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Abstract. We describe lambda calculus reduction strategies, such as
call-by-value, call-by-name, normal order, and applicative order, using
big-step operational semantics. We show how to simply and efficiently
trace such reductions, and use this in a web-based lambda calculus re-
ducer available at 〈http://www.dina.kvl.dk/˜sestoft/lamreduce/〉.

1 Introduction

The pure untyped lambda calculus is often taught as part of the computer sci-
ence curriculum. It may be taught in a computability course as a classical com-
putation model. It may be taught in a semantics course as the foundation for
denotational semantics. It may be taught in a functional programming course
as the archetypical minimal functional programming language. It may be taught
in a programming language course for the same reason, or to demonstrate that
a very small language can be universal, e.g. can encode arithmetics (as well as
data structures, recursive function definitions and so on), using encodings such
as these:

two ≡ λf.λx.f(fx)
four ≡ λf.λx.f(f(f(fx)))

add ≡ λm.λn.λf.λx.mf(nfx)
(1)

This paper is motivated by the assumption that to appreciate the operational
aspects of pure untyped lambda calculus, students must experiment with it, and
that tools encourage experimentation with encodings and reduction strategies
by making it less tedious and more fun.

In this paper we describe a simple way to create a tool for demonstrating
lambda calculus reduction. Instead of describing a reduction strategy by a pro-
cedure for locating the next redex to be contracted, we describe it by a big-step
operational semantics. We show how to trace the β-reductions performed during
reduction.

To do this we also precisely define and clarify the relation between program-
ming language concepts such as call-by-name and call-by-value, and lambda cal-
culus concepts such as normal order reduction and applicative order reduction.
These have been given a number of different interpretations in the literature.
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2 Motivation and Related Work

Much has been written about the lambda calculus since Church developed it
as a foundation for mathematics [6]. Landin defined the semantics of program-
ming languages in terms of the lambda calculus [11], and gave a call-by-value
interpreter for it: the secd-machine [10]. Strachey used lambda calculus as a
meta-language for denotational semantics, and Scott gave models for the pure
untyped lambda calculus, making sure that self-application could be assigned a
meaning; see Stoy [22]. Self-application (x x) of a term x is used when encoding
recursion, for instance in Church’s Y combinator:

Y ≡ λh.(λx.h (x x)) (λx.h (x x)) (2)

Plotkin studied the call-by-value lambda calculus corresponding to the func-
tional language iswim [12] implemented by Landin’s secd-machine, and also a
related call-by-name lambda calculus, and observed that one characteristic of a
functional programming language was the absence of reduction under lambda
abstractions [19].

Barendregt [4] is the standard reference on the untyped lambda calculus,
with emphasis on models and proof theory, not programming languages.

Many textbooks on functional programming or denotational semantics present
the pure untyped lambda calculus, show how to encode numbers and algebraic
data types, and define evaluators for it. One example is Paulson’s ML textbook
[16], which gives interpreters for call-by-name as well as call-by-value.

So is there really a need for yet another paper on lambda calculus reduction?
We do think so, because it is customary to look at the lambda calculus either
from the programming language side or from the calculus or model side, leaving
the relations between the sides somewhat unclear.

For example, Plotkin [19] defines call-by-value reduction as well as call-by-
name reduction, but the call-by-name rules take free variables into account only
to a limited extent. By the rules, x ((λz.z) v) reduces to x v, but (x y) ((λz.z) v)
does not reduce to x y v [19, page 146]. Similarly, the call-by-value strategy de-
scribed by Felleisen and Hieb using evaluation contexts [8, Section 2] would not
reduce (x y) ((λz.z) v) to x y v, since there is no evaluation context of the form
(x y) [ ]. This is unproblematic because, following Landin, these researchers were
interested only in terms with no free variables, and in reduction only outside
lambda abstractions.

But it means that the reduction rules are not immediately useful for terms
that have free variables, and therefore not useful for experimentation with the
terms that result from encoding programming language constructs in the pure
lambda calculus.

Conversely, Paulson [16] presents call-by-value and call-by-name interpreters
for the pure lambda calculus that do handle free variables. However, they also
perform reduction under lambda abstractions (unlike functional programming
languages), and the evaluation order is not leftmost outermost: under call-by-
name, an application (e1 e2) is reduced by first reducing e1 to head normal form,
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so redexes inside e1 may be contracted before an enclosing leftmost redex. This
makes the relation between Paulson’s call-by-name and normal order (leftmost
outermost) reduction strategies somewhat unclear.

Therefore we find that it may be useful to contrast the various reduction
strategies, present them using big-step operational semantics, present their (naive)
implementation in ML, and show how to obtain a trace of the reduction.

3 The Pure Untyped Lambda Calculus

We use the pure untyped lambda calculus [4]. A lambda term is a variable x,
a lambda abstraction λx.e which binds x in e, or an application (e1 e2) of a
‘function’ e1 to an ‘argument’ e2:

e ::= x | λx.e | e1 e2 (3)

Application associates to the left, so (e1 e2 e3) means ((e1 e2) e3). A lambda term
may have free variables, not bound by any enclosing lambda abstraction. Term
identity e1 ≡ e2 is taken modulo renaming of lambda-bound variables. The
notation e[ex/x] denotes substitution of ex for x in e, with renaming of bound
variables in e if necessary to avoid capture of free variables in ex.

A redex is a subterm of the form ((λx.e) e2); the contraction of a redex pro-
duces e[e2/x], substituting the argument e2 for every occurrence of the parameter
x in e. By e −→β e′ we denote β-reduction, the contraction of some redex in e
to obtain e′.

A redex is to the left of another redex if its lambda abstractor appears
further to the left. The leftmost outermost redex (if any) is the leftmost redex
not contained in any other redex. The leftmost innermost redex (if any) is the
leftmost redex not containing any other redex.

4 Functional Programming Languages

In practical functional programming languages such as Scheme [20], Standard
ML [14] or Haskell [18], programs cannot have free variables, and reductions are
not performed under lambda abstractions or other variable binders, because this
would considerably complicate their efficient implementation [17].

However, an implementation of lambda calculus reduction must perform re-
ductions under lambda abstractions. Otherwise, add two two would not reduce
to four using the encodings (1), which would disappoint students.

Because free variables and reduction under abstraction are absent in func-
tional languages, it is unclear what the programming language concepts call-by-
value and call-by-name mean in the lambda calculus. In particular, how should
free variables be handled, and to what normal form should call-by-value and
call-by-name evaluate? We propose the following answers:
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– A free variable is similar to a data constructor (in Standard ML or Haskell),
that is, an uninterpreted function symbol. If the free variable x is in function
position (x e2), then call-by-value should reduce the argument expression e2,
whereas call-by-name should not. This is consistent with constructors being
strict in strict languages (e.g. ML) and non-strict in non-strict languages
(e.g. Haskell).

– Functional languages perform no reduction under abstractions, and thus
reduce terms to weak normal forms only. In particular, call-by-value reduces
to weak normal form, and call-by-name reduces to weak head normal form.
Section 6 define these normal forms.

5 Lazy Functional Programming Languages

Under lazy evaluation, a variable-bound term is evaluated at most once, regard-
less how often the variable is used [17]. Thus an argument term may not be
duplicated before it has been reduced, and may be reduced only if actually used.
This evaluation mechanism may be called call-by-need, or call-by-name with
sharing of argument evaluation. The equational theory of call-by-need lambda
calculus has been studied by Ariola and Felleisen [2] among others. (By con-
trast, the lazy lambda calculus of Abramsky and Ong [1] is not lazy in the sense
discussed here; rather, it is the theory of call-by-name lambda calculus, without
reduction under abstractions.)

Lazy functional languages also permit the creation of cyclic terms, or cycles
in the heap. For instance, this declaration creates a finite (cyclic) representation
of an infinite list of 1’s:

val ones = 1 :: ones

Thus to be true also to the intensional properties of lazy languages (such as time
and space consumption), a model should be able to describe such constant-size
cyclic structures. Substitution of terms for variables cannot truly model them,
only approximate them by unfolding of a recursive term definition, possibly
encoded using a recursion combinator such as (2). To properly express sharing
of subterm evaluation, and the creation of cyclic terms, one must extend the
syntax (3) with mutually recursive bindings:

e ::= x | λx.e | e e | letrec {xi = ei} in e (4)

The sharing of subterm evaluation and the dynamic creation of cyclic terms may
be modelled using graph reduction, as suggested by Wadsworth [24] and used in
subsequent work [3, 17, 23], or using an explicit heap [13, 21].

Thus a proper modelling of lazy evaluation, with sharing of argument evalu-
ation and cyclic data structures, requires syntactic extensions as well as a more
elaborate evaluation model than just term rewriting. We shall not consider lazy
evaluation any further in this paper, and shall consider only the syntax in (3)
above.
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6 Normal Forms

We need to distinguish four different normal forms, depending on whether we
reduce under abstractions or not (in functional programming languages), and
depending on whether we reduce the arguments before substitution (in strict
languages) or not (in non-strict languages).

Figure 1 summarizes the four normal forms using four context-free grammars.
In each grammar, the symbol E denotes a term in the relevant normal form, e
denotes an arbitrary lambda term generated by (3), and n ≥ 0. Note how the two
dichotomies generate the four normal forms just by varying the form of lambda
abstraction bodies and application arguments.

Reduce under abstractions

Reduce args Yes No

Yes Normal form
E ::= λx.E | xE1 . . . En

Weak normal form
E ::= λx.e | x E1 . . . En

No Head normal form
E ::= λx.E | x e1 . . . en

Weak head normal form
E ::= λx.e | x e1 . . . en

Fig. 1. Normal forms. The ei denote arbitrary lambda terms generated by (3).

7 Reduction Strategies and Reduction Functions

We present several reduction strategies using big-step operational semantics, or
natural semantics [9], and their implementation in Standard ML. The premises
of each semantic rule are assumed to be evaluated from left to right, although
this is immaterial to their logical interpretation. We exploit that Standard ML
evaluates a function’s arguments before calling the function, evaluates the right-
hand side of let-bindings before binding the variable, and evaluates subterms
from left to right [14].

We model lambda terms x, λx.e and (e e) as ML constructed data, repre-
senting variable names by strings:

datatype lam = Var of string

| Lam of string * lam

| App of lam * lam

We also assume an auxiliary function subst : lam -> lam -> lam that imple-
ments capture-free substitution, so subst ex (Lam(x, e)) is the ML represen-
tation of e[ex/x], the result of contracting the redex (λx.e) ex.
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7.1 Call-by-Name Reduction to Weak Head Normal Form

Call-by-name reduction e
bn
−→ e′ reduces the leftmost outermost redex not inside

a lambda abstraction first. It treats free variables as non-strict data constructors.
For terms without free variables, it coincides with Plotkin’s call-by-name reduc-
tion [19, Section 5], and is closely related to Engelfriet and Schmidt’s outside-in
derivation (in context-free tree grammars, or first-order recursion equations) [7,
page 334].

x
bn
−→ x

(λx.e)
bn
−→ (λx.e)

e1
bn
−→ (λx.e) e[e2/x]

bn
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

bn
−→ e′

e1
bn
−→ e′1 6≡ λx.e

---------------------------------------------------------------------------------
(e1 e2)

bn
−→ (e′1 e2)

(5)

It is easy to see that all four rules generate terms in weak head normal form. In
particular, in the last rule e′1 must have form y e′11 . . . e′1n for some n ≥ 0, so
(e′1 e2) is a weak head normal form. Assuming that the rule premises are read
and ‘executed’ from left to right, it is also clear that only leftmost redexes are
contracted. No reduction is performed under abstractions.

The following ML function cbn computes the weak head normal form of
a lambda term, contracting redexes in the order implied by the operational
semantics (5) above:

fun cbn (Var x) = Var x

| cbn (Lam(x, e)) = Lam(x, e)

| cbn (App(e1, e2)) =

case cbn e1 of

Lam (x, e) => cbn (subst e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

The first function clause above handles variables x and implements the first
semantics rule. Similarly, the second function clause handles lambda abstractions
(λx.e) and implements the second semantics rule. In both cases, the given term
is returned unmodified. The third function clause handles applications (e1 e2)
and implements the third and fourth semantics rule by discriminating on the
result of reducing e1. If the result is a lambda abstraction (λx.e) then the cbn

function is called to reduce the expression e[e2/x]; but if the result is any other
expression e′1, the application (e′1 e2) is returned.

In all cases, this is exactly what the semantics rules in (5) describe. In fact,

one can see that e
bn
−→ e′ if and only if cbn e terminates and returns e′.
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7.2 Normal Order Reduction to Normal Form

Normal order reduction e
no
−→ e′ reduces the leftmost outermost redex first. In an

application (e1 e2) the function term e1 must be reduced using call-by-name (5).
Namely, if e1 reduces to an abstraction (λx.e), then the redex ((λx.e) e2) must
be reduced before redexes in e, if any, because they would not be outermost.

x
no
−→ x

e
no
−→ e′

-------------------------------------------------------------------------------
(λx.e)

no
−→ (λx.e′)

e1
bn
−→ (λx.e) e[e2/x]

no
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

no
−→ e′

e1
bn
−→ e′1 6≡ (λx.e) e′1

no
−→ e′′1 e2

no
−→ e′2

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

no
−→ (e′′1 e′2)

(6)

It is easy to see that these rules generate normal form terms only. In particular,
in the last rule e′1 must have form y e′11 . . . e′1n for some n ≥ 0, so e′′1 must have
form y E′′

11 . . . E′′

1n for some normal forms E ′′

1i, and therefore (e′′1 e′2) is a normal
form. Any redex contracted is the leftmost one not contained in any other redex;
this relies on the use of call-by-name in the application rules. Reductions are per-
formed also under lambda abstractions. Normal order reduction is normalizing :
if the term e has a normal form, then normal order reduction of e will terminate
(with the normal form as result).

The Standard ML function nor : lam -> lam below implements the reduc-
tion strategy. Note that it uses the function cbn defined in Section 7.1:

fun nor (Var x) = Var x

| nor (Lam (x, e)) = Lam(x, nor e)

| nor (App(e1, e2)) =

case cbn e1 of

Lam(x, e) => nor (subst e2 (Lam(x, e)))

| e1’ => let val e1’’ = nor e1’

in App(e1’’, nor e2) end

Again the first two cases of the function implement the first two reduction rules.
The third case implements the third and fourth rules by evaluating e1 using
call-by-name cbn and then discriminating on whether the result is a lambda
abstraction or not, as in the third and fourth rule in (6).
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7.3 Call-by-Value Reduction to Weak Normal Form

Call-by-value reduction e
bv
−→ e′ reduces the leftmost innermost redex not inside

a lambda abstraction first. It treats free variables as strict data constructors. For
terms without free variables, it coincides with call-by-value reduction as defined
by Plotkin [19, Section 4] and Felleisen and Hieb [8]. It is closely related to
Engelfriet and Schmidt’s inside-out derivations (in context-free tree grammars,
or first-order recursion equations) [7, page 334]. It differs from call-by-name
(Section 7.1) only by reducing the argument e2 of an application (e1 e2) before
contracting the redex, and before building an application term:

x
bv
−→ x

(λx.e)
bv
−→ (λx.e)

e1
bv
−→ (λx.e) e2

bv
−→ e′2 e[e′2/x]

bv
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

bv
−→ e′

e1
bv
−→ e′1 6≡ (λx.e) e2

bv
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
bv
−→ (e′1 e′2)

(7)

It is easy to see that these rules generate weak normal form terms only. In
particular, in the last rule e′1 must have form y E′

11 . . . E′

1n for some n ≥ 0
and weak normal forms E ′

1i, and therefore (e′1 e′2) is a weak normal form too.
No reductions are performed under lambda abstractions. This is Paulson’s eval
auxiliary function [16, page 390]. The implementation of the rules by an ML
function is straightforward and is omitted.

7.4 Applicative Order Reduction to Normal Form

Applicative order reduction e
ao
−→ e′ reduces the leftmost innermost redex first. It

differs from call-by-value (Section 7.3) only by reducing also under abstractions:

x
ao
−→ x

e
ao
−→ e′

-------------------------------------------------------------------------------
(λx.e)

ao
−→ (λx.e′)

e1
ao
−→ (λx.e) e2

ao
−→ e′2 e[e′2/x]

ao
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

ao
−→ e′

e1
ao
−→ e′1 6≡ (λx.e) e2

ao
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
ao
−→ (e′1 e′2)

(8)

427



It is easy to see that the rules generate only normal form terms. As before, note
that in the last rule e′1 must have form y E′

11 . . . E′

1n for some n ≥ 0 and normal
forms E′

1i. Also, it is clear that when a redex ((λx.e) e′2) is contracted, it contains
no other redex, and it is the leftmost redex with this property.

Applicative order reduction is not normalizing; with Ω ≡ (λx.(x x))(λx.(x x))
it produces an infinite reduction ((λx.y) Ω) −→β ((λx.y) Ω) −→β . . . although
the term has normal form y.

In fact, applicative order reduction fails to normalize applications of functions
defined using recursion combinators, even with recursion combinators designed
for call-by-value, such as Yv :

Yv ≡ λh.(λx.λa.h (x x) a) (λx.λa.h (x x) a) (9)

7.5 Hybrid Applicative Order Reduction to Normal Form

Hybrid applicative order reduction is a hybrid of call-by-value and applicative
order reduction. It reduces to normal form, but reduces under lambda abstrac-
tions only in argument positions. Therefore the usual call-by-value versions of
the recursion combinator, such as (9) above, may be used with this reduction
strategy. Thus the hybrid applicative order strategy normalizes more terms than
applicative order reduction, while using fewer reduction steps than normal order
reduction. The hybrid applicative order strategy relates to call-by-value in the
same way that the normal order strategy relates to call-by-name. It resembles
Paulson’s call-by-value strategy, which works in two phases: first reduce the term

by
bv
−→ , then normalize the bodies of any remaining lambda abstractions [16,

page 391].

x
ha
−→ x

e
ha
−→ e′

-------------------------------------------------------------------------------
(λx.e)

ha
−→ (λx.e′)

e1
bv
−→ (λx.e) e2

ha
−→ e′2 e[e′2/x]

ha
−→ e′

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

ha
−→ e′

e1
bv
−→ e′1 6≡ (λx.e) e′1

ha
−→ e′′1 e2

ha
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
ha
−→ (e′′1 e′2)

(10)
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7.6 Head Spine Reduction to Head Normal Form

The head spine strategy performs reductions inside lambda abstractions, but
only in head position. This is the reduction strategy implemented by Paulson’s
headNF function [16, page 390].

x
he
−→ x

e
he
−→ e′

-------------------------------------------------------------------------------
(λx.e)

he
−→ (λx.e′)

e1
he
−→ (λx.e) e[e2/x]

he
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

he
−→ e′

e1
he
−→ e′1 6≡ (λx.e)

---------------------------------------------------------------------------------
(e1 e2)

he
−→ (e′1 e2)

(11)

It is easy to see that the rules generate only head normal form terms. Note
that this is not a head reduction as defined by Barendregt [4, Definition 8.3.10]:
In a (leftmost) head reduction only head redexes are contracted, where a redex
((λx.e0) e1) is a head redex if it is preceded to the left only by lambda abstractors
of non-redexes, as in λx1. . . . λxn.(λx.e0) e1 . . . em, with n ≥ 0 and m ≥ 1.

To define head reduction, one should use e1
bn
−→ e′1 in the above application

rules (11) to avoid premature reduction of inner redexes, similar to the use of
bn
−→ in the definition of

no
−→ .

7.7 Hybrid Normal Order Reduction to Normal Form

Hybrid normal order reduction is a hybrid of head spine reduction and normal
order reduction. It differs from normal order reduction only by reducing the

function e1 in an application to head normal form (by
he
−→ ) instead of weak

head normal form (by
bn
−→ ) before applying it to the argument e2.

The hybrid normal order strategy resembles Paulson’s call-by-name strategy,

which works in two phases: first reduce the term by
he
−→ to head normal form,

then normalize unevaluated arguments and bodies of any remaining lambda
abstractions [16, page 391].
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x
hn
−→ x

e
hn
−→ e′

-------------------------------------------------------------------------------
(λx.e)

hn
−→ (λx.e′)

e1
he
−→ (λx.e) e[e2/x]

hn
−→ e′

-----------------------------------------------------------------------------------------------------------------------------------------
(e1 e2)

hn
−→ e′

e1
he
−→ e′1 6≡ (λx.e) e′1

hn
−→ e′′1 e2

hn
−→ e′2--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
hn
−→ (e′′1 e′2)

(12)

These rules generate normal form terms only. The strategy is normalizing, be-
cause if the term (e1 e2) has a normal form, then it has a head normal form, and
then so has e1 [4, Proposition 8.3.13].

8 Properties of the Reduction Strategies

The relation defined by each reduction strategy is idempotent. For instance, if

e
bn
−→ e′ then e′

bn
−→ e′. To see this, observe that e′ is in weak head normal form,

so it has form λx.e′′ or x e1 . . . en, where e′′ and e1, . . . , en are arbitrary lambda
terms. In the first case, e′ reduces to itself by the second rule of (5). In the second
case, an induction on n shows that e′ reduces to itself by the first and third rule
of (5). Similar arguments can be made for the other reduction strategies.

Figure 2 classifies the seven reduction strategies presented in Sections 7.1
to 7.7 according the normal forms (Figure 1) they produce.

Reduce under abstractions

Reduce args Yes No

Yes Normal form
ao, no, ha, ho

Weak normal form
bv

No Head normal form
he

Weak head normal form
bn

Fig. 2. Classification of reduction strategies by the normal forms they produce.
The ‘uniform’ reduction strategies are shown in boldface, the ‘hybrid’ ones in italics.

Inspection of the big-step semantics rules shows that four of the reduction
strategies (ao,bn,bv,he, shown in bold in Figure 2) are ‘uniform’: their defini-
tion involves only that reduction strategy itself. The remaining three (no, ha, hn)
are ‘hybrid’: each uses one of the ‘uniform’ strategies for the reduction of the
expression e1 in function position in applications (e1 e2). Figure 3 shows how the
‘hybrid’ and ‘uniform’ strategies are related.
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Hybrid Uniform

no bn

ha bv

hn he

Fig. 3. Derivation of hybrid strategies from uniform ones.

9 Tracing: Side-Effecting Substitution, and Contexts

The reducers defined in ML in Section 7 perform the substitutions e[e2/x] in the
same order as prescribed by the operational semantics, thanks to Standard ML
semantics: strict evaluation and left-to-right evaluation. But they only return
the final reduced lambda term; they do not trace the intermediate steps of the
reduction, which is often more interesting from a pedagogical point of view.

ML permits expressions to have side effects, so we can make the substitu-
tion function report (e.g. print) the redex just before contracting it. To do this
we define a modified substitution function csubst which takes as argument an-
other function c and applies it to the redex App(Lam(x, e), ex) representing
(λx.e) ex, just before contracting it:

fun csubst (c : lam -> unit) ex (Lam(x, e)) =

(c (App(Lam(x, e), ex));

subst ex (Lam(x, e)))

The function c : lam -> unit is evaluated for its side effect only, as shown
by the trivial result type unit. Evaluating csubst c ex (Lam(x, e)) has the
effect of calling c on the redex ((λx.e) ex), and its result is the result of the
substitution e[ex/x], which is the contracted redex.

We could define a function printlam : lam -> unit that prints the given
lambda term as a side effect. Then replacing the call subst e2 (Lam(x, e)) in
function cbn of Section 7.1 by csubst printlam e2 (Lam(x, e)) will cause the
reduction of a term by cbn to produce a printed trace of all redexes ((λx.e) ex),
in the order in which they are contracted.

This still does not give us a usable trace of the evaluation: we do not know
where in the current term the printed redex occurs. This is because the function
printlam is applied only to the redex itself; the term surrounding the redex is
implicit. To make the term surrounding the redex explicit, we can use a context,
a term with a single hole, such as λx.[ ] or (e1 [ ]) or ([ ] e2), where the hole is
denoted by [ ]. Filling the hole of a context with a lambda term produces a
lambda term. The following grammar generates all single-hole contexts:

C ::= [ ] | λx.C | e C | C e (13)

A context can be represented by an ML function of type lam -> lam. The four
forms of contexts (13) can be created using four ML context-building functions:
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fun id e = e

fun Lamx x e = Lam(x, e)

fun App2 e1 e2 = App(e1, e2)

fun App1 e2 e1 = App(e1, e2)

For instance, (App1 e2) is the ML function fn e1 => App(e1, e2) which rep-
resents the context ([ ] e2). Filling the hole with the term e1 is done by computing
(App1 e2) e1 which evaluates to App(e1, e2), representing the term (e1 e2).

Function composition (f o g) composes contexts. For instance, the compo-
sition of contexts λx.[ ] and ([ ] e2) is Lamx x o App1 e2, which represents the
context λx.([ ] e2). Similarly, the composition of the contexts ([ ] e2) and λx.[ ] is
App1 e2 o Lamx x, which represents ((λx.[ ]) e2).

10 Reduction in Context

To produce a trace of the reduction, we modify the reduction functions defined
in Section 7 to take an extra context argument c and to use the extended sub-
stitution function csubst, passing c to csubst. Then csubst will apply c to the
redex before contracting it. We take the call-by-name reduction function cbn

(Section 7.1) as an example; the other reduction functions are handled similarly.
The reduction function must build up the context c as it descends into the term.
It does so by composing the context with the appropriate context builder (in
this case, only in the App branch):

fun cbnc c (Var x) = Var x

| cbnc c (Lam(x, e)) = Lam(x, e)

| cbnc c (App(e1, e2)) =

case cbnc (c o App1 e2) e1 of

Lam (x, e) => cbnc c (csubst c e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

By construction, if c : lam -> lam and the evaluation of cbnc c e involves a
call cbnc c′ e′, then c[e] −→∗

β c′[e′]. Also, whenever a call cbnc c′ (e1 e2) is

evaluated, and e1
bn
−→ (λx.e), then function c′ is applied to the redex ((λx.e) e2)

just before it is contracted. Hence a trace of the reduction of term e can be
obtained just by calling cbnc as follows:

cbnc printlam e

where printlam : lam -> unit is a function that prints the lambda term as
a side effect. In fact, computing cbnc printlam (App (App add two) two),
using the encodings from (1), prints the two intermediate terms below. The
third term shown is the final result (a weak head normal form):

(\m.\n.\f.\x.m f (n f x)) (\f.\x.f (f x)) (\f.\x.f (f x))

(\n.\f.\x.(\f.\x.f (f x)) f (n f x)) (\f.\x.f (f x))

\f.\x.(\f.\x.f (f x)) f ((\f.\x.f (f x)) f x)
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The trace of a reduction can be defined also by direct instrumentation of the
operational semantics (5). Let us define a trace to be a finite sequence of lambda
terms, denote the empty trace by ε, and denote the concatenation of traces s

and t by s · t. Now we define the relation e
bn
−→

s

C e′ to mean: under call-by-name,
the expression e reduces to e′, and if e appears in context C, then s is the trace
of the reduction. The trace s will be empty if no redex was contracted in the
reduction. If some redex was contracted, the first term in the trace will be e.

The tracing relation corresponding to call-by-name reduction (5) can be de-
fined as shown below:

x
bn
−→

ε

C x

(λx.e)
bn
−→

ε

C (λx.e)

e1
bn
−→

s

C[[ ] e2] (λx.e) e[e2/x]
bn
−→

t

C e′
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(e1 e2)
bn
−→

s·C[(λx.e) e2]·t

C e′

e1
bn
−→

s

C[[ ] e2] e′1 6≡ λx.e
---------------------------------------------------------------------------------------------------

(e1 e2)
bn
−→

s

C (e′1 e2)

(14)

Thus reduction of a variable x or a lambda abstraction (λx.e) produces the empty
trace ε. When e1 reduces to a lambda abstraction, reduction of the application
(e1 e2) produces the trace s · C[(λx.e) e2] · t, where s traces the reduction of e1

and t traces the reduction of the contracted redex e[e2/x].
Tracing versions of the other reduction strategies can be defined analogously.

11 Single-Stepping Reduction

For experimentation it is useful to be able to perform one beta-reduction at a
time, or in other words, to single-step the reduction. Again, this can be achieved
using side effects in the implementation language. We simply make the context
function c count the number of redexes contracted (substitutions performed),
and set a step limit N before evaluation is started.

When N redexes have been contracted, c aborts the reduction by raising an
exception Enough e′, which carries as its argument the term e′ that had been
obtained after N reductions. An enclosing exception handler returns e′ as the
result of the reduction. The next invocation of the reduction function simply
sets the step limit N one higher, and so on. Thus the reduction of the original
term starts over for every new step, but we create the illusion of reducing the
term one step at a time.

The main drawback of this approach is that the total time spent performing
n steps of reduction is O(n2). In practice, this does not matter: noboby wants
to single-step very long computations.
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12 A Web-Based Interface to the Reduction Functions

A web-based interface to the tracing reduction functions can be implemented as
an ordinary CGI script. The lambda term to be reduced, the name of the desired
reduction strategy, the kind of computation (tracing, single-stepping, etc.) and
the step limit are passed as parameters to the script.

Such an implementation has been written in Moscow ML [15] and is available
at 〈http://www.dina.kvl.dk/˜sestoft/lamreduce/〉. The implementation uses the
Mosmlcgi library to access CGI parameters, and the Msp library for efficient
structured generation of HTML code.

For tracing, the script uses a function htmllam : lam -> unit that prints
a lambda term as HTML code, which is then sent to the browser by the web
server. Calling cbnc (or any other tracing reduction function) with htmllam as
argument will display a trace of the reduction in the browser.

A trick is used to make the next redex into a hyperlink in the browser.
The implementation’s representation of lambda terms is extended with labelled
subterms, and csubst attaches labels 0, 1, . . . to redexes in the order in which
they are contracted. When single-stepping a reduction, the last labelled redex
inside the term can be formatted as a hyperlink. Clicking on the hyperlink will
call the CGI script again to perform one more step of reduction, creating the
illusion of single-stepping the reduction as explained above.

13 Conclusion

We have described a simple way to implement lambda calculus reduction, de-
scribing reduction strategies using big-step operational semantics, implementing
reduction by straightforward reduction functions in Standard ML, and instru-
menting them to produce a trace of the reduction, using contexts. This approach
is easily extended to other reduction strategies describable by big-step opera-
tional semantics.

We find that big-step semantics provides a clear presentation of the reduction
strategies, highlighting their differences and making it easy to see what normal
forms they produce.

The extension to lazy evaluation, whether using graph reduction or an explicit
heap, would be complicated mostly by the need to represent the current term
graph or heap, and to print it in a comprehensible way.

The functions for reduction in context were useful for creating a web inter-
face also, running the reduction functions as a CGI script written in ML. The
web interface provides a simple platform for students’ experiments with lambda
calculus encodings and reduction strategies.

Acknowledgements Thanks for Dave Schmidt for helpful comments that have
improved contents as well as presentation.
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