the rewriting rules, and de�nition and instanti-

ation cannot go wrong. On the other hand, folding in e�ect `runs the program

backwards' which can in some cases cause a loss of termination. To see this, con-
sider rule f x -> x+1. Here term x+1 can be folded into the same rule's left side,

yielding f x -> f x. This is a trivially complete and non-overlapping program,
but never terminates.

Unfolding can increase termination under call-by-value, an example being

f x -> g x (h x)

g u v -> u+1

h y -> h y

where unfolding the g call yields f x -> x+1. This terminates for all x, though

the original program never terminates under call-by-value.

17.2.3 Steering program transformation

The rules of Figure 17.3 are highly non-deterministic, particularly with regard to

making new de�nitions and instantiation. We saw that one must take care to avoid

changing program termination properties. On the other hand substantial payo�
can be realized, for instance improving the Fibonacci program from exponential to

linear time.

In this section we describe a general goal-directed transformation method. It

will �rst be specialized to yield a simple online partial evaluator, and will later

give a way to remove intermediate data structures, e.g. as in `double append' of
Section 17.2.1.

An approach to deterministic transformation
The method uses two sets of rules in addition to the original program: Out, the
rules that so far have been added to the transformed program; and Pending, a

Partial evaluation by fold/unfold 355

set of rules that have not yet been processed. Initially Pending has only one goal

rule, representing a call to the program on unspeci�ed input. Each rule in Pending

is of form L -> R where term R has as an instance some term obtained while

symbolically executing the original program. (This is essentially the same as to

Turchin's basic con�gurations [263].) L de�nes a new function, to appear in the

transformed program.

Rules in Pending are processed one at a time, sometimes causing new rules to be

added to Out or Pending. The algorithm stops when no unprocessed rules remain.

An informal algorithm invariant: the rule set Out [Pending is consistent with

the meaning of the original program Pgm. When �nished, Out is the transformed

program.

We implicitly assume variable name standardization so Pending and Out will

never contain rules L -> R and L0 -> R0 di�ering only in the names of left side

variables. The general method is as follows:

1. Simulate the program's computation, using variables for unknown values.

Allow for all possible program inputs.

2. At each stage look for a potential redex. If variables are insu�cient to continue
the simulation, instantiate them in all possibly relevant ways.

3. Unfold a redex whenever possible. Rationale: computation done at transfor-

mation time need not be done in the transformed program.

4. Reasons not to unfold:

� The chosen semantics would not unfold.

� The current call con�guration has been seen before. Unfolding too
liberally could cause looping at transformation time. An appropriate

response is to specialize or memoize, i.e. to generate code to call the
con�guration seen before (a fold step)2.

� There is insu�cient information to decide which rule would be applied

to the redex. Response: make a new function de�nition f P1. . . Pn ->

B; fold the potential redex into a call to f; and instantiate the new rule

as in 2 to account for all possible rule matches.

17.3 Partial evaluation by fold/unfold

Following is a sketch of a simple online partial evaluator for the current language

with a control strategy used earlier: unfold as long as no dynamic tests occur, and

specialize calls to con�gurations seen before. We assume a call-by-value semantics,

as in the partial evaluators of earlier chapters.

2This could be called a d�ej�a vu tactic.

356 Program Transformation

A partial evaluation algorithm
The algorithm is shown in Figure 17.4. It begins with an initial goal rule L0 ->

R0, where R0 would typically be a function name applied to some constants and

some ground terms. Attention points are leftmost innermost calls, and the rules

added to Pending have form ... -> f P1. . . Pn, where in the right side basic

con�gurations, each Pi is either a variable or a ground term.

In a call f t1. . . tn, if argument ti contains no variables, then it will be reduced

until its value t0i is known (it could be or contain a call). This paves the way for

de�nition to create a specialized version of f, in case some ti's evaluate to ground

terms. Instantiation is done to ensure completeness | that all possibly applicable

rules will also be processed.

Main program
Out := fg;

Pending := fLinitial -> Tinitialg;

while 9 an unmarked rule L0->R0 2 Pending do

Mark it;

forall L -> R 2 Program and �, �0 such that �L = �0R0 do

Add �0L0 -> T [[�R]] to Out;

De�nition of T
T [[x]] = x

T [[c t1. . . tn]] = c T [[t1]]. . .T [[tn]]

T [[f t1. . . tn]] =

let u1 = T [[t1]],. . . , un = T [[tn]] in
let (�0, L0->R0) = Make new(f u1. . . un) in
if L0 -> R0 2 Pending then �0L0 else

if 9 rule L -> R 2 Pgm and � with �L = f u1. . . un then T [[�R]] else
Add L0 -> R0 to Pending;

result is �0L0

De�nition of Make new
Make new(f t1. . . tn) = (�, g xi1. . . xim->f s1. . . sn) where

si = if ti is ground then ti else xi
�(f s1. . . sn) = f t1. . . tn
g is a new function name, depending only on f and the ground si's
fi1; . . . img = fi j ti is non� groundg

Figure 17.4: Partial evaluation by fold/unfold.

Explanation. In partial evaluation terms, we assume the initial call con�guration

contains some arguments which are ground terms and some variables. Variables

Partial evaluation by fold/unfold 357

that have not been rewritten as a result of unfolding remain unchanged, and argu-

ments of constructors are transformed.

Function T [[]] unfolds a call whenever the statically available information is

su�cient to see which rule is to be applied. When dynamic information is needed,

no left side will match at partial evaluation time, and so a new rule is created. The

e�ect of `Make new' is to create a new function, specialized to all those arguments of

the current call which are ground terms. Thus new functions are created whenever

a dynamic test is encountered, a strategy we have seen before.

In fold/unfold terms, Pending contains only de�nitions L0 -> R0 of new func-

tions, either the initial one or ones devised in T [[]] when no left side matched the

current con�guration.

In the main program, the condition that L -> R 2 Program and �L = �0R0
implies that rule �0L0 -> �R can be obtained by instantiation and unfolding.

The rules added to Out are obtained from �0L0 -> �R by applying function

T [[]], which either unfolds further, or folds with a function whose de�nition has

been placed in Pending.

Thus each step follows one of Burstall and Darlington's rules. It can be seen
that Out will be a complete and non-overlapping set, provided the original program

was.

Example

We specialize Ackermann's function ack m n to static values of m, writing 1,2,...
instead of 0+1,0+1+1,.... The initial rule is a2 x -> ack 2 x, and the original

program is

ack 0 n -> n+1

ack m+1 0 -> ack m 1

ack m+1 n+1 -> ack m (ack m+1 n)

Applying the algorithm above constructs in turn

Pending = f a2 x -> ack 2 xg Initial

Out = f a2 0 -> 3g Match x to 0, evaluate completely
Pending = f a1 y -> ack 1 y,. . . g Match x to n+1, add fcn. a1
Out = f a2 n+1 -> a1 (a2 n), . . . g Call the new function

Out = f a1 0 -> 2, . . . g Match x to 0, evaluate completely
Out = f a1 n+1 -> (a1 n)+1, . . . g By a1 n+1 -> ack 0 (ack 1 n)

Final remarks. Thus at least one partial evaluation algorithm can be expressed

using fold/unfold transformations. We hope the reader can see that the more com-
plex o�ine algorithms of earlier chapters can also be seen as instances of Burstall

and Darlington's approach.

This scheme is deterministic, and folding is done in a su�ciently disciplined way

to avoid losing termination. On the other hand, it su�ers from three weaknesses

358 Program Transformation

seen in earlier partial evaluators:

� It can increase termination, since some unfolding is done when the call-by-

value semantics would not do it.

� Partial evaluation can produce in�nitely many residual rules, or can loop

non-productively while computing on ground values.

� Subcomputations can be repeated.

17.4 Supercompilation and deforestation

Supercompilation (in the sense of `supervised compilation') is a program transfor-

mation technique developed in the USSR in the 1970s by Valentin Turchin. It is

of interest in this book for several reasons:

� Historical: it appears that Turchin and, independently, Beckman et. al. were
the �rst to realize that the third Futamura projection would yield a generator
of program generators (Futamura described only the �rst two) [263,92,19].

� Philosophical: supercompilation is a concrete manifestation of the very gen-

eral concept of `metasystem transition' [266,98].

� Power: supercompilation can both do partial evaluation and remove inter-
mediate data structures as seen in the `double append' example of Section

17.2.1.

On the other hand, supercompilation in its full generality has not yet been self-

applied without hand annotations, partly due to problems concerning termination.

Turchin's work has only become appreciated in the West in recent years [267].

His earlier papers were in Russian, and expressed in terms of a functional language
Refal not familiar to western readers. Many important ideas and insights go back

to the 1970's, but that work has some loose ends, e.g. semantics is not always

preserved exactly.

Wadler's `deforestation' [274], with a more solid semantic foundation, can be

regarded as a limited application of supercompilation to a lazy language. In this

section we shall present what in our conception is the essence of Turchin and

Wadler's ideas, also using a lazy functional language.

An example
The earlier program using in�nite lists with initial rule f n -> take n ones has

a call which cannot immediately be unfolded. Instantiating n and unfolding ones

yields rules that can be rewritten:

Supercompilation and deforestation 359

f Nil -> take Nil ones

f (Cons x xs) -> take (Cons x xs) (Cons 1 ones)

Unfolding the take calls yields:

f Nil -> Nil

f (Cons x xs) -> Cons 1 (take xs ones)

containing the con�guration take xs ones, which has already been seen. This

can be folded back into f to yield a simpler and faster program:

f Nil -> Nil

f (Cons x xs) -> Cons 1 (f xs)

Informal explanation. Computations are simulated to allow for all constructors

in f n for any n. To �nd the outermost constructor, it is necessary to �nd the

outermost constructor of take n ones. The �rst take rule requires instantiating n

to Nil, and the second requires instantiating n to Cons x xs plus a single unfolding

of ones. Further unfolding of ones is not done, since this would not faithfully model
lazy evaluation.

A syntactic restriction

The program transformation algorithm is easier to express if we assume there are
only two function de�nition forms, either h-functions or g-functions. The `generic'

letter f will stand for either form.

h x1. . . xn -> Rh One rule, no pattern matching

g P1 x1. . . xn -> Rg1 A rule set, with pattern matching

... on the �rst argument only
g Pm x1. . . xn -> Rgm

where each Pi = ci y1. . . ypi is a simple pattern only one constructor deep. Au-
gustsson describes how an arbitrary program may be put into this form without

changing its semantics, even when overlapping rules are resolved by top-to-bottom

rule application [15].

Note that append has g-form. The program using in�nite lists needs a little

rewriting to �t the two forms (where f and ones are functions of form h):

f n -> take n ones

ones -> Cons 1 ones

take Nil ys -> Nil

take (Cons x xs) ys -> u ys xs

u (Cons y ys) xs -> Cons y (take xs ys)

360 Program Transformation

Lazy contexts. These, as de�ned before, can only take on the following forms. For

use in transformation we add a clause for terms with free variables.

1. g1(g2. . . (gn [h t1. . . tm] tn1 . . . t
n
mn

). . .)t11. . . t
1
m1

(n � 0), or

2. g1(g2. . . [gn (c t1. . . tm) tn1 . . . t
n
mn

]. . .)t11. . . t
1
m1

(n � 1), or

3. g1(g2. . . [gn v tn1 . . . t
n
mn
]). . .)t11. . . t

1
m1

(n � 0)

Explanations. A call h t1. . . tn can be rewritten at once, while a call g t0t1. . . tn
forces evaluation of t0 to bring its outermost constructor `to the surface' before

rewriting can be done. The `attention point' can thus appear inside a nest of g

calls, as seen in all three cases.

For program transformation, cases 1 and 2 can be unfolded at once. Case 3

cannot, but one may de�ne a new function with 3 as its right side, and instantiate

v to allow the gn call to be rewritten.

Short form. We write e[f t0t1. . . tn] to indicate all three context forms, so e[]

= g1(g2. . . []. . .). . .). . .).

17.4.1 A transformation algorithm

By the following strategy intermediate data structures produced in one part of a

program and consumed in another part may be eliminated entirely. This pattern
was seen in `double append' of Section 17.2.1, which illustrates combining phases of
a multipass algorithm. In other words, the discipline is good for symbolic function
composition.
The process is automatic and preserves lazy semantics, but in its �rst version

will not terminate on all programs. After illustrating how (and why) it works, we

discuss ways to guarantee termination.

Deforestation
Rule sets Pending and Out are used in Figure 17.5 as in the partial evaluation

algorithm. We now argue that the algorithm preserves the lazy semantics, with

the following assumptions:

1. Global: that any part of the program's output on any input can possibly be

demanded; and

2. Local: that evaluation proceeds only until a value's outermost constructor is

known.

The global assumptions ensure the transformed program will cover all possible run-

time situations. The program is processed systematically, generating new rules to

Supercompilation and deforestation 361

Main program
Out := fg;

Pending := fLinitial -> Tinitialg;

while 9 an unmarked rule g0 v x1. . . xm -> e[g v t1. . . tn] 2 Pending do

Mark it;

forall g P v1. . . vn -> R 2 Program do

Add g0 P x1. . . xm -> T [[(e[g P t1. . . tn])]] to Out;

De�nition of T
T [[x]] = x

T [[c t1. . . tn]] = c T [[t1]]. . .T [[tn]]

T [[e[h t1. . . tn]]] =

let rule L -> R 2 Pgm with �L = h t1. . . tn in T [[e[�R]]]

T [[e[g(c t01. . . t
0
m)t1. . . tn]]] =

let rule L -> R 2 Pgm with �L = e[g(c t01. . . t
0
m)t1. . . tn] in T [[e[�R]]]

T [[e[g v t1. . . tn]]] =

let L0->R0 = make new(e[g v t1. . . tn]) in
if L0->R0 2 Pending then L0 else

Add L0->R0 to Pending;

result is L0

De�nition of Make new
Make new(e[g v t1. . . tn]) = g0 v x1. . . xm -> e[g v t1. . . tn] where

g0 is a new function name, depending only on e[g v t1. . . tn], and

fx1,. . . ,xmg = FreeVariables(e[g v t1 . . .tn])nfvg

Figure 17.5: Deforestation by fold/unfold.

cover computations on all possible inputs. By 1, one instantiates variable v in

a lazy context e[g v . . .] for all possibly matching g rules. Components of a

construction c t1. . . tn so obtained may be processed further since the values of
t1. . . tn can possibly be demanded.

Assumption 2 implies that unfolding and instantiation may only be done if forced
by lazy evaluation. By 1, a call not inside another call may be unfolded, even if
inside a constructor term. For an outermost g call (g (h. . .). . .), the value of h

will be needed in order to determine which g rule can be applied. Thus the h call
may be unfolded at transformation time.

Summing up, when outermost call unfolding is impossible the algorithm instan-
tiates or unfolds calls in a �rst g argument as needed to be able to continue. The

result is a program with call con�gurations e[g v t1. . . tn], perhaps nested. New

362 Program Transformation

function de�nitions are made for each for appropriate instantiations of v, and the

program is folded to refer to the new functions. Termination requires the number

of these to be �nite | which often occurs in practice.

17.4.2 Achieving �niteness

The algorithm above often improves programs signi�cantly. Careful attention has

been paid to preserving the language's lazy semantics, but there are problems: it

loops in�nitely on some source programs, and can slow programs down because of

duplicated computations. We brie
y discuss the problems and some approaches to

solving them.

Finiteness by syntactic restrictions
Wadler's `deforestation' algorithm resembles the one above, and has been proven

both to terminate and not decrease execution speed when applied to treeless pro-
grams [274,86], de�ned by some restrictive syntactic conditions. Non-degradation

of run time further requires rules to be right linear, meaning that no pattern vari-
able is used more than once on a rule's right side.
Wadler's transformation rules, and the algorithm above as well, succeed on some

non-treeless programs, and improve some non-linear programs. A result recently
proven (not yet published) is that the algorithm above terminates and yields the
same result whenever applied to a treeless program.

In the literature, relaxation of the syntactic conditions has been done in two
ways. Wadler de�nes `blazing', a way to recognize parts of a program dealing

with non-treelike data, for instance integers, and only requires that the non-blazed
parts be treeless and linear. Chin has a `variables only' requirement somewhat more
liberal than Wadler's conditions [45]. Further, he devises a type system to extend

`blazing' to arbitrary programs, so that every term in a program is annotated as
treeless or non-treeless. The result is that any program may be handled; but the

annotation scheme is rather conservative, leaving untransformed many terms that

the algorithm above can optimize.

Finiteness by generalization
The algorithm of Figure 17.5 `can go wrong' by adding rules g0 v x1. . . xm -> t

to Pending or Out for in�nitely many t. In general the right side has the form

t = g1(. . . (gn[g v t1. . . tn]. . .). . .)

so the problem is unboundedly deep call nesting. A concrete example to illustrate

the problem is the `
atten' program (a is `append' from before):

Supercompilation and deforestation 363

g (Leaf x) -> Cons x Nil

g (Branch t1 t2) -> a (g t1) (g t2)

a Nil ys -> ys

a (Cons x xs) -> Cons x (a xs ys)

which returns a list of all leaves of a binary tree. The algorithm of Figure 17.5

begins by constructing

Pending = fg0 x -> g xg

Out = fg0(Leaf x) -> Cons x Nilg

Pending = fg1 t1 t2 -> a (g t1) (g t2),. . . g

Out = fg0(Branch t1 t2) -> g1 t1 t2,. . . g

Out = fg1(Leaf x)t2 -> Cons x (g0 t2),. . . g

Out = fg1(Branch t1 t2)t3 -> g2 t1 t2 t3,. . . g

Pending = fg2 t1 t2 t3 -> a(a(g t1)(g t2)) (g t3),. . . g

Function g0 has one argument, g1 has two, g2 has three, etc., so transformation

fails to terminate.

A natural solution to this is to generalize, i.e. to add fewer and more general new
de�nitions. One way is to extend syntax to include `Term ::= gen(t)'. (gen is not
a constructor, and should be ignored in the standard semantics.) In the example

above, t1 would not be instantiated to Leaf x and Branch t1 t2.
To illustrate suppose we annotate the program as

g (Leaf x) -> Cons x Nil

g (Branch t1 t2) -> a gen(g t1) (g t2)

a Nil ys -> ys

a (Cons x xs) -> Cons x (a xs ys)

Applying Figure 17.5 with generalization proceeds as follows:

Pending = fg0 x -> g xg

Out = fg0(Leaf x) -> Cons x Nilg

Pending = fg1 t1 t2 -> a gen(g t1) (g t2),. . . g

Out = fg0(Branch t1 t2) -> g1 (g0 t1) t2,. . . g
Out = fg1 Nil t2 -> g0 t2,. . . g
Out = fg1(Cons x xs) t2 -> Cons x (g1 xs t2),. . . g

The transformed program is thus:

g0 (Leaf x) -> Cons x Nil

g0 (Branch t1 t2) -> g1 (g0 t1) t2
g1 Nil t2 -> g0 t2
g1 (Cons x xs) t2 -> Cons x (g1 xs t2)

364 Program Transformation

How can one generalize?
There is no de�nitive answer to this question as yet. Turchin has a sophisticated

online approach which is rather complex, partly due to the language Refal being

transformed [269].

Current research involves an o�ine approach, preprocessing a program to �nd

out where to place generalization annotations. The idea is to construct a grammar

able to generate all con�gurations that could ever arise in transformation by the

algorithm above. The grammar will be �nite even if transformation would continue

in�nitely. Once the grammar is constructed it may be analysed to recognize the

sources of in�nity, to see where to place gen() annotations, and how to interpret

them so transformation will create only �nitely many con�gurations.

17.5 Exercises

Exercise 17.1 Use the algorithm described in Figure 17.4 to partially evaluate the

power-program with respect to n = 5 and unknown x. The initial rule is power5
x -> power 5 x, and the original program is

1. power 0 x -> 1

2. power n+1 x -> x * power n x
2

Exercise 17.2 Use the same algorithm to partially evaluate the following program.
This time with respect to xs = [a,b], zs = [c,d], and unknown ys. The initial

rule is aaabcd ys -> append (append [a,b] ys) [c,d], and the original pro-
gram is

1. append Nil ys -> ys

2. append (Cons x xs) ys -> Cons x (append xs ys)
2

Exercise 17.3 Apply Burstall and Darlington's method (as in Section 17.2.1) to

improve the following program:

1. f xs -> rev (db xs) Nil

2. db Nil -> Nil

3. db (Cons y ys) -> Cons (2*y) (db ys)

4. rev Nil ws -> ws

5. rev (Cons v vs) ws -> rev vs (Cons v ws)
2

Exercise 17.4 Apply the deforestation algorithm described in Figure 17.5 to the
following expressions: flip (flip tree) and (sum (map square (upto 1 n))),

with the following de�nitions:

Exercises 365

1. flip (Leaf a) -> (Leaf a)

2. flip (Branch x y) -> Branch (flip x) (flip y)

3. upto m n -> if (m > n) then Nil else (Cons m (upto m+1 n))

4. sum Nil -> 0

5. sum (Cons x xs) -> x + (sum xs)

6. square Nil -> Nil

7. square (Cons x xs) -> Cons (x*x) (square xs)

8. map f Nil -> Nil

9. map f (Cons x xs) -> Cons (f x) (map f xs)
2

Chapter 18

Guide to the Literature

This chapter gives an overview of the current literature on partial evaluation. We

�rst sketch the history from 1952 to 1984. Then we give an overview of the liter-
ature grouped by subject language (imperative, functional, logical), by the tech-

niques used in partial evaluation (including binding-time analysis), and by appli-
cations. Finally, we mention some related topics.

The bibliography �le is available for anonymous ftp from ftp.diku.dk as �le

pub/diku/dists/jones-book/partial-eval.bib.Z. See page 123 of this book.

18.1 A brief historical overview

18.1.1 The classics

Kleene's s-m-n theorem (1952) essentially asserts the feasibility of partial evaluation

[149]. Kleene proved that for any given program (Turing machine) for a general
m+ n-argument function f , and given values a1; . . . ; am of the �rst m arguments,

there exists a program (a Turing machine) for the specialized function g = fa1;...;am
which satis�es g(b1; . . . ; bn) = f(a1; . . . ; am; b1; . . . ; bn) for all b1; . . . ; bn. Moreover,
there is a program (a Turing machine) which e�ectively constructs the specialized

program from the general one and the inputs. Thus Kleene's constructive proof

provides the design for a partial evaluator.

However, his design did not, and was not intended to, provide any improvement

of the specialized program. Such improvement, by symbolic reductions or similar,
has been the goal in all subsequent work in partial evaluation.

Lombardi (Italy and the USA, 1964) is probably the �rst use to the term `par-

tial evaluation', when discussing the use of Lisp for incremental computation, or

computation with incomplete information [175,176]. Landin (UK) also mentions

partial evaluation, but does not de�ne it, in a discussion on evaluation of lambda

calculus expressions [161, p. 318].

366

A brief historical overview 367

Futamura (Japan, 1971) is the �rst researcher to consider a partial evaluator as a

program as well as a transformer, and thus to consider the application of the partial

evaluator to itself [92]. Futamura's paper gives the equations for compilation and

compiler generation (single self-application) using partial evaluation, but not that

for compiler generator generation (double self-application). The three equations

were called Futamura projections by Andrei Ershov [80]. Futamura's early ideas

were not implemented.

Around 1975, Beckman, Haraldsson, Oskarsson, and Sandewall (Sweden) de-

veloped a partial evaluator called Redfun for a substantial subset of Lisp, and

described the possibilities for compilation, compiler generation, and compiler gen-

erator generation by single and double self-application [19]. This is probably the

�rst published description of the possibility of compiler generator generation by

double self-application.

Turchin and his group in Moscow (USSR) also discovered the idea of partial eval-

uation in the early 1970s, while working with symbolic computation in the func-

tional language Refal. A description of self-application and double self-application

is found in [263] (in Russian). The history of that work is brie
y summarized in

English in [264].
Andrei Ershov in Novosibirsk (USSR) worked with imperative languages also,

and used the term mixed computation to mean roughly the same as partial evalu-

ation [76,77]. Ershov gave two comprehensive surveys of the activities in the �eld
of partial evaluation and mixed computation, including overviews of the literature
up until that time [78,79]. Futamura gave another overview of the literature [93].

18.1.2 Renewed interest

However, until 1984 neither single nor double self-application had been carried out

in practice. At that time Jones, Sestoft, and S�ndergaard (Denmark) constructed
the �rst self-applicable partial evaluator. It was written in a language of �rst-

order recursion equations (or �rst-order statically scoped pure Lisp), and was used
to generate toy compilers and compiler generators [135,136,245].
At the same time the interest in partial evaluation in logic programming and

other areas was increasing. This was the background for the �rst Workshop on

Partial Evaluation and Mixed Computation (PEMC) held in October 1987 in Den-
mark. The workshop was organized by Dines Bj�rner (Denmark), Andrei P. Ershov

(USSR), and Neil D. Jones (Denmark), and was the �rst to bring together a sub-
stantial number of partial evaluation researchers from all over the world.

The papers from the workshop have been published in a book [24] and in a special

issue of the journal New Generation Computing [84]. Both contain Andrei Ershov's
personal account of the history of mixed computation and partial evaluation [82,

83], and a bibliography of all known papers on partial evaluation [248,249]. The
bibliography includes a substantial number of papers published in Russian and

largely unknown to western researchers.

368 Guide to the Literature

An ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Pro-

gram Manipulation (PEPM) was held June 1991 in the USA and was organized by

Charles Consel (USA) and Olivier Danvy (USA) [1]. An ACM Sigplan Workshop

on the same theme was held June 1992 in the USA [2], and another ACM Sigplan

PEPM Symposium was held June 1993 in Denmark.

18.2 Partial evaluation literature by subject language

18.2.1 Imperative languages

Ershov and his group worked primarily on imperative languages [76,78,79]. In 1985

Bulyonkov and Ershov constructed their �rst self-applicable partial evaluator (for

a
ow chart language), reported in [42].

Gomard and Jones reported a self-applicable partial evaluator for a
ow chart

language in [103].

Jacobsen constructed a partial evaluator for a small subset of C [126]. Meyer
studies procedure specialization in an imperative language [182,183]. Nirkhe and

Pugh report a similar partial evaluator, but it cannot produce recursive residual
procedures [205]. Andersen's partial evaluator for a C subset handles procedures
as well as pointers and arrays, and is self-applicable [7,8,9]. See Chapter 11 of this

book.

18.2.2 Functional languages

Beckman, Haraldsson, Oskarsson, and Sandewall constructed the �rst major partial

evaluator, called Redfun for a substantial subset of Lisp [19,112,113].

Later partial evaluators for Lisp and Scheme have been reported by Kahn [143],

Schooler [243], and Guzowski [108]. Weise et al. constructed a fully automatic

online partial evaluator for a subset of Scheme [281].

Jones, Sestoft, and S�ndergaard constructed the �rst self-applicable partial eval-

uator for �rst-order recursion equations. It was called mix, following Ershov's ter-
minology. The �rst version required user supplied annotations [135,245], but a

later version was fully automatic [136,246]. Sergei Romanenko improved on that

work in various respects [227]. Chapter 5 of this book presents a self-applicable

partial evaluator for a �rst-order functional language.

Consel constructed a self-applicable partial evaluator called Schism for a user-

extensible �rst-order Scheme subset, handling partially static structures and poly-

variant binding times [51,52,60]. Later he extended it to handle higher-order func-

tions also [53].

Bondorf and Danvy constructed a self-applicable partial evaluator Similix for a
user-extensible �rst-order subset of Scheme [32]. Subsequently Bondorf constructed

Partial evaluation literature by subject language 369

a series of extensions, which handle a higher-order subset of Scheme, including

restricted side e�ects [28,27,29]. See Chapter 10 of this book.

Recently, Sergei Romanenko has developed a Similix-like system, called Semilux,
for use on personal computers.

Gomard and Jones described a self-applicable partial evaluator for an applied

untyped call-by-value lambda calculus [102,106]. See Chapter 8 of this book.

Mogensen developed a self-applicable partial evaluator for the pure untyped

lambda calculus, not restricted to call-by-value reduction [191]. Bondorf, Danvy,

Gomard, Jones, and Mogensen gave a joint discussion on self-applicable partial

evaluation of higher-order languages [133].

18.2.3 Refal, supercompilation, and term-rewriting systems

Turchin's Refal language is designed for symbolic manipulation of programs, and

a Refal program is a kind of term-rewriting system. By the operation of driving,
a Refal program with partial inputs can be unfolded to a graph of con�gurations
(terms) and transitions, where the transitions are marked with assignments (sub-
stitutions) and contractions (matchings). The purpose of supercompilation is to
control the driving process so that the resulting graph is �nite. This is done by

selecting a �nite set of basic con�gurations, and generalizing all con�gurations to
match on the basic con�gurations [264,267,268,269,270]. Thus supercompilation
and generalization in Refal are strongly related to partial evaluation, and super-

compilation has been used to specialize and transform algorithms by e.g. Gl�uck
and Turchin [100]. See Section 17.4 of this book.

Bondorf constructed a partial evaluator for term-rewriting systems using meth-
ods more similar to those previously used for functional languages [26].

18.2.4 Prolog and logic programming languages

Komorowski pioneered partial evaluation of Prolog [151,152]. Venken showed that
a partial evaluator can be developed from a Prolog meta-interpreter [272,273],

This approach has been taken in much of the subsequent work on partial eval-

uation of various subsets of Prolog. This includes Takeuchi and Furukawa [260],

Fujita [88], Fuller [89,90,91], Gallagher [95,96], Kursawe [157], Chan and Wallace

[44], Lakhotia and Sterling [159], Bugliesi, Rossi, Lamma, and Mello [38,39], Bossi,

Cocco, and Dulli [35], and Benkerimi and Lloyd [20].

Sahlin constructed a practical (but not self-applicable) partial evaluator for full

Prolog [235,236].

A report by Lam and Kusalik compares �ve partial evaluators for pure Prolog,

constructed by Fujita, Kursawe, Lakhotia, Levi and Sardu, and Takeuchi [160].

Komorowski suggested the term partial deduction for partial evaluation of pure

logic programming languages [153]. Lloyd and Shepherdson gave a formal de�nition

370 Guide to the Literature

for the declarative as well as procedural semantics [174]. Sahlin suggests the term

partial evaluation for the processing of Prolog programs, which may have non-

logical features and side e�ects, and gives a de�nition [236].

Bondorf, Frauendorf, and Richter described the �rst automatic self-applicable

partial evaluator, including a binding-time analysis, for a Prolog subset [33]. Bon-

dorf and Mogensen subsequently constructed a stronger self-applicable partial eval-

uator for a more substantial subset of Prolog, but without an automatic binding-

time analysis [34]. See Chapter 9 of this book.

18.2.5 Object oriented languages

Steensgaard and Marquard constructed a partial evaluator for an object oriented

imperative language [178].

Khoo and Sundaresh used Consel's partial evaluator Schism to compile inheri-

tance in an object oriented language, thus eliminating all method lookups [148].

18.3 Principles and techniques

18.3.1 Polyvariant specialization

A specialization technique in which several program points in the specialized pro-
gram may correspond to one program point in the original program is called poly-
variant specialization. The term is due to Itkin [125] according to Bulyonkov
[40,41]. Polyvariant specialization is discussed also by Ershov [81] and Jones [130].
It is usually implemented sequentially by computing the set of specialized program

points reachable from the initial one. Consel and Danvy show how this can be
done on a parallel architecture with shared memory [55].

18.3.2 Binding-time analysis

The �rst binding-time analysis in partial evaluation (for a �rst-order language

with atomic binding-time values) was developed in 1984 by Jones, Sestoft, and

S�ndergaard [135] and is described by Sestoft in [245]. Section 5.2 of this book
presents essentially that binding-time analysis.

Mogensen devised methods for binding-time analysis of partially static data

structures [187] and for polymorphically typed higher-order languages [188,189].

Launchbury studied binding-time analysis (for a �rst-order language) for data
structures using domain projections, which gives a very natural formalism for par-

tially static structures [164,165,166,167,168]. See Section 15.4 of this book.

Hunt and Sands formalize binding-time analysis for partially static data struc-

Principles and techniques 371

tures and higher-order functions, using partial equivalence relations (`pers') instead

of projections [122].

Bondorf used a closure analysis to construct a binding-time analysis for (higher-

order dynamically typed) Scheme in the Similix partial evaluator [28]. Consel

describes a binding-time analysis for partially static structures in (higher-order

dynamically typed pure) Scheme, which does not require a separate closure analysis

[53]. Rytz and Gengler describe a polyvariant binding-time analysis for Similix

[233].

Type systems for binding-time analysis of variants of the lambda calculus are

described by Nielson and Nielson [199,202] and by Schmidt [242]. Gomard gives

a simpler type system and an inference algorithm for binding-time analysis of

the lambda calculus [102,104]. Andersen and Mossin investigated the (somewhat

complicated) extension of Gomard's type system needed for Bondorf's Similix [12].

Henglein gave an e�cient inference algorithm for Gomard's type system [114].

18.3.3 Automatic arity raising

Arity raising is the replacement of one variable by several variables, each holding a
certain component of the original variable. Handmade annotations for arity raising

were suggested in [245] where this process was called variable splitting.
Automatic arity raising was achieved in Mogensen's work on partially static

structures [187].

Sergei Romanenko coined the term `arity raising' [227], and described analyses
and a transformation for arity raising in a �rst-order functional language in [228].

Steensgaard and Marquard extended Romanenko's method to a higher-order func-
tional language using a closure analysis [253].

18.3.4 Call unfolding

Most papers on automatic partial evaluators discuss how to control unfolding of
calls during partial evaluation. Sestoft gave a discussion of call unfolding in a

functional setting [246], and Bondorf and Danvy improved on this [32, Section 5].

Fuller [89], Lakhotia [158], and Bruynooghe, de Schreye and Martens [37] discuss
how to avoid in�nite unfolding during partial evaluation of logic programs.

18.3.5 Binding-time improvements

Various techniques for binding-time improvement are discussed by Nielson and

Nielson [203,204], Holst and Hughes [119], Holst and Gomard [118], and J�rgensen
[139].

Consel and Danvy show that transforming the subject program to continuation

372 Guide to the Literature

passing style (before partial evaluation) gives a better separation between static

and dynamic data (during partial evaluation) [56]. Subsequent work by Bondorf on

the Similix partial evaluator achieves some of the same e�ect without a preceding

transformation of the subject program [31]. See Section 10.5 of this book.

18.3.6 E�ectiveness of partial evaluation

Nielson suggests ranking partial evaluators by the `reducedness' of their residual

programs [199]. Hansen gives another framework for reasoning about e�ciency

improvements [111], and Malmkj�r shows how to predict the form of residual

programs [177]. Andersen and Gomard give a simple way to estimate the speed-up

achieved by partial evaluation [11]. See Chapter 6 of this book.

18.3.7 Online and o�ine partial evaluation

Most of the self-applicable partial evaluators mentioned above use o�ine tech-
niques, but Gl�uck shows that it is possible to construct a self-applicable partial

evaluator which does not need binding-time analysis [98, Section 3].

In contrast, online techniques have been favoured when e�ciency, simplicity, or
maximal use of static data were considered more important than self-application.

Several reports and papers by Ruf and Weise [230,231,232], and Ruf's thesis

[229], discuss the merits of online and o�ine partial evaluation. See also Chapter 7
of this book.

18.4 Applications

18.4.1 Parsers and pattern matching

Dybkj�r used the partial evaluator `mix' to specialize Earley's general context-free

parser [72] to given context-free grammars [70].

Ershov and Ostrovski use partial evaluation to specialize (semi-automatically) a
general parser to speci�c parsers for real programming languages [85,207]. Pagan

studies the e�ect of (hand-) specializing parsers in [212].

Emanuelson specializes a general pattern-matching algorithm to an e�cient one

for a given pattern [73,74]. Danvy [66] and J�rgensen [138] independently obtained

very e�cient matching of alternative patterns, by partial evaluation of a general

pattern matcher.

Consel and Danvy derive the e�cient Knuth{Morris{Pratt pattern matching
algorithm from a naive one, using partial evaluation [54]. Smith extends that work

to matching in other domains [252].

Applications 373

18.4.2 Transformation and derivation of programs

The staging transformations of J�rring and Scherlis, which divide computations

into stages based on the availability of data, are closely related to partial evaluation

[141]. Similar techniques are used in the derivation of compilers and abstract

machines (or, run time systems) by Kr�oger [155], Kursawe [156], and Hannan

[109]. Another example of such staging is Consel and Danvy's derivation of a

compile time type checker from a type checking interpreter [57].

Partial evaluation is used for transformation of logic programs by Gallagher [94],

Codish and Shapiro [50], and Sakama and Itoh [237].

18.4.3 Compilation and compiler generation

Many of the works on partial evaluation already mentioned emphasize its use in

compilation and compiler generation.

Kahn and Carlsson actually applied this technique to compile Prolog into Lisp by
partial evaluation of a Prolog interpreter written in Lisp [145]. Whereas Kahn and

Carlsson generate target programs only, Consel and Khoo take one more step and
generate a stand-alone compiler from Prolog to Scheme [59]. Similarly, J�rgensen
generates a compiler from a Miranda subset to Scheme [139,140].

A special case occurs when a (meta-)interpreter is used to extend a programming
language with a so-called embedded language. Partial evaluation of the meta-

interpreter achieves compilation of the embedded language, and removes the meta-
interpretation overhead. This has been used in the Lisp world by Emanuelson and
Haraldsson [75,113].

In the logic programming community, the use of meta-interpreters is very popu-
lar, and partial evaluation of many kinds of meta-interpreters has been investigated
by Safra and Shapiro [234], Sterling and Beer [254,255], Takeuchi and Furukawa

[259,260], Levi and Sardu [172], Coscia [62], Venken [272], Huntbach [123], Owen

[208], and Gl�uck [99].

18.4.4 Incremental computation

Lombardi's work on incremental computation [175,176] from the 1960s has been

taken up recently by Sundaresh and Hudak [257,258].

18.4.5 Arti�cial intelligence

The relations between partial evaluation and arti�cial intelligence are discussed by

Kahn [144] and Van Harmelen and Bundy [271].

374 Guide to the Literature

18.4.6 Program specialization in scienti�c computation

Early examples of work in automatic program specialization are provided by Gus-

tavson et al. [107] and Goad [101]. These authors do not associate themselves with
the partial evaluation paradigm, however.

Specializing general scienti�c computation algorithms by partial evaluation may

give substantial savings. This has been used by Mogensen for ray tracing [186], by

Berlin and Weise for calculation of planet trajectories [21,22], and by Jacobsen for

neural network training [126].

18.5 Other topics related to partial evaluation

18.5.1 Program transformation

Program transformation by hand, or symbolic evaluation using rewrite systems, has

been used in program optimization or improvement for many years. In contrast to
these methods, partial evaluation involves an automatic strategy for applying the
transformations.

McCarthy is probably the �rst to give program transformation rules, in the form
of provable equivalences between program phrases [180].

Boyer and Moore work the other way round: they prove program equivalences

essentially by using valid transformations or `partial evaluations' (such as unfolding
and simpli�cation) [36].

Burstall and Darlington classify transformation rules as de�nition, instantiation,
unfolding, folding, abstraction, and laws (such as associativity) [43].

Bird's hand derivation of the Knuth{Morris{Pratt pattern matching algorithm
from a naive one is a precursor to the derivations using partial evaluation [23].

Using another set of transformation rules, Scherlis improve programs by special-
ization and by elimination of unneeded computations [238,239]. An as example,

Scherlis systematically develops Earley's parsing algorithm from the `derives' rela-

tion of context-free grammars.

Wand [276] and Wegbreit [280] discuss methods to make program transformation

more automatic and systematic.

18.5.2 Compilation by program transformation

The �rst hand derivation of a compiler from an interpreter is probably that given

by F. Lockwood Morris [193]. Such derivations have been studied also by Pagan

[209,210,213], Wand [277,278], and Mazaher and Berry [179]. Pagan suggested

using compiler derivation as a teaching aid in compiler courses [211].

Other topics related to partial evaluation 375

18.5.3 Parser generator systems

There are several systems for automatic generation of parsers from grammars.

What happens in these generators could be seen as the specialization of a general

parser to a given concrete grammar, but this is usually not the way their authors

view them. Johnson's Yacc (for `Yet Another Compiler-Compiler') is probably the

most well-known LALR(1) parser generator [3,128] and [4, Section 4.9].

Parser generator systems leave it to the user to design and code the `semantic

actions' which are executed at certain points during parsing. The semantic ac-

tions take care of symbol table manipulation, code generation, and similar compile

time tasks. Compiler generation from attribute grammars presents a step towards

automatic generation of semantic actions. Kastens and his group constructed a

system for generating specialized parsers and attribute evaluators from attribute

grammars [146].

18.5.4 Compiler generation systems

Further integration of parsing and semantic actions leads to true compiler gener-
ators, where the user speci�es the semantics of a programming language in some

de�nition language. The compiler generator constructs a parser and semantic ac-
tions from the speci�cation without assistance from the user. This comes closer
to the kind of compiler generation done with partial evaluation. A collection of

papers on semantics-directed compiler generation is found in [129].
Several systems for compiler generation from various kinds of language speci�-

cations have been proposed. Mosses constructed a system called `Semantics Imple-
mentation System' or `SIS', for turning denotational semantics speci�cations into
compilers [194,195]. A program is compiled by building the symbolic composition

of the language de�nition (in the style of denotational semantics) and the source
program, then reducing this to a lambda term, which is the target program. The

compiled programs are, however, very slow.
Gaudel's system Perluette takes care mainly of the syntactic aspects of compila-

tion [97]. Jones and Schmidt's compiler generator is (like Mosses's SIS) based on

automatic symbolic composition. A de�nition (in terms of the lambda calculus) of

a speci�c language is composed with a general compilation of the lambda calculus
into machine code; the result is then simpli�ed by symbolic reductions [134,240].

Christiansen and Jones constructed a system called CERES which further de-
veloped the idea of symbolic composition of language de�nitions [46]. Tofte noted

that compiler generation could be seen as a special case of compilation, and made

CERES self-generating [262].
Paulson's system can compile and execute languages de�ned by a so-called se-

mantic grammar, an attribute grammar which speci�es the static and dynamic
aspects of the language [214,215]. More recent work includes that of Pleban [218]

and Lee [170,171].

Appendix A

The Self-Applicable Scheme0

Specializer

This appendix describes a simple self-applicable specializer for Scheme0, the �rst-

order pure subset of Scheme presented in Chapter 5. The �les can be obtained

electronically as explained in Section 5.6.

The Scheme0 specializer has been tested with Chez Scheme, xscheme, Yale T
Scheme, and TI PC Scheme 2.0. Moreover, it is supposed to work for any Scheme

system (such as MIT Scheme and elk) which roughly conforms with the IEEE
Scheme standard, and in addition has an eval function. For Yale T Scheme and

MIT Scheme you may have to rede�ne the function s0eval in �le "scheme0.ss".

A.1 Using the Scheme0 specializer

A.1.1 To load the specializer,

� start your Scheme system

� type (load "scheme0.ss")

� type (create)

A.1.2 Main functions in the Scheme0 specializer

We use the following notation:

program is a plain Scheme0 program

annprogram is an annotated (two-level) Scheme0 program

sdpattern is a tuple of argument binding times S and D

division is a (possibly polyvariant) division

staticinputs is a tuple of static argument values.

376

Using the Scheme0 specializer 377

The e�ect and use of the main functions de�ned by loading scheme0.ss and doing

(create) is described below. The precise syntax of plain and annotated Scheme0

programs is described in Section A.2.

(monodiv program sdpattern) Does a monovariant binding time analysis of the

subject program program, given the binding times sdpattern of its goal

function. Returns the resulting (monovariant) division.

(polydiv program sdpattern) Similar to monodiv, but does a polyvariant bind-

ing time analysis. Returns the resulting (polyvariant) division.

(annotate program division) Annotates the Scheme0 program according to

the (monovariant or polyvariant) division. May make several copies of

each function for a polyvariant division. Returns the annotated (two-level)

Scheme0 program or reports that division is not congruent.

(monotate program sdpattern) Does monovariant binding time analysis and an-

notation of program given the binding times sdpattern of its goal function.
Returns the annotated (two-level) Scheme0 program.

(polytate program sdpattern) Similar to monotate but performs polyvariant

binding time analysis and annotation. Returns the annotated (two-level)
Scheme0 program.

(spec annprogram staticinputs) Specializes the annotated annprogram with

respect to the list staticinputs of static argument values. Returns the
residual Scheme0 program.

(monope program sdpattern staticinputs) Does a monovariant binding time

analysis and annotation of program, then specializes it with respect to the
given static inputs staticinputs. Returns the residual Scheme0 program.

(polype program sdpattern staticinputs) Similar to monope but does poly-

variant binding time analysis and annotation. Returns the residual Scheme0

program.

(make f program) Converts program from Scheme0 to Scheme and de�nes a
Scheme function f to invoke the converted program. Returns the name f.

Side e�ect: De�nes function f. This is for executing (residual) Scheme0

programs.

(scheme program) Converts program from Scheme0 to Scheme, possibly renam-

ing functions. Returns a list of Scheme function de�nitions. This is for
studying residual Scheme0 programs.

onlineunfolding Global Boolean variable. If #t, then annotate gives on the
y

call unfolding as shown in Section 5.5; if #f, then only calls without dynamic
arguments will be unfolded. The default value is #t.

378 The Self-Applicable Scheme0 Specializer

A.1.3 Hints, and requirements on the input

The goal function must never be called (by another function in the program) with

other binding time patterns than that speci�ed at binding time analysis. This

can be relaxed for monovariant analysis: it must not be called with binding times

which are not smaller than the given one. For polyvariant analysis: it must not be

called with binding times which are smaller than the given one.

Note that all residual programs take exactly one input: the list of dynamic

argument values.

A.2 Data structures in the Scheme0 specializer

A.2.1 Representation of Scheme0 programs

The syntax closely follows that given in Figure 5.1, so a program must have at

least one de�nition, and function de�nitions may have zero or more arguments.

program ::= (def ... def)

def ::= (define (funcname var ... var) exp)

exp ::= ()

| number

| var

| (quote S-expression)

| (if exp exp exp)

| (call funcname exp ... exp)

| (op basefunction exp ... exp)

Variables are Scheme symbols, that is, non-numeric atoms di�erent from (). Func-

tion names may also be simple Scheme symbols, but in residual programs, a func-
tion name is a pair (annotatedname . staticvalues) of an annotated function

name and the values of the function's static arguments for this variant. Annotated

function names are those found in the annotated subject programs given to the
specializer (see below).

A.2.2 Representation of two-level Scheme0 programs

The syntax of annotated (or, two-level) Scheme0 programs is very close to that
given in Figure 5.5.

Data structures in the Scheme0 specializer 379

program ::= (def ... def)

def ::= (define (funcname (var ... var) (var ... var)) exp)

exp ::= ()

| number

| var

| (quote S-expression)

| (ifs exp exp exp)

| (ifd exp exp exp)

| (calls funcname (exp ... exp) (exp ... exp))

| (calld funcname (exp ... exp) (exp ... exp))

| (ops basefunction exp ... exp)

| (opd basefunction exp ... exp)

| (lift exp)

A variable is a Scheme symbol as above, but a function name must have the form:

((f . dynvaroccs) . sdpattern)

Here f is a function name from the Scheme0 subject program; dynvaroccs is a list
of the number of occurrences of f's dynamic parameters; and sdpattern describes
the binding times of the parameters of (this variant of) f. Thus f is a Scheme

symbol; dynvaroccs is a list of 0, 1, or 2, where 2 represents any number greater
than 1; and sdpattern is a list of S and D.
The sdpattern component is used to distinguish the binding time variants of f

(and is present also in monovariantly annotated programs). The dynvaroccs com-
ponent is used to avoid unfolding static calls to f when this may cause duplication

of a non-trivial (non-variable) dynamic argument expression. This component
could in principle be computed during specialization (in which case it need not be
part of the function name), but this would incur unnecessary recomputation, so

we choose to compute it when annotating the program.

A.2.3 Representation of divisions

A division is a list ((fun1 . sdpatterns1) . . . (funn . . . sdpatternsn)), as-
sociating with each function a list of sdpatterns. Each list of sdpatterns is sorted

in non-decreasing order (the ordering is partial).

This format caters for polyvariant as well as monovariant divisions: in a mono-
variant division the list sdpatterns has just one element. The list may also be

empty if the corresponding function is never called.

380 The Self-Applicable Scheme0 Specializer

A.3 The components of the Scheme0 specializer

The �le scheme0.ss de�nes syntactic shorthands and the main functions used for

experiments.

; File "scheme0.ss" -- Global definitions and syntactic shorthands
; Partial evaluator for first order functional language

; Syntactic sugar for Scheme0. Format: list of triples (abbrev var term),
; meaning: expand (abbrev e) into term with e substituted for var .

(define sugars '(
; Select from e == (tag e1 e2 e3 ...)

(tag e (hd e))
(e1 e (hd (tl e)))
(e2 e (hd (tl (tl e))))
(e3 e (hd (tl (tl (tl e)))))

; Select from e == (call funname sfunargs dfunargs)
(funname e (hd (tl e)))
(sfunargs e (hd (tl (tl e))))
(dfunargs e (hd (tl (tl (tl e)))))

; Select from e == (call/op funname . callargs)
(callargs e (tl (tl e)))

; Select from def == (define (name svar dvar) body)
(name def (hd (hd (tl def))))
(svar def (hd (tl (hd (tl def)))))
(dvar def (hd (tl (tl (hd (tl def))))))
(body def (hd (tl (tl def))))

; Select from def == (define (name . var) body)
(var def (tl (hd (tl def))))

; Introducing Scheme0 base operation shorthands
(hd e (op car e))
(tl e (op cdr e))

))

; Desugar: From sugared Scheme0 to plain Scheme0, using the "sugars" table

(define (desugar program)
(define (desug e sub)

(if (or (null? e) (number? e)) e
(if (atom? e) (let ((var-term (assoc e sub)))

(if var-term (cdr var-term) e))
(if (equal? (car e) 'quote) e
(if (equal? (car e) 'if)

(cons 'if (desug* (cdr e) sub))
(if (member (car e) '(call op))

(cons (car e) (cons (funname e) (desug* (callargs e) sub)))
(if (equal? (car e) '::)

(list 'op 'cons (desug (e1 e) sub) (desug (e2 e) sub))
(if (equal? (car e) 'list) ; (list e1 e2 ... en)

(foldr (lambda (e lst) (list 'op 'cons (desug e sub) lst))
() (cdr e))

(if (equal? (car e) 'slet) ; (slet (var exp) body)
(desug (caddr e)

(cons (cons (caadr e) (desug (cadadr e) sub)) sub))
; else it must be an abbreviation

(let ((expansion (assoc (car e) sugars)))
(if expansion

(let ((var (cadr expansion))
(term (caddr expansion)))

(desug (desug term (cons (cons var (cadr e)) sub)) sub))
(error 'desugar "Unknown operator or macro: ~s" (car e))

The components of the Scheme0 specializer 381

)))))))))))
(define (desug* es sub) (map (lambda (e) (desug e sub)) es))
(define (desugardef def)

(list 'define (cons (name def) (var def)) (desug (body def) ())))
(map desugardef program)

)

; Define Scheme functions corresponding to abbreviations
(define (sugartoscheme abbrevtriple)

(let ((abbrev (car abbrevtriple))
(var (cadr abbrevtriple))
(term (caddr abbrevtriple)))

(list 'define (list abbrev var)
(if (and (pair? term) (equal? (car term) 'op)) (cdr term) term)

)))

; Convert plain Scheme0 programs to Scheme, possibly renaming functions

(define (scheme program)
(define (rename fn)

(define (variant f)
(let ((original (car (car f))) (btvariant (cdr f)))

(foldl string-append ""
(map symbol->string (cons original (cons '* btvariant))))))

(define (gi f vs defs)
(if defs

(let ((fvs (name (car defs))))
(if (equal? f (car fvs))

(if (equal? vs (cdr fvs))
1
(+ 1 (gi f vs (cdr defs))))

(gi f vs (cdr defs))))
(error 'rename "Unknown function: ~s" (cons f vs))))

(if (atom? fn)
fn
(let ((f (car fn)) (vs (cdr fn)))

(string->symbol
(string-append (variant f) "-"

(number->string (gi f vs program)))))))
(define (schdef def)
(list 'define

(cons (rename (name def)) (var def))
(schexp (body def))))

(define (schexp e)
(if (null? e) e
(if (number? e) e
(if (atom? e) e
(if (equal? (tag e) 'quote) e
(if (equal? (tag e) 'if)

(list 'if (schexp (e1 e)) (schexp (e2 e)) (schexp (e3 e)))
(if (equal? (tag e) 'call)

(cons (rename (funname e)) (map schexp (callargs e)))
(if (equal? (tag e) 'op)

(cons (funname e) (map schexp (callargs e)))
(error 'scheme "Illegal Scheme0 expression: ~s" e)))))))))

(map schdef program)
)

(define (reorder parameters sdpattern)
(if parameters

(let ((pspd (reorder (cdr parameters) (cdr sdpattern))))
(if (equal? (car sdpattern) 'S)

(cons (cons (car parameters) (car pspd)) (cdr pspd))
(cons (car pspd) (cons (car parameters) (cdr pspd)))))

(cons () ())

382 The Self-Applicable Scheme0 Specializer

))

; General auxiliary functions

(define (foldl f a bs) (if bs (foldl f (f a (car bs)) (cdr bs)) a))
(define (foldr f a bs) (if bs (f (car bs) (foldr f a (cdr bs))) a))
(define (all bs) (if bs (and (car bs) (all (cdr bs))) 't))

(define (s0sort leq? xs)
(define (insert x xs)

(if xs
(if (leq? x (car xs))

(cons x xs)
(cons (car xs) (insert x (cdr xs))))

(list x)))
(foldr insert () xs)

)

(define (number->string n) ; Works only for strictly positive n
(define (num->str n digits)

(if (equal? n 0)
digits
(num->str (quotient n 10)

(cons (integer->char (+ 48 (remainder n 10))) digits))))
(list->string (num->str n ()))

)

; *** Eval is not standard Scheme. Redefine to suit your Scheme version ***

; For Chez Scheme, xscheme, TI PC Scheme, and elk:
(define (s0eval schemeexpression) (eval schemeexpression))
; For Yale T Scheme:
; (define (s0eval schemeexpression) (eval schemeexpression scheme-env))

; Main variables and functions for experiments

(define onlineunfolding 't)

(define (create)
(map s0eval (map sugartoscheme sugars))
(load "spec.ss")
(make 'spec specializer)
(load "annotate.ss")
(load "analyse.ss")
(load "subject.ss")

)

(define (polytate program sdpat) (annotate program (polydiv program sdpat)))
(define (monotate program sdpat) (annotate program (monodiv program sdpat)))
(define (polype program sdpat vs0) (specialize (polytate program sdpat) vs0))
(define (monope program sdpat vs0) (specialize (monotate program sdpat) vs0))

(define (make nam residual)
(let ((schemeprogram (scheme residual)))
(let ((f (name (car schemeprogram))))

(s0eval (cons 'define
(cons (cons nam 'args)

(append schemeprogram (list (list 'apply f 'args)))
))))))

The �le analyse.ss de�nes the binding time analysis functions, and functions for

handling divisions and sdpatterns.

The components of the Scheme0 specializer 383

; File "analyse.ss" -- Binding time analysis of Scheme0 programs
; Partial evaluator for first order functional language

; General (monovariant or polyvariant) binding time analysis

(define (finddivision program sdpattern update)
(define (bv e vn vt division)
(if (null? e) division
(if (number? e) division
(if (atom? e) division
(if (equal? (tag e) 'quote) division
(if (equal? (tag e) 'if)

(bv (e1 e) vn vt (bv (e2 e) vn vt (bv (e3 e) vn vt division)))
(if (equal? (tag e) 'call)

(let ((argsdpat (map (lambda (e) (be e vn vt)) (callargs e))))
(foldl (lambda (d e) (bv e vn vt d))

(update (funname e) argsdpat division bv)
(callargs e)))

(if (equal? (tag e) 'op)
(foldl (lambda (d e) (bv e vn vt d)) division (callargs e))
(error 'bv '"Illegal Scheme0 expression: ~s" e)
))))))))

(let ((def (car program)))
(let ((division0 (list (cons (name def) (list sdpattern)))))
(bv (body def) (var def) sdpattern division0)

)))

; Monovariant binding time analysis

(define (monodiv program sdpattern)
(define (monoupdate f sdpat div0 bv)

(define (monoupd div0)
(if div0

(let ((d1 (car div0)))
(if (equal? f (car d1))

(let ((oldsdpattern (car (cdr d1))))
(cons (cons f (list (lub* sdpat oldsdpattern)))

(cdr div0)))
(cons d1 (monoupd (cdr div0)))))

(list (cons f (list sdpat)))))
(let ((div1 (monoupd div0)))
(if (equal? div0 div1)

div0
(let ((def (lookupfun f program)))

(bv (body def) (var def) (car (getsdpatterns f div1)) div1)
))))

(finddivision program sdpattern monoupdate)
)

; Polyvariant binding time analysis

(define (polydiv program sdpattern)
(define (polyupdate f sdpat div0 bv)

(define (polyupd div0)
(if div0

(let ((d1 (car div0)))
(if (equal? f (car d1))

(let ((oldsdpatterns (cdr d1)))
(if (member sdpat oldsdpatterns)

div0
(cons (cons f (append oldsdpatterns (list sdpat)))

(cdr div0))))
(cons d1 (polyupd (cdr div0)))))

(list (cons f (list sdpat)))))

384 The Self-Applicable Scheme0 Specializer

(let ((div1 (polyupd div0)))
(if (equal? div0 div1)

div0
(let ((def (lookupfun f program)))

(bv (body def) (var def) sdpat div1)
))))

(sortdivision (finddivision program sdpattern polyupdate))
)

; Returns S if e is static, D if e is dynamic.
; vn = variable names, vt = variable binding times

(define (be e vn vt)
(if (null? e) 'S
(if (number? e) 'S
(if (atom? e) (lookupbt e vn vt)
(if (equal? (tag e) 'quote) 'S
(if (equal? (tag e) 'if)

(lub (be (e1 e) vn vt)
(lub (be (e2 e) vn vt) (be (e3 e) vn vt)))

(if (equal? (tag e) 'call)
(foldl lub 'S (map (lambda (e) (be e vn vt)) (callargs e)))

(if (equal? (tag e) 'op)
(foldl lub 'S (map (lambda (e) (be e vn vt)) (callargs e)))
(error 'be '"Illegal Scheme0 expression: ~s" e)

))))))))

(define (lub t1 t2) (if (equal? t1 'D) 'D t2))

(define (lub* t1s t2s)
(if t1s

(cons (lub (car t1s) (car t2s))
(lub* (cdr t1s) (cdr t2s)))

()
))

(define (sdpattern-leq sdpat1 sdpat2) (equal? sdpat2 (lub* sdpat1 sdpat2)))

(define (sortdivision division)
(map (lambda (fun-sdpats)

(cons (car fun-sdpats) (s0sort sdpattern-leq (cdr fun-sdpats))))
division

))

(define (getsdpatterns f division)
(let ((binding (assoc f division)))
(if binding (cdr binding) ())

))

(define (lookupbt x xs vs)
(if xs

(if (equal? x (car xs))
(car vs)
(lookupbt x (cdr xs) (cdr vs)))

(error 'lookupbt '"Unknown variable: ~s" x)
))

The �le annotate.ss de�nes the annotation functions and occurrence counting

functions.

; File "annotate.ss" -- Annotation (mono- or polyvariant) of Scheme0 programs

The components of the Scheme0 specializer 385

; Partial evaluator for first order functional language

; Takes a Scheme0 program and a (possibly polyvariant) division; returns
; an annotated Scheme0 program or reports non-congruence of the division.

(define (annotate program division)
(foldl append ()

(map (lambda (def) (anndef def program division)) program)
))

(define (anndef def program division)
(define (anndefversion sdpattern)

(let ((xsxd (reorder (var def) sdpattern)))
(list 'define

(list (cons (cons (name def)
(dynoccs (name def) sdpattern program))
sdpattern)

(car xsxd)
(cdr xsxd))

((if (cdr xsxd) lift exp)
(annexp (body def) (var def) sdpattern onlineunfolding)))))

(define (annexp e vn vt unf)
(if (null? e) (cons e 'S)
(if (number? e) (cons e 'S)
(if (atom? e) (cons e (lookupbt e vn vt))
(if (equal? (tag e) 'quote) (cons e 'S)
(if (equal? (tag e) 'if)

(let ((ae1 (annexp (e1 e) vn vt unf)))
(let ((ae2 (annexp (e2 e) vn vt (and unf (static ae1))))

(ae3 (annexp (e3 e) vn vt (and unf (static ae1)))))
(if (static ae1)

(if (and (static ae2) (static ae3))
(cons (list 'ifs (exp ae1) (exp ae2) (exp ae3)) 'S)
(cons (list 'ifs (exp ae1) (lift ae2) (lift ae3)) 'D))

(cons (list 'ifd (exp ae1) (lift ae2) (lift ae3)) 'D))))
(if (equal? (tag e) 'call)

(let ((aes (map (lambda (e) (annexp e vn vt unf)) (callargs e)))
(f (funname e)))

(let ((argsdpat (map cdr aes)))
(let ((sdpattern (getleast argsdpat (getsdpatterns f division) f)))
(let ((esed (reorder aes sdpattern))

(dynvaroccs (dynoccs f sdpattern program)))
(let ((es (car esed)) (ed (cdr esed)))
(let ((staticcall (or (null? ed)

(and unf (nodup dynvaroccs (map exp ed))))))
(cons (list (if staticcall 'calls 'calld)

(cons (cons f dynvaroccs) sdpattern)
(map exp es)
(map lift ed))

(if (null? ed) 'S 'D))))))))
(if (equal? (tag e) 'op)

(let ((aes (map (lambda (e) (annexp e vn vt unf)) (callargs e))))
(if (all (map static aes))

(cons (cons 'ops (cons (funname e) (map exp aes))) 'S)
(cons (cons 'opd (cons (funname e) (map lift aes))) 'D)))

(error 'annotate "Illegal Scheme0 expression: ~s" e)
))))))))

(map anndefversion (getsdpatterns (name def) division))
)

(define (dynoccs f sdpattern program)
(let ((def (lookupfun f program)))
(let ((vn (var def)))
(let ((occs (count (body def) vn sdpattern (map (lambda (v) 0) vn))))

(cdr (reorder occs sdpattern))

386 The Self-Applicable Scheme0 Specializer

))))

; Count occurrences of all variables vn in e, giving a list of 0, 1, or 2,
; (meaning 0, 1, or >= 2) occurrences of the corresponding variable in vn.

(define (count e vn vt occurrences)
(if (null? e) occurrences
(if (number? e) occurrences
(if (atom? e) (incvar e vn occurrences)
(if (equal? (tag e) 'quote) occurrences
(if (equal? (tag e) 'if)

(if (equal? (be (e1 e) vn vt) 'S)
(count (e1 e) vn vt (maxoccs (count (e2 e) vn vt occurrences)

(count (e3 e) vn vt occurrences)))
(count (e1 e) vn vt (count (e2 e) vn vt

(count (e3 e) vn vt occurrences))))
(if (or (equal? (tag e) 'call) (equal? (tag e) 'op))

(foldl (lambda (occs e)(count e vn vt occs)) occurrences (callargs e))
(error 'count "Illegal Scheme0 expression: ~s" e)

)))))))

(define (incvar x vn occurrences)
(if vn

(if (equal? x (car vn))
(cons (if (equal? (car occurrences) 0) 1 2)

(cdr occurrences))
(cons (car occurrences) (incvar x (cdr vn) (cdr occurrences))))

(error 'incvar "Unknown variable: ~s" x)
))

(define (maxoccs occs1 occs2)
(if occs1 (cons (max (car occs1) (car occs2))

(maxoccs (cdr occs1) (cdr occs2)))
()

))

(define (static ae) (equal? (cdr ae) 'S))

(define (exp ae) (car ae))

(define (lift ae) (if (static ae) (list 'lift (car ae)) (car ae)))

; Find least sdpattern in sdpatterns which is compatible with sdpat

(define (getleast sdpat sdpatterns f)
(if sdpatterns

(if (sdpattern-leq sdpat (car sdpatterns))
(car sdpatterns)
(getleast sdpat (cdr sdpatterns) f))

(error 'annotate "Incongruent division ~s at function ~s" sdpat f)
))

The �le specialize.ss de�nes the specializer itself and its auxiliary functions

(successors, diff, lookupfun, . . .).

; File "spec.ss" -- The specializer written in Scheme0
; Partial evaluator for first order functional language

; The specializer itself, written in Scheme0. Inputs: annotated Scheme0
; program and values of the static parameters. Output: a Scheme0 program.

The components of the Scheme0 specializer 387

(define specializer (desugar '(

(define (specialize program vs0)
(call complete (list (:: (name (hd program)) vs0)) () program)

)

(define (complete pending marked program)
(if pending

(call generate (hd pending) program pending marked program)
()

))

(define (generate fvs defs pending marked program)
(if defs

(slet (def (hd defs))
(if (op equal? (name def) (hd fvs))
(slet (evs (call reduce (body def) (svar def) (tl fvs)

(dvar def) (dvar def) program))
(slet (newmarked (:: fvs marked))

(call gen1 def evs fvs pending newmarked program)))
(call generate fvs (tl defs) pending marked program)))

(op error 'generate '"Undefined function: ~s" (hd fvs))
))

(define (gen1 def evs fvs pending newmarked program)
(slet (newpending (op diff (op successors evs pending) newmarked))
(slet (newdef (list 'define (:: fvs (dvar def)) evs))

(:: newdef (call complete newpending newmarked program))
)))

(define (reduce e xs vs xd vd p)
(if (op null? e) e
(if (op number? e) e
(if (op atom? e) (call lookupvar e xs vs xd vd)
(if (op equal? (tag e) 'quote) (e1 e)
(if (op equal? (tag e) 'ifs)

(if (call reduce (e1 e) xs vs xd vd p)
(call reduce (e2 e) xs vs xd vd p)
(call reduce (e3 e) xs vs xd vd p))

(if (op equal? (tag e) 'ifd)
(list 'if (call reduce (e1 e) xs vs xd vd p)

(call reduce (e2 e) xs vs xd vd p)
(call reduce (e3 e) xs vs xd vd p))

(if (op equal? (tag e) 'calls)
(call docalls (op lookupfun (funname e) p) p

(call reduce* (sfunargs e) xs vs xd vd p)
(call reduce* (dfunargs e) xs vs xd vd p))

(if (op equal? (tag e) 'calld)
(:: 'call

(:: (:: (funname e) (call reduce* (sfunargs e) xs vs xd vd p))
(call reduce* (dfunargs e) xs vs xd vd p)))

(if (op equal? (tag e) 'ops)
(op evalbase (funname e) (call reduce* (callargs e) xs vs xd vd p))

(if (op equal? (tag e) 'opd)
(:: 'op (:: (funname e) (call reduce* (callargs e) xs vs xd vd p)))

(if (op equal? (tag e) 'lift)
(list 'quote (call reduce (e1 e) xs vs xd vd p))
(op error 'reduce '"Illegal annotated Scheme0 expression: ~s" e)

))))))))))))

(define (reduce* es xs vs xd vd p)
(if es

(:: (call reduce (hd es) xs vs xd vd p)
(call reduce* (tl es) xs vs xd vd p))

'()

388 The Self-Applicable Scheme0 Specializer

))

(define (docalls def p args argd)
(if (op nodup (tl (hd (name def))) argd)

(call reduce (body def) (svar def) args (dvar def) argd p)
(:: 'call (:: (:: (name def) args) argd))

))

(define (lookupvar x xs vs xd vd)
(if xs

(if (op equal? x (hd xs))
(hd vs)
(call lookupvar x (tl xs) (tl vs) xd vd))

(call lookupvar x xd vd 'slam 'slam)
))
)))

; Auxiliary base functions for the specializer

(define (successors e s)
(if (null? e) s
(if (number? e) s
(if (atom? e) s
(if (equal? (tag e) 'quote) s
(if (equal? (tag e) 'if)

(successors (e1 e) (successors (e2 e) (successors (e3 e) s)))
(if (equal? (tag e) 'call)

(successors* (callargs e) (cons (funname e) s))
(if (equal? (tag e) 'op)

(successors* (callargs e) s)
(error 'successors '"Illegal Scheme0 expression: ~s" e)

))))))))

(define (successors* es s) (foldl (lambda (s e) (successors e s)) s es))

(define (diff set1 set2)
(if set1

(if (member (car set1) set2)
(diff (cdr set1) set2)
(cons (car set1) (diff (cdr set1) set2)))

()
))

(define (nodup occs exps)
(if occs

(and (or (atom? (car exps)) (< (car occs) 2))
(nodup (cdr occs) (cdr exps)))

't
))

(define (lookupfun f program)
(if program

(if (equal? f (name (car program)))
(car program)
(lookupfun f (cdr program)))

(error 'lookupfun '"Undefined function: ~s" f)
))

(define (evalbase f args) (apply (s0eval f) args))

Bibliography

[1] ACM, Partial Evaluation and Semantics-Based Program Manipulation, New Haven, Con-
necticut (Sigplan Notices, vol. 26, no. 9, September 1991), New York: ACM, 1991.

[2] ACM, Partial Evaluation and Semantics-Based Program Manipulation, San Francisco,
California, June 1992 (Technical Report YALEU/DCS/RR-909), New Haven, CT: Yale
University, 1992.

[3] A.V. Aho and S.C. Johnson, `LR parsing', Computing Surveys, 6(2):99{124, 1974.

[4] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools,
Reading, MA: Addison-Wesley, 1986.

[5] M. Ajtai, J. Komlos, and E. Szemeredi, `Sorting in c logn parallel steps', Combinatorica,
3:1{19, 1983.

[6] L.O. Andersen, `C program specialization', Master's thesis, DIKU, University of Copen-
hagen, Denmark, December 1991. Student Project 91-12-17.

[7] L.O. Andersen, C Program Specialization, Technical Report 92/14, DIKU, University of
Copenhagen, Denmark, May 1992.

[8] L.O. Andersen, `Partial evaluation of C and automatic compiler generation (extended
abstract)', in U. Kastens and P. Pfahler (eds.), Compiler Construction, Paderborn, Ger-
many, October 1992 (Lecture Notes in Computer Science, vol. 641), pp. 251{257, Berlin:
Springer-Verlag, 1992.

[9] L.O. Andersen, `Self-applicable C program specialization', in Partial Evaluation and
Semantics-Based Program Manipulation, San Francisco, California, June 1992 (Techni-
cal Report YALEU/DCS/RR-909), pp. 54{61, New Haven, CT: Yale University, June
1992.

[10] L.O. Andersen, `Binding-time analysis and the taming of C pointers', in Partial Evaluation
and Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993, New
York: ACM, 1993. To appear.

[11] L.O. Andersen and C.K. Gomard, `Speedup analysis in partial evaluation (preliminary re-
sults)', in Partial Evaluation and Semantics-Based Program Manipulation, San Francisco,
California, June 1992 (Technical Report YALEU/DCS/RR-909), pp. 1{7, New Haven,
CT: Yale University, 1992.

[12] L.O. Andersen and C. Mossin, `Binding time analysis via type inference'. Student Project
90-10-12, DIKU, University of Copenhagen, Denmark, October 1990.

389

390 Bibliography

[13] A. Appel, `Reopening closures'. Personal communication, January 1988.

[14] W.-Y. Au, D. Weise, and S. Seligman, `Generating compiled simulations using partial
evaluation', in 28th Design Automation Conference, pp. 205{210, New York: IEEE, June
1991.

[15] L. Augustsson, `Compiling pattern matching', in J.-P. Jouannaud (ed.), Functional Pro-
gramming Languages and Computer Architecture, Nancy, France, 1985 (Lecture Notes in
Computer Science, vol. 201), pp. 368{381, Berlin: Springer-Verlag, 1985.

[16] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, Amsterdam: North-
Holland, second edition, 1984.

[17] K.E. Batcher, `Sorting networks and their applications', in Proceedings AFIPS Spring
Joint Computer Conference, pp. 307{314, American Federation of Information Processing
Societies, 1968.

[18] D. Bechet, `Partial evaluation of interaction nets', in M. Billaud et al. (eds.), WSA '92,
Static Analysis, Bordeaux, France, September 1992. Bigre vols 81{82, 1992, pp. 331{338,
Rennes: IRISA, 1992.

[19] L. Beckman et al., `A partial evaluator, and its use as a programming tool', Arti�cial
Intelligence, 7(4):319{357, 1976.

[20] K. Benkerimi and J.W. Lloyd, `A partial evaluation procedure for logic programs', in
S. Debray and M. Hermenegildo (eds.), Logic Programming: Proceedings of the 1990 North
American Conference, Austin, Texas, October 1990, pp. 343{358, Cambridge, MA: MIT
Press, 1990.

[21] A. Berlin and D. Weise, `Compiling scienti�c code using partial evaluation', IEEE Com-
puter, 23(12):25{37, December 1990.

[22] A.A. Berlin, `Partial evaluation applied to numerical computation', in 1990 ACM Confer-
ence on Lisp and Functional Programming, Nice, France, pp. 139{150, New York: ACM,
1990.

[23] R.S. Bird, `Improving programs by the introduction of recursion', Communications of the
ACM, 20(11):856{863, 1977.

[24] D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computa-
tion. Proceedings of the IFIP TC2 Workshop, Gammel Avern�s, Denmark, October 1987,
Amsterdam: North-Holland, 1988.

[25] D. Bj�rner and C.B. Jones, Formal Speci�cation and Software Development, Englewood
Cli�s, NJ: Prentice Hall, 1982.

[26] A. Bondorf, `Towards a self-applicable partial evaluator for term rewriting systems', in
D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computation,
pp. 27{50, Amsterdam: North-Holland, 1988.

[27] A. Bondorf, `Self-applicable partial evaluation', Ph.D. thesis, DIKU, University of Copen-
hagen, Denmark, 1990. Revised version: DIKU Report 90/17.

[28] A. Bondorf, `Automatic autoprojection of higher order recursive equations', Science of
Computer Programming, 17:3{34, 1991.

[29] A. Bondorf, Similix Manual, System Version 3.0, Technical Report 91/9, DIKU, University
of Copenhagen, Denmark, 1991.

[30] A. Bondorf, Similix Manual, System Version 4.0, technical report, DIKU, University of
Copenhagen, Denmark, 1991.

Bibliography 391

[31] A. Bondorf, `Improving binding times without explicit cps-conversion', in 1992 ACM
Conference in Lisp and Functional Programming, San Francisco, California (Lisp Pointers,
vol. V, no. 1, 1992), pp. 1{10, New York: ACM, 1992.

[32] A. Bondorf and O. Danvy, `Automatic autoprojection of recursive equations with global
variables and abstract data types', Science of Computer Programming, 16:151{195, 1991.

[33] A. Bondorf, F. Frauendorf, and M. Richter, An Experiment in Automatic Self-Applicable
Partial Evaluation of Prolog, Technical Report 335, Lehrstuhl Informatik V, University of
Dortmund, Germany, 1990.

[34] A. Bondorf and T. Mogensen, `Logimix: A self-applicable partial evaluator for Prolog'.
DIKU, University of Copenhagen, Denmark, May 1990.

[35] A. Bossi, N. Cocco, and S. Dulli, `A method for specializing logic programs', ACM
Transactions on Programming Languages and Systems, 12(2):253{302, April 1990.

[36] R.S. Boyer and J.S. Moore, `Proving theorems about Lisp functions', Journal of the ACM,
22(1):129{144, January 1975.

[37] M. Bruynooghe, D. de Schreye, and B. Martens, `A general criterion for avoiding in�nite
unfolding during partial deduction of logic programs', in V. Saraswat and K. Ueda (eds.),
Logic Programming: International Symposium, pp. 117{131, Cambridge, MA: MIT Press,
1991.

[38] M. Bugliesi, E. Lamma, and P. Mello, `Partial evaluation for hierarchies of logic theories',
in S. Debray and M. Hermenegildo (eds.), Logic Programming: Proceedings of the 1990
North American Conference, Austin, Texas, October 1990, pp. 359{376, Cambridge, MA:
MIT Press, 1990.

[39] M. Bugliesi and F. Rossi, `Partial evaluation in Prolog: Some improvements about cut',
in E.L. Lusk and R.A. Overbeek (eds.), Logic Programming: Proceedings of the North
American Conference 1989, Cleveland, Ohio, October 1989, pp. 645{660, Cambridge, MA:
MIT Press, 1989.

[40] M.A. Bulyonkov, `Polyvariant mixed computation for analyzer programs', Acta Informat-
ica, 21:473{484, 1984.

[41] M.A. Bulyonkov, `A theoretical approach to polyvariant mixed computation', in D. Bj�rner,
A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 51{64,
Amsterdam: North-Holland, 1988.

[42] M.A. Bulyonkov and A.P. Ershov, `How do ad-hoc compiler constructs appear in universal
mixed computation processes?', in D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial
Evaluation and Mixed Computation, pp. 65{81, Amsterdam: North-Holland, 1988.

[43] R.M. Burstall and J. Darlington, `A transformation system for developing recursive pro-
grams', Journal of the ACM, 24(1):44{67, January 1977.

[44] D. Chan and M. Wallace, `A treatment of negation during partial evaluation', in H. Abram-
son and M.H. Rogers (eds.), Meta-Programming in Logic Programming, pp. 299{318, Cam-
bridge, MA: MIT Press, 1989.

[45] W.N. Chin, `Automatic methods for program transformation', Ph.D. thesis, Department
of Computing, Imperial College, London, England, March 1990.

[46] H. Christiansen and N. Jones, `Control
ow treatment in a simple semantics-directed
compiler generator', in D. Bj�rner (ed.), Formal Description of Programming Concepts |
II, Garmisch-Partenkirchen, Germany, June 1982, pp. 73{97, Amsterdam: North-Holland,
1983.

392 Bibliography

[47] A. Church, `A note on the Entscheidungsproblem', Journal of Symbolic Logic, 1:40{41 and
101{102, 1936.

[48] A. Church, The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematics Studies,
Princeton, NJ: Princeton University Press, 1941.

[49] W. Clinger and J. Rees (editors), `Revised4 report on the algorithmic language Scheme',
Lisp Pointers, IV(3):1{55, 1991.

[50] M. Codish and E. Shapiro, `Compiling or-parallelism into and-parallelism', in E. Shapiro
(ed.), Third International Conference on Logic Programming, London, United Kingdom
(Lecture Notes in Computer Science, vol. 225), pp. 283{297, Berlin: Springer-Verlag, 1986.
Also in New Generation Computing 5 (1987) 45-61.

[51] C. Consel, `New insights into partial evaluation: The Schism experiment', in H. Ganzinger
(ed.), ESOP '88, 2nd European Symposium on Programming, Nancy, France, March 1988
(Lecture Notes in Computer Science, vol. 300), pp. 236{246, Berlin: Springer-Verlag, 1988.

[52] C. Consel, `Analyse de programmes, evaluation partielle et g�en�eration de compilateurs',
Ph.D. thesis, Universit�e de Paris 6, Paris, France, June 1989. (In French).

[53] C. Consel, `Binding time analysis for higher order untyped functional languages', in 1990
ACM Conference on Lisp and Functional Programming, Nice, France, pp. 264{272, New
York: ACM, 1990.

[54] C. Consel and O. Danvy, `Partial evaluation of pattern matching in strings', Information
Processing Letters, 30:79{86, January 1989.

[55] C. Consel and O. Danvy, Partial Evaluation in Parallel (Detailed Abstract), Research
Report 820, Computer Science Department, Yale University, 1990.

[56] C. Consel and O. Danvy, `For a better support of static data
ow', in J. Hughes (ed.), Func-
tional Programming Languages and Computer Architecture, Cambridge, Massachusetts,
August 1991 (Lecture Notes in Computer Science, vol. 523), pp. 496{519, ACM, Berlin:
Springer-Verlag, 1991.

[57] C. Consel and O. Danvy, `Static and dynamic semantics processing', in Eighteenth Annual
ACM Symposium on Principles of Programming Languages, Orlando, Florida, pp. 14{24,
New York: ACM, January 1991.

[58] C. Consel and O. Danvy, `Tutorial notes on partial evaluation', in Twentieth ACM Sympo-
sium on Principles of Programming Languages, Charleston, South Carolina, January 1993,
pp. 493{501, ACM, New York: ACM, 1993.

[59] C. Consel and S.C. Khoo, `Semantics-directed generation of a Prolog compiler', in
J. Maluszy�nski and M. Wirsing (eds.), Programming Language Implementation and Logic
Programming, 3rd International Symposium, PLILP '91, Passau, Germany, August 1991
(Lecture Notes in Computer Science, vol. 528), pp. 135{146, Berlin: Springer-Verlag, 1991.

[60] Charles Consel, The Schism Manual, Version 1.0, Yale University, New Haven, Connecti-
cut, December 1990.

[61] K.D. Cooper, M.W. Hall, and K. Kennedy, `Procedure cloning', in Fourth IEEE Interna-
tional Conference on Computer Languages, pp. 96{105, Oakland, California, April 1992.

[62] P. Coscia et al., `Object level re
ection of inference rules by partial evaluation', in P. Maes
and D. Nardi (eds.),Meta-Level Architectures and Re
ection, Sardinia, Italy, October 1986,
pp. 313{327, Amsterdam: North-Holland, 1988.

[63] B. Courcelle, `Equivalences and transformations of regular systems { applications to recur-
sive program schemes and grammars', Theoretical Computer Science, 42:1{122, 1986.

Bibliography 393

[64] P. Cousot, `Semantic foundations of program analysis', in S.S. Muchnick and N.D. Jones
(eds.), Program Flow Analysis: Theory and Applications, chapter 10, pp. 303{342, Engle-
wood Cli�s, NJ: Prentice Hall, 1981.

[65] P. Cousot and R. Cousot, `Abstract interpretation: A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints', in Fourth ACM Sym-
posium on Principles on Programming Languages, Los Angeles, California, January 1977,
pp. 238{252, New York: ACM, 1977.

[66] O. Danvy, `Semantics-directed compilation of nonlinear patterns', Information Processing
Letters, 37(6):315{322, March 1991.

[67] O. Danvy, `Back to direct style', Science of Computer Programming, 1993. To appear.

[68] O. Danvy and A. Filinski, `Representing control: A study of the cps transformation',
Mathematical Structures in Computer Science, 2(4):361{391, 1992.

[69] A. De Niel, E. Bevers, and K. De Vlaminck, `Partial evaluation of polymorphically typed
functional languages: The representation problem', in M. Billaud et al. (eds.), Analyse
Statique en Programmation �Equationnelle, Fonctionnelle, et Logique, Bordeaux, France,
Octobre 1991 (Bigre, vol. 74), pp. 90{97, Rennes: IRISA, 1991.

[70] H. Dybkj�r, `Parsers and partial evaluation: An experiment'. Student Project 85-7-15,
DIKU, University of Copenhagen, Denmark, July 1985.

[71] H. Dybkj�r, `Category theory, types, and programming languages', Ph.D. thesis, DIKU,
University of Copenhagen, Denmark, 1991. Also DIKU Report 91/11.

[72] J. Earley, `An e�cient context-free parsing algorithm', Communications of the ACM,
13(2):94{102, February 1970.

[73] P. Emanuelson, `Performance enhancement in a well-structured pattern matcher through
partial evaluation', Ph.D. thesis, Link�oping University, Sweden, 1980. Link�oping Studies
in Science and Technology Dissertations 55.

[74] P. Emanuelson, `From abstract model to e�cient compilation of patterns', in M. Dezani-
Ciancaglini and U. Montanari (eds.), International Symposium on Programming, 5th Col-
loquium, Turin, Italy (Lecture Notes in Computer Science, vol. 137), pp. 91{104, Berlin:
Springer-Verlag, 1982.

[75] P. Emanuelson and A. Haraldsson, `On compiling embedded languages in Lisp', in 1980
Lisp Conference, Stanford, California, pp. 208{215, New York: ACM, 1980.

[76] A.P. Ershov, `On the partial computation principle', Information Processing Letters,
6(2):38{41, April 1977.

[77] A.P. Ershov, `Mixed computation in the class of recursive program schemata', Acta Cy-
bernetica, 4(1):19{23, 1978.

[78] A.P. Ershov, `On the essence of compilation', in E.J. Neuhold (ed.), Formal Description
of Programming Concepts, pp. 391{420, Amsterdam: North-Holland, 1978.

[79] A.P. Ershov, `Mixed computation: Potential applications and problems for study', Theo-
retical Computer Science, 18:41{67, 1982.

[80] A.P. Ershov, `On Futamura projections', BIT (Japan), 12(14):4{5, 1982. (In Japanese).

[81] A.P. Ershov, `On mixed computation: Informal account of the strict and polyvariant
computational schemes', in M. Broy (ed.), Control Flow and Data Flow: Concepts of
Distributed Programming. NATO ASI Series F: Computer and System Sciences, vol. 14,
pp. 107{120, Berlin: Springer-Verlag, 1985.

394 Bibliography

[82] A.P. Ershov, `Opening key-note speech', New Generation Computing, 6(2,3):79{86, 1988.

[83] A.P. Ershov, `Opening key-note speech', in D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.),
Partial Evaluation and Mixed Computation, pp. xxiii{xxix, Amsterdam: North-Holland,
1988.

[84] A.P. Ershov, D. Bj�rner, Y. Futamura, K. Furukawa, A. Haraldson, and W. Scherlis (eds.),
Special Issue: Selected Papers from the Workshop on Partial Evaluation and Mixed Com-
putation, 1987 (New Generation Computing, vol. 6, nos. 2,3), Tokyo: Ohmsha Ltd. and
Berlin: Springer-Verlag, 1988.

[85] A.P. Ershov and B.N. Ostrovsky, `Controlled mixed computation and its application to
systematic development of language-oriented parsers', in L.G.L.T. Meertens (ed.), Pro-
gram Speci�cation and Transformation. Proc. IFIP TC2/WG 2.1 Working Conference on
Program Speci�cation and Transformation, pp. 31{48, Amsterdam: North-Holland, 1987.

[86] A.K. Ferguson and P. Wadler, `When will deforestation stop?', in C. Hall, J. Hughes, and
M. O'Donnell (eds.), Draft Proceedings, 1988 Glasgow Workshop on Functional Program-
ming, Bute, Scotland, pp. 39{56, Glasgow University, 1988.

[87] M.J. Fischer, `Lambda calculus schemata', in ACM Conference on Proving Assertions
about Programs (Sigplan Notices, vol. 7, no. 1, January 1972), pp. 104{109, New York:
ACM, 1972.

[88] H. Fujita and K. Furukawa, `A self-applicable partial evaluator and its use in incremental
compilation', New Generation Computing, 6(2,3):91{118, 1988.

[89] D.A. Fuller, `Partial evaluation and mix computation in logic programming', Ph.D. thesis,
Imperial College, London, England, February 1989.

[90] D.A. Fuller and S. Abramsky, `Mixed computation of Prolog programs', New Generation
Computing, 6(2,3):119{141, 1988.

[91] D.A. Fuller and S.A. Bocic, `Extending partial evaluation in logic programming', in
Proceedings of the XI International Conference of the Chilean Computer Science Society,
Santiago, Chile, October 1991, New York: Plenum Press, 1991.

[92] Y. Futamura, `Partial evaluation of computation process { an approach to a compiler-
compiler', Systems, Computers, Controls, 2(5):45{50, 1971.

[93] Y. Futamura, `Partial computation of programs', in E. Goto et al. (eds.), RIMS Symposia
on Software Science and Engineering, Kyoto, Japan, 1982 (Lecture Notes in Computer
Science, vol. 147), pp. 1{35, Berlin: Springer-Verlag, 1983.

[94] J. Gallagher, `Transforming logic programs by specialising interpreters', in ECAI-86.
7th European Conference on Arti�cial Intelligence, Brighton Centre, United Kingdom, pp.
109{122, Brighton: European Coordinating Committee for Arti�cial Intelligence, 1986.

[95] J. Gallagher and M. Bruynooghe, `Some low-level source transformations for logic
programs', in M. Bruynooghe (ed.), Proceedings of the Second Workshop on Meta-
Programming in Logic, April 1990, Leuven, Belgium, pp. 229{246, Department of Com-
puter Science, KU Leuven, Belgium, 1990.

[96] J. Gallagher, M. Codish, and E. Shapiro, `Specialisation of Prolog and FCP programs
using abstract interpretation', New Generation Computing, 6(2,3):159{186, 1988.

[97] M.C. Gaudel, `Speci�cation of compilers as abstract data type representations', in N.D.
Jones (ed.), Semantics-Directed Compiler Generation, Aarhus, Denmark, January 1980
(Lecture Notes in Computer Science, vol. 94), pp. 140{164, Berlin: Springer-Verlag, 1980.

Bibliography 395

[98] R. Gl�uck, `Towards multiple self-application', in Partial Evaluation and Semantics-Based
Program Manipulation, New Haven, Connecticut (Sigplan Notices, vol. 26, no. 9, September
1991), pp. 309{320, New York: ACM, 1991.

[99] R. Gl�uck, `Projections for knowledge based systems', in R. Trappl (ed.), Cybernetics and
Systems Research '92. Vol. 1, pp. 535{542, Singapore: World Scienti�c, 1992.

[100] R. Gl�uck and V.F. Turchin, `Application of metasystem transition to function inversion
and transformation', in International Symposium on Symbolic and Algebraic Computation,
ISSAC '90, Tokyo, Japan, pp. 286{287, New York: ACM, 1990.

[101] C. Goad, `Automatic construction of special purpose programs', in D.W. Loveland (ed.),
6th Conference on Automated Deduction, New York, USA (Lecture Notes in Computer
Science, vol. 138), pp. 194{208, Berlin: Springer-Verlag, 1982.

[102] C. K. Gomard, `Higher order partial evaluation { HOPE for the lambda calculus', Master's
thesis, DIKU, University of Copenhagen, Denmark, September 1989.

[103] C. K. Gomard and N. D. Jones, `Compiler generation by partial evaluation', in G. X.
Ritter (ed.), Information Processing '89. Proceedings of the IFIP 11th World Computer
Congress, pp. 1139{1144, IFIP, Amsterdam: North-Holland, 1989.

[104] C.K. Gomard, `Partial type inference for untyped functional programs', in 1990 ACM
Conference on Lisp and Functional Programming, Nice, France, pp. 282{287, New York:
ACM, 1990.

[105] C.K. Gomard, `A self-applicable partial evaluator for the lambda calculus: Correctness and
pragmatics', ACM Transactions on Programming Languages and Systems, 14(2):147{172,
April 1992.

[106] C.K. Gomard and N.D. Jones, `A partial evaluator for the untyped lambda-calculus',
Journal of Functional Programming, 1(1):21{69, January 1991.

[107] F.G. Gustavson, W. Liniger, and R. Willoughby, `Symbolic generation of an optimal
Crout algorithm for sparse systems of linear equations', Journal of the ACM, 17(1):87{
109, January 1970.

[108] M.A. Guzowski, `Towards developing a re
exive partial evaluator for an interesting subset
of Lisp', Master's thesis, Dept. of Computer Engineering and Science, CaseWestern Reserve
University, Cleveland, Ohio, January 1988.

[109] J. Hannan, `Staging transformations for abstract machines', in Partial Evaluation and
Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices, vol.
26, no. 9, September 1991), pp. 130{141, New York: ACM, 1991.

[110] J. Hannan and D. Miller, `From operational semantics to abstract machines', in 1990 ACM
Conference on Lisp and Functional Programming, Nice, France, pp. 323{332, New York:
ACM, June 1990.

[111] T.A. Hansen, `Properties of unfolding-based meta-level systems', in Partial Evaluation
and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices,
vol. 26, no. 9, September 1991), pp. 243{254, New York: ACM, 1991.

[112] A. Haraldsson, `A program manipulation system based on partial evaluation', Ph.D.
thesis, Link�oping University, Sweden, 1977. Link�oping Studies in Science and Technology
Dissertations 14.

[113] A. Haraldsson, `A partial evaluator, and its use for compiling iterative statements in Lisp',
in Fifth ACM Symposium on Principles of Programming Languages, Tucson, Arizona, pp.
195{202, New York: ACM, 1978.

396 Bibliography

[114] F. Henglein, `E�cient type inference for higher-order binding-time analysis', in J. Hughes
(ed.), Functional Programming Languages and Computer Architecture, Cambridge, Mas-
sachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523), pp. 448{472, ACM,
Berlin: Springer-Verlag, 1991.

[115] J.R. Hindley, B. Lercher, and J.P. Seldin, Introduction to Combinatory Logic, Cambridge:
Cambridge University Press, 1972.

[116] C.K. Holst, `Poor man's generalization'. DIKU, University of Copenhagen, Denmark, 1988.

[117] C.K. Holst, `Finiteness analysis', in J. Hughes (ed.), Functional Programming Languages
and Computer Architecture, Cambridge, Massachusetts, August 1991 (Lecture Notes in
Computer Science, vol. 523), pp. 473{495, ACM, Berlin: Springer-Verlag, 1991.

[118] C.K. Holst and C.K. Gomard, `Partial evaluation is fuller laziness', in Partial Evaluation
and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices,
vol. 26, no. 9, September 1991), pp. 223{233, New York: ACM, 1991.

[119] C.K. Holst and J. Hughes, `Towards binding-time improvement for free', in S.L. Pey-
ton Jones, G. Hutton, and C. Kehler Holst (eds.), Functional Programming, Glasgow 1990,
pp. 83{100, Berlin: Springer-Verlag, 1991.

[120] N.C.K. Holst, `Language triplets: The AMIX approach', in D. Bj�rner, A.P. Ershov, and
N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 167{185, Amsterdam:
North-Holland, 1988.

[121] P. Hudak, `Collecting interpretation of expressions', ACM Transactions on Programming
Languages and Systems, 13(2):269{290, April 1991.

[122] S. Hunt and D. Sands, `Binding time analysis: A new PERspective', in Partial Evaluation
and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices,
vol. 26, no. 9, September 1991), pp. 154{165, New York: ACM, 1991.

[123] M. Huntbach, `Meta-interpreters and partial evaluation of Prolog', Formal Aspects of
Computing, 1(2):193{211, 1989.

[124] ISO/IEC 9899:1990 International Standard, Programming Languages | C, 1990.

[125] V.E. Itkin, `On partial and mixed program execution', in Program Optimization and
Transformation, pp. 17{30, Novosibirsk: Computing Center, 1983. (In Russian).

[126] H.F. Jacobsen, `Speeding up the back-propagation algorithm by partial evaluation'. Student
Project 90-10-13, DIKU, University of Copenhagen, Denmark. (In Danish), October 1990.

[127] K. Jensen and N. Wirth, Pascal. User Manual and Report, Berlin: Springer-Verlag, second
edition, 1978.

[128] S.C. Johnson, Yacc | Yet Another Compiler Compiler, Computing Science Technical
Report 32, AT&T Bell Laboratories, New Jersey, USA, 1976.

[129] N.D. Jones (ed.), Semantics-Directed Compiler Generation, Aarhus, Denmark, January
1980 (Lecture Notes in Computer Science, vol. 94), Berlin: Springer-Verlag, 1980.

[130] N.D. Jones, `Automatic program specialization: A re-examination from basic principles', in
D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computation,
pp. 225{282, Amsterdam: North-Holland, 1988.

[131] N.D. Jones, `Partial evaluation, self-application and types', in M.S. Paterson (ed.), Au-
tomata, Languages and Programming. 17th International Colloquium, Warwick, England
(Lecture Notes in Computer Science, vol. 443), pp. 639{659, Berlin: Springer-Verlag, 1990.

Bibliography 397

[132] N.D. Jones, `E�cient algebraic operations on programs', in AMAST: Algebraic Methodology
and Software Technology, pp. 245{267, University of Iowa, USA, May 1991.

[133] N.D. Jones, C.K. Gomard, A. Bondorf, O. Danvy, and T. Mogensen, `A self-applicable
partial evaluator for the lambda calculus', in 1990 International Conference on Computer
Languages, New Orleans, Louisiana, March 1990, pp. 49{58, New York: IEEE Computer
Society, 1990.

[134] N.D. Jones and D.A. Schmidt, `Compiler generation from denotational semantics', in N.D.
Jones (ed.), Semantics-Directed Compiler Generation, Aarhus, Denmark (Lecture Notes in
Computer Science, vol. 94), pp. 70{93, Berlin: Springer-Verlag, 1980.

[135] N.D. Jones, P. Sestoft, and H. S�ndergaard, `An experiment in partial evaluation: The
generation of a compiler generator', in J.-P. Jouannaud (ed.), Rewriting Techniques and
Applications, Dijon, France. (Lecture Notes in Computer Science, vol. 202), pp. 124{140,
Berlin: Springer-Verlag, 1985.

[136] N.D. Jones, P. Sestoft, and H. S�ndergaard, `Mix: A self-applicable partial evaluator for
experiments in compiler generation', Lisp and Symbolic Computation, 2(1):9{50, 1989.

[137] S.L. Peyton Jones, The Implementation of Functional Programming Languages, Englewood
Cli�s, NJ: Prentice Hall, 1987.

[138] J. J�rgensen, `Generating a pattern matching compiler by partial evaluation', in S.L.
Peyton Jones, G. Hutton, and C. Kehler Holst (eds.), Functional Programming, Glasgow
1990, pp. 177{195, Berlin: Springer-Verlag, 1991.

[139] J. J�rgensen, `Compiler generation by partial evaluation', Master's thesis, DIKU, Univer-
sity of Copenhagen, Denmark, 1992. Student Project 92-1-4.

[140] J. J�rgensen, `Generating a compiler for a lazy language by partial evaluation', in Nine-
teenth ACM Symposium on Principles of Programming Languages, Albuquerque, New Mex-
ico, January 1992, pp. 258{268, New York: ACM, 1992.

[141] U. J�rring and W.L. Scherlis, `Compilers and staging transformations', in Thirteenth ACM
Symposium on Principles of Programming Languages, St. Petersburg, Florida, pp. 86{96,
New York: ACM, 1986.

[142] G. Kahn, `Natural semantics', in F.J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing (eds.), STACS 87. 4th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Passau, Germany (Lecture Notes in Computer Science, vol. 247), pp. 22{39, Berlin:
Springer-Verlag, 1987.

[143] K.M. Kahn, `A partial evaluator of Lisp programs written in Prolog', in M. Van Caneghem
(ed.), First International Logic Programming Conference, Marseille, France, pp. 19{25,
Marseille: Association pour la Di�usion et le D�eveloppement de Prolog, 1982.

[144] K.M. Kahn, `Partial evaluation, programming methodology, and arti�cial intelligence', The
AI Magazine, 5(1):53{57, 1984.

[145] K.M. Kahn and M. Carlsson, `The compilation of Prolog programs without the use of
a Prolog compiler', in International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, pp. 348{355, Tokyo: Ohmsha and Amsterdam: North-Holland, 1984.

[146] U. Kastens, B. Hut, and E. Zimmermann, GAG: A Practical Compiler Generator (Lecture
Notes in Computer Science, vol. 141), Berlin: Springer-Verlag, 1982.

[147] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Englewood Cli�s, NJ:
Prentice Hall, second edition, 1988.

398 Bibliography

[148] S.C. Khoo and R.S. Sundaresh, `Compiling inheritance using partial evaluation', in Partial
Evaluation and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan
Notices, vol. 26, no. 9, September 1991), pp. 211{222, New York: ACM, 1991.

[149] S.C. Kleene, Introduction to Metamathematics, Princeton, NJ: D. van Nostrand, 1952.

[150] D.E. Knuth, J.H. Morris, and V.R. Pratt, `Fast pattern matching in strings', SIAM Journal
of Computation, 6(2):323{350, 1977.

[151] H.J. Komorowski, `A speci�cation of an abstract Prolog machine and its application to
partial evaluation', Ph.D. thesis, Link�oping University, Sweden, 1981. Link�oping Studies
in Science and Technology Dissertations 69.

[152] H.J. Komorowski, `Partial evaluation as a means for inferencing data structures in an
applicative language: A theory and implementation in the case of Prolog', in Ninth ACM
Symposium on Principles of Programming Languages, Albuquerque, New Mexico, pp. 255{
267, 1982.

[153] J. Komorowski, Synthesis of Programs in the Framework of Partial Deduction, Reports
on Computer Science and Mathematics, Ser. A 81, Department of Computer Science, �Abo
Akademi, Finland, 1989.

[154] L. Kott, `Unfold/fold program transformations', in M. Nivat and J. Reynolds (eds.),
Algebraic Methods in Semantics, pp. 411{434, Cambridge: Cambridge University Press,
1985.

[155] H. Kr�oger, `Static-scope-Lisp: Splitting an interpreter into compiler and run-time system',
in W. Brauer (ed.), GI-11. Jahrestagung, M�unchen, Germany, Informatik-Fachberichte 50,
pp. 20{31, Berlin: Springer-Verlag, 1981. (In German).

[156] P. Kursawe, `How to invent a Prolog machine', New Generation Computing, 5:97{114,
1987.

[157] P. Kursawe, `Pure partial evaluation and instantiation', in D. Bj�rner, A.P. Ershov, and
N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 283{298, Amsterdam:
North-Holland, 1988.

[158] A. Lakhotia and L. Sterling, `How to control unfolding when specializing interpreters', New
Generation Computing, 8(1):61{70, 1990.

[159] A. Lakhotia and L. Sterling, `ProMiX: A Prolog partial evaluation system', in L. Sterling
(ed.), The Practice of Prolog, chapter 5, pp. 137{179, Cambridge, MA: MIT Press, 1991.

[160] J. Lam and A. Kusalik, A Partial Evaluation of Partial Evaluators for Pure Prolog, Tech-
nical Report TR 90-9, Department of Computational Science, University of Saskatchewan,
Canada, November 1990.

[161] P.J. Landin, `The mechanical evaluation of expressions', Computer Journal, 6(4):308{320,
January 1964.

[162] P.J. Landin, `A correspondence between Algol 60 and Church's lambda-notation', Com-
munications of the ACM, 8:89{101 and 158{165, 1965.

[163] J. Lassez, M.J. Maher, and K. Marriott, `Uni�cation revisited', in J. Minker (ed.), Founda-
tions of Deductive Databases and Logic Programming, chapter 15, pp. 587{625, Los Altos,
CA: Morgan Kau�man, 1988.

[164] J. Launchbury, `Projections for specialisation', in D. Bj�rner, A.P. Ershov, and N.D.
Jones (eds.), Partial Evaluation and Mixed Computation, pp. 299{315, Amsterdam: North-
Holland, 1988.

Bibliography 399

[165] J. Launchbury, `Projection factorisations in partial evaluation', Ph.D. thesis, Department
of Computing, University of Glasgow, November 1989. Revised version in [167].

[166] J. Launchbury, `Dependent sums express separation of binding times', in K. Davis and
J. Hughes (eds.), Functional Programming, Glasgow, Scotland, 1989, pp. 238{253, Berlin:
Springer-Verlag, 1990.

[167] J. Launchbury, Projection Factorisations in Partial Evaluation, Cambridge: Cambridge
University Press, 1991.

[168] J. Launchbury, `Strictness and binding-time analyses: Two for the price of one', in SIG-
PLAN '91 Conference on Programming Language Design and Implementation, June 1991,
Toronto, Canada (Sigplan Notices, vol. 26, no. 6, June 1991), pp. 80{91, New York: ACM,
1991.

[169] J. Launchbury, `A strongly-typed self-applicable partial evaluator', in J. Hughes
(ed.), Functional Programming Languages and Computer Architecture, Cambridge, Mas-
sachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523), pp. 145{164, ACM,
Berlin: Springer-Verlag, 1991.

[170] P. Lee, Realistic Compiler Generation, Cambridge, MA: MIT Press, 1989.

[171] P. Lee and U. Pleban, `A realistic compiler generator based on high-level semantics',
in Fourteenth Symposium on Principles of Programming Languages, Munich, Germany,
January 1987, pp. 284{295, New York: ACM, 1987.

[172] G. Levi and G. Sardu, `Partial evaluation of metaprograms in a multiple worlds logic
language', New Generation Computing, 6(2,3):227{247, 1988.

[173] B. Lisper, `Detecting static algorithms by partial evaluation', in Partial Evaluation and
Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices, vol.
26, no. 9, September 1991), pp. 31{42, New York: ACM, 1991.

[174] J.W. Lloyd and J.C. Shepherdson, `Partial evaluation in logic programming', Journal of
Logic Programming, 11:217{242, 1991.

[175] L.A. Lombardi, `Incremental computation', in F.L. Alt and M. Rubino� (eds.), Advances
in Computers, vol. 8, pp. 247{333, New York: Academic Press, 1967.

[176] L.A. Lombardi and B. Raphael, `Lisp as the language for an incremental computer', in
E.C. Berkeley and D.G. Bobrow (eds.), The Programming Language Lisp: Its Operation
and Applications, pp. 204{219, Cambridge, MA: MIT Press, 1964.

[177] K. Malmkj�r, `Predicting properties of residual programs', in Partial Evaluation and
Semantics-Based Program Manipulation, San Francisco, California, June 1992 (Technical
Report YALEU/DCS/RR-909), pp. 8{13, New Haven, CT: Yale University, 1992.

[178] M. Marquard and B. Steensgaard, `Partial evaluation of an object-oriented imperative
language', Master's thesis, DIKU, University of Copenhagen, Denmark, 1992.

[179] S. Mazaher and D.M. Berry, `Deriving a compiler from an operational semantics written
in VDL', Computer Languages, 10(2):147{164, 1985.

[180] J. McCarthy, `A basis for a mathematical theory of computation', in P. Bra�ord and
D. Hirschberg (eds.), Computer Programming and Formal Systems, pp. 33{70, Amsterdam:
North-Holland, 1964.

[181] J. McCarthy et al., LISP 1.5 Programmer's Manual, MIT Computation Center and
Research Laboratory of Electronics, 1962.

400 Bibliography

[182] U. Meyer, `Techniques for partial evaluation of imperative languages', in Partial Evaluation
and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan Notices,
vol. 26, no. 9, September 1991), pp. 94{105, New York: ACM, 1991.

[183] U. Meyer, `Partial evaluation of imperative languages', Ph.D. thesis, Justus-Liebig-
Universit�at, Giessen, Germany, 1992. (In German).

[184] R. Milner, `A theory of type polymorphism in programming', Journal of Computer and
System Sciences, 17:348{375, 1978.

[185] R. Milner, M. Tofte, and R. Harper, The De�nition of Standard ML, Cambridge, MA:
MIT Press, 1990.

[186] T. Mogensen, `The application of partial evaluation to ray-tracing', Master's thesis, DIKU,
University of Copenhagen, Denmark, 1986.

[187] T. Mogensen, `Partially static structures in a self-applicable partial evaluator', in
D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Compu-
tation, pp. 325{347, Amsterdam: North-Holland, 1988.

[188] T. Mogensen, `Binding time analysis for polymorphically typed higher order languages',
in J. Diaz and F. Orejas (eds.), TAPSOFT '89. Proc. Int. Conf. Theory and Practice of
Software Development, Barcelona, Spain, March 1989 (Lecture Notes in Computer Science,
vol. 352), pp. 298{312, Berlin: Springer-Verlag, 1989.

[189] T. Mogensen, `Binding time aspects of partial evaluation', Ph.D. thesis, DIKU, University
of Copenhagen, Denmark, March 1989.

[190] T. Mogensen, `Separating binding times in language speci�cations', in Fourth International
Conference on Functional Programming Languages and Computer Architecture, London,
England, September 1989, pp. 14{25, Reading, MA: Addison-Wesley, 1989.

[191] T. Mogensen, `Self-applicable partial evaluation for pure lambda calculus', in Partial Eval-
uation and Semantics-Based Program Manipulation, San Francisco, California, June 1992
(Technical Report YALEU/DCS/RR-909), pp. 116{121, New Haven, CT: Yale University,
1992.

[192] T. Mogensen and A. Bondorf, `Logimix: A self-applicable partial evaluator for Prolog',
in K.-K. Lau and T. Clement (eds.), LOPSTR 92. Workshops in Computing, Berlin:
Springer-Verlag, January 1993.

[193] F.L. Morris, `The next 700 formal language descriptions'. (Stanford University, California),
November 1970.

[194] P. Mosses, `Mathematical semantics and compiler generation', Ph.D. thesis, Oxford Uni-
versity, England, 1975.

[195] P. Mosses, SIS | Semantics Implementation System, Reference Manual and User Guide,
DAIMI Report MD-30, DAIMI, University of �Arhus, Denmark, 1979.

[196] C. Mossin, `Similix binding time debugger manual, system version 4.0', Included in Similix
distribution, September 1991.

[197] A. Mycroft, `Abstract interpretation and optimising transformations for applicative pro-
grams', Ph.D. thesis, Department of Computer Science, University of Edinburgh, Scotland,
1981. Also report CST-15-81.

[198] F. Nielson, `A denotational framework for data
ow analysis', Acta Informatica, 18:265{
287, 1982.

Bibliography 401

[199] F. Nielson, `A formal type system for comparing partial evaluators', in D. Bj�rner, A.P.
Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 349{384,
Amsterdam: North-Holland, 1988.

[200] F. Nielson, `Two-level semantics and abstract interpretation', Theoretical Computer Sci-
ence { Fundamental Studies, 69:117{242, 1989.

[201] F. Nielson and H.R. Nielson, Two-Level Functional Languages, volume 34 of Tracts in
Theoretical Computer Science, Cambridge: Cambridge University Press, 1992.

[202] H.R. Nielson and F. Nielson, `Automatic binding time analysis for a typed �-calculus',
Science of Computer Programming, 10:139{176, 1988.

[203] H.R. Nielson and F. Nielson, `Transformations on higher-order functions', in Fourth Inter-
national Conference on Functional Programming Languages and Computer Architecture,
London, England, September 1989, pp. 129{143, Reading, MA: Addison-Wesley, 1989.

[204] H.R. Nielson and F. Nielson, `Using transformation in the implementation of higher-order
functions', Journal of Functional Programming, 1(4):459{494, 1991.

[205] V. Nirkhe and W. Pugh, `Partial evaluation and high-level imperative programming lan-
guages with applications in hard real-time systems', in Nineteenth ACM Symposium on
Principles of Programming Languages, Albuquerque, New Mexico, January 1992, pp. 269{
280, New York: ACM, 1992.

[206] S. Oliver and N. D. Jones, `Interpreting transition matrices - a novel application of mi-
croprogramming', in ACM SIGMINI-SIGPLAN Interface Meeting on the Small Processor
Environment, pp. 70{77, New York: ACM, 1976.

[207] B.N. Ostrovski, `Implementation of controlled mixed computation in system for auto-
matic development of language-oriented parsers', in D. Bj�rner, A.P. Ershov, and N.D.
Jones (eds.), Partial Evaluation and Mixed Computation, pp. 385{403, Amsterdam: North-
Holland, 1988.

[208] S. Owen, `Issues in the partial evaluation of meta-interpreters', in H. Abramson and M.H.
Rogers (eds.), Meta-Programming in Logic Programming, pp. 319{340, Cambridge, MA:
MIT Press, 1989.

[209] F.G. Pagan, `On the generation of compilers from language de�nitions', Information
Processing Letters, 10(2):104{107, March 1980.

[210] F.G. Pagan, `Converting interpreters into compilers', Software | Practice and Experience,
18(6):509{527, June 1988.

[211] F.G. Pagan, `Partial computation as a practical aid in the compiler construction course',
SIGCSE Bulletin, 21(2):2{8, June 1989.

[212] F.G. Pagan, `Comparative e�ciency of general and residual parsers', Sigplan Notices,
25(4):59{65, April 1990.

[213] F.G. Pagan, Partial Computation and the Construction of Language Processors, Englewood
Cli�s, NJ: Prentice Hall, 1991.

[214] L. Paulson, `A semantics-directed compiler generator', in Ninth ACM Symposium on
Principles of Programming Languages, pp. 224{233, New York: ACM, 1982.

[215] L. Paulson, `Compiler generation from denotational semantics', in B. Lorho (ed.), Methods
and Tools for Compiler Construction, pp. 219{250, Cambridge: Cambridge University
Press, 1984.

[216] T.J. Penello, `Very fast LR parsing', in Sigplan '86 Conference on Compiler Construction,
Palo Alto, California (Sigplan Notices, vol. 21, no. 7, July 1986), pp. 145{151, ACM, 1986.

402 Bibliography

[217] K. Pingali and A. Rogers, `Compiler parallelization of simple for a distributed memory
machine', in International Conference on Parallel Programming, St. Charles IL, August
1990, 1990.

[218] U.F. Pleban, `Compiler prototyping using formal semantics', in Symposium on Compiler
Construction (Sigplan Notices, vol. 19, no. 6, June 1984), pp. 94{105, New York: ACM,
1984.

[219] G. Plotkin, `Call-by-name, call-by-value and the lambda-calculus', Theoretical Computer
Science, 1:125{159, 1975.

[220] G.D. Plotkin, A Structural Approach to Operational Semantics, Technical Report FN-19,
DAIMI, Aarhus University, Denmark, 1981.

[221] C. Pu, H. Massalin, and J. Ioannidis, `The synthesis kernel', Computing Systems, 1(1):11{
32, 1988.

[222] J. C. Reynolds, `Types, abstraction, and parametric polymorphism', in R. E. A. Mason
(ed.), Information Processing '83. Proceedings of the IFIP 9th World Computer Congress,
pp. 513{523, IFIP, Amsterdam: North-Holland, 1983.

[223] J.C. Reynolds, `De�nitional interpreters for higher-order programming languages', in ACM
Annual Conference, Boston, MA, August 1972, pp. 717{740, New York: ACM, 1972.

[224] G. Richardson, `The realm of Nevryon', Micro User, June 1991.

[225] A. Rogers and K. Pingali, `Process decomposition through locality of reference', in 1989
SIGPLAN Conference on Programming Language Design and Implementation, Portland
OR, June 1989, pp. 69{80, New York: ACM, 1989.

[226] H. Rogers, Theory of Recursive Functions and E�ective Computability, New York:
McGraw-Hill, 1967.

[227] S.A. Romanenko, `A compiler generator produced by a self-applicable specializer can have
a surprisingly natural and understandable structure', in D. Bj�rner, A.P. Ershov, and
N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 445{463, Amsterdam:
North-Holland, 1988.

[228] S.A. Romanenko, `Arity raiser and its use in program specialization', in N. Jones (ed.),
ESOP '90. 3rd European Symposium on Programming, Copenhagen, Denmark, May 1990
(Lecture Notes in Computer Science, vol. 432), pp. 341{360, Berlin: Springer-Verlag, 1990.

[229] E. Ruf, `Topics in online partial evaluation', Ph.D. thesis, Stanford University, California,
February 1993. Published as technical report CSL-TR-93-563.

[230] E. Ruf and D. Weise, Opportunities for Online Partial Evaluation, Technical Report
CSL-TR-92-516, Computer Systems Laboratory, Stanford University, Stanford, CA, April
1992.

[231] E. Ruf and D. Weise, Preserving Information during Online Partial Evaluation, Technical
Report CSL-TR-92-517, Computer Systems Laboratory, Stanford University, Stanford, CA,
April 1992.

[232] E. Ruf and D. Weise, `On the specialization of online program specializers', Journal of
Functional Programming, 1993. To appear.

[233] B. Rytz and M. Gengler, `A polyvariant binding time analysis', in Partial Evaluation and
Semantics-Based Program Manipulation, San Francisco, California, June 1992 (Technical
Report YALEU/DCS/RR-909), pp. 21{28, New Haven, CT: Yale University, 1992.

[234] S. Safra and E. Shapiro, `Meta interpreters for real', in H.-J. Kugler (ed.), Information
Processing 86, Dublin, Ireland, pp. 271{278, Amsterdam: North-Holland, 1986.

Bibliography 403

[235] D. Sahlin, `The Mixtus approach to automatic partial evaluation of full Prolog', in S. De-
bray and M. Hermenegildo (eds.), Logic Programming: Proceedings of the 1990 North
American Conference, Austin, Texas, October 1990, pp. 377{398, Cambridge, MA: MIT
Press, 1990.

[236] D. Sahlin, `An automatic partial evaluator for full prolog', Ph.D. thesis, Kungliga Tekniska
H�ogskolan, Stockholm, Sweden, 1991. Report TRITA-TCS-9101.

[237] C. Sakama and H. Itoh, `Partial evaluation of queries in deductive databases', New Gen-
eration Computing, 6(2,3):249{258, 1988.

[238] W.L. Scherlis, `Expression procedures and program derivation', Ph.D. thesis, Stanford
University, California, August 1980. Stanford Computer Science Report STAN-CS-80-818.

[239] W.L. Scherlis, `Program improvement by internal specialization', in Eighth ACM Sympo-
sium on Principles of Programming Languages, Williamsburg, Virginia, January 1981, pp.
41{49, New York: ACM, 1981.

[240] D.A. Schmidt, `Compiler generation from lambda calculus de�nitions of programming
languages', Ph.D. thesis, Kansas State University, Kansas, USA, 1981.

[241] D.A. Schmidt, Denotational Semantics, Boston, MA: Allyn and Bacon, 1986.

[242] D.A. Schmidt, `Static properties of partial evaluation', in D. Bj�rner, A.P. Ershov, and
N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 465{483, Amsterdam:
North-Holland, 1988.

[243] R. Schooler, `Partial evaluation as a means of language extensibility', Master's thesis,
MIT/LCS/TR-324, Laboratory for Computer Science, MIT, Cambridge, Massachusetts,
August 1984.

[244] D.S. Scott, Lectures on a Mathematical Theory of Computation, Technical Report PRG-19,
Programming Research Group, Oxford University, 1981.

[245] P. Sestoft, `The structure of a self-applicable partial evaluator', in H. Ganzinger and N.D.
Jones (eds.), Programs as Data Objects, Copenhagen, Denmark, 1985 (Lecture Notes in
Computer Science, vol. 217), pp. 236{256, Berlin: Springer-Verlag, 1986.

[246] P. Sestoft, `Automatic call unfolding in a partial evaluator', in D. Bj�rner, A.P. Ershov, and
N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 485{506, Amsterdam:
North-Holland, 1988.

[247] P. Sestoft, `Replacing function parameters by global variables', Master's thesis, DIKU,
University of Copenhagen, Denmark, October 1988.

[248] P. Sestoft and A.V. Zamulin, `Annotated bibliography on partial evaluation and mixed
computation', New Generation Computing, 6(2, 3):309{354, 1988.

[249] P. Sestoft and A.V. Zamulin, `Annotated bibliography on partial evaluation and mixed
computation', in D. Bj�rner, A.P. Ershov, and N.D. Jones (eds.), Partial Evaluation and
Mixed Computation, pp. 589{622, Amsterdam: North-Holland, 1988.

[250] D. Sherman, R. Strandh, and I. Durand, `Optimization of equational programs using
partial evaluation', in Partial Evaluation and Semantics-Based Program Manipulation,
New Haven, Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991), pp. 72{82,
New York: ACM, 1991.

[251] M. Sintzo�, `Calculating properties of programs by valuations on speci�c models', in ACM
Conference on Proving Assertions about Programs, Las Cruces, Mexico (Sigplan Notices,
vol. 7. no. 1, January 1972), pp. 203{207, New York: ACM, 1972.

404 Bibliography

[252] D.A. Smith, `Partial evaluation of pattern matching in constraint logic programming lan-
guages', in Partial Evaluation and Semantics-Based Program Manipulation, New Haven,
Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991), pp. 62{71, New York: ACM,
1991.

[253] B. Steensgaard and M. Marquard, `Parameter splitting in a higher order functional lan-
guage'. Student Project 90-7-1, DIKU, University of Copenhagen, Denmark, August 1990.

[254] L. Sterling and R.D. Beer, `Incremental
avor-mixing of meta-interpreters for expert system
construction', in Proc. 3rd Symposium on Logic Programming, Salt Lake City, Utah, pp.
20{27, New York: IEEE Computer Society, 1986.

[255] L. Sterling and R.D. Beer, `Metainterpreters for expert system construction', Journal of
Logic Programming, 6:163{178, 1989.

[256] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, Cambridge, MA: MIT Press, 1977.

[257] R.S. Sundaresh, `Building incremental programs using partial evaluation', in Partial Eval-
uation and Semantics-Based Program Manipulation, New Haven, Connecticut (Sigplan No-
tices, vol. 26, no. 9, September 1991), pp. 83{93, New York: ACM, 1991.

[258] R.S. Sundaresh and P. Hudak, `Incremental computation via partial evaluation', in
Eighteenth Annual ACM Symposium on Principles of Programming Languages, Orlando,
Florida, pp. 1{13, New York: ACM, January 1991.

[259] A. Takeuchi, `A�nity between meta interpreters and partial evaluation', in H.-J. Ku-
gler (ed.), Information Processing 86, Dublin, Ireland, pp. 279{282, Amsterdam: North-
Holland, 1986.

[260] A. Takeuchi and K. Furukawa, `Partial evaluation of Prolog programs and its application
to meta programming', in H.-J. Kugler (ed.), Information Processing 86, Dublin, Ireland,
pp. 415{420, Amsterdam: North-Holland, 1986.

[261] A. Tarski, `A lattice-theoretical �xpoint theorem and its applications', Paci�c Journal of
Mathematics, 5:285{309, 1955.

[262] M. Tofte, Compiler Generators. What They Can Do, What They Might Do, and What They
Will Probably Never Do, volume 19 of EATCS Monographs on Theoretical Computer Sci-
ence, Berlin: Springer-Verlag, 1990. Earlier version: DIKU Report 84/8, DIKU, University
of Copenhagen, Denmark, 1984.

[263] V.F. Turchin (ed.), Basic Refal and Its Implementation on Computers, Moscow: GOS-
STROI SSSR, TsNIPIASS, 1977. (In Russian).

[264] V.F. Turchin, `A supercompiler system based on the language Refal', SIGPLAN Notices,
14(2):46{54, February 1979.

[265] V.F. Turchin, `Semantic de�nitions in Refal and automatic production of compilers', in
N.D. Jones (ed.), Semantics-Directed Compiler Generation, Aarhus, Denmark (Lecture
Notes in Computer Science, vol. 94), pp. 441{474, Berlin: Springer-Verlag, 1980.

[266] V.F. Turchin, `The use of metasystem transition in theorem proving and program optimiza-
tion', in J. De Bakker and J. van Leeuven (eds.), Automata, Languages and Programming.
Seventh ICALP, Noordwijkerhout, The Netherlands (Lecture Notes in Computer Science,
vol. 85), pp. 645{657, Berlin: Springer-Verlag, 1980.

[267] V.F. Turchin, `The concept of a supercompiler', ACM Transactions on Programming
Languages and Systems, 8(3):292{325, July 1986.

Bibliography 405

[268] V.F. Turchin, `Program transformation by supercompilation', in H. Ganzinger and N.D.
Jones (eds.), Programs as Data Objects, Copenhagen, Denmark, 1985 (Lecture Notes in
Computer Science, vol. 217), pp. 257{281, Berlin: Springer-Verlag, 1986.

[269] V.F. Turchin, `The algorithm of generalization in the supercompiler', in D. Bj�rner, A.P.
Ershov, and N.D. Jones (eds.), Partial Evaluation and Mixed Computation, pp. 531{549,
Amsterdam: North-Holland, 1988.

[270] V.F. Turchin, R.M. Nirenberg, and D.V. Turchin, `Experiments with a supercompiler', in
1982 ACM Symposium on Lisp and Functional Programming, Pittsburgh, Pennsylvania,
pp. 47{55, New York: ACM, 1982.

[271] F. van Harmelen and A. Bundy, `Explanation-based generalisation = partial evaluation',
Arti�cial Intelligence, 36:401{412, 1988.

[272] R. Venken, `A Prolog meta-interpreter for partial evaluation and its application to source
to source transformation and query-optimisation', in T. O'Shea (ed.), ECAI-84, Advances
in Arti�cial Intelligence, Pisa, Italy, pp. 91{100, Amsterdam: North-Holland, 1984.

[273] R. Venken and B. Demoen, `A partial evaluation system for Prolog: Some practical con-
siderations', New Generation Computing, 6(2,3):279{290, 1988.

[274] P. Wadler, `Deforestation: Transforming programs to eliminate trees', in H. Ganzinger
(ed.), ESOP'88. 2nd European Symposium on Programming, Nancy, France, March 1988
(Lecture Notes in Computer Science, vol. 300), pp. 344{358, Berlin: Springer-Verlag, 1988.

[275] P. Wadler, `Theorems for free!', in Fourth International Conference on Functional Pro-
gramming Languages and Computer Architecture, London, England, September 1989, pp.
347{359, Reading, MA: Addison-Wesley, 1989.

[276] M. Wand, `Continuation-based program transformation strategies', Journal of the ACM,
27(1):164{180, January 1980.

[277] M. Wand, `Deriving target code as a representation of continuation semantics', ACM
Transactions on Programming Languages and Systems, 4(3):496{517, July 1982.

[278] M. Wand, `From interpreter to compiler: A representational derivation', in H. Ganzinger
and N.D. Jones (eds.), Programs as Data Objects, Copenhagen, Denmark, 1985 (Lecture
Notes in Computer Science, vol. 217), pp. 306{324, Berlin: Springer-Verlag, 1986.

[279] M. Wand, `Specifying the correctness of binding-time analysis', in Twentieth ACM Sympo-
sium on Principles of Programming Languages, Charleston, South Carolina, January 1993,
pp. 137{143, ACM, New York: ACM, 1993.

[280] B. Wegbreit, `Goal-directed program transformation', IEEE Transactions on Software
Engineering, SE-2(2):69{80, June 1976.

[281] D. Weise, R. Conybeare, E. Ruf, and S. Seligman, `Automatic online partial evaluation',
in J. Hughes (ed.), Functional Programming Languages and Computer Architecture, Cam-
bridge, Massachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523), pp.
165{191, Berlin: Springer-Verlag, 1991.

Index

�-conversion, 46

�e (Lambdamix), 176
V
) (Lambdamix), 179

j s j (size of), 127

�-reduction, 46

? (bottom), 24, 311, 323

[[]]
L
(meaning function), 4

[[�]] (syntax), 147

� (Scheme1 binding-time analysis), 320

�-reduction, 46

�-conversion, 273

�b (Lambdamix), 177

�f (Lambdamix), 177

v (Lambdamix), 172

� (composition), 25

' = [[]] (programming language), 336

� (Lambdamix), 172

� (closure analysis), 316

 (Scheme1 binding-time analysis), 320

?(V) (variable description), 303

� (closure analysis), 316

� (Scheme0 binding-time analysis), 108

� (Scheme1 binding-time analysis), 320

> (top), 310

> (Lambdamix), 177

absent projection, 324

abstract environment, 310

abstract function, 311

abstract interpretation, 106, 309, 310

abstract syntax, 35

abstract value, 309

abstraction

implemented by function, 166

in lambda calculus, 45

rule, 374

abstraction function, 312

acceptable programming system, 336

Ackermann's function, 357

additive running times, 129

admissible projection, 324{326, 328

agreeing environment, 185

algorithm, 25

non-oblivious, 286, 290

oblivious, 285

algorithm W, 175

AMIX, 4

analysis

binding-time, see binding-time analysis

by abstract interpretation, 309

call-graph, 253

closure, 315

dependency, 198, 302

dependent on binding times, 152

determinacy, 198

groundness, 198

live variable, 95

pointer, 254

pointer birth-place, 244

side-e�ect, 198

size, 302

speedup, 132

Andersen, L.O., 131, 153, 229, 368, 371, 372

annotation-forgetting function, 172

annotations, 105, 151, 194

consistent, 105, 123

anonymous ftp, 225, 366

instructions for, 123

Appel, A., 286

applicative order reduction, 48

argument expression, 102

arity raising, 224, 332, 371

assembler interpreter, 258

assignment, 369

associative law, 263

atomic value, 324

406

Index 407

Augustsson, L., 359

B (booleans), 26
Bd (Scheme1 dynamic context), 322
Bdd (Scheme1 dynamic context), 322
Be (Scheme0 binding-time analysis), 108
Be (Scheme1 binding-time analysis), 321
Bpe (PEL binding-time analysis), 330
Bpv (PEL binding-time propagation), 331
Bv (Scheme0 binding-time propagation), 109
Bv (Scheme1 binding-time propagation), 321
backwards uni�cation, 197
Barendregt, H.P., 45
basic con�guration, 355, 369
Beckman, L., 358, 367, 368
Berlin, A., 283, 287, 374
Berry, D.M., 374
binding times

mixed, 149, 153, 271
polyvariant, 112

binding-time
annotations, 194
assumption, 172
debugger, 151
engineering, 2
environment, 320
improvement, 92, 198, 218, 263, 371

binding-time analysis, 83, 370
by constraint solving, 175
e�cient, 175
ensuring termination, 304
for C, 253
for lambda calculus, 182
for PEL, 328
for Scheme0, 106, 313
for Scheme1, 222, 319
for Similix, 322
monovariant, 106
projection-based, 328
safety of, 106

BindingTime (set of binding times), 107
Bird, R., 374
birth-place analysis, 244
Bj�rner, D., 367
blazing, 362
body of function, 44, 102
Bondorf, A., 150, 163, 194, 195, 204, 218,

267, 368{372
booleans B, 26
bootstrapping, 58
bottom (?), 24, 311, 323
bound occurrence, 45
bounded static variation, 116, 266, 299

Boyer, R.S., 374
Bruynooghe, M., 371
BTA, see binding-time analysis
bubble sort, 289
Bulyonkov, M.A., 368
Bundy, A., 373
Burstall, R.M., 347, 350, 374

C programming language, 229, 368
C-mix, 257
call unfolding, 371
call-by-name, 48, 53, 349
call-by-value, 48, 53, 349

recursion equations, 53
call-graph analysis, 253
capture, 47
car, 33
Carlsson, M., 373
Cartesian product, 23, 26
cdr, 33
CERES, 375
Chin, W.N., 362
Christiansen, H., 375
Church, A., 43
Church{Rosser theorem, 48
Church-Turing thesis, 335
circuit simulation, 283
closed expression, 52
closure, 52, 209
closure analysis, 315
closure analysis function, 316
closure propagation function, 316
code duplication, 119
code generation, 79
coding

in online partial evaluation, 147
Codish, M., 373
commutative law, 263
compiler, 8, 39

e�cient, 156
generated by o�ine PE, 156
generated by online PE, 154
generation of, 13, 86
overly general, 154
structure of generated, 89
type of, 337, 343

compiler generator, 375
generation of, 14
semantics-directed, 375
type of, 345

complement of projection, 332
completeness property, 48, 336
completion, 172

408 Index

composition, 25, 338
symbolic, 338, 360

computation duplication, 119
computational state, 77

partial, 77
computer graphics, 278
concretization function, 312
con�guration, 369
con
uence property, 349
congruence, 109

for pointers, 244
uniform, 77

congruent, 103
cons point analysis, 224
Consel, C., 130, 150, 218, 224, 264, 270, 368,

370{373
consistent annotation, 105, 123
constant propagation, 286
constraint, 105

dependency rules, 181
equational, 177, 181
inequality, 177, 181
normal form, 176
normalization, 179, 180
reduction, 180
used for binding-time analysis, 175

constraint system, 177
construction, 31
constructor, 31, 325
context, 348
continuation, 219
continuation passing style, 116, 218, 270

conversion to, 270
advantages, 270
disadvantages, 272

continuation variable, 238
continuation-based reduction, 218
contraction, 369
control function, 57
control operators (Prolog), 193
Core C, 245

two-level, 246, 247
correctness

fold/unfold, 354
Courcelle, B., 354
Cousot, P., 310
Cousot, R., 310
CPS, see continuation passing style
curried, 28
Curry, H.B., 28

Danvy, O., 130, 150, 204, 218, 264, 270, 272,
368, 370{373

Darlington, J., 347, 350, 374
data division, 98
data type, 32, 325
de Schreye, D., 371
dead static variable, 95
debugger

binding-time, 151
decreased in loop, 302
de�nition, 3, 351, 374
de�nition of partial evaluation, 4
deforestation, 358, 360
dependency analysis, 198, 302
dependency constraint rules, 181
dependent sum, 332
depends

along path, 302
over assignment sequence, 302

depth-�rst specialization, 236
determinacy analysis, 198
DFA

generation of, 196, 268
discarding

of side-e�ects, 119
divide and conquer, 281
division, 77, 102

�nite, 83
monovariant, 96, 103
pointwise, 94
polyvariant, 96, 103
uniform, 77
uniformly congruent, 77

double append, 351
double encoding, 256
double self-application, 14
driving, 369
dubious variable, 301
duplicable, 119
duplication, 119

harmless, 121
of side-e�ects, 119

D(V) (strictly decreasing), 303
Dybkj�r, H., 141, 372
dynamic, 77, 102, 166, 197

always, 149
context, 111, 112, 208
control
ow, 233
de�nitely, 145
goal, 197
memory allocation, 243
statement, 230
variable, 301

Earley, J., 8, 372, 374

Index 409

eliminable command, 91
Emanuelson, P., 372, 373
end-con�guration, 238
environment, 42, 51, 164

agreeing, 185
implemented by function, 166
type, 171

equality of functions, 25
equational constraint rules, 181
equivalent

operationally, 340
semantically, 340

Ershov, A.P., 10, 286, 367, 368, 370, 372
eureka step, 351
E(V) (less or equal), 303
experimental modelling, 280
explicators, 237
expression, 164
extensionally equal, 209

falsely superlinear speedup, 130
FD (set of
ow descriptions), 303
Fibonacci

transformation of, 353
�bre, 332
Filinski, A., 218, 270
�nite division, 83
�nite list, 32
�nitely downwards closed, 300
�niteness, 125

by generalization, 362
by syntactic restrictions, 362

�rst Futamura projection, 13, 75, 344
�rst-order, 26
�rstorder (type), 338
Fischer, M.J., 218
�xed-point operator

explicit, 164

atten, 362

ow chart program, 55, 70

interpreter for, 56
mathematical semantics for, 57
partial evaluation of, 67

ow description, 303
fold/unfold

correctness of, 354
deterministic, 354
partial evaluation by, 355
transformations, 350

folding, 3, 351, 374
formal parameter, 44
Frauendorf, F., 194, 195, 370
free

occurrence, 46
variable, 46

ftp, 225, 366
instructions for, 123

Fujita, H., 194, 369
Fuller, D.A., 194, 195, 371
fully abstract, 339
fully static function, 212
function

body, 44, 102
equality, 25
fully static, 212
partial, 24
partially static, 212
specialization, 234, 338
total, 23
type, 26

function variable, 315
Furukawa, K., 194
Futamura projection, 75, 256, 367

�rst, 13, 75, 344
second, 13, 86, 344
third, 14, 91

Futamura, Y., 367

Gallagher, J., 373
Gaudel, M.C., 375
generalization, 83, 363, 369

poor man's, 152, 298
generating extension, 10, 125
generating optimizing compilers, 150
Gengler, M., 371
Gl�uck, R., 145, 369, 372, 373
Goad, C., 374
goal

dynamic, 197
specialization of, 198
static, 197

goal function, 102
Gomard, C.K., 131, 163, 270, 368, 369, 371,

372
ground term, 348
groundness analysis, 198
Gurevich, Y., 131
Gustavson, F.G., 280, 374
Guzowski, M., 368

H (Lambdamix), 186
Hannan, J., 12, 373
Hansen, T.A., 132, 372
Haraldsson, A., 367, 368, 373
harmless duplication, 121
Henglein, F., 151, 176, 371

410 Index

higher-order, 26, 27
Holst, C.K., 125, 152, 270, 274, 371
Hudak, P., 373
Hughes, J., 274, 371
Hunt, S., 370

ID (identi�ers), 26
identity projection, 324
improving recursive programs, 281
increased in loop, 302
inequality constraint rules, 181
inference rule, 30
in�nite poly, 83
in�nite static loop, 118
in�nite unfolding

Lambdamix, 174
instance, 348
instantiation, 351, 374
integers Z , 26
interpretational overhead, 138
interpreter, 7, 38, 39

ow chart, 56
lambda calculus, 51, 165
recursion equations, 53
speedup, 130
type of, 337, 343

interpretive nature
problems of, 282

interprocedural optimization, 286
inverse image, 332
Itkin, V.E., 370
I(V) (possibly increasing), 303

Jacobsen, H.F., 368, 374
join, 311
Jones, N.D., 101, 163, 367{370, 375
J�rgensen, J., 267, 272, 371{373
J�rring, U., 373
judgement, 30, 123

Kahn, G., 38
Kahn, K.M., 368, 373
Kastens, U., 375
Kernighan, B.W., 229
Khoo, S.C., 370, 373
Kleene, S.C., 1, 335, 366
Knuth{Morris{Pratt, 130, 264, 372, 374
Komorowski, J., 194, 369
Kott, L., 354
Kr�oger, H., 373
Kursawe, P., 369, 373
Kusalik, A., 369

label, 315

labelled lambda abstraction, 206

Lakhotia, A., 369, 371

Lam, J., 369

lambda abstraction, 45, 206

lambda calculus, 43, 369

interpreter for, 51, 165

self-interpretation, 164

two-level, 166

lambda variable, 315

Lambdamix, 163

correctness, 183

in�nite unfolding, 174

optimality, 174

simplicity versus power, 173

Landin, P.J., 366

language

meta-, 139

user-oriented, 139

Launchbury, J., 125, 323, 342, 370

lazy evaluation, 349

least upper bound, 108, 311

least-square, 257

Lee, P., 375

let variable, 315

level shift, 338

Levi, G., 369

lexical analysis, 284

lift

in Lambdamix, 166

in Scheme0, 111

in Scheme1, 207

insertion of, 178

lifting

of a static value, 208

linear equations, 280

linear speedup, 128

Lisp, 368

Lisper, B., 287

list type, 32

live static variable, 95

live variable analysis, 95

Lloyd, J., 195, 369

Lockwood Morris, F., 374

logic programming, 369

logical meta-systems, 285

Logimix, 194, 196

Lombardi, L.A., 366, 373

loop, 133, 302

simple, 134

speedup in, 134

low-level residual programs, 73

lub, 108, 311

Index 411

malloc, 243
Malmkj�r, K., 372
marked, 86
Marquard, M., 224, 370, 371
Martens, B., 371
matches, 348
matrix multiplication, 340
Mazaher, S., 374
McCarthy, J., 347, 374
megastep, 182
memoization, 3
meta-interpreter, 194, 373
meta-language, 139
meta-logical predicates, 193
Meyer, U., 368
Miller, D., 12
Milner, R., 340
MIMD processor network, 283
minimal completion, 172
Miranda, 141
mix, 368
mix algorithm, 85

e�cient, 86
mix equation, 4, 71, 337, 342

for lambda calculus, 169
mixed binding times, 149, 153, 271
mixed computation, 367
mixline partial evaluation, 153
Mixtus, 195
modular programming, 277
Mogensen, T.�., 163, 192, 224, 267, 278,

369, 370, 374
monovariant

binding-time analysis, 106
division, 96, 103

Moore, J.S., 374
Mosses, P., 375
Mossin, C., 371
mutable memory, 234
Mycroft, A., 310

N (natural numbers), 26
named function, 206
natural numbers N , 26
natural semantics, 38
negation by failure, 193
neural network training, 283
Nevryon, 277
Nielson, F., 110, 159, 310, 371, 372
Nielson, H.R., 110, 159, 371
Nirkhe, V., 368
non-oblivious algorithm, 286, 290
nonlocal side-e�ect, 235

normal form
in lambda calculus, 62
in pattern matching language, 348
of constraint set, 176
of constraint system, 180

normal order reduction, 48
normalization of constraint system, 180

oblivious
algorithm, 285, 287
Turing machine, 285
weakly, 289

obliviousness
a test for, 287

occurrence
bound, 45
free, 46

occurrence counting, 215
analysis, 205

o�ine, 18, 122, 144, 372
advantages, 150
partial evaluation, 84
strategy, 84
termination, 298

Oliver, S., 284
on the
y

compression, 104
unfolding, 104

online, 18, 122, 144, 372
advantages, 147
partial evaluation, 84
strategy, 84
termination, 297

operationally equivalent, 340
optimal, 139
optimality

of Lambdamix, 174
optimizing compilers

generation of, 150
Oskarsson, �O., 367, 368
Ostrovski, B.N., 372
overhead

caused by interpretation, 138
overriding of function, 25

Pe (closure analysis function), 316, 317
Pv (closure propagation function), 316, 317
Pagan, F.G., 258, 372, 374
parameter, 44, 102
partial computational state, 77
partial deduction, 369
partial evaluation, 67, 370

applications of, 277

412 Index

by fold/unfold, 355

de�nition, 4

for Ansi C, 258

for
ow chart language, 67

for lambda calculus, 163

for Prolog, 192

for Scheme0, 101

for Scheme1, 204

mixline, 153

o�ine, 84

online, 84

rede�nition, 341

termination of, 297

partial evaluator, 2

type of, 337, 343

partial function, 24, 26

partially static, 223, 323, 370

array, 240

function, 212, 330

heap-allocation, 243

struct, 241

paths in a graph, 291

pattern matching, 28, 285

Paulson, L., 375

PE, see partial evaluation

PEL (language), 329

pending, 86

pending loop, 252

Penello, T.J., 285

Perluette, 375

phases

in o�ine partial evaluation, 145

in online partial evaluation, 145

Pingali, K., 284

Pleban, U., 375

Plotkin, G., 38, 218, 270, 340

pointer, 242

birth-place analysis, 244

pointer analysis, 254

pointwise division, 94

poly, 79

in�nite, 83

polyvariant

binding times, 112

binding-time analysis, 122

division, 96, 103

mixed computation, 68

specialization, 68, 209, 232, 370

poor man's generalization, 152, 298

postphase, 145

unfolding, 104

compression, 104

postprocessing, 205
prephase, 145
preprocessing, 205
procedure cloning, 286
product, 26

Cartesian, 23
of projections, 325
type, 26, 325

program analysis, see analysis
program point specialization, 3
program specialization, 67
program specializer, 71
projection, 323

absent, 324
admissible, 324{326, 328
complement, 332
Futamura, see Futamura projection
product, 325
sum, 326
uniform, 327

projection-based binding-time analysis, 328
Prolog, 192, 369
Pugh, W., 368

R (Lambdamix), 185
ray-tracing, 278
re-opening closures, 286
recipe for self-application, 157
recursion equations, 50, 52

interpreter for, 53
recursive data type, 32, 326
recursive function theory, 335
redex, 47, 348
Redfun, 367, 368
reduction, 45

applicative order, 48
normal order, 48
of constraint system, 180
rules, 46

Refal, 367, 369
regular expression, 268

compilation of, 196
reordering

of side-e�ects, 119
residual command, 91
residual program, 71
rewrite rules, 347
Richter, M., 194, 195, 370
Ritchie, D.M., 229
Rogers, A., 284
Rogers, H., 335, 336
Romanenko, S.A., 94, 125, 224, 368, 369, 371
Ruf, E., 148, 150, 372

Index 413

Runge-Kutta integration, 287
running time, 41, 131
Rytz, B., 371

S-expression, 29
s-m-n function property, 336
s-m-n theorem, 72, 366
safe division, 331
safety

of binding-time analysis, 106
of closure analysis, 316
of speedup analysis, 135
of speedup interval, 133

Sahlin, D., 195, 369, 370
Sandewall, E., 367, 368
Sands, D., 370
Sardu, G., 369
scanner, 257
Scheme, 101, 204, 225, 368
Scheme0, 101, 102

specializer source code, 376
two-level, 110, 111

Scheme1, 206
two-level, 207

Scherlis, W., 373, 374
Schism, 263, 368
Schmidt, D.A., 371, 375
Sch�on�nkel, M., 28
Schooler, R., 368
scienti�c computing, 287
scope, 53
second Futamura projection, 13, 86, 344
selector, 28
self-application, 13, 88, 91, 116, 125, 194,

215, 256
double, 14
recipe for, 157
taming by BTA, 153

self-dependency, 306
self-interpretation

lambda calculus, 164
self-interpreter, 139, 336
semantically equivalent, 340
semantics of types, 26, 34, 339
semantics-directed compiler generation, 375
Semilux, 369
Sestoft, P., 101, 118, 367, 368, 370, 371
Shapiro, E., 373
Shepherdson, J.C., 195, 369
side-e�ect, 119

analysis, 198
nonlocal, 235
static, 238

under dynamic control, 236

Similix, 204, 264, 272, 368, 371

binding-time analysis, 322

simple loop, 134

single-valued, 24

Sintzo�, M., 310

SIS, 375

size analysis, 302

Smith, D.A., 372

solution

of constraint set, 177

S�ndergaard, H., 101, 367, 368, 370

sorting, 291

source program, 8, 39

sp-function, 205, 217

specialization, 205

kernel, 150

point, 217

Prolog goals, 198

specialized program point, 78, 103

speedup

bound, 128

falsely superlinear, 130

function, 128

in loop, 134

interval, 132, 134

safety of, 133

linear, 128

superlinear, 347

speedup analysis, 132

experiments, 136

safety of, 135

staging transformations, 373

state, 98

state transition, 98

statement

dynamic, 230

static, 230

static, 77, 102, 166, 197

always, 149

goal, 197

part, 324

perhaps, 145

projection, 324

statement, 230

variable, 301

Steensgaard, B., 224, 370, 371

store, 57, 302

store transformer, 57

string matching, see Knuth{Morris{Pratt

struct specialization, 241

structural operational semantics, 38

414 Index

subject program, 2, 71
substitution, 46, 348
suits a variable, 171
SU(l) (speedup), 134
sum

of projections, 326
type, 31

Sundaresh, R.S., 370, 373
supercompilation, 358, 369
superlinear speedup, 347

falsely, 130
impossible, 131

suspension, 54
symbolic

composition, 360
computation, 3
run time address, 242

syntax tree, 35

tp(s; d) (running time), 41, 127
t
X
(type), 339

table-directed input, 284
tag, 31, 325
tagged value, 31
tagging

in online partial evaluation, 147
Takeuchi, A., 369
taming

of self-application, 153
target program, 8, 76
termination

ensured by binding-time analysis, 304
of o�ine partial evaluation, 298
of online partial evaluation, 297
of partial evaluation, 297

the trick, 93, 116, 266, 271
theorems for free, 274
third Futamura projection, 14, 91
thunk, 54
Tofte, M., 375
top (>), 310
top-level redex, 47
total function, 23, 26
transition compression, 81, 99, 104

on the
y, 82, 93
separate phase, 82

trick
the, 93, 116, 266, 271

truth values B, 26
tupling function, 336
Turchin, V.F., 358, 367, 369
Turing interpreter, 73
Turing machine, 73, 366

enumeration, 335

oblivious, 285

program, 335

two-level

Core C, 246

execution of Core C, 250

lambda calculus, 166

Scheme0, 110

Scheme1, 207

syntax, 105

type, 171

type system (Lambdamix), 171

type, 26

assumption, 29

environment, 29, 171

function, 26

inference, 29, 123, 175

rule, 30, 339

of compiler, 337

of interpreter, 337

of partial evaluator, 337

product, 26

semantics of, 26, 34, 339

sum, 31

system

combined, 176

two-level, 171

two-level, 171

unfold

reasons not to, 355

unfolding, 3, 104, 237, 351, 374

strategy, 118

uni�cation, backwards, 197

uniform congruence, 77, 331

uniform division, 77

uniform projection, 327

universal function property, 336

updating of function, 25

user-oriented language, 139, 283

van Harmelen, F., 373

variable

capture, 47

free, 46

splitting, 332, 371

variable description, 303

variable only requirement, 362

variant record, 31

vector spaces, 340

Venken, R., 369

video games, 277

Index 415

Wadler, P., 358
Wand, M., 12, 164, 374
weak head normal form, 47
weakly oblivious, 289
Wegbreit, B., 374
Weise, D., 148, 150, 283, 368, 372, 374
well-annotated, 171

Core C, 248
well-behaved, 220

well-typed
expression, 29
language processor, 343

whnf (weak head normal form), 47

Y combinator, 49
Yn combinator, 49
Yv combinator, 50

Z (integers), 26

