Numeric performancein C, C#and Java
Peter Sestoft (sestoft@itu.dk)

IT University of Copenhagen
Denmark

Version 0.9.1 of 2010-02-19

Abstract: We compare the numeric performance of C, C# and Java on thralécases.

1 Introduction: AreJava and C# slower than C and C++?

Managed languages such as C# and Java are easier and safettianutraditional languages such as C
or C++ when manipulating dynamic data structures, graphmer interfaces, and so on. Moreover, it is
easy to achieve good performance thanks to their built-ioraatic memory management.

For numeric computations involving arrays or matrices adtilag-point numbers, the situation might
seem less favorable. Compilers for Fortran, C and C++ malkeuseefforts to optimize inner loops that
involve array accesses: register allocation, reductictrangth, common subexpression elimination and
S0 on. By contrast, the just-in-time (JIT) compilers of the @d Java runtime systems do not spend
much time on optimizing inner loops, and this hurts numeoidec Moreover, in C# and Java there must
be an index check on every array access, and this not onlyresgexecution of extra instructions, but
can also lead to branch mispredictions and pipeline stallthe hardware, further slowing down the
computation.

This note compares the numeric performance of Java and Gv¥atot C on standard laptop hard-
ware. It shows that Java and C# compete well with C also on riaroede; that the choice of execution
environment (virtual machine, JIT-compiler) is very imfaot; and that a small amount of unsafe code
can seriously improve the speed of some C# programs.

1.1 Casestudy 1: matrix multiplication

We take matrix multiplication as a prime example of numegmputation. It involves triply nested
loops, many array accesses, and floating-point compugati@t the code is so compact that one can
study the generated machine code. We find that C performs thestC# can be made to perform
reasonably well, and that Java can perform better than G#s&gions 2 through 5.4.

1.2 Casestudy 2: adivision-intensive loop

We also consider a simple loop that performs floating-poivisihn, addition and comparison, but no
array accesses. We find that C# and Java implementatior@pdretter than C, but it turns out that the
computation time is dominated by the floating-point diuisio

1.3 Casestudy 3: polynomial evaluation

We next consider repeated evaluation of a polynomial of kigdgree, on which almost all implementa-
tions do equally well, with C and Microsoft C# being equalgt, and Java only slightly slower.

1.4 Casestudy 4: adistribution function

Finally we consider the evaluation the cumulative distiitou function for the normal (Gaussian) distri-
bution. Here we find that C is fastest, with both Microsoft @ &un Hotspot Java closely following.

2 Matrix multiplication in C

In C, a matrix can be represented by a struct holding the nuoflrews, the number of columns, and a
pointer to aral | oc’ed block of memory that holds the elements of the matrix aspmence of doubles:

typedef struct {

int rows, cols;

doubl e *dat a; /1 (rows * cols) doubles, row nmajor order
} matrix;

If the dimensions of the matrix are known at compile-time, @enstatic representation of the matrix is
possible, but experiments show that for some reason this mimemprove speed, quite the contrary.
Given the above struct type, and declarations

matrix R A B;
we can compute the matrix produt= AB in C with this loop:

for (r=0; r<rRows; r++) {
for (c=0; c<rCols; c++) {
doubl e sum = 0. 0;
for (k=0; k<aCols; k++)
sum += A data[r=*aCol s+k] * B. data[kxbCol s+c];
R data[r=*rCol s+c] = sum

}
}

Note that the programmer must understand the layout of thteixm{&ere, row-major) and it is his
responsibility to get the index computations right.

3 Matrix multiplication in C#

3.1 Straightforward matrix multiplication in C# (matmultl)

In C# we can represent a matrix as a two-dimensional reclanguray of doubles, using tygoubl e[,] .
Assuming the declaration

double[,] R A, B;
we can computé& = AB with this loop:

for (int r=0; r<rRows; r++) {
for (int ¢c=0; c<rCols; c++) {
doubl e sum = 0.0;
for (int k=0; k<aCols; k++)
sum += Alr, k] * B[k,c];
Rr,c] = sum
}
}

The variables Rows, r Col s andaCol s have been initialized from the array dimensions before the
loop as follows:

int aCols = A GetlLength(1l),
rRows = R GetLength(0),
rCols = R GetLength(1);

3.2 Unsafe but faster matrix multiplication in C# (matmult2)

The C# language by default requires array bounds checks igatlod/s pointer arithmetics, but the
language provides an escape from these strictures in thedbso-called unsafe code. Hence the C#
matrix multiplication code above can be rewritten closeCtstyle as follows:

for (int r=0; r<rRows; r++) {
for (int ¢c=0; c<rCols; c++) {
doubl e sum = 0. 0;
unsafe {
fixed (doubl ex abase = &A[r, 0], bbase = &B[0,c]) {
for (int k=0; k<aCols; k++)
sum += abase[k] * bbase[kxbCol s];

I}Q[r, c] = sum
}
}
}
Inside theunsafe { ... } block, one can use C-style pointers and pointer arithmeTibe header
ofthefixed (...) { ... } block obtains pointerabase andbbase to positions within theA

andB arrays, and all indexing is done off these pointers usingt@Hike notation such aabase|[k]
andbbase[k*bCol s] . Thef i xed block makes sure that the .NET runtime memory management
does not move the arrays and B while the block executes. (This risk does not exist in C and,C+
wheremal | oc’ed blocks stay where they are).

Indexing off a pointer as imbase[k] performs no index checks, so this code is riskier but faster
than that of the previous section.

Notice that we did not have to change the matrix represemntati use unsafe code; we continue to
use thedoubl e[,] representation that is natural in C#.

Theunsaf e keyword may seem scary, but note thtcode in C and C++ is unsafe in the sense of
this keyword. To compile a C# program containing unsafe code must pass theunsaf e option to
the compiler:

csc /o /unsafe MatrixMiltiply3.cs

3.3 Java-stylematrix multiplication in C# (matmult3)

Finally, we consider a version of matrix multiplication ift@hat uses no unsafe code but works on an
array-of-arrays representation, as required in Javai¢sed}), like this:

double[][] R A B;

rather than the rectangular array implementations shoveedtion 3.1 above. The multiplication loop
then looks like this:

for (int r=0; r<rRows; r++) {
double[] Ar = Alr], Rr = Rr];
for (int ¢c=0; c<rCols; c++) {
doubl e sum = 0. 0;
for (int k=0; k<aCols; k++)
sum += Ar[k]*B[k][c];
Rr[c] = sum
}
}

4 Matrix multiplication in Java

The Java and C# programming languages are managed langargiegry similar: same machine
model, managed platform, mandatory array bounds checks@m. There’s considerable evidence
that Java numeric code can compete with C/C++ numeric cqdg Rl.

Some features of Java would seem to make it harder to obtauh performance in Java than in C#:

e Java has only one-dimensional arrays, so a matrix must lvesemted either as an array of ref-
erences to arrays of doubles (tygpeubl e[] []) or as a flattened C-style array of doubles (type
doubl e[]). The former representation can incur a considerable mgmmress overhead, and
the latter representation forces the programmer to effglipérform index computations.

e Java does not allow unsafe code, so in Java, array boundkscbaenot be circumvented in the
way it was done for C# in section 3.2 above.

On the other hand, there is a wider choice of high-performatual machines available for Java than
for C#. For instance, the “standard” Java virtual machimenely Hotspot [7] from Sun Microsystems,
will aggressively optimize the JIT-generated x86 codevegithe- ser ver option:

java -server MatrixMultiply 80 80 80

On Windows, the Sun Hotspot Java virtual machine defaukscta ent which favors quick start-
up over fast generated code, as preferable for most inkezaotograms. On MacOS it defaults to
- server for some reason.

Also, IBM’s Java virtual machine [8] appears to perform ddagable optimizations when generat-
ing machine code from the bytecode. There are further hegfopnance Java virtual machines, such as
BEA's jrockit [9], but we have not tested them.

As mentioned, the natural Java representation of a two+tinaal matrix is an array of references
to arrays (rows) of doubles, that is, Java tgmubl e[] [] . Assuming the declaration

double[][] R A B
The corresponding matrix multiplication code looks likesth

for (int r=0; r<rRows; r++) {
double[] Ar = Alr], Rr = Rr];
for (int ¢c=0; c<rCols; c++) {
doubl e sum = 0.0;
for (int k=0; k<aCols; k++)
sum += Ar[Kk]*B[k][c];
Rr[c] = sum
}
}

Here we have made a small optimization, in that referedceandRr to the arrayA[r] andR[r],
which represent rows &f andR, are obtained at the beginning of the outer loop.
This array-of-arrays representation seems to give thedastatrix multiplication in Java.

5 Compilation of matrix multiplication code

This section presents the bytecode and machine code othtayneompiling the matrix multiplication
source codes shown in the previous section, and discussepdied and deficiencies of this code.

5.1 Compilation of the C matrix multiplication code

Recall the inner loop

for (k=0; k<aCols; k++)
sum += A. data[r*aCol s+k] * B. data[kxbCol s+c];

of the C matrix multiplication code in section 2. The x86 miaelhcode generated for this inner loop by
the gcc 4.2.1 compiler with full optimizatiorg€c - G3) is quite remarkably brief:

<l oop header not shown>

L7:
movsl q %edi, % ax ; move kxbCols to 9% ax
nmovsd (% 8), %mD ; move A.data[r*aCol s+tk] to %m0
mul sd (9% 9, % ax, 8), %nmD ; multiply it with B.data[kxbCol s+c]
addsd %m0, Y&xmil ; add result to sum (in %mml)
i ncl %edx ; add 1 to k
addq $8, %8 ; add 8 to A data index
addl % 11d, %edi ; add bCols to %di
cnpl % 10d, %edx ; if kl=aCols goto L7
j ne L7

Each iteration of this loop takes 1.4 ns on a 2,660 MHz InteleGDuo CPU, that is, less than 4 CPU
cycles. So it also exploits the CPU’s functional units, thetes, and the data buses very well. See also
section 10.

5.2 Compilation of the safe C# code

C# source code, like Java source code, gets compiled in hgest

e First the C# code is compiled to stack-oriented bytecodaénNMET Common Intermediate Lan-
guage (CIL), using the Microsoftsc compiler [6], possibly through Visual Studio, or using the
Mono C# compilegnts [10]. The result is a so-called Portable Executable file, edhiMatrix-
Multiply.exe or similar, which consists of a stub to invoketNET Common Language Runtime,
some bytecode, and some metadata.

e Second, when the compiled program is about to be executedu#trin-time compiler of the
Common Language Runtime will compile the stack-orientetbtyde to register-oriented ma-
chine code for the real hardware (typically some versionhef 86 architecture). Finally the
generated machine code is executed. The just-in-time datigpi process can be fairly compli-
cated and unpredictable, with profiling-based dynamicnoigtition and so on.

Recall the inner loop of the straightforward C# matrix mpliGation (matmultl) in section 3.1.:

for (int k=0; k<aCols; k++)
sum += Alr, k] * B[k, c];

The corresponding CIL bytecode generated by the Microséft@npilercsc - o looks like this:

<l oop header not shown>

IL_0O5a: Idloc.s V_8 /1 1oad sum
IL_005c: ldarg.1 /1 load A

IL_005d: Idloc.s V_6 /1 load r

IL_005f: Idloc.s V_ 9 /1 1oad k

IL_0061: call float64[,]::Get(,) /1 load Alr, K]
IL_0066: Idarg.2 /1 load B

IL_0067: Idloc.s V_9 /1 1oad k

IL_0069: Idloc.s V_7 /1 load c

IL_006b: call float64[,]::Get(,) /1 1oad B[k, c]
IL_0070: rul Il Ar,k] = B[k,c]
IL_0071: add [l sum+ ..
IL_0072: stloc.s V_8 /Il sum= ..
IL_0074: Idloc.s V_9 /1 1oad k

IL_0076: Ildc.i4.1 /1 load 1

IL_0077: add /1 k+1

IL_0078: stloc.s V_ 9 Il k = k+1
IL_007a: Idloc.s V_9 /1 1oad k

IL_007c: Idloc.1 /1 1oad aCol s
IL_007d: blt.s I L_005a [l junp if k<aCols

As can be seen, this is straightforward stack-orientedcogte which hides the details of array bounds
checks and array address calculations insidd theat 64[,] : : Get (,) method calls.

One can obtain the x86 machine code generated by the Monar&ife’s just-in-time compiler by
invoking itasmono -v - v. The resulting x86 machine code is rather cumbersome (and because
of the array address calculations and the array bounds sh&blkese checks and calculations are explicit
in the x86 code below; théet (,) method calls in the bytecode have been inlined:

<l oop header not shown>

0e8 fldl Oxe0(% bp)

Oeb nmovl 0x08(% si), Yeax

Oee novl| 0x04(% ax) , ¥ecx

of 1 novl| Oxec(% bp) , Yedx

of 4 subl %ecx, Yedx

0of 6 nmovl (% ax), Yecx

0f 8 cnpl %edx, Yecx

of a j beq 0x00000213

100- 112

118 i mul | %edx, Yeax

11b addl %ecx, Yeax

11d shl | $0x03, %eax

120 addl %esi , Yeax

122 addl $0x00000010, %eax
127 fldl (% ax)

129-13d

143- 156

15c i mul | %ecx, Yeax

15f novl| 0xc8(% bp) , Y%ecx

162 addl %edx, Yeax

164 shl | $0x03, %eax

167 addl %ecx, Yeax

169 addl $0x00000010, Yeax
16e fldl (% ax)

170 frul p st , ¥st (1)

172 faddp st , ¥st (1)

174 f st pl Oxe0(% bp)

177 cnpl Oxd8(% 13), % 15d
17b jlq 0x000000e8

For brevity, some repetitive sections of code are not shown.

| oad sumon fp stack
array bounds check
array bounds check
array bounds check
array bounds check
array bounds check
array bounds check
array bounds check
array bounds check

add k
mul tiply by sizeof (double)

load Alr][k] on fp stack
array bounds check
array bounds check

B

mul tiply by sizeof (double)
|l oad B[Kk][c] on fp stack
mul tiply

add to sum

store sum

jump i f k<aCol s

One drawback of this Mono-generated code is that it uses dl# floating-point instructions
f mul p andf addp that work on the x87 floating-point stack, rather than thevhi@structionsmul sd
andaddsd that work on the x86-64 floating-point registers. Accordiogexperiments, this x86 code
was approximately 6.6 times slower than the code generated € source bgcc - O3 and shown in
section 5.1. The x86 code generated by Microsoft’s jugtrme compiler is slower than thgcc code
only by a factor of 4.6, and presumably also is neater.

5.3 Compilation of the unsafe C# code

Now let us consider the unsafe (matmult2) version of the Ctiraultiplication code from section 3.2.
The inner loop looks like this:

fixed (doubl ex abase = &A[r, 0],
for (int k=0; k<aCols; k++)
sum += abase[k] * bbase[kxbCol s];

bbase = &B[0,c]) {

}
The CIL bytecode generated by Microsoft's C# compiler lolikes this:

<l oop header not shown>

IL_0079: Idloc.s V_8 /1 1 oad sum
IL_007b: Idloc.s V_ 9 /1 1 oad abase
I L_007d: conv.

I L_007e:
I L_0080:
I L_0081:
I L_0082:
| L_0083:
I L_0084:
I L_0085:
I L_0087:
| L_0088:
I L_008a:
| L_008b:
I L_008c:
I L_008d:
I L_008e:
I L_008f:
I L_0090:
IL_0091:
I L_0092:
I L_0093:
| L_0095:
IL_0097:
I L_0098:
I L_0099:
I L_009b:
I L_009d:
I L_009e:

Idloc.s
conv. i
ldc.i4.8
mul

add

I dind. r8
Idloc.s
conv. i
Idloc.s
I dl oc. 3
mul
conv. i
ldc.i 4.8
mul

add

I dind. r8
mul

add
stloc.s
Idloc.s
ldc.id. 1
add
stloc.s
Idloc.s
Idloc.1
blt.s

vV 11 /1

/1
/1
/1
/1
V_10 /1

vV 11 /1
/1
/1

/1
/1

/1

/1

/1

/1

V. 8 /1
11 /1
/1

/1

V11 /1
V_11 /1
/1

I L_0079 /1

| oad k

| oad 8

8x k
abase+8+k

| oad abase[k]
| oad bbase

| oad k
| oad bCol s
k*bCol s

| oad 8
8xk*bCol s
bbase+8xkxhbCol s
| oad bbase[kxbCol s]
mul tiply

add sum

sum = ...

| oad k

| oad 1

k+1

k = ...

| oad k

| oad aCol s

jump i f k<aCol s

At first sight this appears even longer and more cumbersoarettte matmultl bytecode sequence in
section 5.2, but note that the new code does not involve alty toathef | oat 64[,]:: Get (,)

methods, and hence does not contain any hidden costs.

The corresponding x86 machine code generated by the Monwtne is much shorter in this

case:

<l oop header not shown>

0a8
Oab
Oad
0bO
0b2
Ob4
0Ob6
0b9
Obb
Obe
Ocl
0c3
0c5
Oc7
0c9
Ocb
Oce
0d2

fldl
novl
shl |
novl
addl
fldl
novl
novl

i mul |
shl |
novl
addl
fldl
ful p
f addp
f st pl
cnpl
jl

Oxe0(% bp)
%esi , Yecx
$0x03, ¥ecx
%ebx, Yeax

%ecx, Yeax

(9% ax)
0xd4(% bp) , Yeax
o%esi , Yecx

Y%eax, ¥ecx
$0x03, Yecx
%edi , Yeax

%ecx, Yeax

(9% ax)
st , ¥st (1)
st , ¥st (1)
Oxe0(% bp)
0xd8(% bp) , % 14d
0x000000a8

| oad sumon fp stack
| oad k

8 k

| oad abase
abase+8+k
abasel[K]

| oad bCol s
| oad k
bCol s*k

8+ bCol s*k
| oad bbase

bbase[k*bCol s]
mul tiply

add sum

store into sum
junp i f k<aCol s

Clearly this unsafe code is far shorter than the x86 codedtise5.2 that resulted from safe bytecode.
One iteration of this loop takes 3.8 ns on a 2,660 MHz InteleCbduo, using the Mono 2.6 runtime.

However, one iteration of the corresponding x86 code géeerday Microsoft’s runtime takes only
2.3 ns, so presumably the corresponding machine code loike aeater also.

Microsoft's Visual Studio development environment dodevalone to inspect the x86 code gen-
erated by the just-in-time compiler, but only when debuggnC# program: Set a breakpoint in the
method whose x86 you want to see, choBedug | Start debuggi ng, and when the process
stops, choos®ebug | W ndows | Di sassenbl y. Unfortunately, since this works only in de-
bugging mode, the x86 code shown contains extraneous andfuléastructions.

In fact, the x86 code in debugging mode is twice as slow asdeingging code. Hence the x86
code obtained from Visual Studio during debugging does vt @ good indication of the code quality
that is actually achievable. To avoid truly bad code, make smcheck thépt i m ze checkbox in the
Project | Properties | Buildformin Visual Studio.

5.4 Compilation of the Java matrix multiplication code

The bytecode resulting from compiling the Java code in saatiwith the Sun Java compilgavac is
fairly similar to the CIL bytecode code shown in section 5.2.

Remarkably, the straightforward Java implementationctvhises no unsafe code and a seemingly
cumbersome array representation, performs of a par withrikafe C# code when executed with Sun’s
Hotspot JVM. Presumably it would be even faster on the IBVaJaxtual machine [8], but that is not
available for the Mac OS platform (and only for Windows if nimg on IBM hardware).

The are development versions of the JVM (from Sun or OpenJib&f) can display the machine
code generated by the JIT compiler, but we have not invastigais.

6 Controlling the runtime and the just-in-time compiler

I know of no publicly available options or flags to control thest-in-time optimizations performed
by Microsoft's .NET Common Language Runtime, but surelyiap similar to Sun’s cl i ent and

- server must exist internally. |1 know that there is (or was) a Micribgnternal tool called i t nmgr
for configuring the .NET runtime and just-in-time compilbut it does not appear to be publicly avail-
able. Presumably many people would just use it to shoot thles in the foot.

Note that the so-called server build (mscorsvr.dll) of th&engsoft .NET runtime differs from
the workstation build (mscorwks.dll) primarily in using arcurrent garbage collector. According to
MSDN, the workstation build will always be used on unipremsmachines, even if the server build is
explicitly requested.

The Mono runtime accepts a range of JIT optimization flagsh ss

mono --optinize=all MatrixMiltiply 80 80 80

but at the time of writing (Mono version 2.6, February 20Kpecifying such flags seem to make matrix
multiplication performance worse. This is good in a sense:default behavior is the best.

7 Casestudy 2: A division-intensive loop

Consider for a giver/ the problem of finding the least integersuch that

1 1 1 1
L4 4.4+ >M
T +>2 +>3 + -+ i

In C, Java and C# the problem can be solved by the followingrnara fragment:

doubl e sum = 0.0;
int n=0;
while (sum< M {
n++;
sum+= 1.0/ n

}

For M = 20 the answer is = 272 400 600 and the loop performs that many iterations. Each iteration
involves a floating-point comparison, a floating-point digh and a floating-point addition, as well as
an integer increment.

The computation time is probably dominated by the doubéssision floating-point division oper-
ation. The Intel performance documentation [5] says thattihoughput for double precision floating-
point divisionDI VSDis (less than) 20 cycles per division, on the Core 2 Duo. Sinedoop condition
depends on the addition and division, 20 cycles would requib ns per iteration on the 2,660 MHz
CPU we are using. Indeed all implementations take betwegns7and 10.6 ns per iteration.

8 Casestudy 3: Polynomial evaluation

A polynomialcy + c1z + cax® + - - - + ¢,,2™ can be evaluated efficiently and accurately using Horner’s
rule:

cotcartert - Fea"=c+r-(ct+z-(.. +x-(cp+x-0)...)
Polynomial evaluation using Horner’s rule can be impleradrnih C, Java and C# like this:
doubl e res = 0.0;
for (int i=0; i<cs.Length; i++)

res = cs[i] + x * res;

where the coefficient arrays has lengtm + 1 and coefficient; is in elements[n — 4] .
The x86-64 code generated for the above polynomial evaluétiop bygcc - O3 from C is this:

<l oop header not shown>

L37:
cnpl % 13d, %edx ;i f i<order
il L27 ; continue
L39:
<l eave | oop> ; else leave | oop
L27:
movsl q %edx, % ax ; move i into % ax
mul sd %8, Y%&mil ; multiply x into res
addsd (9% 14, % ax, 8), %xmml ; add cs[i] to res
i ncl %edx N
jmp L37 ; goto L37

10

Note that the entire computation is done witbs in a floating-point register; not once during the loop
is anything written to memory. The array accesses happdmeiaddsd instruction which multiplies
the floating-point number &% 14+% ax* 8 into the register holding es.

All implementations fare almost equally well on this prahlewith C and C# (on Microsoft's .NET
as well as Mono) being the fastest at 3.0 ns per loop iterafi@tch iteration performs a floating-point
addition and a multiplication, but here the multiplicatioges the result of the preceding addition (via a
loop-carried dependence), which may be the reason thisiaisbh slower than the matrix multiplication
loop in section 5.1.

The reason for the Microsoft implementation’s excellentfigrenance may be that it can avoid the
array bounds check ios[i] . The just-in-time compiler can recognize bytecode geedrtbom loops
of exactly this form:

for (int i=0; i<cs.Length; i++)
cs[i]

and will not generate array bounds checks fordbgi] array accesses [11]. Apparently this optimiza-
tion is rather fragile; small deviations from the above cpd#ern will prevent the just-in-time compiler
from eliminating the array bounds check. Also, experimeoisfirm that this optimization is useless in
the safe matrix multiplication loop (section 3.1), wherdeatst two of the four index expressions appear
not to be bounded by the relevant array length (althoughadlityehey are, of course).

9 Casestudy 4: Distribution function evaluation

The cumulative distribution of the normal (Gaussian) distion can be implemented like this (here in
C#; the Java and C versions are nearly identical):

public doubl e F(double z) {
doubl e p, zabs = Math. Abs(z);
if (zabs > 37)
p=0;
else { /Il |z| <= 37
doubl e expntl = Math. Exp(zabs * zabs * -.5);
doubl e pdf = expntl / root2pi
if (zabs < cutoff) // |z| < CUTOFF = 10/sqgrt(2)
p = expntl = ((((((p6 * zabs + p5) * zabs + p4) *» zabs + p3) * zabs
+ p2) * zabs + pl) * zabs + p0) / (((((((g7 * zabs + g6) =*
zabs + g5) * zabs + gq4) * zabs + q3) * zabs + q2) * zabs + ql)
* zabs + q0);
el se // CUTOFF <= |z| <= 37
p=npdf / (zabs + 1/ (zabs + 2 / (zabs + 3/ (zabs + 4 /| (zabs

} +.65)))));
if (z <0)

return p;
el se

return 1-p;

}

Thepi andqyj are double precision floating-point constants. The of f is 7.071 so for arguments
around—3 the function performs 15 multiplications, 2 divisions arfél ddditions, and computes the
exponential function.

11

10 Experiments

10.1 Matrix multiplication performance

This table shows the CPU time (in microseconds) per matrikiphigation, for multiplying two 80x80
matrices:

C(gcc - @) 702

C# matmultl Microsoft 3218
C# matmultl Mono 4627
C# matmult2 Microsoft 1165
C# matmult2 Mono 1943
C# matmult3 Microsoft 1575
C# matmult3 Mono 2888

Java, Sun Hotspot -server 1180

We see that the best C# results are a factor of 1.65 slowettlieamest C results, using unsafe features
of C#. The best Java results on Sun’s Hotspot JVM are only imelhg slower, which is impressive
considering that no unsafe code is used, and that Java hasesvbat cumbersome array representation.
(The IBM JVM is often even faster that Sun’s Hotspot JVM, bafastunately is not available for Mac
0S 10.6).

Depending on circumstances, the resulting C# performaraeba entirely acceptable, given that
the unsafe code can be isolated to very small fragments ofdte base, and the advantages of safe
code and dynamic memory management can be exploited evergveltse. Also, in 2014 a standard
workstation may have 16 or 32 CPUs, and then it will probatgyniore important to exploit parallel
computation than to achieve raw single-processor speed.

10.2 Division-intensive loop performance

For the simple division-intensive loop shown in section& d¢ixecution times are as follows, in nanosec-
onds per iteration of the loop:

C(gcc - M) 7.9
C# Microsoft 7.7
C# Mono 7.6

Java, Sun Hotspot -server 10.6

Here C and both implementations of C# perform equally well.

10.3 Polynomial evaluation performance

The execution times for evaluation of a polynomial of ord@®@ (microseconds per polynomial evalu-
ation), implemented as in section 8 are as follows:

C(gcc - A@) 3.0
C# Microsoft 3.1
C# Mono 5.3

Java, Sun Hotspot -server 3.0

The performance of C, Microsoft C# and Sun’s Hotspser ver must be considered identical. The
Mono C# implementation is a factor of 1.7 slower than the pestormance in this case.

12

10.4 Distribution function evaluation performance

The execution times for evaluation of the distribution fimic at —3 + 4 - 10~2 for 10,000,000 calls
(nanoseconds per function evaluation), implemented asdtion 9 are as follows:

C(gcc -X@) 54
C# Microsoft 64
C# Mono 146

Java, Sun Hotspot -server 69

The performance of C is best with Microsoft C# and Sun’s Hotsgser ver closely behind. The
Mono C# implementation is a factor of 2.7 slower than the pesformance in this case.

10.5 Detailsof the experimental platform

e Main hardware platform: Intel Core 2 Duo (presumably fangilsnodel 15) at 2,660 MHZ, 3 MB
L2 cache, 4 GB RAM.

e Operating system: Mac OS X 10.6.2.
e Alternate operating system: Windows XP SP3 under Parallslsinder Mac OS.
e C compiler: gcc 4.2.1 optimization level -O3

e Microsoft C# compiler 4.0.21006.1 with compile options - unsaf e; and MS .NET runtime
4.0.

e Mono runtime:nono version 2.6 for MacOS.

e Java compiler and runtime Sun Hotspot 64-Bit Server VM 11&.qbuild 14.3-b01-101, mixed
mode) for MacOS X.

11 Conclusion

The experiments show that there is no obvious relation beEtvwiee execution speeds of different soft-
ware platforms, even for the very simple programs studie@:héhe C, C# and Java platforms are
variously fastest and slowest.

Some points that merit special attention:

e Given Java’s cumbersome array representation and the@bsémninsafe code, it is remarkable
how well the Sun Hotspoetser ver and virtual machine performs.

e Microsoft's C#/.NET runtime in generally performs very Weut there is much room for im-
provement in the safe code for matrix multiplication.

e The Mono C#/.NET runtime now is very reliable, and in versikh the general performance is
good.

13

References

[1] J.P. Lewis and Ulrich Neumann: Performance of Java \&@ti. University of Southern Califor-
nia 2003.
http://ww.idi omcom ~zillal/Conputer/javaCbhenchmark. ht n

[2] National Institute of Standards and Technology, USAalumerics.
http://math. ni st.gov/javanunerics/

[3] CERN and Lawrence Berkeley Labs, USA: COLT Project, OBenrce Libraries for High Perfor-
mance Scientific and Technical Computing in Java.
http://dsd. | bl.gov/~hoschek/ col t/

[4] P. Sestoft: Java performance. Reducing time and spatsiogption. KVL 2005.
http://ww. di na. kvl . dk/ ~sest of t / paper s/ per f or mance. pdf

[5] Intel 64 and IA-32 Architectures Optimization Referendanual. November 2006.
http://ww. intel.conifdesign/processor/ manual s/ 248966. pdf

[6] Microsoft Developer Network: .NET Framework Develofgenter.
http://msdn. m crosoft.com net franewor k/

[7] The Sun Hotspot Java virtual machine is foundhtat p: / / j ava. sun. com

[8] The IBM Java virtual machine is found at
http://ww- 128.i bm cont devel operwor ks/ j ava/j dk/

[9] The BEA jrockit Java virtual machine is found at
http://ww. bea. com content/ products/jrockit/

[10] The Mono implementation of C# and .NET is founchatt p: / / www. nono- pr oj ect. com

[11] Gregor Noriskin: Writing high-performance managedlagations. A primer. Microsoft, June
2003. Athtt p: // msdn2. mi crosoft.com en-us/|i brary/ ns973858. aspx

14

