Yiihaw .NET aspect weaver usage guide

Rasmus Johansen Stephan Spangenberg Peter Sestoft
johansen@itu.dk spangenberg@itu.dk sestoft@itu.dk
IT University of Copenhagen, Denmark

2007-09-30

Abstract Yiihaw is a static aspect weaver for the Common Language Infrastructure (CLI), also
known as Microsoft .NET version 2.0 and later. The Yiihaw weaver works by transforming CLI
assemblies in the form of .d11l and .exe files and performs extensive checks at weave-time to
ensure the correctness of the resulting woven assemblies.

1 Getting Yiihaw

The Yiihaw weaver is available from http://yiihaw.tigris.org/ under the GNU public license. Yi-
ihaw works with Microsoft .NET 2.0 or later. To use Yiihaw you need the following libraries, all
included with the distribution:

e Mono.Cecil.dll

e YITHAW.API.d1l1l

e YITHAW.Exceptions.dll
e yiihaw.exe

e YITHAW.Output.dll

e YITHAW.Pointcut.dll

o YITHAW.Weaver.dll

The design and implementation of the Yiihaw weaver is described in Johansen and Spangen-
berg: Yiihaw. An aspect weaver for .NET, IT University of Copenhagen, Denmark, March 2007,
available at http://www.itu.dk/people/sestoft/itu/JohansenSpangenberg- Aspects-2007.pdf

2 Invoking Yiihaw

Yiihaw is a command-line program that takes as input a pointcut file, a target assembly and an
advice assembly, and produces as output a woven assembly:

yiihaw <pointcut_file> <target_assy> <advice_assy> [woven_assy] [-v]

Arguments written in angle brackets are mandatory, and those written in square brackets are
optional. If the name of the woven assembly is left out, Yiihaw will overwrite the target assembly.
The optional argument -v can be used to request verbose output on the console concerning the
weaving.

3 A complete example

For a sample use of the Yiihaw weaver, consider a target class Invoice declared in file LowerLayer. cs,
with a method GrandTotal() that returns the invoice grand total:

public class Invoice {
public virtual decimal GrandTotal() {
decimal total = ... computation ...;
return total;
}
}

Now we want to apply advice to this method so that it provides a 5 percent discount if the grand
total exceeds 10 000 Euros. Let this advice class be declared in file Advicel.cs:

public class MyInvoiceAspect {
public decimal DoDiscountAspect() {
decimal total = JoinPointContext.Proceed<decimal>();
return total * (total < 10000 ? 1.0M : 0.95M);
}
}

and let the pointcut file be this:

around * * decimal Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

To compile the target assembly and the advice assembly, and then weave the advice into the target,
we perform these commands in the Command Prompt:

csc LowerLayer.cs
csc /r:Yiihaw.API.d1ll /t:library Advicel.cs
yiihaw pointcutl.txt LowerLayer.exe Advicel.dll

Compilation of the target and advice assemblies will typecheck those separately. During the
subsequent weaving, Yiihaw checks that the advice method is applicable around the target method.
Yiihaw will produce the following output on the console:

Methods intercepted: 1

Methods targeted, but not intercepted: 0O
method(s) were introduced at O location(s).
properties were introduced at O location(s).
field(s) were introduced at 0 location(s).
event(s) were introduced at O location(s).
type(s) were introduced at O location(s).

O O O O o

o

warning(s)

In addition, Yiihaw writes the resulting woven assembly to disk. Since we did not specify a name
for it when invoking Yiihaw, it will overwrite the existing LowerLayer.exe. The woven assembly
is equivalent to one obtained by compiling the following source code:

public class Invoice {
public virtual decimal GrandTotal() {
decimal total = ... computation ...;
return total * (total < 10000 ? 1.0M : 0.95M);
}
}

4 Introductions

Yiihaw currently supports the introduction of a range of constructs into a target class, namely
fields, events, methods, properties, classes, struct types, interfaces, enum types and delegate types.
There are no restrictions on how these constructs are defined in the advice assembly; Yiihaw inserts
the construct exactly as it is defined. For instance, if a method is defined as public static void
in the advice assembly, it will remain so in the target assembly. It is not possible to instruct the
weaver to take a private method from the advice assembly and make it public in the target
assembly.

For details about how to instruct Yiihaw to introduce constructs, see the pointcut language
description in section 8.2.

5 Typestructure modification

Using Yiihaw you can make two types of typestructure modifications:
e change the basetype of one or more classes
e implement one or more interfaces

You can instruct a class to implement as many interfaces as you want. Yiihaw will check that the
target classes implement all the methods, properties and events of the interfaces. If some of these
constructs are not located in the target class already, you need to instruct Yiihaw to insert them
first (using the pointcut language).

For details about how to instruct Yiihaw to make typestructure modifications, see section 8.3.

6 Intercepting methods

Yiihaw can intercept both static and instance methods, and methods with any return type, also
void methods. A typical advice method might look like this:

public class Aspects {
public int Advice(string s) {
Console.WriteLine("value of s is: " + s);
return Yiihaw.API.JoinPointContext.Proceed<int>();
}
}

This advice method can be used for intercepting any method in the target assembly that re-
turns int and takes a string as the first argument. Thus, the following target methods can be
intercepted using this advice method:

public int TargetMethodA(string x) {

}
public int TargetMethodB(string s, int i, float f) {

}

The parameter names of the target method need not be the same as those of the advice method,
but the parameter types must match in the following sense: The target method must have at
least as many parameters as the advice method, and the sequence of parameter types of the
advice method must be a prefix of the sequence of parameter types of target method. In the
above example, the advice method’s parameter list (string) is a prefix of the target method’s
(string,int,float).

During weaving, each parameter of the advice method is replaced by the corresponding pa-
rameter of the target method. Hence the advice method’s body can use (and update) the target
method’s parameters simply by using (and updating) the corresponding parameters of the advice
method itself.

6.1 Invoking the original target method

The original target method can be invoked from the advice method using the Proceed<T>()
method, which is defined as a static method on the YITHAW.API.JoinPointContext class. The
value of the call Proceed<T>() has type T and is the value returned by the target method’s body,
if any; see section 6.3 below for the case where the target method has return type void. There
can be at most one call to Proceed<T>() in an advice method.

To use the Proceed<T>() method you must include a reference to the YIIHAW.API library
when compiling the advice assembly. That library is found in a file named YITHAW.API.d11, as
shown in section 3.

The type argument T of the Proceed<T>() method specifies the return type of the target
method, which must be the same as that of the advice method. In the above example the
type argument T was int. By specifying the target method’s return type as part of the call
to Proceed<T>(), we obtain two advantages: the compiler can statically check the consistency of
the advice source code, and runtime boxing, casting and unboxing of value type results is avoided.

6.2 Generic advice methods

The advice method shown above calls Proceed<int>() and can therefore only intercept target
methods with return type int. If an advice method needs to intercept any kind of method,
regardless of its return type, one can make the advice method itself generic with a some type
parameter T, and let it invoke Proceed<T>():

public class Aspects {
public static T Advice<T>() {
Console.WriteLine("advice method here...");
return Yiihaw.API.JoinPointContext.Proceed<T>();
}
}

This advice method can be used for intercepting any method, regardless of its return type. The
type T is used as a substitute for the actual return type of the target method being intercepted. The
name of the generic parameter does not matter; any name will do. Yiihaw automatically replaces T
with the target method’s actual return type when applying the advice. Like other advice methods,
generic advice method can take ordinary value parameters. Consider the following advice method:

public class Aspects {
public static T Advice<T>(int i, string s) {

}
}

This advice method can intercept any method that takes an int and a string as the first two
arguments. Figure 1 shows some example advice methods and the methods that they can target.

6.3 Targeting void methods

As mentioned above, the type argument T of the Proceed<T>() method call is the target method’s
return type. As a special case, the target method may have return type void. Since void is not
a valid .NET type, this special case is addressed by using the special Void class included in the
Yiihaw API:

Advice method Targetable methods

void Advicel() { void MO { ... }

. Proceed<Void>() ... void M(bool x) { ... }
} void M(bool x, int y) { ... }
void Advice2(bool x) { void M(bool x) { ... }

. Proceed<Void>() ... void M(bool x, int y) { ... }
}
int Advice3() { int M() { ... return ... }

. Proceed<int>() ... int M(bool x) { ... return ... }
} int M(bool x, int y) { ... return ... }
R Advice4<R>() { void MO { ... }

. Proceed<R>() ... int M() { ... return ... }
} string MO { ... return ... }

string[] MO { ... return ... }

Figure 1: Advice methods and some of their targetable methods.

using YITHAW.API;
using Void = YITHAW.API.Void;

public class Aspects {
public static void Advice() {
JoinPointContext.Proceed<Void>();
}
}

Note the using declarations for introducing type abbreviations. As shown in section 6.2, generic
advice methods can also intercept target methods with return type void.

6.4 Static and non-static (instance) advice methods

A static advice method can be used to intercept both static and non-static (instance) target
methods. A non-static advice method can only be used to intercept non-static (instance) target
methods; in this case weaving will replace occurrences of the this reference in the advice method
body with references to the target method’s receiver, or this reference. Thus, if you need to be
able to intercept any kind of target method, you must make the advice method static, in which
case you cannot use the this reference.

6.5 Storing and using the result of Proceed<T>()

The advice method does not have to return the result of Proceed<T>() immediately, but may
store it in a variable:

public class Aspects {
public static double Advice<double>() {

double result = YIIHAW.API.JoinPointContext.Proceed<double>();

if (...)

return result;
else

return Math.PI;
}
}

In fact, the result can be used in any way that is compatible with its declared type, which is the
type argument of Proceed<T>():

public class Aspects {
public static int Advice() {
int result = YIIHAW.API.JoinPointContext.Proceed<int>();

return result * 7;
}
}

This advice method invokes the original target methods, takes its return value, multiplies it by 7
and returns the new value (effectively replacing the original return value).

7 The Yiithaw API

You have already seen how to use the Proceed<T>() method. All static properties and methods
defined in the Yiihaw API are shown in figure 2.

Property/method Type Value

AccessSpecifier string The access specifier(s) of the method being inter-
cepted

DeclaringType System.Type The declaring type of the method being intercepted

DeclaringTypeAsString string The name of the declaring type of the method being
intercepted

GetTarget<T>() T The target method’s receiver: its this reference

IsStatic bool True if the target method is static, else false

Name string The name of the target method

ParameterNames string[] An array of the target method’s parameter names

ParameterTypes System.Type[] An array of the target method’s parameter types

Proceed<T>() T Execute the target method’s body and get its value,
unless T is YITHAW.API.Void in which case there is
no value

ReturnType System.Type The return type of the method being intercepted

ReturnTypeAsString string The name of the return type of the method being
intercepted

Signature string The signature (name, parameter names and types)

of the method being intercepted

Figure 2: Static methods and properties in class YITHAW.API.JoinPointContext.

7.1 Example use of the Yiihaw API

This advice method demonstrates the use of all the Yiihaw API members, except for Proceed<T>(),
which is described in section 6.1 and GetTarget<T>(), which is described in section 7.2.

using YITHAW.API;

public class AdviceClass {
public static T AdviceApi<T>() {
Console.WriteLine("Access spec: "
Console.WriteLine("Declaring type: "
Console.WriteLine("Declaring type: "
Console.WriteLine("Method name: "
Console.WriteLine("Is static: "
Console.WriteLine("Parameter count: "
Console.WriteLine("1st param type: "
Console.WriteLine("1st param name: "
Console.WriteLine("Signature: "
Console.WriteLine("Return type: "
Console.WriteLine ("Return type: "
return JoinPointContext.Proceed<T>();
}
}

JoinPointContext.AccessSpecifier);
JoinPointContext.DeclaringType.Name) ;
JoinPointContext.DeclaringTypeAsString) ;
JoinPointContext.Name) ;
JoinPointContext.IsStatic);
JoinPointContext.ParameterTypes.Length) ;
JoinPointContext.ParameterTypes[0]);
JoinPointContext .ParameterNames[0]);
JoinPointContext.Signature) ;
JoinPointContext.ReturnTypeAsString) ;
JoinPointContext.ReturnType.Name) ;

+ o+ A+ A+ A+ o+ o+ o+ o+ o+ o+

The above generic advice method AdviceApi<T>() can be woven around any method. Let us use
it on the two methods in this class:

class Target {

public static void Mi(int x) { ... }

internal string M2(double y, bool b) { return ...; }
}

The output from calling the two methods after weaving is:

Access spec: public
Declaring type: Target
Declaring type: Target
Method name: M1

Is static: True
Parameter count: 1

1st param type: System.Int32
1st param name: x

Signature: M1(System.Int32 x)
Return type: System.Void
Return type: Void

Access spec: internal

Declaring type: Target
Declaring type: Target
Method name: M2

Is static: False
Parameter count: 2

1st param type: System.Double
1st param name: vy

Signature: M2(System.Double y, System.Boolean b)
Return type: System.String
Return type: String

Calls to the above-mentioned properties are determined statically and are replaced with appropri-
ate bytecode instructions in the woven assembly. Hence their use imposes no runtime overhead.

7.2 Referring to the intercepted object

The Yiihaw API GetTarget method returns the intercepted object, that is, the intercepted
method’s receiver object:

using YITHAW.API;

public class Aspects {
public static T Advice<T>() {
TargetClass targetObject = JoinPointContext.GetTarget<TargetClass>();
targetObject.SomeMethod () ;
return JoinPointContext.Proceed<T>();
}
}

This example obtains the intercepted object (of type TargetClass), binds it to variable targetObject
and invokes a method on it, where we assume that TargetClass has a method called SomeMethod.
For this to be type checked, the advice class must know about the target assembly and hence
compilation of the advice must include a reference /r:Target.dll to the target assembly. The
GetTarget<T>() method is only valid when intercepting instance methods; a static method has
no receiver object or this reference. Yiihaw checks this for you.

8 The pointcut language

All pointcuts are defined in a separate text file. There are no restrictions on the name or extension
of this file - you can name it whatever you like. Yiihaw defines three types of pointcut statements:

e interception, see section 8.1;
e introduction, see section 8.2;

e typestructure modification, see section 8.3.

8.1 Interception

The general format of the around pointcut statement is this:

around <access> <invocation kind> <return type> <type>:<method(arguments)>
[inherits <type>] do <advice_type>:<advice method>;

Arguments in angle brackets are mandatory; those in square brackets are optional. All state-
ments must be terminated with a semicolon. A type and advice_type argument has the form
NamespaceName . TypeName; if the namespace prefix is left out, the assembly’s default namespace
is used. Note that period (.) is used to separate namespace from type, and colon (:) is used to
separate type from non-type members, such as methods.

An interception statement starts with the keyword around. All arguments between around
and do describe the methods in the target assembly that should be intercepted. You can use
wildcards (*) for all of these properties. The arguments following the keyword do describe the
advice method(s) to use. Some examples:

(a) around public static void TargetNamespace.TargetClass:Foo(int,string)
do AdviceNamespace.AdviceClass:AdviceMethod;

(b) around #* * * *.x:x(x) inherits System.Collections.Hashtable
do AdviceNamespace.AdviceClass:AdviceMethod;

The first statement (a) matches any method that:
e is public

e is static

has return type void

is defined on the type TargetNamespace.TargetClass
e is named Foo, whether non-generic Foo or generic Foo<T>, Foo<T,U>, ...,

e whose first two arguments have type int and string

The method named AdviceMethod defined on the type AdviceNamespace.AdviceClass is used as
advice when intercepting the target methods.

The second statement (b) matches any target method that:
e has any access specifier, because of the asterisk (*)
e has any invocation kind, static or instance

e has any return type

is defined on any type in any namespace, because of (*.*)

e has any name

takes any number of arguments of any type

e whose declaring type inherits from System.Collections.Hashtable

Thus, statement (b) matches any method whose declaring type inherits from System.Collections.Hashtable.
If the inherits specification were left out, the pointcut would match any method.

8.1.1 Specifying the advice method

The around pointcut specifies an advice method by its name, not by its complete signature. Hence
there can be multiple advice methods with the same name, if only they have different signatures.
For each target method that is being intercepted, Yiihaw will pick the advice method whose
signature is the best match for that target method. For example, suppose you define the following
two advice methods:

public class Aspects {
public static T Advice<T>() {

Console.WriteLine("catch-all advice method here...");
return JoinPointContext.Proceed<T>();

}

public static int Advice() {
Console.WriteLine("int advice method here...");
return JoinPointContext.Proceed<int>();

}
}

The advice method that has return type int is the closer match for all target methods that have
return type int and will be used for those. The generic advice method will be used for all other
methods.

An advice method must match a target method in two ways: By return type and by parameter
types, or method signature. Yiihaw will always pick the advice method that has the same return
type as the target method (if possible) and pick the advice method that has the longest prefix
of parameter types in common with the target method. If given the choice of picking an advice
method that matches all parameters or an advice method that matches the return type, Yiihaw

will pick the latter.

Yiihaw only supports around interception on methods. Using Yiihaw, before and after
interceptions can be written as around interceptions without any performance penalty.

8.1.2 Intercepting generic methods

To intercept a generic method MyMethod<T> in the target assembly, the pointcut file must give the
method’s name in the internal CLI format MyMethod ‘1, that is, using a backquote and an integer
literal that specifies the number of type parameters.

8.1.3 Intercepting properties and indexers

To intercept a property X of type int, say, in the target assembly, the pointcut file must intercept it
as one or both of the two methods corresponding to its get and set accessors. Consider this class
Target with an instance property and a static property, each having both get and set accessors:

class Target {
private int x;
private static int y;
public int X {
get { return x/2; }
set { x = value * 2; }
}
public static int Y {
get { return y-1; }
set { y = value + 1; }
}
}

and this advice class:

public class AdviceClass {
public static int AdviceGet() { ... }
public static void AdviceSet(int value) { ... }

}

Then the methods AdviceGet and AdviceSet can be woven into the target get and set accessors
using this pointcut file:

around * instance int Target:get_X() do AdviceClass:AdviceGet;
around * instance void Target:set_X(int) do AdviceClass:AdviceSet;
around * static int Target:get_Y() do AdviceClass:AdviceGet;
around * static void Target:set_Y(int) do AdviceClass:AdviceSet;

Now consider a target class with an indexer such as double this[int]:

class Target {
double scale = 0;
public double this[int x] {
get { return x * scale; }
set { scale = value/x; }
}
}

Just like a property, an indexer must be intercepted as the two methods corresponding to its get
and set accessors:

10

around * instance double Target:get_Item(int) do AdviceClass:AdviceGet;
around * instance void Target:set_Item(int, double) do AdviceClass:AdviceSet;

Although C# provides no static indexers, only instance indexers, other .NET languages such as
VB.NET do. Hence the around pointcut statement for indexers still requires a specification of
instance or static.

8.1.4 Intercepting constructors

Both static and instance constructors can be intercepted. A constructor is described as a method
that has return type void and whose name is the same as that of the class. For instance, consider
class Target with a static constructor and two instance constructors:

class Target {
static Target() { Console.WriteLine("static constructor"); }
public Target() { Console.WriteLine("instance constructor"); }
public Target(int x) { Console.WriteLine("instance (int x) constructor"); }

}
Pointcut statements to intercept each of these constructors may look like this:

around * static void Target:Target() do AdviceClass:AdviceMethod;

around * instance void Target:Target() do AdviceClass:AdviceMethod;

around * instance void Target:Target(int) do AdviceClass:AdviceMethod;
8.1.5 Specifying arrays
Arrays can be specified using ordinary C# syntax. The pointcut language only allows specifying
single-dimensional, non-jagged arrays, such as int[], string[], etc. However, such an array-
specification will match any array of the given type. Hence, specifying int [will match int[],
int[,,], int[] [] and so on.
8.2 Introduction or insertion

The most elaborate format of the insert pointcut statement is this:

insert <construct> <access> <invocation kind> <return type>
<advice type>:<construct_name[(arguments)]> into <type>;

An introduction starts with the keyword insert followed by a <construct> argument that spec-
ifies the kind of construct to insert:

e event

o field

e indexer
e method

® property

e type — for inserting classes, structs, interfaces, enum types and delegate types; the construct
specifiers class, struct, interface and delegate can be used instead.

All arguments preceding the keyword into describe the advice assembly constructs that should
be inserted into the target class. The arguments <access>, <invocation kind> and <return
type> are mandatory for non-class constructs, but can be given as wildcards (*).

An insert type pointcut statement, which can insert a class, struct, interface, enum type or
delegate type, has this simplified form:

11

insert type <advice type> into <type>;

In any case, the argument following the keyword into describes the target type (namespace and
class) into which the construct should be inserted. Some examples:

(c) insert method public * int Namespace.AspectClass:Foo(string,System.Object)
into TargetNamespace.Class;

(d) insert type Namespace.AspectClass into TargetNamespace;

In a successful weaving, the insert statement must match exactly one construct from the advice
assembly. That construct is then inserted into the target type TargetNamespace.Class.

The first insert statement (¢) matches any advice class member that:

is a method

e is public

e is of any invocation kind (static and instance)
e has return type int

e is defined on the type Namespace.AspectClass
e is named Foo

e whose first two arguments have type string and object

The second insert statement (d) matches any class, struct, interface or enum type that has name
Namespace.AspectClass.

For a more elaborate artificial example, consider this advice class:

public class AdviceClass {
private static int sfi;
private double fi;
public event System.EventHandler changed;
public double P {
get { return fi; }
set { fi = value; }
}
private class NestedC {
public int f;
}
private struct NestedS : INested {
public int f;
public int F { get { return f; } }
}
private interface INested {
int F { get; }
}
private enum Months {
Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
}
private double this[int x] { get { ... } }
private static void PrintMessage(int y) { ... }

12

A pointcut file to insert most of the members from AdviceClass into a target class may look like
this:

insert field * static int AdviceClass:sfi into TargetNamespace.Target;
insert field * instance double AdviceClass:fi into TargetNamespace.Target;
insert event public instance System.EventHandler AdviceClass:changed

into TargetNamespace.Target;
insert method private static void AdviceClass:PrintMessage(int)

into TargetNamespace.Target;
insert property * instance double AdviceClass:P into TargetNamespace.Target;
insert indexer * instance double AdviceClass:this(int) into TargetNamespace.Target;
insert type AdviceClass.NestedC into TargetNamespace.Target;
insert type AdviceClass.NestedS into TargetNamespace.Target;
insert type AdviceClass.INested into TargetNamespace.Target;
insert type AdviceClass.Months into TargetNamespace.Target;

8.3 Typestructure modification

The general format of the modify pointcut statement is this:
modify <type> <action> <advice type>;

A typestructure modification starts with the keyword modify followed by the target type, the
one to be modified. The <action> argument must be either inherit or implement and tells the
weaver how to modify the target type. If inherit is specified, the weaver will make the target
type inherit from the advice type. If implement is specified, the weaver will make the target type
implement the advice type, which must be an interface. Yiihaw will check that all methods of
the base class or interface are implemented by the target class, and report an error if not. Some
examples:

(f) modify TargetNamespace.Class inherit Namespace.AspectClass;

(g) modify TargetNamespace.Class implement Namespace.AspectInterface;

8.4 Short form notation for types

All types used in the pointcut statements, such as the return type of a method, must be fully
specified with namespace and type name. However, the short-form names for the standard C#
types object, string, int, float and so on shown in figure 3, may be used instead of the
lesser-known full .NET names.

9 Limitations of Yiihaw
The current version (September 2007) of Yiithaw has some limitations:

e An advice class must be an ordinary non-generic class, not a type instance of a generic class.

e A target class must be a non-generic class or a generic class, but not a type instance of a
generic class. Generic target classes C<T>, D<T,U> and so on must be targeted as C‘1, D2
and so on in the pointcut file, that is, using the CIL-internal notation for generic types.

e An around pointcut statement currently does not distinguish between generic and non-
generic target methods. That is, around * * * Target:M(*) do ... will apply advice to
methods M, M<T>, M<T,U> regardless of type parameter arity.

e The pointcut file parser does not understand type instances of generic classes in field types,
return types, parameter types, and so on.

13

Short name

Full NET name

bool
byte
char
decimal
double
float
int
long
object
sbyte
short
string
uint
ulong
ushort

System.Boolean
System.Byte
System.Char
System.Decimal
System.Double
System.Single
System.Int32
System.Int64
System.Object
System.SByte
System.Int16
System.String
System.UInt32
System.UInt64
System.UlInt16

Figure 3: Short-form type names recognized in pointcut files.

e An advice method cannot be generic beyond the generic parameter used to make it applicable
to target methods with different return types.

e When inserting an initialized field public int x = 42 + 8;

from an advice class into a

target class, the initialization code is not automatically inserted into the target class. Doing
so in a reliable way is nearly impossible, because at the CLI bytecode level all initialization
code appears in constructors, not on the field declarations. Hence this limitation is unlikely

to be overcome.

14

