Functional programming 1
Where are we today

Peter Sestoft
IT University of Copenhagen

Ingenigrforeningen, IDA-IT
Wednesday 2014-09-24

IT University of Copenhagen

The speaker

e MSc 1988 computer science and mathematics and
PhD 1991, DIKU, Copenhagen University

e Programming languages, compilers,
software development, ...

e Open source software:
- Moscow ML, a functional language, since 1994
— C5 Generic Collection Library for C#/.NET, since 2006

e Author of some books:

Neil D. Jones

CarstenK. Gomard

Peter Sestoft

Partial Evaluation
and Automatic
Program Generation

ANNOTATED C#

Programming
Language Concepts

CAR HOARE SERIES EDITOR

1993 2002, 2005, 2015 2004, 2012

IT University of Copenhagen

My current obsession: new ITU course

Practical Concurrent and Parallel Programming (PCPP) (SPPP)

¢ This MSc course is about how to write correct and efficient concurrent and parallel software, primarily using Java, on standard shared-memory
multicore hardware. It covers basic mechanisms such as threads, locks and shared memory as well as more advanced mechanisms such as
transactional memory, message passing, and compare-and-swap. It covers concepts such as atomicity, safety, liveness and deadlock. It covers how to
measure and understand performance and scalability of parallel programs. It covers tools and methods find bugs in concurrent programs.

¢ For exercises, quizzes, and much more information, see the course LearnlT site (restricted access).

¢ For formal rules, see the official course description.

Lecture plan

Loy B0 Date|Who Subject Materials Exercises
week |week
Concurrent and parallel programming, why, what is so hard. ST R 1’. PRSI paper; 1 OGS .
29 . chapter 2; Bloch item 66; Slides week 1; Exercises
1 35 PS | Threads and locks in Java, shared mutable memory, mutual 5
Aug . . Exercises week 1; Example code: pcpp- week 1
exclusion, Java inner classes. 3
week01.zip
T.hFe?(.ls and chks: Ul fgr performance, sl}apng ObJ?CtS’ Goetz chapters 2, 3; Bloch item 15; Slides
5 visibility, volatile fields, atomic operations, avoiding sharing (thread] . 3 Mandatory
2 36 PS . , . . week 2; Mandatory exercises week 2; Example B
Sep confinement, stack confinement), immutability, final, safe . . handin 1
. code: pcpp-week02 .zip
publication
3 37 12 PS Threads and Locks: Designing thread-safe classes. Monitor pattern. Goetz chapters 4, 5; Slides week 3; Exercises |Exercises
Sep Concurrent collections. Documenting thread-safety. week 3; Example code: pcpp-week03.zip week 3
Sestoft: Microbenchmarks; Slides week 4;
19 . Mandatory
4 38 Se PS |Performance measurements. Exercises week 4; Example code: pcpp- handin 2
p week04.zip; Optional: McKenney chapter 3 I
5 39 26 PS Threads and Locks: Tasks and the Java executor framework. Goetz chapters 6, 8; Bloch items 68, 69; Exercises
Sep Concurrent pipelines, wait() and notifyAll(). Example code: pcpp-week05 .zip; week 5
|£ ||m H3 ||m, ||Threads and Locks: Safety and liveness, deadlocks. The ThreadSafe ”th e T LSl B (2] ||Mandatogy\

3

e Programming language genealogy

e Why functional programming, why now
e F#, an ML dialect

e Algebraic datatypes

e Pattern matching

e Higher-order functions

e Polymorphic type inference

e Seguences

e Functional programming in the mainstream
-C# 5
- Java 8
— Scala

IT University of Copenhagen

What is it? In a nutshell

e Compute with values, not locations
- Data values are immutable
— Functions have no side effects

e Build results as new data

— Do not destructively update existing data

- Example: add(set, x) produces a new set instead
of updating the existing collection set

— Cheap: immutable data structures can be shared
e Higher-order functions
e Static type, polymorphic types, and more

IT University of Copenhagen

Why functional programming?

e Powerful modularization facilities:
— abstraction: higher-order functions
— statically checkable documentation: types

e Easier to reason about
e Types without tears due to type inference

e Easier to parallelize, exploit multicore
— Shared mutable data is the root of all evil
— Avoid mutable, and many problems go away

IT University of Copenhagen

”
I - —— W= L
-
I SASL HASKELL _ - - Fi /
~~_ CAML LIGHT —#OCAML — =
o~ ERLANG \
PROLOG™ ™ ™= o o o o m = Java5 ————Java$
—BETA
SMALLTALK JAVA VB.NET 10

SIMULA

/ALGOL 68
ALGOL
CPE— BCPL_—B{ C
ik
BASIC PASCAL v ADA — ADA2005
— mmm Emm Em = = -~ /
- - COBOL FORTRAN90 FORTRAN2003 P
-
-
FORTRAN FORTRAN77 -
- e —

1—_1—_____1______1_____-P_— | |
I I I I I I I

1956 1960 1970 1980 1990 2000

Why now? It has been here for ages

e Functional programming languages are old
— Lisp 1960, Scheme 1978, dynamic types
- ML 1978, polymorphic (generic) types
- SASL 1976, Miranda, Lazy ML, Haskell 1989, lazy
e Also many classic books
- Burge: Recursive programming techniques, 1975
- Henderson: Functional programming, 1980
- Peyton-Jones: Implementation func prog lang, 1987
- Bird & Wadler: Intro functional programming, 1988
e Many old applications

- Program analysis and transformation, artificial
intelligence, computer-aided design, ...

IT University of Copenhagen 8

Affordable, acceptable, necessary

e Technological advances: affordable now
- Hardware has become bigger and faster
— Garbage collection technology has matured

e Psychological advances: acceptable now

— Java Virtual Machine (1994) and .NET (2000) led to
accept of "managed platforms”, garbage collection

e Harder problems: better tools needed now
— Generic types for modelling and specification

— Higher abstractions are useful and effective
e Eg. bulk data processing with C# LINQ and Java streams

- Most functional computations are easy to parallelize
e Eg. Parallel LINQ and Java 8 parallel streams

IT University of Copenhagen 9

General trend towards functional

Item 15: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is provided when it is created and is
fixed for the lifetime of the object. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and BigInte-
ger and BigDecimal. There are many good reasons for this: Immutable classes
are easier to design, implement, and use than mutable classes. They are less prone
to error and are more secure.
To make a class immutable, follow these five rules:

1. Don’t provide any methods that modify the object’s state (known as muta- '

tors).

2. Ensure that the class can’t be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by behav-
ing as if the object’s state has changed. Preventing subclassing is generally ac-
complished by making the class final, but there is an alternative that we’ll
discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06 16].

4. Make all fields private. This prevents clients from obtaining access to muta-

Bloch: Effective Java,
2008, p. 73

Josh Bloch
designed the Java

collection classes

A serious Java (or
C#) developer
should own and
use this book

10

The F# functional language

e Runs on Microsoft .NET and Mono platforms
— Can use standard .NET libraries, interface C#
— Excellent performance

e Descends from OCaml and ML

e Many innovations:
— Asynchronous computations
— Units of measure type system
- Type providers
e Used in finance and data analysis

e Don Syme, Microsoft Research UK

IT University of Copenhagen

11

Recommended F# textbook

MICHAEL R. HANSEN « HANS RISCHEL

Functional
Programmmg

Hansen and Rischel: Functional Programming

with F#, Cambridge University Press 2013

IT University of Copenhagen

12

F# values, declarations and types

F# Interactive for F# 3.1 (Open Source Edition)
> let res = 3+4;;
val res : int = 7

> let y = sgqrt 2.0;;
val vy : float = 1.414213562

> let large = 10 < res;;
val large : bool = false

e Bindings to immutable variables, not assignment
e Types inferred automatically

IT University of Copenhagen

F# function definitions

> let circleArea r = System.Math.PI * r * r;;
val circleArea : r:float -> float

> let mul2 x = 2.0 * x;; h

val mul2 : x:float -> float

e Calling a function:

> circleArea 10.0; ;
val it : float = 314.1592654

> circleArea(10.0);;
val it : float = 314.1592654

IT University of Copenhagen 14

F# recursion, pattern matching

e Defining factorial

> let rec fac n =
- if n=0 then 1
- else n * fac(n-1);;

val fac : n:int -> int
e Same, using pattern matching:

> let rec fac n =

- match n with

- | 0 > 1

- | -> n * fac(n-1);;

val fac : n:int -> int

IT University of Copenhagen 15

F# pairs and tuples

> let p = (2, 3);;
val p : |/ int * int = (2, 3)

> let w = (2, true, 3.4, "blah");;
val w : 1nt * bool * float * string
(2, true, 3.4, "blah")

> let add (x, y) x + vy;;
val add : x:int * y:int -> int

e A “two-argument” function is really a
function from a single pair of arguments

IT University of Copenhagen 16

F# lists

> let x1 = [7; 9; 131:;;
val x1 : int list = [7; 9; 13]

> let x2 =7 :: 9 :: 13 :: [1;;
val x2 : int list = [7; 9; 13]

> x1 = x2;;
val it : bool = true

e Data structures compose to any depth
— Eg a list of pairs of name and age

> let friends = [("Hans", 52); ("Hanne", 49)];;
val friends : kstring * int) list|= [("Hans", 52); ("Hanne", 49)]

IT University of Copenhagen 17

List append (@)

> let x1 = [7; 9; 13];;

> let x3 = [47; 117;;

> let x1x3 = x1 @ x3;;

val x1x3 : int list = [7; 9; 13; 47,; 11]
x1 / ™ O ™ 13
x3 47//\‘11

x1x3—’7/\9/\13

e F# data (lists, pairs, ...) are immutable
e This makes list tail sharing unobservable

e Admits economy impossible in C, Java, C#, ...

18

F# defining functions on lists

> let rec sum xs =

- match xs with

- | [1] -> 0

- | X::Xr -> x + sum Xr;;
val sum : xs:int list -> int

> sum x1;;
val it : int = 29

IT University of Copenhagen

19

F# algebraic datatypes
e A person is either a teacher or a student:

type person =

| Teacher of string * int;; -

| Student of string

> let people = [Student '"Niels"; Teacher ("Peter", 5083)];;
val people : person list = [Student "Niels"; Teac ...]

> let getphone person =
= match person with

- | Teacher (name, phone) -> phone
- | Student name -> failwith "no phone";;

val getphone : person:person -> int

e Checks exhaustiveness and irredundancy

e OO would use abstract class Person
with subclasses Teacher and Student

20

F# polymorphic functions

- let rec len xs =
= match xs with

- | [] -> 0
- | x::xr -> 1 + len xr;;

val len : xs:'a list -> int

len [7; 9; 13]

len [true; true; false; true]
len ["foo";, "bar"]

len [("Peter", 50)]

e Same as a generic method in Java or C#

static int Count<T> (IEnumerable<T> xs) {

[_—)

IT University of Copenhagen 21

F# polymorphic types: generic tree

type 'a tree =
| Lf
| Br of 'a * 'a tree * 'a tree;;

> Br (42, Lf, Lf);;
val it :|int tree| = Br (42,Lf,Lf)

> Br("quoi?", Lf, Lf);;
val it :|string tree|= Br ("quoi?",Lf,Lf)

> Br(("Peter", 50), Lf, Lf);;
val it : |(string * int) tree|= Br (("Peter", 50) ,Lf,Lf)

e Same as a generic type in Java or C#
e But in F#, types are inferred automatically

IT University of Copenhagen 22

F# sequence expressions

e Like “"set comprehensions” in mathematics

- seq { 1..200 };;
val it : seqg<int>

> seq { for x in 1..200 do yield 3*x };;
val it : seqg<int> = seq [3; 6; 9; 12; ...]

{ 3*x | xin 1..200 }

Seg.sum(seq { for x in 1..200 do
if x%5<>0 && x%7<>0
then yield 1.0/float x })

2{1/x | xin 1..200 A 5 and 7 do not divide x }

IT University of Copenhagen 23

Pattern matching example:
Symbolic differentiation

e Represent expression by algebraic datatype:

type expr =
| Cst of int
| Var of string
| Add of expr * expr
| Sub of expr * expr
| Mul of expr * expr;;

e Examples:

> Mul (Cst 42, Var "x");;
val it : expr = Mul (Cst 42,Var "x")

> Mul (Var "x", Mul (Var "x", Var "x")) -

IT University of Copenhagen 24

Pattern matching example:
Symbolic differentiation wrt x

iff(k) =0
iff(x) =1
iff(y) =0

iff(a + b) = diff(a) + diff(b)
iff(a * b) = diff(a) * b + a * diff(b)
iff(a — b) = diff(a) — diff(b)

let rec diffX (e : expr) =
match e with
| Cst i -> Cst O
| Var y when y="x" -> Cst 1
| Var y -> Cst O
| Add(el, e2) -> Add(diffX el, diffX e2)
I
I

O O O A A o

Mul (el, e2) -> Add(Mul (diffX el, e2), Mul(el, diffX e2))
Sub(el, e2) -> Sub(diffX el, diffX e2)

IT University of Copenhagen 25

Differentiation works
but results could be simplified

> diffX(Mul (Cst 42, Var "x"));;
val it : expr = Add (Mul (Cst O0,Var "x") ,Mul (Cst 42,Cst 1))

> diffX (Mul (Var "x", Var "x"));;
val it : expr = Add (Mul (Cst 1,Var "x") ,Mul (Var "x",Cst 1))

> diffX (Mul (Var "x", Mul (Var "x", Var "x")));;
val it : expr =
Add
(Mul (Cst 1,Mul (Var "x",Var "x")),
Mul (Var "x",Add (Mul (Cst 1,Var "x") ,Mul (Var "x",Cst 1))))

IT University of Copenhagen 26

let rec simplify e
let simpler

Expression simplification

let rec simp e =
match e with

Add(Cst O,
Add (el,
Sub (el,
Mul (Cst O,
Mul (Cst 1,
Mul (el,
Add (Cst
Mul (Cst
Sub (Cst
Add (el,
Add (el,
Mul (el,
Sub (el,
Sub (el,
-> e;;

il,
il,
il,
e2)
e2)
e2)
e2)
e2)

e2) ->
Cst n) ->
Cst 0) ->
e2) ->
e2) ->
Cst n) ->

Cst 1i2) ->
Cst i2) ->
Cst i2) ->
when el=e2 ->

->

->
when el=e2 ->

->
simp e

simp e2
Add (Cst n,
simp el
Cst 0
simp e2
Mul (Cst n, simp el)
Cst (i1+i2)

Cst (i1*i2)

Cst (il1-i2)

Mul (Cst 2, simp el)
Add (simp el, simp e2)
Mul (simp el, simp e2)
Cst 0

Sub (simp el,

simp el)

simp e2)

in if e=simpler then e else simplify simpler;;

IT University of Copenhagen

O+e =¢e
e+n = n+e
e-0 =-e
O*e =0
1*e = e
e*n = n*e
et+e = 2%e
e-e =0
27

The simplifier works
> simplify (diffX(Mul (Cst 42, Var "x"))) ;-
val it : expr = Cst 42 -

> simplify (diffX (Mul (Var "x", Var "x"))) .,
val it : expr = Mul (Cst 2,Var "x" -

> simplify (diffX (Mul (Var "x", Mul (Var "x", Var "x")))),;
val it : expr = Add (Mul (Var "x",Var "x"),
Mul (Var "x",Mul (Cst 2,Var "x")))

 Need more rules: |e1*(n*e2) = n*(el*e2)
n*e + m*e = (n+m)*e

e Easy to add thanks to pattern matching

IT University of Copenhagen 28

C# adopts functional concepts
e 1.0: Object-oriented, 2001

- simple types, delegates -

e 2.0: Generic types and methods, 2005

— iterator blocks as stream generators -

e 3.0: Functional programming and LINQ, 2007
- lambda expressions, in-core LINQ is just ctions

e 4.0: Task Parallel Library, 2010
— uses functions everywhere

e 5.0: Asynchronous methods, 2012

e 6.0: More functional programming, 20157
— pattern matching, immutable collections

IT University of Copenhagen 29

C# anonymous functions (lambdas)

e Anonymous method (delegate) syntax C# 3:

delegate (int x) { return x%2= }

IT University of Copenhagen 30

C# generic delegate types

Action
Action<Al>
Action<Al , A2>
Func<R>
Func<Al,R>
Func<Al,f A2 ,R>

.NET 3.5
(2007)

IT University of Copenhagen

unit -> unit
Al -> unit
Al*A2 -> unit

unit -> R

Al -> R
Al*A2 -> R
F# or

Standard ML
(1978)

31

e A method to compose a function with itself

public static Func<T,T> Twice<T> (Func<T,T> f) {
return x => f£(f(x));

}

e Some lambdas and computed functions

var funl = Twice<int>(x => 3*x);

Func<int,int> triple = x => 3*x;

var fun2 = Twice(triple);

Func<Func<int,int>, Func<int,int>> twice
= £ = x = £(£f(x));

var fun3 = twice(triple);

var res = funl (4) + fun2(5) + fun3(6) ;

IT University of Copenhagen

Linq, language integrated query
e Ling in C#:

from x in primes where x*x < 100 select 3*x

e Set comprehensions, ZF notation:
{ 3x | x € primes, x2 < 100 }

e sy

e Miranda (1985) list comprehensions, Haskell
e F# sequence expressions

IT University of Copenhagen 33

From queries to method calls

e A query such as
from x in primes where x*x < 100 select 3*x

is transformed to an ordinary C# expression:
primes.Where (x => x*x < 100)
.Select(x => 3 * x)

e There Where and Select methods are higher-
order functions

e LINQ is disguised functional programming

IT University of Copenhagen 34

Basic extension methods for Linq

IEnumerable<T> Where<T>(this IEnumerable<T> xs,
Func<T ,bool> p)

e As list comprehension: -
[X | X <-Xs, p(x)]

IEnumerable<U> Select<T,U>(this IEnumerable<T> xs,
Func<T,U> f)

e As list comprehension: -

[f(X) | X <- xs]

IT University of Copenhagen 35

Extension methods on IEnumerable

e Most support Ling for collections

e But an enumerable is nearly a lazy list, so
they also support functional programming

e The F# sequence expression in C#:

double sum = Enumerable.Range (1, 200)
.Where (x => x%$5!=0 && x%7!'=0)
.Select(x => 1.0/x)

o)
double sum =

(from x in Enumerable.Range(l, 200)
where x%5'=0 && x%7'=0
select 1.0/x) .Sum() ;

IT University of Copenhagen 36

Java 8 function interfaces, 2014

e Java 1.1-7 have anonymous inner classes:

Thread t = new Thread(
new Runnable() { public void run() { ... } }

e Java 8 function interface: exactly one method

) ;

interface Runnable { void run(); }

e Java 8 anonymous function, “lambda”
Thread t = new Thread(|() -> ...):

37

Java 8 streams, 2014

e Like .NET Enumerables & extension methods
— In package java.util.stream

e The F# and C# example, in Java 8:

double sum =
IntStream.range (1, 200)
.filter(x -> x%5!'=0 && x%7!'=0)
.mapToDouble (x -> 1.0/x)
.sum() ;

e No LINQ-style syntactic sugar (so far)
e Java streams are easily parallelizable

IT University of Copenhagen 38

Java 8 streams are parallelizable

double sum =
IntStream.range (1, 200) .parallel () -
filter(x —> x%5!=0 && x%7!=0)
.mapToDouble (x -> 1.0/Xx)
.sum () ;

e Safe only if you program functionally:

Side-effects

Side-effects in behavioral parameters to stream operations are, in
general, discouraged, as they can often lead to unwitting violations of
the statelessness requirement, as well as other thread-safety hazards.

If the behavioral parameters do have side-effects, unless explicitly
stated, there are no guarantees as to the visibility of those side-effects to
other threads, nor are there any guarantees that different operations on
the "same" element within the same stream pipeline are executed in the
same thread. Further, the ordering of those effects may be surprising.

Java 8 class library documentation

39

The Scala programming language

e Compiles to the Java platform
— can work with Java class libraries and Java
— is quite easy to pick up if you know Java
— is much more concise and powerful

e Scala has classes, like Java and C#
- Neat combination of functional and object-oriented
- No interfaces, but traits = partial classes

e Many innovations
- Very general libraries

— Thanks to complex type system
— Many ideas get adopted by C# and Java now

e Martin Odersky and others, EPFL, CH

IT University of Copenhagen 40

Java versus Scala

class PrintOptions { -
public static void main(String[] args) {
for (String arg : args)
if (arg.startsWith("-"))

System.out.println(arg.substring(1l)) ;
object PrintOptifans { ,IJ

def main(args: Array[String]) = {
for (arg <- args; if arg startsWith "-")
println (arg substring 1)

}

IT University of Copenhagen 41

e Scala also has an interactive top-level
- Like F#, Scheme, most functional languages

sestoft@mac ~/scala $ scala
Welcome to Scala version 2.10.3 (Java HotSpot(TM) 64-Bit...).

scala> def fac(n: Int): Int = if (n==0) 1 else n*fac(n-1)
fac: (n: Int)Int

scala> fac(1l0) _ e
res0: Int = 3628800 java.util.BigInteger

scala> def fac(n: Int): BigInt if (n==0) 1 else n*fac(n-1)
fac: (n: Int)BigInt

scala> fac(100)

resl: BigInt = 9332621544394415268169923885626670049071596
8264381621468592963895217599993229915608941463976156518286
253697920827223758251185210916864000000000000000000000000

Commercial uses of

functional programming
e Financial sector

— Functional is big in London and New York
— Eg Jane Street Capital, Standard Chartered Bank
- Denmark: Simcorp, financial back office systems

e Web services
— Twitter, LinkedIn use Scala
e Security and high-integrity systems
— Galois Inc
e Chip design and FPGA generation
— Xilinx
e Stochastic testing
— Qvik, QuickCheck for Erlang etc.

IT University of Copenhagen 43

