
The Genesis of Mix: Early Days of Self-Applicable
Partial Evaluation (Invited Contribution)

Peter Sestoft

IT University of Copenhagen

Denmark

sestoft@itu.dk

Harald Søndergaard

University of Melbourne

Australia

harald@unimelb.edu.au

Abstract
Forty years ago development started on Mix, a partial evalu-

ator designed specifically for the purpose of self-application.

The effort, led by Neil D. Jones at the University of Copen-

hagen, eventually demonstrated that non-trivial compilers

could be generated automatically by applying a partial evalu-

ator to itself. The possibility, in theory, of such self-application

had been known for more than a decade, but remained unre-

alized by the start of 1984. We describe the genesis of Mix,

including the research environment, the challenges, and the

main insights that led to success. We emphasize the critical

role played by program annotation as a pre-processing step,

later automated in the form of binding-time analysis.

CCS Concepts: • Software and its engineering→Trans-
lator writing systems and compiler generators; Func-
tional languages; • Theory of computation → Program
analysis; • Social and professional topics → History of
software.

Keywords: Partial evaluation, mixed computation, Lisp, self-

application, auto-projector, compilation, compiler generation

ACM Reference Format:
Peter Sestoft and Harald Søndergaard. 2024. The Genesis of Mix:

Early Days of Self-Applicable Partial Evaluation (Invited Contribu-

tion). In Proceedings of the 2024 ACM SIGPLAN International Work-
shop on Partial Evaluation and Program Manipulation (PEPM ’24),
January 16, 2024, London, UK. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3635800.3637445

1 Introduction
The concept (though not the name) of meta-programming is

as old as that of the stored-program computer, both being

present in Turing’s seminal paper [42] on computability. It is

the ability to treat programs as data that enables a program

to be designed to read, generate, analyse and/or transform

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PEPM ’24, January 16, 2024, London, UK
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0487-1/24/01

https://doi.org/10.1145/3635800.3637445

other programs, or even to modify itself while running. It

allows the creation of interpreters: programs that execute

programs, such as the “universal computing machine” [42],

or Universal Turing Machine as we now know it.

A special case of meta-programming is self-application: a
program given itself as input. Examples include an editor

being used to edit its own text, as well as a compiler used

to compile itself (assuming the language it is written in is a

subset of the language it translates). Or, as the focal points in

this paper, an interpreter that interprets itself, or a program

specializer that specializes itself.

In this paper we recount the birth, 40 years ago, of “Mix”,

the first partial evaluator successfully used for non-trivial

compiler generation via self-application. We describe the

path that, with its ups and downs, led us to a design that

finally worked. A critical insight was the need for so-called

binding-time analysis, and we explain its role in self-appli-

cation. Along the way we describe the environment that we

worked in, as it arguably helped us succeed.

In Section 2 we briefly sketch related work that preceded

Mix, andwe describe the development of Mix (including dead

ends) in some detail. One aim of this paper is to demystify the

role of binding-time analysis. To prepare the stage for that,

Section 3 recapitulates the so-called Futamura projections.

Section 4 then explains the role of binding-time analysis, and

Section 5 sketches how it led to full automation of Mix. In

Sections 6 and 7we discuss the legacy of the late Neil D. Jones

and the crucial role he played in numerous programming

technology projects. Section 8 summarizes and concludes.

While we try to make the paper reasonably self-contained,

many technical details are necessarily left out. In keeping

with an informal style, we shall often use “Neil” for Neil D.

Jones, and “Peter” and “Harald” for the authors of this paper.

2 The History of Mix
2.1 Self-Application and Partial Evaluation
At first it might be feared that self-application begets para-

doxes. For example, consider this program (call it𝑀):

When given input 𝑃 :

(1) Run 𝑃 with input 𝑃

(2) If the result is 0, output 1; else output 0

Running𝑀 on itself appears to create a contradiction, as the

result of that application must be 0 if and only if it is 1. But

1

https://orcid.org/0000-0002-5843-6021
https://orcid.org/
https://doi.org/10.1145/3635800.3637445
https://doi.org/10.1145/3635800.3637445

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

that reasoning assumes that there is a result; it assumes step

(1) is completed in finite time. Once possible non-termination

is taken into account, any paradox evaporates.

Indeed, constructive self-application of programs can have

great utility. It has a history that dates back at least to the

early 1950s. Corrado Böhm, in his 1952 doctoral thesis [4],

published in 1954, (a) defined an abstract machine, faithful to

contemporary machines and shown by Böhm to be Turing

complete,
1
(b) defined a “high-level” programming language

somewhat prescient of FORTRAN, and (c) presented a com-

piler for this language, written in the language itself. Ten
years later, a compiler for Lisp 1.5, written in that language,

was built at MIT [21]. The particular case of self-application

that is of interest in this paper is that of a partial evaluator,

a scenario first considered in 1971 by Yoshihiko Futamura.

We first knew about Futamura’s ideas through the writ-

ings of Andrei Ershov [13, 14] (though we soon found that

they were present already in Beckman et al. [2]). This is not
the place for a more detailed account of related work preced-

ing the Mix project; the interested reader is referred to Jones,

Gomard and Sestoft [23] and the extensive bibliography by

Sestoft and Zamulin [39]. Suffice it to say that partial evalua-

tion of Lisp programs had been advocated and implemented

by Lombardi and Raphael as early as 1964 [28, 29], and that, in

the 1970s, the main efforts to develop Lisp partial evaluators

took place at Linköping University in Sweden [2, 11, 19, 20].

We briefly return to related work in Section 3 when we dis-

cuss the so-called Futamura projections.

2.2 DIKU: The Early Days
The Computer Science Department at the University of Co-

penhagen [43] is known as DIKU, short for “Datalogisk In-

stitut ved Københavns Universitet”. DIKU was founded in

1970, with Peter Naur as foundation professor.

While this paper’s main focus is on technical details of

the early development of Mix, we start by pointing to three

facets of DIKU in the 1970s and 1980s, to place our research

activities around partial evaluation in their proper socio-

historical context.

First, Naur had created a distinctive curriculum for the

5-year MSc (“cand. scient.”) degree in Computer Science. In

addition to coursework units, every student had to complete

several variable-sized software development or research pro-

jects, culminating in a sizeable masters thesis. Notably, each

project, irrespective of type, had to be carefully documented

in the form of a written “report”, the structure of which had

1
While the logicians’ insights about computational universality were famil-

iar to Böhm in the early 1950s, they were yet to be appreciated by computing

experts generally. As evidence, Martin Davis [8] points to the following

statement made in 1956 by the Harvard computing pioneer Howard Aiken:

“If it should turn out that the basic logics of a machine designed for the

numerical solution of differential equations coincide with the logics of a

machine intended to make bills for a department store, I would regard this

as the most amazing coincidence that I have ever encountered.”

to follow fairly rigid guidelines. Moreover, student peer re-

view was hardwired into the curriculum: For a student to

complete the MSc degree, it was not sufficient to complete

the necessary number of coursework units and produce the

prescribed amount of written work. Written work under-

went student peer reviewing, and the reviewing duties were

mandatory. The peer reviews, with their summaries and cri-

tique, were usually important input for instructors grading

student projects, but the main purpose was for students to

practise professional skills: to read and summarize technical

writing crisply, to analyse and evaluate, and to provide opin-

ion and feedback constructively. Already in 1969, Naur had

described his “project activity” approach and the philosophy

behind it [33]. We — two DIKU alumni who were subjected

to it, and who proceeded into academic careers — later came

to see the approach as innovative and pedagogically well

ahead of its time. The emphasis on project work, written

communication, and peer review helped develop, we think, a

scholarly culture among students at DIKU. It developed not

only technical and communication skills, but also judgement

and affective skills. In conjunction with the use of older stu-

dents as teaching assistants, it also fostered collaboration

among students at different year levels, as well as between

students and academics.

Second, DIKU was a small, close-knit community where

students enjoyed considerable influence on both adminis-

tration and academic decision making.
2
A variety of social

events were held regularly which involved both students and

staff. As a result there was strong community feeling, a sense

of belonging, at least for students who chose to participate

in committees and social events.

Third, DIKU was housed in a refitted factory, rather than

a building designed for office work, let alone academic work.

And yet the physical space turned out to be surprisingly

fit for purpose (it is still used by sections of a now much

larger DIKU). There was no dedicated student common room,

nor was there a staff room of the “staff only” type then

commonly found in universities. Instead, students, academic

and professional staff mingled in the one and only “canteen”

— a volunteer-run cafeteria equipped with a semi-industrial

kitchen, offering basic food and drinks at low prices. The

2
The day-to-day running of the department was the responsibility of the

“institutbestyrer” who also chaired the “institutråd” — the department’s

executive committee, with representatives for academic staff, professional

staff, and students. In 1971 the committee elected, with large majority,

Flemming Sejergaard Olsen as its Chair. What is remarkable about that is the

fact that Sejergaard Olsen was a student (who went on to discharge his tasks

as Chair very competently). The newspaper “Politiken” commented that

“the conditions at DIKU are somewhat strange, compared to the prevailing

university climate; the students and academics collaborate and have done

so since the institute was created a few years ago. Indeed, Sejergaard Olsen

was nominated [as Chair] by academics” [34]. While the statutes governing

the university technically allowed for a student to serve as the department

manager, this was the only example of its kind ever, and a change of law

soon put an end to such democratic indulgence.

2

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

canteen was a venue also for student-staff interaction, both

academic and social.

Neil arrived in 1982, taking over the third year under-

graduate course (Dat-2) which had a focus on programming

language technologies and computability. This course gave

Neil exposure to dozens of students and teaching assistants

interested in theoretical computer science and hungry for

project work in that area.

2.3 Late 1983: A Plan Is Hatched
It was during an informal chat in the canteen, in November

1983, that Harald, a teaching assistant at the time, told Neil

about a fascinating paper he had studied earlier that year. In

Nils Andersen’s course on program transformation, Harald

had been given the task of reading and presenting Andrei

Ershov’s “On the essence of compilation” [13]. The paper

showed how, in theory, a self-applicable partial evaluator

(or “auto-projector”) may be used for compilation. To say

that this topic resonated with Neil is an understatement. Neil

declared, with great excitement, that the paper was currently

sitting on his desk, he liked it verymuch, and he knew its con-

tents in and out. He had in fact met Ershov in Paris (possibly

at the IFIP’83 congress) a fewmonths earlier, and had learned

that no one had yet succeeded in constructing a non-trivial

self-applicable partial evaluator. Since that meeting Neil had

put considerable thought into how an auto-projector might

be realized and used for all sorts of interesting experiments.

The starting point for a design was to settle on a program-

ming language to use. There was a strong tradition of doing

partial evaluation in Lisp [2, 11, 20, 29], and Lisp had also

been favoured by Futamura [15]. Neil was also convinced

that Lisp was the right choice; however, it seemed necessary

to identify a suitable subset of pure Lisp, selected specif-

ically with self-application in mind. The language would

have to be powerful enough to allow the writing of a clever

symbolic-manipulation tool, but at the same time it should

be as simple as possible, to minimize bookkeeping and the

number of programming constructs the tool had to deal with.

We suspected that previous projects’ commitment to large

languages had been the bane of self-application. In modern

terminology, what was needed was a well-designed domain-

specific language (DSL) for the task.

Neil suggested a meeting where he and Harald could work

out the details, both of the DSL and of the partial evaluator.

Work thus began on the Mix project, with several meetings

in Neil’s office in December 1983. Neil was very confident

that the project would succeed, and soon! As he was going

to attend POPL in Salt Lake City the following month, mid

January 1984 seemed like a natural deadline for a working

auto-projector. It would be great to be able to demonstrate it

to colleagues at POPL, said Neil.

2.4 First Half of 1984: Frustration
The problem turned out to be harder than expected. In one

sense, building a partial evaluator is straightforward. Kleene

showed this in the context of partial recursive functions,

in the “S-m-n theorem” [27]. Given a representation of a

function 𝑓 of 𝑚 + 𝑛 variables, you can easily construct a

representation of an 𝑛-ary function 𝑔 which is 𝑓 specialized

to fixed values 𝑘1, . . . , 𝑘𝑚 for its first𝑚 variables. You simply

define

𝑔(𝑦1, . . . , 𝑦𝑛) = 𝑓 (𝑘1, . . . , 𝑘𝑚, 𝑦1, . . . , 𝑦𝑛)

so as to “hardwire” the given inputs 𝑘1, ...𝑘𝑚 into the repre-

sentation.

But a partial evaluator worth its name really should be

doing a fair amount of symbolic evaluation. It should perform

certain basic program transformations, including constant

folding, that could improve the runtime performance, and

it should do this across function calls. In fact, doing this

and doing it well would be essential in the context of self-

application.

In the first half of 1984, a sequence of more and more

sophisticated (or baroque, perhaps) auto-projectors were

produced, each referred to as Mix. Each rested on the as-

sumption that there would be a way for an auto-projector to

make sensible decisions, on-the-fly, about how to process a

function call: either “unfold” it, that is, continue with sym-

bolic evaluation of the function called, or else “suspend” it,

that is, leave the call as a residual expression, part of the

generated residual program. But each of our more and more

complicated unfold-or-suspend decision procedures turned

out to fail. When self-applied, Mix would either fail to ter-

minate, or else fail to symbolically execute function calls far

enough.

In early 1984 two other students of Neil’s, Mads Rosendahl

and Torben Mogensen, worked on a partial evaluator for Pas-

cal, but did not achieve self-application. The choice of Pascal

was probably motivated by its role as the primary teaching

language at the time, also in compiler construction. How-

ever, problems of parsing, encoding of tree data structures

by pointers, manual memory management, Pascal’s type sys-

tem, and similar factors presumably hindered progress and

experimentation.

That Peter got involved in the Mix project was due to a

chance encounter in DIKU’s canteen. As a third-year CS un-

dergraduate, Peter had followed Neil’s Dat-2 lectures on func-

tional programming, interpretation and compilation with

great enthusiasm. Much of that course used LetLisp, a ver-

sion of Lisp with (statically scoped) let-bindings, compiled

down to standard Lisp by a preprocessor which Neil had

written in LetLisp itself. One afternoon in early 1984 Peter

found some older students in the canteen listening to Mads

3

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

exp → (C S-expression)
| (INP)
| (ARG)
| (X)
| (HEAD exp)
| (TAIL exp)
| (PAIR exp exp)
| (IF exp exp exp exp)
| (CALL exp)
| (LETX exp exp)
| (REC exp exp)

Figure 1. An early version of a language L designed for ease

of self-application

Tofte
3
(who Peter knew as a teaching assistant from the year

before) talking about an exciting idea that Neil was work-

ing on. This involved not just programs transforming other

programs, but programs transforming themselves, promis-

ing spectacular results if achieved in practice. Knowing Neil

from the lectures may have emboldened Peter to approach

him about this project.

In any case, Peter somehow joined Neil’s and Harald’s

work on constructing a self-applicable partial evaluator, prob-

ably no later than April 1984, though the precise timeline is

unclear. The best design of the language L that Mix would

both process, and be written in (so as to be self-applicable)

was still far from clear.

Up to that point, the successive versions of L were ex-

tremely simple languages without named entities, so a pro-

gram could have only one (unnamed) function with one (un-

named) parameter in scope at a time. Figure 1 shows the syn-

tax of such a language [40]. (INP) provided access to input.

HEAD, TAIL and PAIR were like Lisp’s car, cdr and cons; C
was a “constancy” operator, like Lisp’s QUOTE, and IFwas the
conditional operator, with (IF 𝑒1 𝑒2 𝑒3 𝑒4) corresponding to

the Lisp expression (cond ((equal 𝑒1 𝑒2) 𝑒3) (t 𝑒4)). The
language was call-by-value. A recursive function would be

defined using (REC 𝑒1 𝑒2), with 𝑒2 being the body of the func-
tion and 𝑒1 its initial argument. Definitions could be nested,

and a call (CALL 𝑒) would then always be to the function

defined by the nearest enclosing REC. That way, functions
and formal parameters need not be named — (ARG) would
simply refer to the actual parameter. Similarly, let bindings

were possible, but only to a single name, referred to through

(X). Accordingly, an expression (LETX 𝑒1 𝑒2)meant “let X be
bound to (the result of evaluating) 𝑒1 in 𝑒2”.

While the lack of parameter (and let-variable) multiplicity

made programming in L tedious, it was not a real restriction,

3
Mads Tofte at the time worked on Neil’s CERES compiler generator, gen-

eralizing it using another form of self-application. He later contributed to

the Standard ML language and to compile-time memory management, then

founded the IT University of Copenhagen and headed it 1999-2018.

(REC ((HEAD (INP)) :: '(() ()))
(LET (eps . (beta . (alpha . xi))) = (ARG)

(op e1 e2 e3 e4) = eps
v1 = (CALL (e1 :: (TAIL (ARG))))
v2 = (CALL (e2 :: (TAIL (ARG))))
v3 = (CALL (e3 :: (TAIL (ARG))))
v4 = (CALL (e4 :: (TAIL (ARG))))

IN
(IF op 'C e1
(IF op 'INP (HEAD (TAIL (INP)))
(IF op 'ARG alpha
(IF op 'X xi
(IF op 'HEAD (HEAD v1)
(IF op 'TAIL (TAIL v1)
(IF op 'PAIR (v1 :: v2)
(IF op 'IF (IF v1 v2 v3 v4)
(IF op 'CALL (CALL (beta :: beta :: v1 :: xi))
(IF op 'LETX (CALL (e2 :: beta :: alpha :: v1))
(IF op 'REC (CALL (e2 :: e2 :: v1 :: xi))

'error
))))))))))))

)

Figure 2. A self-interpreter for L [40]

as multiple parameters were readily encoded using Lisp data

structures. Nevertheless, syntactic sugar was soon added: a

single quote could be used in place of C, a right-associative
infix “::” could be used in place of PAIR, and let clauses

with pattern bindings were added — all compiled away by a

preprocessor. With that, a self-interpreter could be presented

as in Figure 2 and used as a basis for building auto-projectors.

The basic symbolic evaluation steps that would be required

were fairly well understood. For example, the processing of

an expression (HEAD 𝑒) would consist of symbolic evalua-

tion of 𝑒 , to obtain 𝑒★, followed by rewriting of the original

expression to

(C 𝑎) if 𝑒★ = (C 𝑎.𝑏)
𝑒1 if 𝑒★ = (PAIR 𝑒1 𝑒2)
(HEAD 𝑒★) otherwise

We were prepared for the fact that decisions about when to

unfold function calls would be the harder part to get right,

and that this presumably would require much programming

and experimentation. As it turned out, frugality had been

taken too far in the design of L. In particular, the inability to

name functions made experimentation cumbersome, so that

progress was very slow. Nevertheless, the self-interpreter

became the basis for a working, albeit not terribly powerful,

partial evaluator, with dynamic decisions about call unfold-

ing [40] — an approach later referred to as “online” partial

evaluation.

4

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

2.5 Mid 1984: The TOUPE Series
At some point in the summer of 1984 we instead decided that

L should be a first-order “flat-scope” subset of Lisp, in which

a program could have any number of (named) functions, each

with any number of (named) parameters; essentially first-

order recursion equations, or combinators. This was an im-

provement on two fronts. First, it made programming more

natural and hence experimentation much easier and faster.

Second, by accident or by (Neil’s) design, unlike the previ-

ous languages, this one enabled a strategy of polyvariant

program-point specialization, in which the residual program

would be a collection of (0, 1, or more) specialized versions of

each of the original program’s function definitions. Indeed,

most partial evaluators subsequently developed at DIKU use

some form of polyvariant program point specialization [23],

independently devised by Bulyonkov [7], for suitable notions

of “program point”.

For a while we worked with this language and with dy-

namic control (during partial evaluation) of call unfolding,

initially with great optimism. Since the start of the project we

had moved away from UNIVAC 1108 Lisp to running Franz

Lisp on DIKU’s new VAX 11/750, and later VAX 11/785, some-

thing that had resulted in good performance gains. However,

we continued to run into situations where the generated

residual programs would be either trivial, or infinite (so spe-

cialization would not terminate), or very large, due to flawed

dynamic unfolding strategies. Peter recalls a situation where

he had started a self-application experiment writing the resid-

ual program to a file (as a Lisp S-expression), gone to lunch,

and when coming back met an irate computer operator be-

cause the residual program had consumed all remaining disk

space on the departmental server (some 20 MB). We now

pessimistically referred to our successive partial evaluator

designs as TOUPE, for Tomorrow’s Outdated Useless Partial

Evaluator.

2.6 Second Half of 1984: A Breakthrough
A breakthrough came when, early in the second half of 1984,

we began development of a version of Mix which abandoned

the idea of on-the-fly unfolding decisions. Instead it was as-

sumed that some kind of pre-processing would annotate each

function argument, to indicate whether it should be treated

as residual or not. Accordingly, the DSL was extended to al-

low for such annotations, in fact to allow for the annotation

of every type of operation. This allowed us to experiment

with annotations to see how they affected the generated

compilers, and especially the size of these compilers.

With that, “offline” partial evaluation was born. In October

1984 we had arrived at a Mix version which performed well.

It did require annotation, by hand, of function calls that

appeared in the program being specialized. (In particular, Mix

itself had to be thus annotated.) Based on this, a preprocessor

annotated the program completely, that is, each operation op

prog → (fundef fundef . . .)
fundef → (fname (var . . .) exp)

exp → (quote S-expression)
| var
| (car exp)
| (cdr exp)
| (cons exp exp)
| (atom exp)
| (equal exp exp)
| (if exp exp exp)
| (call fname exp . . .)

Figure 3. The language L used for Mix self-application by

late 1984 [35, page 10]

would be turned into “op-r” or “op-e”, according as it should

be left residual during partial evaluation, or symbolically

evaluated. This finally led to the successful generation of

compilers and compiler generators with manageable sizes

and structures that could be studied and understood.

Our work up to that point (end of 1984) was written up as

a conference paper submission to the First International Con-
ference on Rewriting Techniques and Applications (RTA) [24].
The TR version [25] was published in January 1985 and the

RTA’85 paper in May 1985.
4
As future work, the paper sug-

gested that it “should be investigated whether a generally

useful call annotation algorithm is possible” and indeed, we

soon developed an automated call annotation method, based

on binding-time analysis; see Section 5.

2.7 A Language for Self-Applicable Partial
Evaluation

As mentioned, the language L used for successful self-ap-

plication of Mix was a subset of statically scoped pure Lisp,

essentially corresponding to first-order recursion equations,

described in [35, 36]. The language is shown in Figure 3,

where the notation “exp . . .” indicates a sequence of zero

or more occurrences of the grammatical construct exp. The
language keywords are in lowercase, to better distinguish

them from the earlier versions of L.

A program prog is a list of one or more function defi-

nitions. A function definition is a three-element list of a

function name fname, a list of zero or more function param-

eters var , and the function body which is an expression exp.
An expression exp is essentially a pure Lisp expression, but

there are only nine expression forms, and a function call has

the explicit syntactic constructor call.
In retrospect, even the Figure 3 version of L was possibly

too parsimonious for its own good. Adding a let-binding
to the core L language would have permitted us to separate

4
Although the paper was only marginally within the RTA scope, it is today,

according to Springer, the most cited paper from the 1985 conference.

5

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

code duplication concerns from termination concerns when

making decisions about call unfolding; see Section 5. Torben

Mogensen clearly realized this in 1986, including let in core

L in his MSc thesis [30, pages 10-11]. In a later publication

[26], essentially the same language was called Mixwell, but

its sugared version Mixwell
+
had additional features.

In any case, we preserved the idea already used in Sec-

tion 2.4 to define a more convenient extended language LetL,

with “syntactic sugar” constructs such as these:

• let and where data decomposition patterns; for in-

stance, let (op exp1 exp2) = exp in ... would

bind the three elements of list exp to variables op, exp1,
and exp2

• if-then-elsf-else chains of conditionals

• a right-associative infix cons operator ::
• logical operators such as null, not, and, and or
• a list operator for building lists

These LetL constructs were compiled to plain L by a simple

pre-processor, as in Neil’s Dat-2 course [22]. Using these

extensions, a self-interpreter for L could be written as shown

in Figure 4.
5

3 The Futamura Projections
Before we discuss the important role played by binding-time

analysis, let us recapitulate the applications to compiler gen-

eration that, for us, motivated self-application. This section’s

equations have been published countless times, but we re-

produce these classics for contrast with more binding-time-

explicit versions in Section 4.1 and 4.2, to help understand

how non-trivial self-application succeeded. In the follow-

ing, for simplicity, we will gloss over issues of termination

and also the distinction between a program’s text and its

semantics (as an input-output function).

Let 𝑝 be a program that takes two arguments 𝑑1 and 𝑑2.

Ordinarily, the application of 𝑝 to (𝑑1, 𝑑2) would be evaluated
to a result 𝑣 in one stage:

𝑣 = 𝑝 (𝑑1, 𝑑2) (1)

However, alternatively it may be evaluated in two stages,

first using a partial evaluatormix to specialize 𝑝 with respect

to part of its input 𝑑1, obtaining residual program 𝑟 , then

running the residual program on the remaining input 𝑑2 to

obtain the result 𝑣 :

𝑟 = mix (𝑝, 𝑑1)
𝑣 = 𝑟 (𝑑2)

(2)

More generally, a program mix is a partial evaluator if for
any two-argument program 𝑝 and input values 𝑑1 and 𝑑2,

5
The programming of program transformers can give rise to whimsical bugs.

One day we were amazed to find a generated residual program containing

the novel message ’UNKNOWN ’ERROR:, apparently cobbled together from

the ’UNKNOWN ’VARIABLE and ’SYNTAX ’ERROR: messages found in the

code of Figure 4.

((L-int (prog input) =
(let (fname1 pars1 body1) . rest) = prog in

(call Exp body1 pars1 input prog))
(Exp (exp vars vals prog) =

(let (op exp1 exp2 exp3) = exp
(call? fname . argexps) = exp in

(if (atom exp) then
(call Lookupv exp vars vals)

elsf (equal op 'quote) then
exp1

elsf (equal op 'call) then
(call Call (call Lookupf fname prog)

(call Pars argexps vars vals prog)
prog)

else (let v1 = (call Exp exp1 vars vals prog) in
(if (equal op 'car) then (car v1)
elsf (equal op 'cdr) then (cdr v1)
elsf (equal op 'atom) then (atom v1)
elsf (equal op 'if) then
(if v1 then (call Exp exp2 vars vals prog)
else (call Exp exp3 vars vals prog))

else (let v2 = (call Exp exp2 vars vals prog) in
(if (equal op 'equal) then (equal v1 v2)
elsf (equal op 'cons) then (cons v1 v2)
else (list 'SYNTAX 'ERROR: exp))))))))

(Call (fundef vals vars) =
(let (fname pars body) = fundef in

(call Exp body pars vals prog)))
(Pars (explist vars vals prog) =

(let (exp1 . exprest) = explist in
(if (null explist) then 'nil
else (cons (Exp exp1 vars vals prog)

(Pars exprest vars vals prog)))))
(Lookupv (var vars vals) =

(let (vn1 . vnr) = vars
(vv1 . vvr) = vals in

(if (null vars) then (list 'UNKNOWN 'VARIABLE)
elsf (equal var vn1) then vv1
else (call Lookupv var vnr vvr))))

(Lookupf (fname prog) = ... similar to Lookupv ...)
)

Figure 4. A self-interpreter for L as of late 1984 [35, page

11]. Above, L-int is the main function; prog is the program

to be evaluated; vars is a list of variable names; and vals a

parallel list of their values.

the result of the two-stage evaluation equals that of the one-

stage evaluation:

∀𝑝,𝑑1, 𝑑2. if 𝑟 = mix (𝑝,𝑑1)
then 𝑟 (𝑑2) = 𝑝 (𝑑1, 𝑑2)

(3)

The two-stage evaluation shown in (2) may be preferable

over the one-stage evaluation in (1) when the first stage

6

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

performs a great deal of computation based on 𝑑1, and the

second stage needs to be performed for many different values

of 𝑑2.

A special case of this is when 𝑝 is an interpreter interp, 𝑑1
is a program src to be interpreted, and 𝑑2 is that program’s

input 𝑑 . Then the first computation stage corresponds to

compilation of src to a target program tgt, and the second

stage corresponds to running the compiled target program

on its input 𝑑 :

tgt = mix (interp, src)
𝑣 = tgt (𝑑) (4)

Since mix itself is a program that takes two arguments, one

may specialize mix with respect to its first argument, here

the interpreter interp. Then one obtains a compiler comp,
which when given the second argument src will produce a
target program tgt:

comp = mix (mix, interp)
tgt = comp(src) (5)

In the first line above, the outermost mix is a running pro-

gram which is applied to some representation mix of itself,

such as its program text, or abstract syntax tree. As described

in Section 1, such “self-application” is in no way paradoxi-

cal, but it is challenging to design mix so that the result of

self-application is non-trivial.

Going one step further, one may specialize mix with re-

spect to itself (rather than with respect to an interpreter), to

obtain a compiler generator cogen. Subsequently applying

cogen to an interpreter interp will produce a compiler comp:

cogen = mix (mix,mix)
comp = cogen(interp) (6)

The equations (4) through (6) were called “Futamura’s pro-

jections” by Ershov in a short 1980 paper in Japanese [12].

Finally, it follows from the definition of mix in (3) that

applying cogen to mix produces cogen itself:

cogen = cogen(mix) (7)

This equation shows that if we consider mix an interpreter-

style specializer that takes a two-argument program and

a value of its first argument, then cogen is the correspond-

ing compiler-style specializer: a program that turns a two-

argument one-stage program 𝑝 into a generator pgen of spe-

cialized versions of 𝑝 . In other words, 𝑝𝑔𝑒𝑛 is a two-stage

version of 𝑝 , taking one argument in each computation stage:

pgen = cogen(𝑝)
𝑟 = pgen(𝑑1)
𝑣 = 𝑟 (𝑑2)

From this it should be clear that provided a program mix
satisfying (3) exists, and provided it can produce non-trivial

residual programs when specializing itself, one can compile

programs, generate compilers, and even generate a compiler

generator — that can reproduce itself! These were exciting

prospects! And yet, they had not been realized in practice

by early 1984.

Futamura’s original 1971 paper [15] states only the first

two projections, whereas the third appears in a 1973 internal

report by Futamura, as described in a 1999 interview [16]. In

a 1976 paper, Beckman et al. [2] mention Futamura’s 1971 pa-

per very briefly. They discuss self-application and the three

projections, without linking any of that to Futamura’s pa-

per, possibly because they were interested in applications

other than compiler generation. A 1977 report by Valentin

Turchin [41] also expresses the three projections, without

reference to Futamura, or Beckman et al. Thus it appears that
some or all of the Futamura projections were rediscovered

independently during the 1970s. None of those discover-

ies, however, led to successful self-application in practice.

Beckman et al., recognising the usefulness of a generator

cogen = mix (mix,mix) (in our notation) instead proceeded

to construct it by hand.

4 Annotations and Binding-Time Analysis
Binding-time analysis is a static analysis over a two-valued

abstract domain {𝐷, 𝑆}. The analysis assigns, to each func-

tion variable 𝑣 , one of the abstract values 𝑆 (“static”) or 𝐷

(“dynamic”), according as the values taken by 𝑣 depend only

on given input, during partial evaluation. A 𝐷 thus means

the possible values of 𝑣 could depend (also) on the input that

has not been given
6
. Based on this information, every ex-

pression can then be classified as static or dynamic, namely,

an expression is static if it is a variable assigned 𝑆 , a con-

stant, or an expression all of whose components are static.

Unfolding decisions can then be made, pre-partial evaluation

time, based on how expressions are annotated. In particular,

the decision about whether a recursive function call should

be left residual or not can rely on binding-time information.

Section 5 describes a simple such decision procedure.

In general, such a static-analysis approach leads to less

specialization performed by a partial evaluator, compared to

a dynamic decision-making approach. However, self-applica-

tion is a rather special case, in which layers of interpretation

are piled up. In the following we show why, in that case,

pre-determined static/dynamic information enables one to

achieve deeper specialization.

4.1 A Partial Evaluator That Takes a Binding-Time
Argument

It is instructive to revisit the formulas describing partial eval-

uation and self-application in Section 3, now taking binding-

time analysis and annotated programs into account. This

6
The early Mix work used the terms “known” and “unknown”, but these

were found to be rather anthropomorphic and therefore replaced by “static”

and “dynamic”. In a similar vein, the compiler generator cogen in Section 3

was initially called cocom, for compiler-compiler, but was renamed to avoid

associations to cocom, the Coordinating Committee for Multilateral Export
Controls targeting East Block countries.

7

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

section and the next one are based on [37], which credits

Anders Bondorf for inspiration.

Due to the use of binding-time analysis, the self-applicable

Mix partial evaluator developed in 1984 could be more accu-

rately described as taking three arguments: a program 𝑝 , a

binding-time description 𝛿 , and some static arguments 𝑑1 for

𝑝 . We call this version mix3 to distinguish it from the mix
in Section 3. For the special case of 𝑝 taking two arguments,

the first one static (𝑆) and the second one dynamic (𝐷), the

revised version of the “mix equation” (3) becomes:

∀𝑝, 𝑑1, 𝑑2 . if 𝑟 = mix3(𝑝, SD, 𝑑1)
then 𝑟 (𝑑2) = 𝑝 (𝑑1, 𝑑2)

(3
′𝑎)

For the special case of 𝑝 taking three arguments, the first

two static (𝑆) and the third dynamic (𝐷), the revised “mix

equation” is:

∀𝑝, 𝑑1, 𝑑2, 𝑑3 . if 𝑟 = mix3(𝑝, SSD, ⟨𝑑1, 𝑑2⟩)
then 𝑟 (𝑑3) = 𝑝 (𝑑1, 𝑑2, 𝑑3)

(3
′𝑏)

Now that mix3 itself takes three arguments, the Futamura

projections (4) – (6) must be revised correspondingly. The

compilation of a source program src by specialization of an

interpreter interp looks like this, by (3
′𝑎):

tgt = mix3(interp, SD, src)
𝑣 = tgt (𝑑) (4

′
)

To specialize mix3 with respect to the interpreter interp, we
should provide also the binding-time description 𝛿 = SD as

static input; only the source program src should be dynamic.

Hence, to generate a compiler as in (5), we actually specialize

mix3 with respect to interp and SD, and so the binding-time

description of the outermost application of mix3 has to be

𝛿 = SSD. Thus, by (3
′𝑏):

comp = mix3(mix3, SSD, ⟨interp, SD⟩)
tgt = comp(src) (5

′
)

When going one step further, specialising mix3 with respect

to itself (rather than with respect to an interpreter), we ac-

tually specialize mix3 with respect to the tuple ⟨mix3, SSD⟩
to obtain a compiler generator cogen3. This cogen3 must be

applied not just to the interpreter interp but to the tuple

⟨interp, SD⟩ which specifies that we want cogen3 to produce

a comp that expects a source program src but not the source
program’s input 𝑑 , again by (3

′𝑏):

cogen3 = mix3(mix3, SSD, ⟨mix3, SSD⟩)
comp = cogen3(⟨interp, SD⟩) (6

′
)

Finally, applying this cogen3 tomix3, in analogy with (7), we

must actually apply cogen3 not just to mix3 but to the tuple

⟨mix3, SSD⟩, which specifies that we expect cogen3 to pro-

duce a “compiler-style” specializer that expects two (static)

inputs, namely, a program and a binding-time description,

but not the program’s partial inputs. By (3
′𝑏):

cogen3 = cogen3(⟨mix3, SSD⟩) (7
′
)

Now let us consider how the presence of binding-time in-

formation facilitates non-trivial self-application in (5
′
). The

crucial point is that the binding-time description SD is given

as a static argument to the second occurrence of mix3, the
one to be specialized, together with interp. This specifies that
the residual program comp must be one that inputs a source

program src and produces a program that in turn inputs a

data value 𝑑 and runs src on 𝑑 ; in other words, comp is a

compiler.

Conversely, if the binding-time description given together

with interp had been DS, the residual program should be one

that inputs a data value 𝑑 and produces a program that in

turn inputs a source program src and runs src on 𝑑 ; not our
usual concept of a compiler.

Moreover, in case no binding-time description at all were

given to the to-be-specialized mix3 together with interp, the
self-application in (5

′
) would have had to generate an overly

general “compiler” that would be able to handle both of the

above situations, as well as others. Clearly such a “compiler”

would both be unlikely to be recognizable as one, and proba-

bly very complex.

Thus it is not the binding time description SSD given to the

running mix3 that matters in self-application. What matters

is that the to-be-specialized mix3 also gets a binding-time

description as a static argument, telling it which inputs will

be available to the residual program and which ones will not.

Analogously, in (6
′
), it is the second occurrence of SSD

that is important for successful self-application.

To summarize, the introduction of an explicit binding-time

argument 𝛿 supports successful self-applicable partial evalua-

tion because it provides a principled way to pass binding-time
information also to the to-be-specialized partial evaluator in a

self-application, as in (5
′
) and (6

′
). The next section shows

how this was actually done in Mix, by annotating all oper-

ations in the programs to be specialized, based on a static

binding-time analysis.

4.2 A Partial Evaluator Using Annotations
The three-argument partial evaluator mix3 described in the

previous subsection can be thought of equivalently as a two-

argument partial evaluator that processes annotated pro-

grams. This is because an annotated program 𝑝𝛿 depends

only on the program 𝑝 and the binding-time description 𝛿 ,

and these are always given together in (5
′
) – (7

′
). Hence the

SSD in equations (5
′
) and (6

′
): 𝑆 for the to-be-specialized

program, 𝑆 for its binding-time description 𝛿 , and 𝐷 for the

program’s input.

Let us call the partial evaluator that processes annotated

programs mixa, to distinguish it from mix in Section 3 and

mix3 in Section 4.1, but really it is just an alternative pre-

sentation of mix3. Note that mixa takes two arguments: an

annotated program 𝑝𝛿 , and the static arguments 𝑑 of that

program.

8

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

Restating Equations (4
′
) through (7

′
) in terms ofmixa and

annotated programs, we get the following equations.

The compilation of a source program src (not annotated)
by specialization of an annotated interpreter interpSD looks

like this:

tgt = mixa(interpSD, src)
𝑣 = tgt (𝑑) (4

′′
)

When specializing mixa with respect to interpreter interpSD
to generate a compiler as in (5), the interpreter’s annota-

tions now provide the binding-time information SD that was

given explicitly in (5
′
); only the source program src is dy-

namic. Hence, the binding-time description of the outermost

application of mixa has to be 𝛿 = SD; that is, the mixa be-

ing specialized is annotated as mixaSD . The interpreter is

annotated as interpSD as in (4
′′
):

comp = mixa(mixaSD, interpSD)
tgt = comp(src) (5

′′
)

When going one step further, specialising the specializer with

respect to itself (rather than with respect to an interpreter),

we actually specialize the annotated mixaSD with respect to

the annotated mixaSD to obtain a compiler generator cogena.
This cogena must be applied to an annotated interpreter

interpSD specifying that we want cogena to produce a comp
that expects a source program src (hence the 𝑆) but not the
source program’s input 𝑑 (hence the 𝐷):

cogena = mixa(mixaSD,mixaSD)
comp = cogena(interpSD)

(6
′′
)

Finally, applying this cogena tomixa, in analogy with (7′), we
must actually apply cogena to the annotated mixaSD , which
specifies that we expect cogena to produce a “compiler-style”

specializer that expects one (static) input, namely, an anno-

tated program, but not the program’s partial inputs:

cogena = cogena(mixaSD) (7
′′
)

Obviously, annotations support successful self-application

for exactly the same reasons already given in Section 4.1; an

annotated program 𝑝𝛿 simply has the binding-time descrip-

tion 𝛿 baked in.

The connection between mixa and mix3 can be described

in terms of a pre-processor program annotate that takes as
input a program 𝑝 and a binding-time description 𝛿 of 𝑝’s

inputs, performs a binding-time analysis, and produces an

annotated program 𝑝𝛿 . Then we could define

mix3(𝑝, 𝛿, 𝑑) = let 𝑝𝛿 = annotate(𝑝, 𝛿)
in mixa(𝑝𝛿 , 𝑑)

(8)

Thus the annotator annotate can be considered a preproces-

sor for the specializer proper, which is mixa. Now, isn’t it
cheating to apply the specializer mixa only to annotated

programs 𝑝𝛿 , including annotated versions of itself, as in

Equations (5
′′
) and (6

′′
)? No. If we apply it to the full mix3,

then, since both 𝑝 and 𝛿 are given (static), it would fully

compute the 𝑝𝛿 term interpretively before specialising mixa

in the next step — provided of course that the specializer

mixa encompasses the functionality of an interpreter: when

given all arguments, it can compute (a representation of) a

value, rather than an expression that needs to be evaluated.

4.3 Problems Caused by Binding-Times
The preceding sections showed how binding-times and an-

notations facilitated successful self-application. However,

their introduction also caused new problems, requiring new

solutions.

Our rather simple binding-time analysis would treat a

variable as either entirely static or entirely dynamic. Now

consider an interpreter using the classical Lisp representation

of an environment by a list of pairs (var . val), each
holding a variable’s name and its value. If the interpreter

were to be specialized with respect to a program but not

the program’s inputs, then the values would be classified as

dynamic, and hence the entire environment including the

variable nameswould be classified as dynamic. Consequently,

the result of specializing the interpreter would typically be

trivial.

The solution to this problem can be seen in the Exp func-

tion of the self-interpreter in Figure 4, where the environ-

ment is represented by parallel lists vars and vals, respec-
tively holding all-static variable names and all-dynamic vari-

able values. This replacement of a list of pairs by a pair of

lists is an example of a “binding-time improvement”, the

rewriting of a program to compensate for the simplicity

of the binding-time analysis. Later work proposed better

binding-time analyses [31].

Another problem is illustrated by the Lookupf function

in Figure 4, which finds the definition of function fname in
the program prog. If this function were used in a partial

evaluator that is being partially evaluated, then typically

prog would be static but fname dynamic (coming from a list

of function specializations yet to be computed), and so the

result of Lookupf would be dynamic, causing the result of

self-application to be trivial.

The solution to this problem is more subtle, exploiting

“bounded static variation”, for instance, the fact that a given

program contains only finitely many function definitions.

Essentially, instead of returning the function definition from

Lookupf for processing elsewhere, the processing would be

moved into the success case of the lookup loop. The result-

ing specialized program would then typically contain an

if-else chain corresponding to the possible functions. This

technique is known as The Trick [23, Section 5.4.3].

5 From Semi-Automation to Full
Automation

The self-applicable partial evaluator we reported in May

1985 [24] performed automatic binding-time analysis (BTA)

for variables and expressions as described in Section 4, and

9

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

automatically annotated all operations as eliminable or resid-

ual, as described in Section 2.6. However, function calls still

had to be manually (and statically) classified as either call,
meaning that the call will be unfolded, or callr, meaning

that the call will be residual, that is, replaced by a call to a

specialized function.

An automatic call unfolding strategy should strive to avoid

generating trivial residual programs (by unfolding too little),

avoid generating infinite residual programs (by unfolding

too much), and avoid generating needlessly large or ineffi-

cient residual programs (by duplicating computations when

unfolding). In the call unfolding strategies described below,

an annotation stage would use the results of binding-time

analysis to mark each function call as eliminable or residual,

and then the subsequent function specialization stage would

just obey these annotations without further cleverness, in

keeping with the general philosophy of Mix.

A very simple strategy actually suffices [23, Section 4.4]:

1. If a call has only static arguments, then mark it elim-

inable.

2. Otherwise mark the call residual.

This approach will produce a very large number of very

simple residual functions, and perhaps for this reason it

wasn’t seriously considered in early work. Instead, the first

fully automatic call annotation strategy for Mix [26, 38],

developed sometime during 1985–1986, was based on the

concept of an inductive static variable, implemented by case 2

below:

1. If a call has only static arguments, then mark it elim-

inable.

2. Otherwise, if the call is a recursive call from a func-

tion f(. . . ,vi,. . .)=. . . to itself, and the call

has a static argument position 𝑖 that computes a sub-

structure, for instance (car vi), of that argument’s

previous value vi, and all other static variables are

unchanged in the call, then mark it eliminable.

3. Otherwise mark the call residual.

In case 2 one must additionally ensure that no non-trivial

argument in a position classified as dynamic might be dupli-

cated by the unfolding, since that might lead to an explosion

in the residual program’s size (if such duplication happens

recursively during partial evaluation) or lead to an explosion

in the residual program’s running time (if the duplicated

residual expression contains a recursive call) [38]. In retro-

spect, had we added a let-binding to the core L language in

Figure 3, then we would not have needed this extra caveat,

nor the simple program analysis that implemented it. More-

over, the conceptual untangling of code duplication concerns

from termination concerns might have allowed us to real-

ize sooner that an automatic call annotation strategy was

feasible.

At a later point we switched to a simpler fully automatic

call annotation strategy, based on the notion of function call

under static control [23, Section 5.5.1]:

1. If a call has only static arguments, then mark it elim-

inable.

2. Otherwise, if the call is not in a branch of a dynamic

conditional if, then mark it eliminable.

3. Otherwise mark the call residual.

This is the approach used in the Scheme0 specializer [23,

Appendix A]. The code duplication caveat above still applies

to item 2.

With all of these three call unfolding strategies, the result-

ing specialized programs might contain many rather simple

functions, some consisting of just a call to another func-

tion. Such near-trivial functions could then be removed by

a postprocessing stage. The postprocessing stage analysed

the residual program’s call graph, decided on a cut-point (a

function) in each simple call cycle, unfolded harmless resid-

ual function calls while avoiding duplication of code and

computation, and also beautified the names of the generated

residual functions [38, Section 4.2] [26, Section 6.5].

Putting together the pre-processing needed to turn a LetL

program into an L program (Section 2.7), the binding-time

analysis and annotation stage described by (8), and the post-

processing, it is clear that the specialization 𝑟 ′ = mix3(𝑝, 𝛿, 𝑑)
of LetL-program 𝑝 with binding-time description 𝛿 and static

input 𝑑 , giving residual program 𝑟 ′, works in these stages

[26, Section 7]:

𝑞 = desugar (𝑝) from LetL to L

𝑞𝛿 = annotate(𝑞, 𝛿) BTA and annotation

𝑟 = spec(𝑞𝛿 , 𝑑) function specialization

𝑟 ′ = post (𝑟) postprocessing

(9)

Hence, in the end self-application was achieved by careful

design of the language L being processed, the invention of

binding-time analysis, the invention of a static call unfold-

ing strategy, and by separating the various processes and

concerns into multiple stages.

6 The Legacy of Neil D. Jones
In retrospect, it is remarkable that almost all the early Mix

work was done without any external funding, formal project

structures, or the like. It is a testament to Neil’s openness

and generosity of mind that he allowed Peter, a random

undergraduate student, to join his and Harald’s work on

solving a programming challenge that had been open for

over a decade, despite efforts in Japan, Sweden and the USSR.

This spirit of openness and collaboration continued to

characterize Neil’s group as it grew considerably in the fol-

lowing years. Neil would acquire external funding, not least

from the EU, for collaborative basic research projects, re-

sulting in strong connections to Cambridge, Chalmers in

Gothenburg, École Normale Supérieure in Paris, Edinburgh,

10

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

0

10

20

30

40

50

60

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

TOPPS D-numbers/year

Figure 5. Number of TOPPS group publications per year

(computed in 2014 from data on the group homepage)

Glasgow, Imperial College, many North American univer-

sities, Moscow, Novosibirsk, and other places. This in turn

attracted many international postdocs, visitors and faculty

and created a phenomenal scientific atmosphere in Neil’s

group, lasting for decades, and an international network of

colleagues that still matters today.

From 1988, the group was named the TOPPS group, an

acronym for the Danish equivalent of Theory and practice of
programming languages. Figure 5 shows the vigorous TOPPS-
related publication activity from around 1988, as a conse-

quence of the international visibility and networking.

Neil was an outstanding researcher, educator and supervi-

sor, showing great faith in students’ abilities to solve prob-

lems, and liberally sharing advice, techniques and tricks

when one got stuck. His 1984 lecture notes for the third

year undergraduate course on programming languages and

computability provided an admirable example of clarity and

intellectual economy, covering a broad range of topics in

just 103 type-written pages [22]. This approach influenced a

generation of computer scientists, as expressed also in Neil’s

obituary [9].

The next section describes some of the work on partial

evaluation at DIKU that followed the early Mix work. Among

the many other subsequent contributions from Neil’s group,

it is worth mentioning the two very influential C pointer

analyses that were created by his students Lars Ole Andersen

(in 1994, motivated by partial evaluation of C) [23, Chapter

11] and Bjarne Steensgaard (in 1996, inspired by Fritz Hen-

glein’s work on efficient type inference). Both analyses have

been cited more than 1500 times in the scientific literature.

A variant of Steensgaard’s method is part of the widely used

LLVM compiler infrastructure today.

7 Further Work on Partial Evaluation
A large amount of ever more sophisticated work on partial

evaluation followed after 1985, in Neil’s group and elsewhere.

Among the earliest are Hans Dybkjær’s work on specializa-

tion of general parsers [10] and Torben Mogensen’s work

on specialization of ray tracers [30]. In other significant

work, Anders Bondorf and Olivier Danvy developed Similix,

a self-applicable partial evaluator for a higher-order subset

of Scheme [5, 6], Carsten Gomard and Neil developed one

for the lambda calculus [18], Lars Ole Andersen developed

one for a substantial and useful subset of the C programming

language [1], and Torben Mogensen and Anders Bondorf de-

veloped one for Prolog [32]. Many many later contributions

followed.

By 1989, Neil proposed to collect all the then existing

knowledge and work in a monograph, which appeared in

1993 [23]; thirty years later, it has been cited more than 2200

times. It was co-authored with Carsten Gomard
7
, Peter, Lars

Ole Andersen and Torben Mogensen. The book gives the

full source code of a simple self-applicable partial evaluator

for IEEE Scheme, close in spirit to the fully automatic Mix

described in Section 5, apart from a simpler call unfolding

strategy [23, Appendix A]. The book also describes partial

evaluation developments and literature until early 1993 [23,

Chapter 18].

Multiple international symposia on partial evaluation and

related topics were co-organized by Neil or by people from

his group. Neil and Harald Ganzinger organized an interna-

tional workshop Programs as Data Objects at DIKU, Octo-
ber 1985, with proceedings [17]. An even more remarkable

event was the week-longWorkshop on Partial Evaluation and
Mixed Computation in October 1987 at Gammel Avernæs

in Denmark, which for the first time brought together An-

drei Ershov, Neil D. Jones, Valentin Turchin, Yoshihiko Futa-

mura, their current and former students, as well as many oth-

ers, including notably John McCarthy, the inventor of Lisp.

The workshop was organized and the proceedings edited by

Dines Bjørner, Andrei Ershov and Neil D. Jones [3]. In 1991,

a long-term home and venue for partial evaluation research

was created by Olivier Danvy, who had been in Neil’s group

since 1986 and contributed considerably to it, and Charles

Consel, in the form of the ACM symposium series Partial
Evaluation and Semantics-Based ProgramManipulation (ACM
PEPM).

8 Conclusion
We have described the early history of self-applicable partial

evaluation in the group of Neil D. Jones at DIKU, Univer-

sity of Copenhagen, and its historical and organizational

7
Carsten Gomard was another of Neil’s students, and at the time had de-

veloped a self-applicable partial evaluator for the lambda calculus. In 1999

Carsten co-founded Netcompany, nowDenmark’s largest software company

by revenue.

11

PEPM ’24, January 16, 2024, London, UK Peter Sestoft and Harald Søndergaard

context. We have pinpointed some technical aspects that, in

retrospect, enabled non-trivial self-application, and we have

briefly sketched how Neil’s group blossomed in subsequent

years.

Acknowledgements
We are grateful to the PEPM 2024 Program and History com-

mittees, not least Fritz Henglein, for the invitation to write

this historical note. We also want to thank Mads Rosendahl,

Mads Tofte, Olivier Danvy, Robert Glück and Torben Mo-

gensenwho provided invaluable help with early publications,

recollections, references, and other matters. A great many

other colleagues, friends, mentors and students contributed

over the years; we regret that most must go unmentioned

here.

References
[1] L. O. Andersen. 1993. Binding-Time Analysis and the Taming of C

Pointers. In Partial Evaluation and Semantics-Based Program Manip-
ulation, Copenhagen, Denmark, June 1993. ACM Publ., 47–58. https:
//doi.org/10.1145/154630.154636

[2] Lennart Beckman, Anders Haraldson, Östen Oskarsson, and Erik

Sandewal. 1976. A Partial Evaluator, and Its Use as a Programming Tool.

Artificial Intelligence 7, 4 (1976), 319–357. https://doi.org/10.1016/0004-
3702(76)90011-4

[3] D. Bjørner, A. P. Ershov, and N. D. Jones (Eds.). 1988. Partial Evaluation
and Mixed Computation. Proceedings of the IFIP TC2 Workshop, Gammel
Avernæs, Denmark, October 1987. North-Holland.

[4] Corrado Böhm. 1954. Calculatrices digitales. Du déchiffrage de for-

mules logico-mathématiques par la machine même dans la conception

du programme. Annali di Matematica Pura ed Applicata 37 (1954),

175–217. English translation at https://www.itu.dk/people/sestoft/
boehmthesis/.

[5] A. Bondorf. 1991. Automatic Autoprojection of Higher Order Recursive

Equations. Science of Computer Programming 17 (1991), 3–34. https:
//doi.org/10.1016/0167-6423(91)90035-v

[6] A. Bondorf and O. Danvy. 1991. Automatic Autoprojection of Recursive

Equations with Global Variables and Abstract Data Types. Science of
Computer Programming 16 (1991), 151–195. https://doi.org/10.1016/
0167-6423(91)90002-f

[7] M. A. Bulyonkov. 1984. Polyvariant Mixed Computation for Analyzer

Programs. Acta Informatica 21, 5 (1984), 473–484. https://doi.org/10.
1007/bf00271642

[8] Martin Davis. 2012. The Universal Computer: The Road from Leibniz to
Turing. CRS Press. https://doi.org/10.1201/b11441

[9] DIKU 2023. Obituary for professor emeritus Neil Jones.

https://di.ku.dk/english/news/2023/obituary-for-professor-emeritus-
at-diku-neil-jones/ 13 April 2023.

[10] Hans Dybkjær. 1985. Parsers and Partial Evaluation: An Experiment.

DIKU Student Project Report 85-7-15.

[11] Pär Emanuelson and Anders Haraldsson. 1980. On Compiling Embed-

ded Languages in Lisp. In 1980 Lisp Conf. (Stanford, CA). ACM Publ.,

208–215. https://doi.org/10.1145/800087.802808
[12] A. Ershov. 1980. About Futamura’s Projections. Bit (Japan) 12, 14

(1980), 4–5. (In Japanese).

[13] A. P. Ershov. 1978. On the Essence of Compilation. In Formal De-
scription of Programming Concepts, E. J. Neuhold (Ed.). North-Holland,

391–418.

[14] A. P. Ershov. 1982. Mixed Computation: Potential Applications and

Problems for Study. Theoretical Computer Science 18 (1982), 41–67.

https://doi.org/10.1016/0304-3975(82)90111-6
[15] Yoshihiko Futamura. 1971. Partial Evaluation of Computation Process—

An Approach to a Compiler-Compiler. Systems, Computers, Controls 2,
5 (1971), 45–50.

[16] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process,

Revisited. Higher-Order and Symbolic Computation 12 (1999), 377–

380. Question/answer style background information about Futamura’s

early work.

[17] Harald Ganzinger and Neil D. Jones (Eds.). 1986. Programs as Data
Objects. Copenhagen, Denmark, October 1985. LNCS, Vol. 217. https:
//doi.org/10.1007/3-540-16446-4

[18] C. K. Gomard. 1992. A Self-Applicable Partial Evaluator for the

Lambda Calculus: Correctness and Pragmatics. ACM Transactions
on Programming Languages and Systems 14, 2 (April 1992), 147–172.
https://doi.org/10.1145/128861.128864

[19] Anders Haraldsson. 1977. A Program Manipulation System Based on
Partial Evaluation. Ph.D. Dissertation. Linköping University, Sweden.

Linköping Studies in Science and Technology Dissertations 14.

[20] Anders Haraldsson. 1978. A Partial Evaluator, and Its Use for Com-

piling Iterative Statements in Lisp. In Proceedings of the Fifth ACM
Symposium on Principles of Programming Languages. ACM, 195–202.

https://doi.org/10.1145/512760.512781
[21] T. Hart and M. Levin. 1962. Memo 39—The New Compiler. MIT

Computation Center memo.

[22] Neil D. Jones. 1984. Datalogi 2 Notes: Functions, Expressions, Program-
ming Languages, Computability. Technical Report 84/7. DIKU, Uni-
versity of Copenhagen. https://di.ku.dk/forskning/Publikationer/
tekniske_rapporter/1980-1984/Jones_Dat2Notes_1984.pdf

[23] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial
Evaluation and Automatic Program Generation. Prentice-Hall. https:
//www.itu.dk/people/sestoft/pebook/

[24] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. 1985. An Experi-

ment in Partial Evaluation: The Generation of a Compiler Generator.

In Rewriting Techniques and Applications, J.-P. Jouannaud (Ed.). LNCS,

Vol. 202. Springer-Verlag, 124–140. https://doi.org/10.1007/3-540-
15976-2_6

[25] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. 1985. An Exper-
iment in Partial Evaluation: The Generation of a Compiler Generator.
Technical Report 85/1. DIKU, The University of Copenhagen.

[26] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. 1989. Mix: A Self-

Applicable Partial Evaluator for Experiments in Compiler Generation.

Lisp and Symbolic Computation 2, 1 (1989), 9–50. https://doi.org/10.
1007/BF01806312

[27] S. C. Kleene. 1938. On Notation for Ordinal Numbers. Journal of Sym-
bolic Logic 3, 4 (dec 1938), 150–155. https://doi.org/10.2307/2267778

[28] L. A. Lombardi. 1967. Incremental Computation. In Advances in
Computers, F. L. Alt and M. Rubinoff (Eds.). Vol. 8. Academic Press,

247–333.

[29] L. A. Lombardi and B. Raphael. 1964. Lisp as the Language for an In-

cremental Computer. In The Programming Language Lisp: Its Operation
and Applications, E. C. Berkeley and D. G. Bobrow (Eds.). MIT Press,

204–219.

[30] Torben Mogensen. 1986. The Application of Partial Evaluation to Ray-
Tracing. Master’s thesis. DIKU, University of Copenhagen, Denmark.

[31] Torben Mogensen. 1988. Partially Static Structures in a Self-Applicable

Partial Evaluator. In Partial Evaluation and Mixed Computation,
D. Bjørner, A. P. Ershov, and N. D. Jones (Eds.). North-Holland, 325–

347.

[32] T. Mogensen and A. Bondorf. 1993. Logimix: A Self-Applicable Partial

Evaluator for Prolog. In Logic Program Synthesis and Transformation:
Proceedings of LOPSTR 92, K.-K. Lau and T. Clement (Eds.). Springer-

Verlag, 214–227. https://doi.org/10.1007/978-1-4471-3560-9_15
[33] Peter Naur. 1970. Project Activity in Computer Science Education. Con-

siglio Nazionale delle Richerche, I. E. I., Pisa, Italy. 13 pages.

12

https://doi.org/10.1145/154630.154636
https://doi.org/10.1145/154630.154636
https://doi.org/10.1016/0004-3702(76)90011-4
https://doi.org/10.1016/0004-3702(76)90011-4
https://www.itu.dk/people/sestoft/boehmthesis/
https://www.itu.dk/people/sestoft/boehmthesis/
https://doi.org/10.1016/0167-6423(91)90035-v
https://doi.org/10.1016/0167-6423(91)90035-v
https://doi.org/10.1016/0167-6423(91)90002-f
https://doi.org/10.1016/0167-6423(91)90002-f
https://doi.org/10.1007/bf00271642
https://doi.org/10.1007/bf00271642
https://doi.org/10.1201/b11441
https://di.ku.dk/english/news/2023/obituary-for-professor-emeritus-at-diku-neil-jones/
https://di.ku.dk/english/news/2023/obituary-for-professor-emeritus-at-diku-neil-jones/
https://doi.org/10.1145/800087.802808
https://doi.org/10.1016/0304-3975(82)90111-6
https://doi.org/10.1007/3-540-16446-4
https://doi.org/10.1007/3-540-16446-4
https://doi.org/10.1145/128861.128864
https://doi.org/10.1145/512760.512781
https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/1980-1984/Jones_Dat2Notes_1984.pdf
https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/1980-1984/Jones_Dat2Notes_1984.pdf
https://www.itu.dk/people/sestoft/pebook/
https://www.itu.dk/people/sestoft/pebook/
https://doi.org/10.1007/3-540-15976-2_6
https://doi.org/10.1007/3-540-15976-2_6
https://doi.org/10.1007/BF01806312
https://doi.org/10.1007/BF01806312
https://doi.org/10.2307/2267778
https://doi.org/10.1007/978-1-4471-3560-9_15

The Genesis of Mix: Early Days of Self-Applicable Partial Evaluation (Invited Contribution) PEPM ’24, January 16, 2024, London, UK

[34] Politiken. 1971. Institutbestyrer studerer. 19 October 1971 issue, page

18.

[35] Peter Sestoft. 1985. The Structure of a Self-Applicable Partial Eval-
uator. Technical Report 85/11. DIKU, The University of Copen-

hagen. https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/
1985-1989/Sestoft-DIKU-report-85-11.pdf

[36] Peter Sestoft. 1986. The Structure of a Self-Applicable Partial Evaluator.

In Programs as Data Objects, H. Ganzinger and N. D. Jones (Eds.). LNCS,
Vol. 217. Springer-Verlag, 236–256. https://doi.org/10.1007/3-540-
16446-4_14

[37] Peter Sestoft. 1987. Mix Takes Three Arguments. (1987). Handwritten

note, 6 pages, 4 November 1987.

[38] Peter Sestoft. 1988. Automatic Call Unfolding in a Partial Evaluator.

In Partial Evaluation and Mixed Computation, D. Bjørner, A. P. Ershov,
and N. D. Jones (Eds.). North-Holland, 485–506.

[39] Peter Sestoft and Alexander V. Zamulin. 1988. Annotated Bibliography

on Partial Evaluation and Mixed Computation. New Generation Com-
puting 6, 2, 3 (1988), 309–354. https://doi.org/10.1007/bf03037145 Bib-

tex file at https://www.itu.dk/people/sestoft/pebook/partial-eval.bib.
[40] Harald Søndergaard. 1984. A Primitive Autoprojector for a Simple

Applicative Language. DIKU Student Project Report 84-2-4, 83 pages.

[41] Valentin F. Turchin (Ed.). 1977. Basic Refal and Its Implementation on
Computers. Moscow: GOSSTROI SSSR, TsNIPIASS. (In Russian).

[42] A. M. Turing. 1936. On Computable Numbers, with an Application to

the Entscheidungsproblem. Proceedings of the London Mathematical
Society 42 (1936), 230–265. https://doi.org/10.1112/plms/s2-42.1.230

[43] UCPH [n.d.]. UCPH Department of Computer Science. https://en.
wikipedia.org/wiki/UCPH_Department_of_Computer_Science Ac-

cessed 17 November 2023.

Received 2023-10-20; accepted 2023-11-20

13

https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/1985-1989/Sestoft-DIKU-report-85-11.pdf
https://di.ku.dk/forskning/Publikationer/tekniske_rapporter/1985-1989/Sestoft-DIKU-report-85-11.pdf
https://doi.org/10.1007/3-540-16446-4_14
https://doi.org/10.1007/3-540-16446-4_14
https://doi.org/10.1007/bf03037145
https://www.itu.dk/people/sestoft/pebook/partial-eval.bib
https://doi.org/10.1112/plms/s2-42.1.230
https://en.wikipedia.org/wiki/UCPH_Department_of_Computer_Science
https://en.wikipedia.org/wiki/UCPH_Department_of_Computer_Science

	Abstract
	1 Introduction
	2 The History of Mix
	2.1 Self-Application and Partial Evaluation
	2.2 DIKU: The Early Days
	2.3 Late 1983: A Plan Is Hatched
	2.4 First Half of 1984: Frustration
	2.5 Mid 1984: The TOUPE Series
	2.6 Second Half of 1984: A Breakthrough
	2.7 A Language for Self-Applicable Partial Evaluation

	3 The Futamura Projections
	4 Annotations and Binding-Time Analysis
	4.1 A Partial Evaluator That Takes a Binding-Time Argument
	4.2 A Partial Evaluator Using Annotations
	4.3 Problems Caused by Binding-Times

	5 From Semi-Automation to Full Automation
	6 The Legacy of Neil D. Jones
	7 Further Work on Partial Evaluation
	8 Conclusion
	References

