
Numeric performance in C, C# and Java
Peter Sestoft (sestoft@itu.dk)

IT University of Copenhagen
Denmark

Version 0.9.1 of 2010-02-19

Abstract: We compare the numeric performance of C, C# and Java on three small cases.

1 Introduction: Are Java and C# slower than C and C++?

Managed languages such as C# and Java are easier and safer to use than traditional languages such as C
or C++ when manipulating dynamic data structures, graphical user interfaces, and so on. Moreover, it is
easy to achieve good performance thanks to their built-in automatic memory management.

For numeric computations involving arrays or matrices of floating-point numbers, the situation might
seem less favorable. Compilers for Fortran, C and C++ make serious efforts to optimize inner loops that
involve array accesses: register allocation, reduction instrength, common subexpression elimination and
so on. By contrast, the just-in-time (JIT) compilers of the C# and Java runtime systems do not spend
much time on optimizing inner loops, and this hurts numeric code. Moreover, in C# and Java there must
be an index check on every array access, and this not only requires execution of extra instructions, but
can also lead to branch mispredictions and pipeline stalls on the hardware, further slowing down the
computation.

This note compares the numeric performance of Java and C# to that of C on standard laptop hard-
ware. It shows that Java and C# compete well with C also on numeric code; that the choice of execution
environment (virtual machine, JIT-compiler) is very important; and that a small amount of unsafe code
can seriously improve the speed of some C# programs.

1.1 Case study 1: matrix multiplication

We take matrix multiplication as a prime example of numeric computation. It involves triply nested
loops, many array accesses, and floating-point computations, yet the code is so compact that one can
study the generated machine code. We find that C performs best, that C# can be made to perform
reasonably well, and that Java can perform better than C#. See sections 2 through 5.4.

1.2 Case study 2: a division-intensive loop

We also consider a simple loop that performs floating-point division, addition and comparison, but no
array accesses. We find that C# and Java implementations perform better than C, but it turns out that the
computation time is dominated by the floating-point division.

1.3 Case study 3: polynomial evaluation

We next consider repeated evaluation of a polynomial of highdegree, on which almost all implementa-
tions do equally well, with C and Microsoft C# being equally fast, and Java only slightly slower.

1

1.4 Case study 4: a distribution function

Finally we consider the evaluation the cumulative distribution function for the normal (Gaussian) distri-
bution. Here we find that C is fastest, with both Microsoft C# and Sun Hotspot Java closely following.

2 Matrix multiplication in C

In C, a matrix can be represented by a struct holding the number of rows, the number of columns, and a
pointer to amalloc’ed block of memory that holds the elements of the matrix as a sequence of doubles:

typedef struct {
int rows, cols;
double *data; // (rows * cols) doubles, row-major order

} matrix;

If the dimensions of the matrix are known at compile-time, a more static representation of the matrix is
possible, but experiments show that for some reason this does not improve speed, quite the contrary.

Given the above struct type, and declarations

matrix R, A, B;

we can compute the matrix productR = AB in C with this loop:

for (r=0; r<rRows; r++) {
for (c=0; c<rCols; c++) {

double sum = 0.0;
for (k=0; k<aCols; k++)
sum += A.data[r*aCols+k] * B.data[k*bCols+c];

R.data[r*rCols+c] = sum;
}

}

Note that the programmer must understand the layout of the matrix (here, row-major) and it is his
responsibility to get the index computations right.

3 Matrix multiplication in C#

3.1 Straightforward matrix multiplication in C# (matmult1)

In C# we can represent a matrix as a two-dimensional rectangular array of doubles, using typedouble[,].
Assuming the declaration

double[,] R, A, B;

we can computeR = AB with this loop:

for (int r=0; r<rRows; r++) {
for (int c=0; c<rCols; c++) {

double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += A[r,k] * B[k,c];

R[r,c] = sum;
}

}

2

The variablesrRows, rCols andaCols have been initialized from the array dimensions before the
loop as follows:

int aCols = A.GetLength(1),
rRows = R.GetLength(0),
rCols = R.GetLength(1);

3.2 Unsafe but faster matrix multiplication in C# (matmult2)

The C# language by default requires array bounds checks and disallows pointer arithmetics, but the
language provides an escape from these strictures in the form of so-called unsafe code. Hence the C#
matrix multiplication code above can be rewritten closer toC style as follows:

for (int r=0; r<rRows; r++) {
for (int c=0; c<rCols; c++) {

double sum = 0.0;
unsafe {
fixed (double* abase = &A[r,0], bbase = &B[0,c]) {

for (int k=0; k<aCols; k++)
sum += abase[k] * bbase[k*bCols];

}
R[r,c] = sum;

}
}

}

Inside theunsafe { ... } block, one can use C-style pointers and pointer arithmetics. The header
of thefixed (...) { ... } block obtains pointersabase andbbase to positions within theA
andB arrays, and all indexing is done off these pointers using C/C++-like notation such asabase[k]
andbbase[k*bCols]. Thefixed block makes sure that the .NET runtime memory management
does not move the arraysA andB while the block executes. (This risk does not exist in C and C++,
wheremalloc’ed blocks stay where they are).

Indexing off a pointer as inabase[k] performs no index checks, so this code is riskier but faster
than that of the previous section.

Notice that we did not have to change the matrix representation to use unsafe code; we continue to
use thedouble[,] representation that is natural in C#.

Theunsafe keyword may seem scary, but note thatall code in C and C++ is unsafe in the sense of
this keyword. To compile a C# program containing unsafe code, one must pass the-unsafe option to
the compiler:

csc /o /unsafe MatrixMultiply3.cs

3.3 Java-style matrix multiplication in C# (matmult3)

Finally, we consider a version of matrix multiplication in C# that uses no unsafe code but works on an
array-of-arrays representation, as required in Java (section 4)), like this:

double[][] R, A, B;

rather than the rectangular array implementations shown insection 3.1 above. The multiplication loop
then looks like this:

3

for (int r=0; r<rRows; r++) {
double[] Ar = A[r], Rr = R[r];
for (int c=0; c<rCols; c++) {

double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += Ar[k]*B[k][c];

Rr[c] = sum;
}

}

4 Matrix multiplication in Java

The Java and C# programming languages are managed languagesand very similar: same machine
model, managed platform, mandatory array bounds checks andso on. There’s considerable evidence
that Java numeric code can compete with C/C++ numeric code [1, 2, 3].

Some features of Java would seem to make it harder to obtain good performance in Java than in C#:

• Java has only one-dimensional arrays, so a matrix must be represented either as an array of ref-
erences to arrays of doubles (typedouble[][]) or as a flattened C-style array of doubles (type
double[]). The former representation can incur a considerable memory access overhead, and
the latter representation forces the programmer to explicitly perform index computations.

• Java does not allow unsafe code, so in Java, array bounds checks cannot be circumvented in the
way it was done for C# in section 3.2 above.

On the other hand, there is a wider choice of high-performance virtual machines available for Java than
for C#. For instance, the “standard” Java virtual machine, namely Hotspot [7] from Sun Microsystems,
will aggressively optimize the JIT-generated x86 code if given the-server option:

java -server MatrixMultiply 80 80 80

On Windows, the Sun Hotspot Java virtual machine defaults to-client which favors quick start-
up over fast generated code, as preferable for most interactive programs. On MacOS it defaults to
-server for some reason.

Also, IBM’s Java virtual machine [8] appears to perform considerable optimizations when generat-
ing machine code from the bytecode. There are further high-performance Java virtual machines, such as
BEA’s jrockit [9], but we have not tested them.

As mentioned, the natural Java representation of a two-dimensional matrix is an array of references
to arrays (rows) of doubles, that is, Java typedouble[][]. Assuming the declaration

double[][] R, A, B;

The corresponding matrix multiplication code looks like this:

for (int r=0; r<rRows; r++) {
double[] Ar = A[r], Rr = R[r];
for (int c=0; c<rCols; c++) {

double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += Ar[k]*B[k][c];

Rr[c] = sum;
}

}

4

Here we have made a small optimization, in that referencesAr andRr to the arraysA[r] andR[r],
which represent rows ofA andR, are obtained at the beginning of the outer loop.

This array-of-arrays representation seems to give the fastest matrix multiplication in Java.

5 Compilation of matrix multiplication code

This section presents the bytecode and machine code obtained by compiling the matrix multiplication
source codes shown in the previous section, and discusses the speed and deficiencies of this code.

5.1 Compilation of the C matrix multiplication code

Recall the inner loop

for (k=0; k<aCols; k++)
sum += A.data[r*aCols+k] * B.data[k*bCols+c];

of the C matrix multiplication code in section 2. The x86 machine code generated for this inner loop by
the gcc 4.2.1 compiler with full optimization (gcc -O3) is quite remarkably brief:

<loop header not shown>
L7:

movslq %edi,%rax ; move k*bCols to %rax
movsd (%r8), %xmm0 ; move A.data[r*aCols+k] to %xmm0
mulsd (%r9,%rax,8), %xmm0 ; multiply it with B.data[k*bCols+c]
addsd %xmm0, %xmm1 ; add result to sum (in %xmm1)
incl %edx ; add 1 to k
addq $8, %r8 ; add 8 to A.data index
addl %r11d, %edi ; add bCols to %edi
cmpl %r10d, %edx ; if k!=aCols goto L7
jne L7

Each iteration of this loop takes 1.4 ns on a 2,660 MHz Intel Core 2 Duo CPU, that is, less than 4 CPU
cycles. So it also exploits the CPU’s functional units, the caches, and the data buses very well. See also
section 10.

5.2 Compilation of the safe C# code

C# source code, like Java source code, gets compiled in two stages:

• First the C# code is compiled to stack-oriented bytecode in the .NET Common Intermediate Lan-
guage (CIL), using the Microsoftcsc compiler [6], possibly through Visual Studio, or using the
Mono C# compilergmcs [10]. The result is a so-called Portable Executable file, named Matrix-
Multiply.exe or similar, which consists of a stub to invoke the .NET Common Language Runtime,
some bytecode, and some metadata.

• Second, when the compiled program is about to be executed, the just-in-time compiler of the
Common Language Runtime will compile the stack-oriented bytecode to register-oriented ma-
chine code for the real hardware (typically some version of the x86 architecture). Finally the
generated machine code is executed. The just-in-time compilation process can be fairly compli-
cated and unpredictable, with profiling-based dynamic optimization and so on.

Recall the inner loop of the straightforward C# matrix multiplication (matmult1) in section 3.1:

5

for (int k=0; k<aCols; k++)
sum += A[r,k] * B[k,c];

The corresponding CIL bytecode generated by the Microsoft C# compilercsc -o looks like this:

<loop header not shown>
IL_005a: ldloc.s V_8 // load sum
IL_005c: ldarg.1 // load A
IL_005d: ldloc.s V_6 // load r
IL_005f: ldloc.s V_9 // load k
IL_0061: call float64[,]::Get(,) // load A[r,k]
IL_0066: ldarg.2 // load B
IL_0067: ldloc.s V_9 // load k
IL_0069: ldloc.s V_7 // load c
IL_006b: call float64[,]::Get(,) // load B[k,c]
IL_0070: mul // A[r,k] * B[k,c]
IL_0071: add // sum + ...
IL_0072: stloc.s V_8 // sum = ...
IL_0074: ldloc.s V_9 // load k
IL_0076: ldc.i4.1 // load 1
IL_0077: add // k+1
IL_0078: stloc.s V_9 // k = k+1
IL_007a: ldloc.s V_9 // load k
IL_007c: ldloc.1 // load aCols
IL_007d: blt.s IL_005a // jump if k<aCols

As can be seen, this is straightforward stack-oriented bytecode which hides the details of array bounds
checks and array address calculations inside thefloat64[,]::Get(,)method calls.

One can obtain the x86 machine code generated by the Mono 2.6 runtime’s just-in-time compiler by
invoking it asmono -v -v. The resulting x86 machine code is rather cumbersome (and slow) because
of the array address calculations and the array bounds checks. These checks and calculations are explicit
in the x86 code below; theGet(,) method calls in the bytecode have been inlined:

6

<loop header not shown>
0e8 fldl 0xe0(%rbp) ; load sum on fp stack
0eb movl 0x08(%rsi),%eax ; array bounds check
0ee movl 0x04(%rax),%ecx ; array bounds check
0f1 movl 0xec(%rbp),%edx ; array bounds check
0f4 subl %ecx,%edx ; array bounds check
0f6 movl (%rax),%ecx ; array bounds check
0f8 cmpl %edx,%ecx ; array bounds check
0fa jbeq 0x00000213 ; array bounds check
100-112 ; array bounds check
118 imull %edx,%eax
11b addl %ecx,%eax ; add k
11d shll $0x03,%eax ; multiply by sizeof(double)
120 addl %esi,%eax ;
122 addl $0x00000010,%eax ;
127 fldl (%rax) ; load A[r][k] on fp stack
129-13d ; array bounds check
143-156 ; array bounds check
15c imull %ecx,%eax
15f movl 0xc8(%rbp),%ecx ; B
162 addl %edx,%eax
164 shll $0x03,%eax ; multiply by sizeof(double)
167 addl %ecx,%eax
169 addl $0x00000010,%eax
16e fldl (%rax) ; load B[k][c] on fp stack
170 fmulp %st,%st(1) ; multiply
172 faddp %st,%st(1) ; add to sum
174 fstpl 0xe0(%rbp) ; store sum
177 cmpl 0xd8(%r13),%r15d
17b jlq 0x000000e8 ; jump if k<aCols

For brevity, some repetitive sections of code are not shown.
One drawback of this Mono-generated code is that it uses the “old” floating-point instructions

fmulp andfaddp that work on the x87 floating-point stack, rather than the “new” instructionsmulsd
andaddsd that work on the x86-64 floating-point registers. Accordingto experiments, this x86 code
was approximately 6.6 times slower than the code generated from C source bygcc -O3 and shown in
section 5.1. The x86 code generated by Microsoft’s just-in-time compiler is slower than thegcc code
only by a factor of 4.6, and presumably also is neater.

5.3 Compilation of the unsafe C# code

Now let us consider the unsafe (matmult2) version of the C# matrix multiplication code from section 3.2.
The inner loop looks like this:

fixed (double* abase = &A[r,0], bbase = &B[0,c]) {
for (int k=0; k<aCols; k++)

sum += abase[k] * bbase[k*bCols];
}

The CIL bytecode generated by Microsoft’s C# compiler lookslike this:

<loop header not shown>
IL_0079: ldloc.s V_8 // load sum
IL_007b: ldloc.s V_9 // load abase
IL_007d: conv.i

7

IL_007e: ldloc.s V_11 // load k
IL_0080: conv.i
IL_0081: ldc.i4.8 // load 8
IL_0082: mul // 8*k
IL_0083: add // abase+8*k
IL_0084: ldind.r8 // load abase[k]
IL_0085: ldloc.s V_10 // load bbase
IL_0087: conv.i
IL_0088: ldloc.s V_11 // load k
IL_008a: ldloc.3 // load bCols
IL_008b: mul // k*bCols
IL_008c: conv.i
IL_008d: ldc.i4.8 // load 8
IL_008e: mul // 8*k*bCols
IL_008f: add // bbase+8*k*bCols
IL_0090: ldind.r8 // load bbase[k*bCols]
IL_0091: mul // multiply
IL_0092: add // add sum
IL_0093: stloc.s V_8 // sum = ...
IL_0095: ldloc.s V_11 // load k
IL_0097: ldc.i4.1 // load 1
IL_0098: add // k+1
IL_0099: stloc.s V_11 // k = ...
IL_009b: ldloc.s V_11 // load k
IL_009d: ldloc.1 // load aCols
IL_009e: blt.s IL_0079 // jump if k<aCols

At first sight this appears even longer and more cumbersome than the matmult1 bytecode sequence in
section 5.2, but note that the new code does not involve any calls to thefloat64[,]::Get(,)
methods, and hence does not contain any hidden costs.

The corresponding x86 machine code generated by the Mono 2.6runtime is much shorter in this
case:

<loop header not shown>
0a8 fldl 0xe0(%rbp) ; load sum on fp stack
0ab movl %esi,%ecx ; load k
0ad shll $0x03,%ecx ; 8 * k
0b0 movl %ebx,%eax ; load abase
0b2 addl %ecx,%eax ; abase+8*k
0b4 fldl (%rax) ; abase[k]
0b6 movl 0xd4(%rbp),%eax ; load bCols
0b9 movl %esi,%ecx ; load k
0bb imull %eax,%ecx ; bCols*k
0be shll $0x03,%ecx ; 8*bCols*k
0c1 movl %edi,%eax ; load bbase
0c3 addl %ecx,%eax
0c5 fldl (%rax) ; bbase[k*bCols]
0c7 fmulp %st,%st(1) ; multiply
0c9 faddp %st,%st(1) ; add sum
0cb fstpl 0xe0(%rbp) ; store into sum
0ce cmpl 0xd8(%rbp),%r14d ; jump if k<aCols
0d2 jl 0x000000a8

Clearly this unsafe code is far shorter than the x86 code in section 5.2 that resulted from safe bytecode.
One iteration of this loop takes 3.8 ns on a 2,660 MHz Intel Core 2 duo, using the Mono 2.6 runtime.

8

However, one iteration of the corresponding x86 code generated by Microsoft’s runtime takes only
2.3 ns, so presumably the corresponding machine code looks alittle neater also.

Microsoft’s Visual Studio development environment does allow one to inspect the x86 code gen-
erated by the just-in-time compiler, but only when debugging a C# program: Set a breakpoint in the
method whose x86 you want to see, chooseDebug | Start debugging, and when the process
stops, chooseDebug | Windows | Disassembly. Unfortunately, since this works only in de-
bugging mode, the x86 code shown contains extraneous and wasteful instructions.

In fact, the x86 code in debugging mode is twice as slow as non-debugging code. Hence the x86
code obtained from Visual Studio during debugging does not give a good indication of the code quality
that is actually achievable. To avoid truly bad code, make sure to check theOptimize checkbox in the
Project | Properties | Build form in Visual Studio.

5.4 Compilation of the Java matrix multiplication code

The bytecode resulting from compiling the Java code in section 4 with the Sun Java compilerjavac is
fairly similar to the CIL bytecode code shown in section 5.2.

Remarkably, the straightforward Java implementation, which uses no unsafe code and a seemingly
cumbersome array representation, performs of a par with theunsafe C# code when executed with Sun’s
Hotspot JVM. Presumably it would be even faster on the IBM Java virtual machine [8], but that is not
available for the Mac OS platform (and only for Windows if running on IBM hardware).

The are development versions of the JVM (from Sun or OpenJDK)that can display the machine
code generated by the JIT compiler, but we have not investigated this.

6 Controlling the runtime and the just-in-time compiler

I know of no publicly available options or flags to control thejust-in-time optimizations performed
by Microsoft’s .NET Common Language Runtime, but surely options similar to Sun’s-client and
-server must exist internally. I know that there is (or was) a Microsoft-internal tool calledjitmgr
for configuring the .NET runtime and just-in-time compiler,but it does not appear to be publicly avail-
able. Presumably many people would just use it to shoot themselves in the foot.

Note that the so-called server build (mscorsvr.dll) of the Microsoft .NET runtime differs from
the workstation build (mscorwks.dll) primarily in using a concurrent garbage collector. According to
MSDN, the workstation build will always be used on uniprocessor machines, even if the server build is
explicitly requested.

The Mono runtime accepts a range of JIT optimization flags, such as

mono --optimize=all MatrixMultiply 80 80 80

but at the time of writing (Mono version 2.6, February 2010),specifying such flags seem to make matrix
multiplication performance worse. This is good in a sense: the default behavior is the best.

9

7 Case study 2: A division-intensive loop

Consider for a givenM the problem of finding the least integern such that

1

1
+

1

2
+

1

3
+ · · ·+

1

n
≥ M

In C, Java and C# the problem can be solved by the following program fragment:

double sum = 0.0;
int n = 0;
while (sum < M) {

n++;
sum += 1.0/n;

}

ForM = 20 the answer isn = 272 400 600 and the loop performs that many iterations. Each iteration
involves a floating-point comparison, a floating-point division and a floating-point addition, as well as
an integer increment.

The computation time is probably dominated by the double-precision floating-point division oper-
ation. The Intel performance documentation [5] says that the throughput for double precision floating-
point divisionDIVSD is (less than) 20 cycles per division, on the Core 2 Duo. Sincethe loop condition
depends on the addition and division, 20 cycles would require 7.5 ns per iteration on the 2,660 MHz
CPU we are using. Indeed all implementations take between 7.7 ns and 10.6 ns per iteration.

8 Case study 3: Polynomial evaluation

A polynomialc0 + c1x+ c2x
2 + · · ·+ cnx

n can be evaluated efficiently and accurately using Horner’s
rule:

c0 + c1x+ c2x
2 + · · ·+ cnx

n = c0 + x · (c1 + x · (. . . + x · (cn + x · 0) . . .))

Polynomial evaluation using Horner’s rule can be implemented in C, Java and C# like this:

double res = 0.0;
for (int i=0; i<cs.Length; i++)

res = cs[i] + x * res;

where the coefficient arraycs has lengthn+ 1 and coefficientci is in elementcs[n− i].
The x86-64 code generated for the above polynomial evaluation loop bygcc -O3 from C is this:

<loop header not shown>
L37:

cmpl %r13d, %edx ; if i<order
jl L27 ; continue

L39:
<leave loop> ; else leave loop

L27:
movslq %edx,%rax ; move i into %rax
mulsd %xmm3, %xmm1 ; multiply x into res
addsd (%r14,%rax,8), %xmm1 ; add cs[i] to res
incl %edx ; i++
jmp L37 ; goto L37

10

Note that the entire computation is done withres in a floating-point register; not once during the loop
is anything written to memory. The array accesses happen in theaddsd instruction which multiplies
the floating-point number at%r14+%rax*8 into the register holdingres.

All implementations fare almost equally well on this problem, with C and C# (on Microsoft’s .NET
as well as Mono) being the fastest at 3.0 ns per loop iteration. Each iteration performs a floating-point
addition and a multiplication, but here the multiplicationuses the result of the preceding addition (via a
loop-carried dependence), which may be the reason this is somuch slower than the matrix multiplication
loop in section 5.1.

The reason for the Microsoft implementation’s excellent performance may be that it can avoid the
array bounds check incs[i]. The just-in-time compiler can recognize bytecode generated from loops
of exactly this form:

for (int i=0; i<cs.Length; i++)
... cs[i] ...

and will not generate array bounds checks for thecs[i] array accesses [11]. Apparently this optimiza-
tion is rather fragile; small deviations from the above codepattern will prevent the just-in-time compiler
from eliminating the array bounds check. Also, experimentsconfirm that this optimization is useless in
the safe matrix multiplication loop (section 3.1), where atleast two of the four index expressions appear
not to be bounded by the relevant array length (although in reality they are, of course).

9 Case study 4: Distribution function evaluation

The cumulative distribution of the normal (Gaussian) distribution can be implemented like this (here in
C#; the Java and C versions are nearly identical):

public double F(double z) {
double p, zabs = Math.Abs(z);
if (zabs > 37)

p = 0;
else { // |z| <= 37

double expntl = Math.Exp(zabs * zabs * -.5);
double pdf = expntl / root2pi;
if (zabs < cutoff) // |z| < CUTOFF = 10/sqrt(2)

p = expntl * ((((((p6 * zabs + p5) * zabs + p4) * zabs + p3) * zabs
+ p2) * zabs + p1) * zabs + p0) / (((((((q7 * zabs + q6) *
zabs + q5) * zabs + q4) * zabs + q3) * zabs + q2) * zabs + q1)

* zabs + q0);
else // CUTOFF <= |z| <= 37

p = pdf / (zabs + 1 / (zabs + 2 / (zabs + 3 / (zabs + 4 / (zabs
+ .65)))));

}
if (z < 0)

return p;
else

return 1-p;
}

Thepi andqj are double precision floating-point constants. Thecutoff is 7.071 so for arguments
around−3 the function performs 15 multiplications, 2 divisions and 13 additions, and computes the
exponential function.

11

10 Experiments

10.1 Matrix multiplication performance

This table shows the CPU time (in microseconds) per matrix multiplication, for multiplying two 80x80
matrices:

C (gcc -O3) 702
C# matmult1 Microsoft 3218
C# matmult1 Mono 4627
C# matmult2 Microsoft 1165
C# matmult2 Mono 1943
C# matmult3 Microsoft 1575
C# matmult3 Mono 2888
Java, Sun Hotspot -server 1180

We see that the best C# results are a factor of 1.65 slower thanthe best C results, using unsafe features
of C#. The best Java results on Sun’s Hotspot JVM are only marginally slower, which is impressive
considering that no unsafe code is used, and that Java has a somewhat cumbersome array representation.
(The IBM JVM is often even faster that Sun’s Hotspot JVM, but unfortunately is not available for Mac
OS 10.6).

Depending on circumstances, the resulting C# performance may be entirely acceptable, given that
the unsafe code can be isolated to very small fragments of thecode base, and the advantages of safe
code and dynamic memory management can be exploited everywhere else. Also, in 2014 a standard
workstation may have 16 or 32 CPUs, and then it will probably be more important to exploit parallel
computation than to achieve raw single-processor speed.

10.2 Division-intensive loop performance

For the simple division-intensive loop shown in section 7 the execution times are as follows, in nanosec-
onds per iteration of the loop:

C (gcc -O3) 7.9
C# Microsoft 7.7
C# Mono 7.6
Java, Sun Hotspot -server 10.6

Here C and both implementations of C# perform equally well.

10.3 Polynomial evaluation performance

The execution times for evaluation of a polynomial of order 1000 (microseconds per polynomial evalu-
ation), implemented as in section 8 are as follows:

C (gcc -O3) 3.0
C# Microsoft 3.1
C# Mono 5.3
Java, Sun Hotspot -server 3.0

The performance of C, Microsoft C# and Sun’s Hotspot-server must be considered identical. The
Mono C# implementation is a factor of 1.7 slower than the bestperformance in this case.

12

10.4 Distribution function evaluation performance

The execution times for evaluation of the distribution function at−3 + i · 10−9 for 10,000,000 calls
(nanoseconds per function evaluation), implemented as in section 9 are as follows:

C (gcc -O3) 54
C# Microsoft 64
C# Mono 146
Java, Sun Hotspot -server 69

The performance of C is best with Microsoft C# and Sun’s Hotspot -server closely behind. The
Mono C# implementation is a factor of 2.7 slower than the bestperformance in this case.

10.5 Details of the experimental platform

• Main hardware platform: Intel Core 2 Duo (presumably family6 model 15) at 2,660 MHZ, 3 MB
L2 cache, 4 GB RAM.

• Operating system: Mac OS X 10.6.2.

• Alternate operating system: Windows XP SP3 under ParallelsVM under Mac OS.

• C compiler: gcc 4.2.1 optimization level -O3

• Microsoft C# compiler 4.0.21006.1 with compile options-o -unsafe; and MS .NET runtime
4.0.

• Mono runtime:mono version 2.6 for MacOS.

• Java compiler and runtime Sun Hotspot 64-Bit Server VM 1.6.0-17 (build 14.3-b01-101, mixed
mode) for MacOS X.

11 Conclusion

The experiments show that there is no obvious relation between the execution speeds of different soft-
ware platforms, even for the very simple programs studied here: the C, C# and Java platforms are
variously fastest and slowest.

Some points that merit special attention:

• Given Java’s cumbersome array representation and the absence of unsafe code, it is remarkable
how well the Sun Hotspot-server and virtual machine performs.

• Microsoft’s C#/.NET runtime in generally performs very well, but there is much room for im-
provement in the safe code for matrix multiplication.

• The Mono C#/.NET runtime now is very reliable, and in version2.6 the general performance is
good.

13

References

[1] J.P. Lewis and Ulrich Neumann: Performance of Java versus C++. University of Southern Califor-
nia 2003.
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html

[2] National Institute of Standards and Technology, USA: JavaNumerics.
http://math.nist.gov/javanumerics/

[3] CERN and Lawrence Berkeley Labs, USA: COLT Project, OpenSource Libraries for High Perfor-
mance Scientific and Technical Computing in Java.
http://dsd.lbl.gov/~hoschek/colt/

[4] P. Sestoft: Java performance. Reducing time and space consumption. KVL 2005.
http://www.dina.kvl.dk/~sestoft/papers/performance.pdf

[5] Intel 64 and IA-32 Architectures Optimization Reference Manual. November 2006.
http://www.intel.com/design/processor/manuals/248966.pdf

[6] Microsoft Developer Network: .NET Framework DeveloperCenter.
http://msdn.microsoft.com/netframework/

[7] The Sun Hotspot Java virtual machine is found athttp://java.sun.com

[8] The IBM Java virtual machine is found at
http://www-128.ibm.com/developerworks/java/jdk/

[9] The BEA jrockit Java virtual machine is found at
http://www.bea.com/content/products/jrockit/

[10] The Mono implementation of C# and .NET is found athttp://www.mono-project.com/

[11] Gregor Noriskin: Writing high-performance managed applications. A primer. Microsoft, June
2003. Athttp://msdn2.microsoft.com/en-us/library/ms973858.aspx

14

