KU e

ISSN 0107-8283

The Structure of a

Self-Applicable Partial Evaluator

Peter Sestof£

Datalogisk Institut, Kébenhavﬁs Universitet
Institute of Datalogy, University of Copenhagen
Sigurdsgade 41 DK-2200 Kebenhavn N

B
The Structure of a

Self-Applicable Partial Evaluator

Peter Sestoft

DIKU
University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen @, Denmark
November 15th, 1985

Table of Contents

Introduction 3
Outline e e e e 3

1 Partial Evaluation — Concepts and Notation 3
1.1 ProgrammingLanguages 4
1.2 PartialEvaluation 4
1.3 Interpretersand Compilers 5

2 Goals, Motivations, and Problems 5
2.1 The Applications of Partial Evaluation to Compiling 5
2.2 Practice Lagging Behind Theory 7
2.3 Obstacles to Self-Application -1

3 ThePartial Evaluator Mix iu..... 9
3.1 The SubjectLanguageLofMix 9
3.2 Structure of the Partial Evaluator 12
3.2.1 Ideas Behind and Structure of Mix 12

3.2.2 DisCUSSION . .o vv it e e e 14

3.3 DescriptionofthePhases 18
3.3.1 Known/Unknown Abstract Interpretation 18

3.3.2 Annotation of Parameter Lists and Operators 21

3.3.3 Function Specialization 22

3.3.4 POStPIOCESSING . « . v v vttt e e e e .27
3.4 VariableSplitting 28
4 ExperiencewithUsingMix 29
4.1 Self-Applicationof Mix 29
4.2 Compilers Generated by Self-Applicationof Mix 29
4.3 Partially Evaluating a Self-Interpreter 31
4.4 ConClusion ittt 31

S Summary .. e e 32
References i e 32
Appendix: SomeListings 34

A preliminary version of this paper was presented at the workshop "Programs as Data Objects” at
DIKU, Copenhagen, Denmark in October, 1985. A shorter version will appear in the proceedings
of this workshop, published in Springer Lecture Notes in Computer Science.

The Structure of a
Self-Applicable Partial Evaluator

Peter Sestoft

DIKU
University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen (3, Denmark
November 15th, 1985

The present paper describes the ideas behind a simple, self-applicable partial evaluator called
Mix as well as its structure. This partial evaluator was developed at DIKU (by Neil D. Jones,
Harald Sgndergaard, and the author) during 1984 with the explicit goal in mind that it should be
self-applicable and thus make possible the automatic construction of compilers from interpreters and
even of a compiler generator. This work is already partly documented in v(Jor'les, Sestbft,
Sgndergaard 85).

Qutline
~ The structure of the present paper is as follows. , R
First, the concept of partial evaluation is defined and various pieces of notation are
introduced. Second, the application of partial evaluation to compiling and compil,cr_ generation is
explained, and the goals and problems of the project are discussed. Third, the,,soluﬁoﬁ,s to these
problems and the resulting structure of Mix are described in the central part of the p,ép,er. .Finally,
we sum up what has and what has not been done, and suggest further work.

1_Partial Evaluation - C ts and Notati

In this chapter, we give a brief formal definition of partial evaluation and of some concepts |
related to compiling. These will be used extensively in the following. The definitions are the same ; .° .:7‘,

as those given in (Jones, Sestoft, Sgndergaard 85).

max hsg

v e

@!s‘?@ wmad | L (L mix <p, xl, vos Xn>) <Y 15 e Yp> = L P <X1, -o0s xm, Y15 s Y (1)

L1 Programming Languages

Since we use programs as input to other programs and even to themsélves, we assume that
programs and data will be of the same nature, that is, members of a universal domain D of symbols
(e.g. character strings, LISP lists, natural numbers, or the like). Below, D* is the set of finite
sequences of elements from D; broken arrow — — means partial function; equality "=" means that
either both sides are undefined or they are both defined and equal.

Definition A programming language L, then, is a "semantics function" L:D - —D*~— D
sothat Lp is the function L p: D* — — D computed by program p, and L p <dy, ..., d ;> is
the result of running L-program p on data <dy, ..., d,>€ D*. The set of L programs is the
subset of D to which L assigns a meaning, ie. L-programs = domain(L) . O

2 ial Evaluati | |
First, we will introduce the concept of residual program.

Definition Let L be a programmiﬁg language, p € L-programs a program. Then r e
L-programs is a residual program for p with respect to known input <x1, - Xm> € D* iff

Lp <Xy, Xps Y15 o0 ¥p> = LT <y, s Yn>
for all sequences of remaining input <yq,..,y,> € D*. O

- -That is, the residual program r is the result of "running the original program p on partially
known input" or "specializing p to fixed partial input” xi, voes Xpppe
Now, a partial evaluator mix is defined as being a program that produces residual programs.

Definition An L-partial evaluator mix is an L-program such that for any L-program p, and
partially known input <Xy, ..., Xy,> € D*, L mix <p, Xy, ..., x> is a residual program for p

with respect to <x{, ..., Xp;> , Or in other words,

for all sequences of remaining input <Y1> - Yp> € D%

- The L program p is called a subject program and accordingly, L is the subject language of
the partial evaluator. The data <xt, ..., X;,> are called the known input, and <yy, ..., yo> the
unknown or residual input. A partial evaluator defined this way (it is itself written in its own
subject language) is called an autoprojector by (Ershov 82). O

A partial evaluator is an implementation of the primitive recursive function S from Kleene's

S-m-n Theorem of recursive function theory (Kleene 52). By that theorem, partial evaluators exist.

Let L and S be programming languages.

;iDefmmon An interpreter for S (written in L) is an L-program int so that

. Lint <s, dy, .., dy> = Ss<dy, ..., dy> ink hey ecisble (9)
‘: Lyivy. wt] L»!
for all S-programs s and input tuples <dy, ..., d,> € D*. | Nﬁwﬂ m ef; O
(oity7) ‘Lml

(ﬂne.(, @\3 Lw v, ol);

, Deflmtlon A compiler from S to L (written in L) is an L-program comp $O that

L (L comp <s>) <dy, ..., dy> = Ss <dy, ..., d> (3)
for any S-program s and all input tuples <d;, ..., d,> € D*. v O

~ All the above concepts and definitions can be generalized in various obvious ways. For
example, a partial evaluator may produce residual programs in a language different from the
language in which it is written. '

First we describe the goals of the Mix project and their background. Then we proceed to
discuss some of the practical and theoretical problems of attaining these goals.

z l Il ! !- I . [E I - l E l I - I C l]. ‘ ‘
This is a very brief account of the relations between partial evaluation and compiling. For a
fuller treatment, see for example (Ershov 78, 82), (Futamura 83), (Jones, Sestoft, Sgndergaard

" 85), or (Turchin 80).

In the following, let L be an unplementatlon language, i.e. a language for which we have a

processor (compiler, interpreter), so that L-programs, in fact, can be executed. In our case, L is a

very small subset of LISP with some syntactic sugar (extensions) which will be described in
Section 3.1. .

Also, let mix be an L-partial evaluator (an autoprojector for L), and let S be a programming
language. Then, in principle, the following is feasible.
Compiling '
From an S-interpreter int and an S-program s to make an equlvalent L—program target .
From mix and an S-interpreter int to make a compiler comp from S to L written in L.

From mix alone to make a compiler generator capable of transforming interpreters into compilers.

The formal reasons for this are

Compiling .
With target = L mix <int, s> 4)
we have ,
L target <dy, ..., dp> = B by (4)
L (L mix <int, s>) <dy, ..., d,> = by (1)
L int <s,dq, ..., dpp> = by (2)
Ss <d1', weey d.n> ‘

for all input <«dy, ..., d,> € D*. Therefore, the L-program target and the S-program s are
equivalent, and target may be considered a target program for s.

Compiler generation
With comp = L mix <mix, int> .)
we have
L comp <s> = by (8)
L (L mix <mix, int>) <s> = ' by (1)
L mix <int, s> = by (4)
target

(from above) for all S-programs s . Therefore, comp is a compiler from S to L written in L.

Compiler generator generation

Finally, with
cocom = L mix <mix, mix> ' (6)
we have A
L cocom <int> = by (6)
L (L mix <mix, mix >) <int> . . = by (1)
L mix <mix, int> = by (5)
comp

(from above) for any S-interpreter int written in L. Therefore, cocom is a general compiler
- generator, transforming interpreters into compilers. (More generally, cocom implements the
currying function on the representation of general recursive functions as programs).

Compiling and compiler generation along the lines sketched above were described for the
first time in (Futamura 71), while it seems that (Turchin 79) contains the first reference to the idea
of obtaining a compiler generator by partial evaluation (according to Prof. Turchin the idea dates
back to 1975).

Whﬂe th@ fc&mblhty in pnncaple of compiler resp. compiler generator generation has been
known for more than a decade, apparently nobody has realized these in practice until fall 1984,
Also, this seems to be the case in spite of the numerous attempts to do that (mainly in Japan,
Sweden, and the USSR). Thus, compiling using partial evaluation was realized using a variety of
formalisms and languages, see for example (Ershov 78), (Emanuelson, Haraldsson 80); (Kahn,
Carlsson 84), and (Haraldssort 78). But as far as we know, no one has reported success in
producing compilers or a compiler generator this way. - :

Inspired by this problem, we (initially Neil D. Jones and Harald S¢ndergaard)'set out {o
produce a partial evaluator capable of producing compilers. as well as a compiler generator. Also,
some interest and insight into the problem stemmed from its relationship to the CERES compiler
generator project, expounded in (Jones, Tofte 83).

As can be seen from equations (5) and (6) above, a partial evaluator has to.be self-applicable
in order to achieve the goal mentioned. Probably, this is the main source of problems, pracucal as
well as theoretical, and the reason why the earlier efforts remained fruitless.

2.3 Obstacles to Self-Applicati
I think that the following problems with writing a self-apphcable partlal evaluator can be

distinguished: :

1. . Partial evaluation is not well defmed

2. When reasoning about the process of self-application one tends to confuse the usually

disparate levels of program and data. .

3. The fact that the subject language of the partial evaluator is input language as.well as
meta-language for the partial evaluator makes the choice of an appropriate subJect language hard as
well as important.

I will discuss these problems in some greater detail.

1. The definition of a partial evaluator (and equation (1)) does not capture the natural
expectation that the residual program produced by a partial evaluator should be "reasonable", i.e.
neither unnecessarily large nor too inefficient. We would like the partial evaluator to be able to take
the greatest possible advantage of the subject program's known input to make this into an efficient
specialized residual program. But the definition of a partial evaluator, in fact, allows: it to make
trivial residual programs. That is, it may make from a subject program p- consisting of one
function f of two parameters, SR

f(x,y) = ..

and a known value a for x, a trivial residual program like this
gy) = f(a,y)
fxy) = ..

This residual program is, of course, correct but not interesting (except that it proves the
existence of partial evaluators in the same way the S-m-n Theorem is proved). We would like to

make the definition of partial evaluation more precise by stating some of its desired properties, e.g.
always making the shortest possible (or fastest possible) residual program, or (much weaker)

' 1 always producihg;a constant expression when the result of the subject program depends only on
e the knbwn input. But this seems to make partial evaluation (of general recursive functions) an
uncomputable problem. The paper (Heering 85) gives a precise meaning to the vague requirement
"make maximal use of known input" and shows that, in general, this is not possible using a finite =

number of rewriting (reduction) rules. The consequence of this is that we have no precise, useful

requirements for a partial evaluator that could help us in development process, or in proving that an
alleged partial evaluator is not the trivial one producing trivial residual programs.
2. When running L mix <mix, mix> , that is, applying a partial evaluator to itself to producea
compiler generator, we see the text of mix in three very different roles. First, as a partial evaluator
to be run, second, as a program to be partially evaluated (= as first input to a running partial j
evaluator), and third, as known input to a program to be partially evaluated (= as second input to
partial evaluator). But the fact that the representations (program texts) are indistinguishable, makes
it very hard to reason in cold blood about what takes place during the process of partial evaluation.
3. The subject language of the partial evaluator must be very carefully chosen to satisfy :
somewhat conflicting demands: _

On the one hand, as subject language to be processed by the partial evaluator, it should be as

simple as possible to process. Therefore, it should:

- have a simple syntax (few, uniform language constructs) so that programs can be- ;

easily represented and handled as data structures

- have a simple semantics (in other words, be quite small and unsophisticated).

On the other hand, as the language in which the partial evaluator is to be written, it should:

- support straightforward representation and manipulation of programs (as trees/terms)

- support structuring/abstraction/modularization in order to ease program construction

- be (humanly) readable

- have some reasonably efficient implementation

- be expressive, convenient to work with.

This is mainly a practical problem, of course, but a very important one. Developing a new
algorithm of the complexity of a usable partial evaluator requires (has required!) much
experimentation and repeated rewriting of major parts of the system. When one has to program in a
very restricted language, forcing one to use lots of tricks and clever encodings (such as handling a

recursion stack explicitly), it becomes unbearable and one tends to lose belief in the entire
undertaking. In short, a wise choice of subject language is a prerequisite for success.

“&

3 The Partial Evaluator Mi

In this chapter a quite detailed account of the algorithms of the partial evaluator Mix will be
given. o ' :

First, the subject language we chose for Mix is presented. Secohd, the structure of Mix and
some of Mix's algorithms are presented together with reasons for their being that way. Thus
analysis is not clearly separated from presentation. Third, an extension to Mix called "variable
splitting" is described, and some of our experience with producing compilers and a compiler
generator using our partial evaluator Mix are described. '

The paper (Sestoft 85) gives some directions for using the Mix system implementation (as of
spring 1985). This is not attempted here. '

3.1 The Subject I L of Mi
Above, we used L for the subject language of a partial evaluator mix. Below we describe
our partial evaluator Mix and its parricular subject language called L. ,
First we list some useful characteristics of L, then we give its syntax and an informal
semantics. A syntactic extension called LETL is also described, and an L-interpreter is given as an
example of the use of LETL.

Characteristics of the Language I

We chose L to be a first-order, statically scoped subset of pure applicative LISP without
special treatment of numbers. Therefore L has the following characteristics:
' - programs are easily represented as data structures (LISP lists), and a program is its
own abstract syntax tree; hence, programs are easily analyzed, decomposed and composed, and
therefore, easily transformed. ’

- manipulation of (syntax) trees is naturally expressed by recursion in L.

- L has a very siniple and regular syntax (all operators have fixed arities in contrast to
"real" LISP where cond and list violate this requirement) as well as semantics.

- there exist reasonably efficient implementations of L.

The main drawback of this language is that it is very tedious to program in because of all the
parentheses needed to express structure and because of the need to use car/edr sequences to select
branches in a tree. This problem, however, is alleviated by the extension LETL described below.

Syntax and Informal Semantics of L
 The only data type is LISP lists.
1. A program is a non-empty list of function definitions
<program> := (<fcn-def> <fen-def> *)
The first function of the program is the goal function. Input to the program is through the
parameters of this function, and output is the value returned by it. ‘

2. A function definition consists of a function name, a list of parameters, and a function body.
<fen-def> = (<fname> <parlist> <body>)

The scope of the parameters is the body

of the function. '

3. A function name is a symbol (a LISP atom), a parameter list is a list of symbols (LISP
atoms), and a function body is an expression

<fname> = <atom>
<parlist> 1= (<atom> *)
<body> = <exp>

4. An expression is eithier a constant, a variable, or an operator car, cdr, atom, cons, equal,
or if, applied to expressions, or a function call
<exp> = (quote <LISP-list>) -- shorthand: '<LISP-list>

<variable>

(car <exp>)

(cdr <exp>)

|

I

l

| (atom <exp>)
| (cons <exp> <exp>)

| (equal <exp> <exp>)

| (if <exp> <exp> <exp>)

| (call <fname> <argexps>)

A variable refers to the value of a parameter of the function in whose body it appears. All operators
are strict and call-by-value except if and quote, and they have their usual (LISP-) semantics.

5. "Argument expressions" is a sequence of expressions

<argexps> = <exp> ¥

In order to facilitate programming in L, we define an extension LETL adding much to the
practical usability of L. Also, we have written a LETL to L compiler automatically transforming the
LETL constructs into basic L constructs.

LETL extends L with

- let and where decomposition patterns, e.g. (let (op expl exp2) = exp in ...). This
eliminates the need for car/cdr expressions to decompose trees, as well as a lot of parentheses.

- an if-then-elsf-else (syntactically sugared McCarthy) conditional |

- an infix, right associative cons operator "::". (consa(consbc)) = (a::b::c)

- logical connectives: null, not, and, or

- alist builder

The paper (Sestoft 85) describes these languages in more detail.

10

Sbg/‘. ‘ ”‘fﬁr‘pmtﬁr

N serving
as an example of a LETL program. Co T

&,im (program input) = .
(let ((fnamel parlistl bodyl) . rest) = program in
(call Exp body1 parlist] input program)))

(Exp (exp vnames vvalues program) =
(let (op expl exp2 exp3)
(call? fname . argexps)
(if (atomexp) then
(call Lookupv exp vnames vvalues)
elsf (equal op 'quote) then
expl '
elsf (equal op 'call) then
(call Call (call Lookupf fname program)
- (call Pars argexps vnames vvalues program)
program)
else (let vl = (call Exp expl vnames vvalues program) in
(if (equalop'car) then (car vl)
elsf (equalop'cdr) then (cdrvl)
elsf (equal op 'atom) then (atom v1)
elsf (equal op 'if) then :
(if v1 then (call Exp exp2 vnames vvalues program)
else (call Exp exp3 vnames vvalues program))
else (let v2 = (call Exp exp2 vnames vvalues program) in
(if (equal op 'equal) then (equal vl v2)
elsf (equal op ‘cons) then (cons vl v2)
else (list SYNTAX 'ERROR: exp)))))))

exp
exp in

+ (Call (fen-def vvalues program) =

(let (fname parlist body) = fcn-def in
(call Exp body parlist vvalues program)))

(Pars (explist vnames vvalues program) =
(let (expl . exprest) = explist in
(if (null explist) then 'nil
else (cons (call Exp expl vnames vvalues program)
(call Pars exprest vnames vvalues program)))))

(Lookupv (var vnames vvalues) =
(let (vnl . vor) = vnames
(vvl . vvr) = vvalues in o
(if (null vnames) then (list 'UNKNOWN 'VARIABLE: var)
elsf (equal var vnl) then vvl

else ' (call Lookupv var vnr vvr))))
(Lookupf (fname program) = ,
(let ((fen-defl : (fl1 parsl bodyl)) . rest) = program in

(if - (null program) then (list 'UNKNOWN 'FUNCTION: fname)
elsf (equal fname f1) then fcn-defl
else : (call Lookupf fname rest))))

11

3.2 Structure of the Partial Evaluator
In this section we will describe the structure of the partial evaluator. First, we give a
presentation of the general ideas and an overview of the phase structure of the partial evaluator, then
a more detailed discussion is attempted. Section 3.3 below describes the individual phases and the
actual algorithms of the partial evaluator.
32,1 1d Behind and Struct f Mi
An Example of Parti luati
Consider the following LETL-program (in which we have left out some parentheses) with
two parameters, an atom x and a linear list y. Output is a list of the same length as the list y, each
element of which is the atom x. However, if x is nil, it will be a list of "a"s, preceded by the atom
"EXCEPTION".
h(x,y)= if (null x) then (cons 'EXCEPTION (call h 'a y))
else if (null y) then 'nil
else (cons x (call h x (cdr y)))
We would like to partially evaluate this program for y unknown and x known to be nil.
Now we can proceed to evaluate (call h 'nil y) symbolically by unfolding h, i.e. replacing
the call by the function definition. The conditional (null x) is known to be true, therefore |

h('nil,y) = (cons 'EXCEPTION (call h 'ay)) (r1)
Evaluating (call h 'a y) symbolically we get

h(a,y) = if (null y) then 'nil else (cons 'a (call h 'a (cdr y))) (r2)
This we could further unfold to

h(a,y) = if (nully) then 'nil
else if (null (cdry)) then '(a)
else (cons ‘a (cons 'a (call h ‘a (cdr (cdr y))))) (r2")
but it would not lead to much improvement, and such further unfolding could never eliminate the
need for recursion, since we have no bound on the length of y, and so we stick to the first version
(r2) above. |
Since we cannot do more useful transformations by symbolic evaluation alone, we will make
the above equations (r1) and (r2) into a residual program with two functions. The first being the
goal function, which is h specialized to x='nil, and the other a variant of h specialized to x="a, thus
h['nil] (y) = (cons EXCEPTION (call h[a] y))
h['a] (y) = if (nully) then 'nil else (cons 'a (call h[a (cdr y)))
Summary: This residual program was constructed by evaluating expressions symbolically,
unfolding function definitions, and suspending function calls (deciding not to unfold), and finally,
by making function variants specialized to certain values of the known parameter. In principle our
partial evaluator Mix uses exactly these transformations. ¢
We will introduce a little terminology. Suppose the subject program has goal function
£1 (Xg5 oes X> Y15 -0 Yn) = €XPy
and that the subject program's known input parameters (those available during partial evaluation)

12

S—

- are Xy, ..., Xy Then a parameter x;j of some function f; is said to be Known during partial

evaluation if the value of Xjj can only depend on the values of the parameters xy, ..., X, thatare

available, not on yy, ..., y,, that are not available. Correspondingly, x:: is said to be Unknown if

it may depend on yy, ..., ¥p-

ij

Mix Principles

a. The residual program corresponding to a subject program and its known input consists of a’
collection of function definitions, each resulting from specializing (the body of) some function
definition in the given subject program to known values of some of its parameters. These are called
residual functions.

b. Intuitively, partial evaluation proceeds as symbolic evaluation of the subject program.

Instead of parameters being bound to their actual values, they are bound to L-expressions denoting
their possible values. Symbolic evaluation of expressions which do not contain function calls is
straightforward reduction/rewriting of the expressions. Evaluating a function call symbolically, we

- can do one of two things: Unfold the call (i.e. replace it with the reduced equivalent of the called

function's body) or suspend the call (i.e. replace it with a call to a residual variant of the called
function). :

c¢. Werequire the user of the partial evaluator to decide (before applying it) which function calls
in the subject program should be unfolded (eliminable call) and which should be suspended
(residual call). This is done by annotating the function call with an """ (for residual, yielding callr)
if the user wants it to be suspended. |

"d. The partial evaluation process is divided into phases.

Flrst the (call annotated) subject program is abstractly interpreted over a value domain only’
distinguishing known and unknown values. This results in information on which parameters of
each function will be known at partial evaluation time, and which will possibly be unknown. The
information obtained is used in the second phase for annotating the subject program, dividing thvev
parameter list of each function into two: the eliminable parameters (khowri values at partial
evaluation time) and the residual parameters (values possibly unknown). This is thuired for the
later specialization of each function into its (zero or more) residual variants in the residual program,
cf. a. above. Also, each operator car, cdr, ... is annotated either as eliminable (care, cdre, ...)
or as residual (carr, cdrr, ...), yielding a heavily annotated version of the subject program. The
third phase then takes as input the subject program annotated with respect to calls, parameters, and
operators, together with the actual values of the subject program's known input. In this phase, the
residual program is constructed as a number of variants of the subject program'’s functions,

specialized to various values of their eliminable parameters.

Call annotated subject Description of which of the program's parameters
program (in L will be known at partial evaluation time
Known/unknown abstract interpretation

N

Description of each function's parameters

o

Annotation of parameter lists and operators

V4

Annotated subj ect program Actual values of the known input

& A

Function specialization phase

Residual program ’
' Fig. 1: Phase Division of Partial Evaluation

Italics denote phases in the process, whereas plain text denotes objects handled by the phases.

322 Di .
" Here,a more detailed yet brief treatment of the above is given. 4

a. Buildixig the residual program from specializations of the functions in the
subject p'rbgram is the main principle. In principle, those specializations which have to appear in
the residual program are determined as follows: If we consider the space of possible inputs to the
subject program with its eliminable parameters restricted to their given, known values <xj, ...,
Xp> We have a subspace. {<x1, ..., X;>} x DT of possible inputs, obtained by varying the
remaining input <yy, ..., y,>. Now the residual program has to have a variant f[<evy, ..., ev;>]
of a function f specialized to known values <ev 15 - V3> if in the course of running the subject
program on any input from the subspace mentioned, f is called by a residual call with parameter
values <evy, - €Vj TV, -y TVj> for soine values <1vy, ..., 1v;> of the residual parameters.
This is of course equivalerit to stating that the residual program is complete in the sense that there
has to be a residual variant of each function for every possible value of the eliminable parameters
with which the original function can be called (because the eliminable parameters will not appear in
the residual program). The variants in the residual program of a function from the subject program
thus make up a kind of tabulation of the possible values of that function's eliminable parameters for
any computation on the mentioned subspace of inputs. Our partial evaluation technique in this
respect thus resembles those described in (Bulyonkov 84) for a simple imperati\?e language, and in
(Futamura 83) for an applicative language. Clearly, for partial evaluation to terminate this tabulation
has to be finite. For "syntax directed" naturally recursive programs such as interpreters this is
usually the case, but for programs handling a recursion stack of known values, for example, this is
often not the case. (This might indicate that partial evaluation of imperative programs requires mofe
sophisticated methods than partial evaluation of applicative programs).

14

b. Symbolic evaluation is the most operational, intuitive conception of partial evaluation.
Symbolic evaluation takes place in a "symbolic environment" binding each vaﬁahle to an expression
instead of somé concrete value. For each operator car, cdr, ... we have an evaluation (reduction):
procedure that reduces, say, (car exp) as much as possible based on the form of the residual
expression exp-r for exp, according to this table:

form of exp-r (car exp)
(quote (t; . tp) ¥ (quote t{)
(cons éxpl-r €xpy-1) expq-r
otherwise (car exp-1)

c¢. By requiring the user to make the call annotations, we also put much of the
responsibility for a reasonable structure of the residual.progrﬁms on him.

Here we list various anomalous behaviours and explain their relation to call annotations. -

1. Partial evaluation may loop infinitely. One reason for this may be too few residual
calls, so that it is attempted to unfold a loop whose termination (test) essentially depends. on the
unknown input. Either, this is an infinite loop that would have occurred in total (usual) evaluation

also, or it corresponds to an attempt to build an infinite residual expression, for instance, to try to
unfold ' ‘

fx) = if c(x) thene;(x) else (call f ey(x)) ,
(where c(x), €1(x), and e)(x) are expressions possibly containing x) to its infinite equlvalent
fx) = if c¢(x) then eq(x)

else if c(ep(x)) then eq(ey(x))

else if c(ey(e(x))) then ...
(An attempt to produce at partial evaluation time infinitely many specializations of a function is
another source of non-termination in partial evaluation, and this is independent of call annotations).

2. Partial evaluation inay produce extremely slow residual programs. This can be the

consequence of call duplication, that is, in the residual program the same subexpression containing
a call is evaluated more than once. In the case that a function calls itself twice on the same.
substructure of one of its parameters, its run time may well shift from linear to exponential because
of call unfolding. Witness the linear time program

f(n) = if (null n) then 'l else (call g (call f (cdr n)))

g(y) = (consyy)
(with n unknown) which should not be unfolded to the exponential-time program . .

fn) = if (null n) then 'l else (cons (call f (cdr n)) (call f (cdr n)))
Such call duplication usually can be avoided by inserting more residual calls. v

3. Partial evaluation may produce extremely large residual programs. Thisis a* 'size"

counterpart of the above exponential run time anomaly. Consider the program -

f(n,x) = if (null n) then x else (call g (call f (cdr n) x)) -

gly) = (consyy)

with n known, x unknown. When n has length 1, unfolding f('(1) x) ylelds (consxx), and

15

when n has length 2, unfolding f('(1 1) x) yields (cons (cons x x) (cons x x)). For an n with
length 10, the residual expression has 210 _ 1024 x's and 1023 cons-operators, and it is
equivalent to a program with 12 functions containing a total of 20 calls and one cons-operator,

namely - - - v

S e fjg) = (call g (call fg x))
fi(x) = (call g (call f x))
fox) = X
gy) = (consyy)

None of these problems are contrived; we have experienced all of them, only in more complicated
settings. Note that, in general, it may be impossible to make call annotations for a subject program
in a way ensuring reasonable residual programs. However, call annotation of syntax directed
programs usually is not hard and can be semi-automated (by finding unsafe cycles in the call graph
of the subject program without a descending known parameter). We have not done that yet, but it is
curr‘éntly‘bcing- investigated. -

d. Dividing the partial evaluation process into phases, a statically determined
partitioning of each function's parameters into eliminable resp. residual parameters is obtained, as
well as a statically determined classification of all operators in the subject program as either
(definitely) eliminable or (possibly) residual.

The ideas are that known/unknown abstract interpretation yields global information on the”
subject program's possible run-time behaviour, and that the annotations represent this static
information locally. In principle, static classification of parameters and operators is not necessary
since the classification can be done dynamically (during symbolic evaluation/function
specialization). That is, it can be determined dynamically whether an operator is doable
indepéndently of the unknown input, namely if its operands evaluate (symbolically) to constant
expressions (quote ...). However, it turns out to be a prerequisite for successful self-application
of the partial evaluator (and a distinguishing feature of ours) that the classification is made statically
based on a description of which of the subject program's input parameters are known. We will try
to give an operational explanation of this rather subtle problem. '

We attempted to produce a compiler comp (from some S-interpreter int) by running
comp = L mixj <mixy, int>, with dynamic operator classification, i.e. without operator annotations.
(Here, mixy = mixy = Mix, the indices are for reference only). This resulted in compilers of
monstrous size, far too big to be printed out.

The reason turned out to be this: mix; as well as mix2 contain some procedure for
simplifying expressions such as (car exp) as much as possible at partial evaluation time. This
depends on the residual (reduced) form exp-r of exp , which in turn depends on the form of exp
and the values of the subject program int's known ihput. The operators occurring in mixy are of
course nicely reduced by mix; but consider mix; being partially evaluated on int as above. Now
focus on the application of mixy's reduction procedure for car on an expression (car exp) in int.
Let us assume that in int, this car expression's operand is int's first parameter (an S source

16

program 8). During compilation one applies mix to int and a source program, target = L mLx’:;'
<int,s>. Thus the source program s is present, and the car operator of int can be evaluated by
mix. But during compiler generation, running comp = L mix<mix,, int>, the source program s
is not available and therefore even the form of the residual expression exp-r for exp in int is
.unknown. Therefore, the reduction ?rocedure (in mix) for car cannot be executed by mix;, and
the compiler pi'oduced (i.e. the residual program for mixy) will contain the entire rcduction
pfocedure for car for this single occurrence of car in int.

‘This procedure will be entirely superfluous since when running the produced compilér onan-
S source program, that program will be known, and a single car operator could replace the
reduction procedure comprising several lines of L text. In fact, the problem is worse yet, because
(car (cdr exp)) in the interpreter int will be "reduced” to the reduction procedure for car with the
entire reduction procedure for cdr instantiated in several places. Thus the size of residual
: expressions in the compiler depends in an exponential way on the complexity of expressions in the
g interpreter, and this is clearly not acceptable.

If, on the other hand, operator annotations (static classifications into eliminable resp. residual
operators) are used, a car operator in int working on int's eliminable input (the S source
program) will be annotated eliminable (care), and partial evaluation of mix, on int will produce a
single car operator in the compiler instead of a copy of the complicated reduction procedure. Note
that it is the annotation of int that matters. Hence, this problem really is one of self-application.

Now, could not mix; (dynamically) infer that the operand of the discussed car operator in
int that m1x2 is about to reduce depends only on int's first parameter, the S source program?

" Then mix 1 could avoid duplicating the entire rcductlon procedure for car (1n‘mzx2)‘ in the compiler,
; since it knew that when running the compiler on an S source program, that program would be
| known, and hence a single car would suffice in the compiler. That would require a global flow

analysis of int at partial evaluation time to determine that the argument of this car operator only
depends on the first parameter of int as is done during the first phase, the known/unknown abstract
interpretation. ‘

This should suffice to justify the need for dividing the partial evaluator into at least two
phases. Notice that the known/unknown abstract interpretation introduces another binding time:
The annotation of a subject program not only requires the subject program but also a descnptlon of
which of the subject program’s parameters will be known at partial evaluation time, so the subject
program is, in fact, annotated for a particular use. ,

This concludes the discussion of the distinguishing principles of our partial evaluator.

17

!
i
@

In this section, the individual phases of the partial evaluation process and some of the
algorithxhs involved are described in the order they are used. ‘

With reference to the sketch of the structure (Figure 1), the phases are: Known/Unknown
abstract interpretation described in subsection 3.1.1, the process of partitioning parameter lists and
annotating operators, described in subsection 3.3.2, and the proper function specialization process,
described in subsection 3.3.3. Some further post-transformations are described in subsection 3.3.4
that closes this section. ’

3.3.1_Known/Unknown Abstract Interpretation

The purpose of this phase is to compute for every function in the subject program a safe
description of its parameters, whether they are deflmtely known or possibly unknown at partial
evaluation time.

Inputs to this phase are 1) the call annotated subject program, and 2) a description of which
of the subject program's (i.e. which of the goal function's) parameters are known and which are
unknown at partial evaluation time. That is, this phase does not use the actual values of the known
input, just a description telling which of the input parameters are known. (Equivalent to providing a
value for m in Kleene's S-m-n Theorem).

Output is a description, i.e. a mapping that associates with every function a parameter
description, classifying each of its parameters as Known resp. Unknown at partial evaluation time.

- Here Known means "definitely known for all possible values of the subject program's known

input", and Unknown means "possibly unknown for some (or all) values of the known input".
For the following exposition we will assume this L subject program given

((f (X11 - X1k[1]) €XP1)

(f, (an - Xnk[n]) €XPp))

: An ject Program

consisting of n 2 1 functions f; each having k; > 0 parameters, i=1,...,n. Then the program's input
is aky-tuple € DX1 , where D is the domain of LISP hsts
lgorithm

The phase works by an abstract interpretation of the subject program over a domain with two.
values for expressions, D = {Known, Unknown}. During this abstract interpretation, for every
function a parameter description is maintained, telling for every parameter of the function whether it
can be called with an unknown value. (Note that a parameter description may be considered an
"abstract environment", associating with every parameter of a function an abstract value). Initially,
all parameters except the goal function's are considered Known, and the parameter description for
the goal function is the initial description given for the subject program's input parameters.

18

_ The abs_&act intefpretaﬁon proceeds as follows: The body of the goal function is evaluated:

ﬁs;ing the parameter description) to see which functions it may call, giving them Unknown

. parameter values. The parameter descriptions for these functions are modified according to these
. A; findings to tell which of their parameters may be Unknown. Then the bodies of these functions are -
E : evaluated using the new parameter descriptions to see which functions they in turn may call with

Unknown parameter values and so on. Each time a parameter description of a function becomes :
more unknown than the previous one, its body is re-interpreted using the new parameter .

- description, possibly implying further re-interpretations of other functions. The process. stops '

when no more parameters of any function f; can become Unknown as a consequence of a call of f; -

from some other function. Then the description computed is safe in the sense that any parameter

described as Known will have values only depending on the program's known input at partial
evaluation time.

More precisely, the abstract interpretation of the body of a function f; proceeds in this way:
For every call (callf,e; ... ek[c]) ‘appearing in the body, the actual parameter expressions €, ...,
Ci[c] &€ abstractly interpreted using f;'s current parameter description (as sketched below) yielding
an abstract value (Known or Unknown) for every parameter x.1, ..., Xck[c] of the called function-
f.. If any parameter Xcj described as Known in f.'s parameter description becomes Unknown, that :
parameter description is changed to Unknown for Xcjs and the body of the called function £ is
re-interpreted to check if any more parameters of (other) functions become Unknown as a
consequence of this. ‘ : : ,,

Abstract interpretation of parameter expressions is straightforward: A variable has the
abstract value given in the current parameter description for the function in which it occurs, and any
composite expression has value Known iff it does not contain any variables described as Uﬁknown,-~
otherwise, Unknown. ‘

F 1 ipti lgori , pon ,

In order to describe this process more formally, we put the ordering Known < Unknown on
the domain D. In the sequel, Known and Unknown will be abbreviated K and U, respectively. A
description of the parameters of a function f; is a tuple in DXj, and a description: of all the parameters
in the entire program above is a tuple in Descr = DK1 x ... x D¥n . This domain-is partially -
ordered by using the above ordering "<" componentwise, and it is a ‘complete lattice of finite height,.
with bottom element | = <KX1, ..., KXn>, the "most known" description. Notice that the least -
upper bound 81 u 8, of any two descriptions 81, 8, € Descr exists, and is the most known

description safely approximating 81 as well as ;.

Domains and Elements
D = {Known, Unknown}
) : Deser = DK1x ... x Dkn a description for the entire program.
T : D* a parameter description for a function. -

19 -

By * only;(<v'1, s Vk[1]>) we denote the element & of Descr with
o 3l = <K, ey K> = KK; for j #1i, and
R S[i] = <V, o YK[i]> 0 v
i.e.itis K everywhere except at i, where itis <vy, ..., VK[i)> -

Fuhctions ‘
Function - A : Program — DK1 — Descr
This function returns the final description for the entire subject program, mapping every parameter
of every function to either K or U.
A[[((fl (xll xlk[l]) expl))]] <V15 oo Vk[1]> = h(0n1y1(<v1, versy Vk[l]>))
~whererec h(8) = & u h (U Plexp;ll 8[i] for i=1,...,n)

Function ~ E : Expression —»D* —» D
This function computes the abstract value (K or U) of an expression in a given abstract

environment.
El(quote list) = =K
Ellvariable x;;ln" ="x[j]
El(¢ar exp)l = = Ellexpll &
and similarly for cdr, atom.
El(cons e; ep)ln = Eleqln u Elepln
El(equal e; e5)In = Eleqln y Elleplln
ElGfe; ey e33In = Eleyln u Elepl ny Elesln

E’[["(ca‘ll fi 61 :.i‘ek[i])]]ﬂ = (U E[[CJ]] n for j=1,...,ki)
The last rule states that a function having at least one Unknown parameter may return an Unknown
value, otherwise only Known values. The rule is the same for callr. '

Function P : Expression — D* — Descr
This -funétion computes for a given description exp and a given abstract environment a small"

description that tells for the functions that may be called from exp, which of their parameters will be
unknown as a consequence of these calls. |

Pl(quotelispl = =~ = L
Pllvariable x;;0n - =L
Pl (car exp)l & = Pllexpll ®
and similarly for c¢dr, atom.
Pl(conse; ey)l = = Ple;In u Plepl n
Pl(equale; ep)In = Pleyln u Plepln
PL(if eq e‘zc‘j)’]] T = Ple;In uy Plepllmy Plesll®

Pl(call f; e .. egpipIn=let v; = Elelm for j=1,..%; in
only1(<v1, s VK[i]>) U \ P[[e]] n for j=1,..k;)
same for callr

20 .

~

e

The actual implementation of the algorithm closely resembles this scheme. It has two main
data structures; namely, the partially computed description § € Descr as above, and a set Pending
of pairs of a function name and a parameter description for that function, (f; , <vy, ..., VK[i]>)-
This set represents the function calls whose effects on the final value of Descr are not yet
computed. A non-deterministic, imperative version of the algorithm is given below (in reality a
deterministic, iterative applicative algorithm is used). In one iteration of the algorithm, an element
of Pending (i.e. a call description) is chosen and removed from Pending, the effect on 8 of this cal]
is computed, and possibly the for statement adds new call descriptions to Pending in case an old
description for any function has changed. The algorithm terminates when Pending becomes empty
and is guaranteed to terminate (since the lattice Descr is of finite height so that the value of § may
only increase a finite number of times). This is a classical way of computing finite fixed points.

Set <vy, ..., Vg[1]> ‘= the description of the subject program's input parameters;
Pending := { (f; , <vy, ..., Vk[1]>) }; 8:= L ;
while Pending # @ do

choose (f; , <vy, ...y Vk[i]>) € Pending, and remove it from Pending;

0 :=9 u PII expi]] <V{s oo Vk[i]>;

for all i=1,...,n do

if &'i] > 8[i] then Pending :=Pending U { (f;, i) };
v 0 :=0"

end;

This concludes the description of the Known/Unknown abstract interpretation algorithm.

332 A tati { P ter_List 1 0 I
In this phase, the given subject program is transformed, i.e. annotated with respect to
parameters and operators for use in the third phase, the function specialization phase.
Inputs to this phase are 1) the call annotated subject program, and 2) the description
computed by the above phase, describing every parameter of every function in the program as

either Known or Unknown.

Output is the subject program annotated with respect to parameters and operators. That is,
the parameter list of each function is divided into a list of eliminable parameters (namely those
described as Known) and a list of residual parameters (those described as Unknown). Of course,
the argument list of every call to a function fj is divided into two lists in exactly the same way as the
formal parameters of f;. Also, every operator car, cdr, cons, ... is annotated either as eliminable
or as residual, becoming care, cdre, conse, ... or carr, cdrr, COnsr, ... respectively. An
operator being eliminable implies that it is doable during the function specialization phase to follow,
or in other words, its result depends only on the values of the known input supplied to the subject
program at partial evaluation time, not the unknown. This is not quite true for the if operator, since
its being eliminable means that the value of its conditional expression depends only on the known

21

input, but then the if expression can be reduced to one of its branches during the function
specialization phase.

This phase works like a recursive descent compiler, building the annotated subject program
one function at a time as it goes through the given subject program. A parameter list (in a function
definition) or an argument list (in a function call) is divided into two lists using the description
(computed in the previous phase) in a straightforward way. Operators are annotated on the basis of
an abstract interpretation of their argument expressions using the function E from subsection 3.3.1,
associating with every expression an abstract value in {Known, Unknown}.

An annotated version of the subject program in Figure 2 may look like

((fy (exqy - expirp (Xqq - Mygq12]) expp®™)

(fn (€Xp1 - €Xpk[n1)) (Xpp - r"‘nk[nZ])‘fcxpnann))

i : An Ann ject Progr.

where ex;q, ..., eXjk[i1] are the eliminable parameters, 1x;{, ..., TX{k[i2] the residual parameters
of function fj, and together they form a permutation of the original parameter list x;1, ..., Xik[i]> SO
ki1 +kjp =k;, and exp;2"™ is the annotated version of exp;. This annotated subject program will
be used for reference below. '

333 Function Specializati
This phase constructs the residual program by making a number of specialized variants of the
annotated subject program's functions.
Inputs are 1) the annotated subject program produced by the previous (annotation) phase,
and 2) the known input to the subject program, i.e. actual values for those of the goal function's

parameters described as Known.

Output is the residual program that is constructed from variants of the annotated subject
program's functions. They are specialized to various actual values of their eliminable parameters.
The goal function of the residual program is the variant of the subject program's goal function that
is specialized to the actual values for its eliminable parameters, i.e. the known input to the subject
program. The (formal) parameters of a residual function corresponding to the original function fj
are the residual parameters rx;q, ..., IXjkyi2] - cf. Figure 3. The residual function’s name will be
(the composite) f;[<vy, ..., Vk[i]>] when the function is called by a residual call with values <vy,

s VK[i]> for the eliminable parameters €xjy, ..., €Xjyri1] -

The construction of the. residual program has two aspects: 1) Deciding ‘which residual
functions are needed for the given values of the known input (cf. subsection 3.2.2, first-paragraph),
and 2) Producing these residual functions. In principle, this can be done in separate stages, but in
our partial evaluator and in the algorithm sketched here, these phases are intermixed. It is not clear
whether this really is advantageous or whether it just obscures the algorithm. First, the algorithm
will be described in words then a more formal algorithm like that of subsection 3.3.1 will be given.
The reader is invited to keep the annotated subject program shown in Flgure 3 in mind while -
reading this section. ‘ ‘

In ipti Algori i

The algorithm resembles the fixed point computation of the Known/Unknown abstract
interpretation (subsection 3.3.1) to a great extent. In fact, it can formally be considered an abstract
interpretation over some suitable domain also, see (Jones, Mycroft 86) on "minimal function
graphs”, but here a less rigorous treatment is given. At any time the algorithm keeps a set Pending
of function specializations which still have to be produced, and a list Out which contains the
residual functions produced so far. The elements of Pending are pairs (f;,<vy; .., VK[i1]>) ofa
function name f; and a tuple of values <vy, ..., Vk[i1)> for fi's eliminable parameters. ' A pair
Ep<vs - Vk[i1]>) being in Pending indicates that a variant of f; specialized to <V]s s vk[i1]>
is required, but it may already be among the residual functions in Out. :

Initially Out is the empty list, and Pending contains one element, namely the pair (f 1<Vl

s VK[1 1]>) consisting of the goal function's name and the known input to the subject program.
Hence, there will always be a residual variant of the subject program's goal function, specialjz'ed to-
the subject program's known input, and this becomes the goal function of the residual program

Now the algorithm works as folfows:

1. If Pending is empty, the process is complete and Out is the residual program.
Otherwise, choose some pair (f <15 wees Vk[11]>) in Pending. If the correspondmg residual
function already is in Out, repeat this step. .

2. Otherwise, produce a residual variant of fj, called fj[<vy, ... Vk[11]>]’ with
parameters rx;q, ..., r"1k[12] (the residual parameters of f;), and a body exp;-t, which'is the result
of evaluating the body exp;™" of f; symbolically. This is done as described below by the funcuon '
E, evaluating exp; symbolically. - '

3. Collect the set of residual functions needed by the residual function just produced, i.e.
those which it can call. This is represented as a set of pairs (<V1s "’k[] 1]>) of a function
name fJ and values for its eliminable parameters, and corresponds to the set of residual calls that are
encountered when evaluating exp; symbolically. Itis collected by function P below. Add this set
to Pending and continue with step 1.

Now we sketch the two main procedures E and P mentioned above: The procedure E
constructing the residual equivalent of an expression by symbolic evaluation, and the procedure P
collecting the residual functions called by the residual expression.

23

e —

Symbolic Evaluation takes place in a "symbolic environment" binding the parameters of a
function to expressions rather than values. Here, of course, the eliminable variables are bound to
constant expressions (quote ...), and residual variables are bound to arbitrary expressions.
Symbolic evaluation is quite straightforward. For instance, a variable evaluates to the expression to
which it is bound, and symbolic evaluation of expressions which do not contain calls works by
reduction. Symbolic evaluation of calls is the most interesting case.

An eliminable call (call f; (eq ... ek[il]) (g - rk[i2])) is evaluated symbolically by
evaluating the body exp; of f; symbolically in a symbolic environment constructed like this: The
parameter expressions are evaluated symbolically, yielding residual expressions evjy, ..., eVik[il]
Iesp. IVjq, ..., IVik[j2] for the eliminable resp. the residual parameter expressions. Now the
eliminable parameters €x;1, ..., eXik[i1] of the called function are bound to ev;y, ..., eViKiil], and
the same is the case for the residual parameters. Thus symbolic evaluation of an eliminable call is
usual call-by-value evaluation, except that the value domain consists of expressions. Note that
non-termination is possible here (as in usual evaluation) if a function calls itself recursively by an
eliminable call.

A residual call (callr f; (eq .. ek[ilb]) (ry - rk[i2])) has to appear in the residual program,
and thus the result of symbolic evaluation is a call (call f;[<ev;y, ..., eV1k[11]>] IVi1 - TVik[i2])
toa functlon with the composite name f;[<ev;, ..., cvlk[11]>] and residual argument expressions
rvl 1, v TViK[i2] Here, as above, €Vi1> - EVik[i1] and rvjq, .. » TVik[i2] are the residual -
equivalents of the parameter expressions in the call that was symbolically evaluated.

Collec gtvnrgbxhgb Residual Functions Needed for an expression exp to be evaluated symbolically in a
certain "symbolic environment” resembles symbolic evaluation a great deal except that the value of
an expressioﬁ is a set of pairs, each representing a necessary residual function. This takes place in
an environment where only the eliminable parameters are bound to (constant) expressions. In
constant expressions, in variables, and in eliminable expressions care, cdre, ... (except ife), no
(new) residual calls can appear. The residual calls of an eliminable ife expression are the residual
calls of one of its branches; which branch is decided by the value of the conditional expression in
the give,nvsymbolic environment. The set of residual calls of any expression other than a call is the
union of the sets of residual calls of its subexpressions. The set of residual calls of an eliminable
call (call f; (eq ... ek[il]) (7 - rk[i2])) is the union of those appearing in the expressions ry, ...,
Te[i2] for the residual parameters with those in the body exp; of f;. Similarly, the set of residual
calls of a residual call (callr f; (eq ... ek[i 1]) (T - rk[i2])) is the union of those appearing in the

residual parameter expressions with the singleton {(f;, <v, '"’Vk[il]")}’ representing the call

itself, where v is the residual equivalent of eliminable parameter expression €;, j=1,...k;; .

24

A More Form ntation of ri , - .

In the following, we are:a bit careless concerning the domains. "Progfam" in the arity of R
means "annotated L program', whereas "Program"' in the co-arity means "L program extended with
composite function names". This remark also concerns Expression. Also, the algorithm will be
given in a mixture with its iterative main loop expressed as an imperative program, and the much
nicer P and E expressed in near-denotational form.

Domains and Elements

F = {fy, .., f} function names.
Pend = set of (F x D*) set of pairs of a function name f; and values
for the eliminable parameters of fj.
e I = Expression* values (constant expressions) for the
, eliminable parameters of a function.
. I = Expression* values (expressions) for the residual parameters.
T = (Te,my) ¢ Ilo X I, values for all parameters of a function.
Out : Program | ’
Functions

In the following, (car exp) on the right hand side of an equation will denote the term
(construction) with operator car and the operand denoted by exp. "

Function R : Program x D* — Program

RI[program pll <vy, «sVk[11]> = Out, computed by the following algorithm (if it terminates)
Pending := { (fq, <vy, s Vk[1172) B Out :=[];
while Pending # <& do _
choose (f;, <vy, ---’Vk[i1]>) in Pending, and remove it from Pending;
if fil<vy, °'°’Vk[il]?] is not already defined in Out then
fname := fi[<vy, "°’Vk[i1]>]; ' ,
body := E[chpiann]] (<vy, o VE[i1]>7<TX{]> ++os rxik[i2]>,) p; (**)
fen-def := (fname (rx;; ... rXik[i2)) body) ‘ x
add fcn-def to Out;
Pending := Pending U Pexp;2™1] <v;, VK] 5
endif; .
end;

(**) Note: In this line, <rx;y, ..., IXik[i2]> is a tuple of variable expressions, with the effect that
residual variable IXj is bound to izself in E when symbolically evaluating exp;a"? | j=1,....k;5).

ox

Function E : Expression — I X IT. — Program — Expression
This function does symbolic evaluation, i.e. given an expression exp and a symbolic environment,
it builds the residual exprchiqn corresponding to exp for this environment.
El(quote list)llx p (quote list)
i Elvariable ex;jlnp = melil
b E[[variable rxij]]n: p = mll
Ell(care exp)lln p (quote t;) where (quote (t; . tp)) = Ellexplln p
and similarly for cdre, atome, conse, equale.
“ Ell(ifee; ep e)Inp = if Elle;Inp = (quotenil) then Ele3lnp else Ele,Irnp
El(carr exp)lnp
let expr=Elexplnp in
case form of éxp-r of

il

(quote (t; . tp)) : (quote t;)
(cons expq-r expp-1) : €xpyrI
otherwise : (car exp-r)

end

and a similar reduction procedure for each of cdrr, atomr, consr, equalr.
El(ifre; ey em)lnp =

let expr = EleqInp in

case form of expr of

(quote nil) : Eleslnp
(quote (t; . tp)) | : E[[ez]]np
(cons exp-r expy-1) : Ellepllnp
otherwise @ (if expr Eleplnp ElesInp)

end
Ell (call f; (eq .- ek[ﬂ]) 1 .- rk[i2]) rp = |
o let evj' = E[[ch]n p for j=1,.k;; and rvj = E[Irj]]n p for j=1,..k in
let pcontain ... (f; (exj - eXjki1]) @Xj1 - Xik[i2)) exp;aMD) ...
i V | L .

Elexp™] (<evjy, .. €Vik[i1]><TVi1> -+ rvik[i2j>) p
El(callr f; (e - ck[ﬂ]) (rq - rk[iZ]) rp = '

ket vy = E[[ej]]np for j=1,..k;; and Ivj = E[[rj]]n:p for j=1,..kjp in
anny

let pcontain .. (fj (ex;q -.- exik[il])‘(rxil rxik[iZ]) €Xp;
in
(call fi[<ev;y, ..., evik[i1]>] Vi) - rvik[iZ])

Function P : Expression — Il — Program — Pend
This function computes the set of residual functions needed by (the rcs1dua1 vanant of) the gwen

expression.
Pl (quote lisplnep =0
PIIvariable exij]]nep =2
Plvariable rxij]]ne p =0
Pl(care exp)ln, p =D :

and similarly for cdre, atome, conse, equale.
Pl(ifee; ey e3m)In,p =
if Elleq] (we,<>) p = (quote nil) then P[Ie3]]1tcp else Pﬂezﬂnep
Pl(carr exp)In, p =Pllexpln, p ;
and similarly for edrr, atomr.
Pl(consr e; ep)Imgp =Ple;In,p UPLeyln,p
and similarly for equal
Pl(ifre; ey e3)inep =Plejlnep UPLeyln, p U Plesln, p
Pl (call f; (e .- ek[ln) (rq - rk[iZ]))]]Ee pP=
let evj = ElIej]] (Re,<>)p for j=1,..k;; in _
let pcontain .. (fj (ex;q ... eXik[i1] @Xj1 - Xik[i2]) exp;aM0) ...
in | s
Pﬂ:cxpiannﬂ <CVi1, eeey evik[i1]> p v (U P[[I’j.ﬂ]te p. for j‘=1"'~',’.-k:i2)‘ ‘
P (callr f; (eq .- ck[u]) (rq - rk[i2]))l]ne p =
let evj= E[[ejﬂ (Te,<>)p for j=1,..k;; in .
let pcontain ... (f; (exjy ... exjri1p (xjj - - TX{K[i2]) €XPj anmy
in ,
| { (£<eviq - cvik[il]>) }uu P[[I‘j]]ﬂ_',e p for j=1,...,ki2)

In this sectlon some postprocessing of the residual program produced m the funcuon} ‘
specmhzatlon phase above is described. , , e ,

The residual program produced by Mix in the function specialization phasc can IlClthCI‘ be..
read by humans nor executed by machines unless it is subjected to some postprocessing. The ;
composite residual function names produced have to be replaced by suitable atomic names as. a_
prerequisite for being able to run the residual program, and this also makes it poss1ble to read the
residual program produced. (The compiler generator produced by running L M1x<M1x Mix>
contains the entire program for the function specialization phase of Mix as part of almost all the
residual function names and therefore shrinks by a factor 100 when these are replaced by atoms).
Also, folding (car (cdr (cdr x))) into (caddr x), folding nested if's into if-then-elsf-else and
folding (cons x; (cons x5 ... 'nil) ...) into (list x; x5 ...) improves readability of the residual
programs a lot. Since it is most interesting to study the residual programs, especially the compilers
produced, we have implemented these transformations as a separate postprocessor phase.

27

In thlS sectlon we describe an extension to Mix allowmg the generation of better residual

programs.
A 1 i i

As can be inferred from subsection 3.3.3 on function specialization, any residual variant of a
function f; has at most the same number of parameters as f;, since the parameters of the variant are |
the residual parameters of f;, i.e. a subset of f;'s parameters. This can sometimes = nfortunate.

Consider an S-interpreter int for a functional language like the one given for _. in Section 3.1.
This interpreter contains a parameter (say, "vnames") holding parameter names for a function in the
source program of this interpreter, and another (say, "vvalues") holding values for these
parameters. ’ . ' ‘

When partially evaluating int with respect to some S source program, "vnames" is known
and disappears during partial evaluation, whereas "vvalues" is unknown and is found in the target
program. In the target program, this one variable holds the values of all the parameters in the

source program's function's parameter list. This results in much packing and unpacking of values

when the target program is run and is quite wasteful. |
In the interpreter, this generality is necessary: We have to represent the parameter values as a

list of values packed into one variable, since we do not know in advance the length of the parameter

list in the S source program to be interpreted. But in the target program, this length is known and
fixed, and thus the list could be replaced by a number of variables each corresponding to one
parameter from the S source program (or by an array, if our language allowed this). That the
problem is not contrived, is indicated by the fact that the compiler generator cocom generated by an
earlier version of our Mix spent approximately 75% of its run time doing garbage collection.
A Solution: Variable Splittin

We would like that for a function of a specific S source program s for which the parameter
names are vnames = (2 2 ... Zy), there should be k variables representing the source program's k
parameters in the target program produced. To obtain this, we have extended the function

specialization phase of Mix and introduced a new kind of annotation. Using the annotations one
can express, for' example, that the value of residual parameter "vvalues" will always be a list of the
same form as the value of eliminable parameter "vnames". Then in the residual (target) program,

the simple variable "vvalues” is replaced by as many variables as there are elements in "vnames".

In the above case, where vnames = (z1 27 ... ;) at compile time, the target program will contain k
vaﬂabl’es-c’alled "z1", "z9", ..., "z)" instead of the single residual variable "vvalues". '

" “This improvement of Mix works well in practice, generating more cff1c1ent and more
readable res1dua1 programs

28

First we describe the v&ay in which we apply Mix to itseif to generate compilers and a
compiler generator, and we then describe the _resulting structure of these programs and other
experiments with Mix.

When partially evaluating an S-interpreter int with respect to an S source program s, we
proceed as follows. |

1. Makecall annotations for int. , ,

2. Annotate int with respect to pararrieters and operators (by using the first and second
phases of Mix), describing its first parameter (the S source program) as known, its
second (the input to the S source program) as unknown, obtaining int30?,

- 3. Produce the target (residual) program by applying the function specmhzatlon phase
(here called Mix3) to int®™ and some S source program s,
target := L Mix3<intdl0 g>

4. Postprocess this to get a runnable target program.

Now, since only Step 3 above requires the S source program s, in self-application of Mix we need
only apply Mix to Mix3, the function specialization phase. Mix self-application, therefore, can be
sketched thus, analogously to the above:

1. Call-annotate Mix3. R

2. Annotate Mix3: First parameter (the subject program) known, the second parameter
(the subject program's known input) unknown, obtaining Mix331%, ’

3. - Produce a compiler by applying Mix3 to itself with the 1nterpreter as know mput

~ comp := L Mix3<Mix330 jntdnn,

‘4. Postprocess comp to get a runnable compiler.

Notice that the mterpreter still has to be annotated.

42 C il G ted by Self-Applicati £ Mi
Structure of the Compilers ,

As can be seen from the above, a compiler generated by self-application of Mix is a residual

program for Mix3, and it may therefore inherit some of Mix3's structure and components

In general the characteristics of a Mlx-generated compller are these.

a. Its main recursion structure is that of Mix3 for generating a set of residual functions.

b. It contains the reduction procedures (for residual operators carr, cdrr ..), working
as optimizing code generation functions as well as auxiliary functions, which are all
inherited from Mix3.

c. It contains a number of compiling functions (and auxi}iary functions)l obtained by
transforming interpreting functions (and auxiliary functions) from the interpreter int.

All in all, a Mix generated compiler usually has a reasonable structure. This structure

resembles that of a recursive descent compiler, except that Mix carries out constant foldmg and
some symbolic reduction while constructing the target program, not in a separate pass.

29

Si § Effici
The size (in lines) of a compiler seems to be a constant plus somethmg dependent on the

complexlty of the interpreter it was gencratcd from. The constant part is because of the machinery

inherited from Mix3, whereas the rest depends highly on reasonable call annotations in the

interpreter. It may therefore require some experimentation to get a compiler of a reasonable size.
Below we give program sizes and run times for some experiments.

Size (LETLISP versions of target, int, comp, Mix3 and cocbm, not counting comments)

| program . AR | # functions | #lines |
source - - : 30
target : 13 46
interpreter int : 9 105
compiler comp : 2 | 381
Mix3 (function specialization) 34 591
cocom 86 1736

Run Times (iri seconds, VAX/785)

| doing | run time + garbage coll. | total | speed-up |
res = L int<src, data> 550 -+ @ 116 6.66

I res = L target<data> 0.34 + 0.64 0.98 - 6.8
tar = L Mix3<int,src> | 318+ 000 318 |
tar = L comp<src> 0.16 + 0.00 - 0.16 19.9
comp = L Mix3<Mix3,int> 63.56 + 454 68.10
comp = L cocom<int> 2.08 + 2.18 4.26 16.0
cocom = L Mix3<Mix3,Mix3> | 455.94 + 2264 478.58
cocom = L cocom<Mix3> 14.48 + 1240 26.88 17.8

The figures only account for the time spent on function specializatiovn. (Mix3), which is 90
percent of Mix's run time, and not for the known/unknown abstract interpretation or annotation.
The figures are for the variable spiitting version of Mix. |

A typical interpreter int (resembling a direct semantics) for a very small imperative language
MP with a list data type, comprising 105 lines, gave a compiler of 381 lines (pretty-printed
LETLISP text).

As a more complex example of a compiler, we may take the compilei gcnerator cocom
(which is a compiler for a "meta-compiling language" with the syntax of annotated L programs and
a weird semantics (Jones, Tofte 83), produced from the "_interpreter" Mix3). Whereas Mix3
comprises 591 lines, cocom is 1736 lines.

This indicates that the compilers are of a usable size (in fact, not much larger than equ1valent
hand-written compilers would be), although they may contain code that is obviously superfluous.

30

The compilers are also quite efficient. - For the small imperative language MP mentioned
above and a 30 line MP source program "source" to cOmpute integer exponentiation, compile time
plus target program run time is almost 6 times smaller than interpreted source program run time!
This, by the way, should prove that our partial evaluator is not a trivial one. o

43 Partiall luati Self-Int ter |
Another interesting experiment is partial evaluation of a (self-) interpreter for L written in L.
Call such a program "sint" for self-interpreter. It has the property '
L sint <p,dy, ..., dy> = L p <dy, ..., d>
for any L-program p and input <dy, ..., d;,> in D*. Now by equation (1), for any L-program p
and input <d{, ..., d;>, : SR
L (L Mix <sint,p>) <dy, ..., dy> = L sint <pdy, .., dp> =L p <dy, ..., dp>
so L Mix <sint,p> is an L-program equivalent to p. Furthermore, with ‘ '
transf = L Mix <Mix,sint>
the program "transf" is an equivalence preserving L program transformer, i.e.
L(L transf <p>) <dy, ...,d,> = Lp<dy, .., d;>.
Since the transformed program L transf <p> = L. Mix<sint,p> will have some of the properties of
the self-interpreter, we may obtain different kinds of transformations. For the "natural"

self-interpreter given in Section 3.1, the transformed program produced is not only semantically

equivalent to the original program, but also textually equivalent (modulo renaming of functions).
Although this might not seem interesting, it establishes another kind of non-triviality of our partial
evaluator, since, as can be readily seen, the most trivial partial evaluator (cf. Section 2.3) would not
be able to reproduce a program verbatim by partial evaluation of a self-interpreter.

4.4 Conclusion

Other experiments with Mix concern parser generation and parser generator generation from
a general parsing algorithm (taking as inputs a grammar and a subject string to be parsed). A series
of such experiments is rather completely documented in (Dybkjer 85), reporting on successes,
problems and pitfalls in applying a version of Mix to this. Although reasonable parser generators
etc. could be generated, this required some experimentation and a certain programming style. This
indicates that partial evaluation in general may prove an important program transformation
technique, that Mix implements fairly powerful transformations by simple means, and finally, that
much work has to be done before Mix can be considered a practically useful tool.

31

R S R S R O TR R

S _Summary

We have described an experimental, self-applicable partial evaluator Mix capable of
generating compilers and a compiler generator of reasonable size and efficiency. To our knowledge
this is-not-done before. The partial evaluator has a multiphase structure which seems to be a
prerequisite for successful self-application and which has not been used for partial evaluators
before. This structure and the algorithms of Mix have been described in much detail.

One of the main deficiencies of our partial evaluator is that the decision whether to unfold or
suspend a function call is not automated. We require the user of the partial evaluator to make this
decision in advance. Also, the partial evaluator is not a powerful general purpose tool: The goal of
the project was to construct a self-applicable partial evaluator, and here modesty seems essential.
Future Work

- Much work remains to be done before compilers and compiler generators produced by partial
evaluation can be used in practice. Partial evaluation of imperative languages requires more
sophisticated techniques than the ones described here and deserves investigation.

The most promising next step (in a practical direction) probably would be to build a more
powerful partial evaluator along the lines drawn here for some other language having the same
characteristics, e.g. a Prolog subset or a higher order functional language.

Also, there is a pressing need for a more well-founded "theory of partial evaluation”. For
example, it might be possible to prove (or disprove) that the stzatic classification of variables
described in this paper is essential for self-application of a partial evaluator.

Acknowledgement
All of this is joint work with Neil D. Jones and Harald Sgndergaard (at DIKU). I would like
to thank them for a most fruitful collaboration without which this paper would not have been.

(Bulyonkov 84)
: Bulyonkov, M. A. Polyvariant mixed computation for analyzer programs. Acta
Informatica 21, (1984), pp. 473-484.

(Dybkijer 85) ' "
.. Dybkjar, Hans. Parsers and partial evaluation: An experiment. DIKU Student
Report 85-7-15 (July 1985). 128 pp.

(Emanuelson, Haraidsson 80)
Emanuelson, Pir & Anders Haraldsson. On compiling embedded languages in LISP.
In Conf. Rec. of the 1980 LISP Conference, Stanford, California, pp. 208-215.

(Ershov 78) '
Ershov, Andrei P. On the essence of compilation. In Neuhold, E. J. (ed.): Formal
Description of Programming Concepts, North-Holland, 1978, pp. 391-420.

32

e

(Ershov 82) o e
Ershov, Andrei P. Mixed computation: Potential apphcauons and problems for study.
Theoretical Computer Science 18 (1982), pp. 41-67.

(Futamura 71) ' '
Futamura, Yosh1h1ko Partial evaluatxon of computauon process - an approach to a
comp11er-comp11er Systems, Computers, Controls 2, no. 5 (1971), PP 45-50.

(Futamura 83)
Futamura, Yoshihiko. Partial computation of programs. Proc. RIMS Symp.
Software Science and Engineering, Kyoto, Japan, 1982. Sprmger LNCS 147
(1983), pp. 1-35. _ ;

(Haraldsson 78)
Haraldsson, Anders. A partial evaluator and its use for compiling iterative statements
in LISP In Conf. Rec. of the 5th ACM POPL, Tucson, Arzzona 1978, pp- 195 203.

(Heering 85) , , .
: Heering, Jan. Partial evaluation and w-completeness of algebraic specifications.

Report CS-8501, Centre for Mathematics and Computer Science, Amsterdam,
The Netherlands.

(Jones, Mycroft 86)

Jones, Neil D. & Alan Mycroft. Data flow analys1s using minimal function graphs.
In Conf. Rec. of the 13th ACM POPL, St. Petersburg, Florida, 1986. (To appear).

(Jones, Sestoft, Sgndergaard 85)
Jones, Neil D., Peter Sestoft & Harald S¢ndergaard An experiment in partlal
evaluation: The generation of a compiler generator. In Proc. Ist Intl. Conf. on
Rewriting Techniques and Applications, Dijon, France, 1985. Springer LNCS 202
(1985), pp. 124-140. (A preliminary version appeared as DIKU Report 85/1,
January 1985). v

(Jones, Tofte 83) :
Jones, Neil D. & Mads Tofte. Some principles and notations for the constructxon of
compiler generators. Unpublished working paper, DIKU, July 29, 1983. 15 pp.

(Kahn, Carlsson 84)
Kahn, Kenneth M. & Mats Carlsson. The compilation of Prolog programs without
the use of a Prolog compiler. In Proc. of the International Conference on Fifth
Generatzon Computer Systems, Tokyo, Japan, 1984, ICOT 1984, pp. 348 355.

(Kleéne 52) | , v ,
Kleene, S. C. Introduction to Metamathematics. Van Nostrand, 1952.

(Sestoft 85)
[Sestoft, Peter]. The Mix system: User manual and short descnptlon DH(U April
26th, 1985. 14 pp.

(Turchin 79)
Turchin, Valentin F. A supercompiler system based on the language REFAL.
SIGPLAN Notices 14, no. 2 (February 1979), pp. 46-54.

(Turchin 80)

Turchin, Valentin F. Semantic deflmtlonsin REFAL and the automatic construction
of compilers. In Jones, Neil D. (ed.): Semantics Dzrected Compzler Generatzon
Springer LNCS 94, (1980), pp. 441-474.

5 lix: S Listi
This appendix contains a number of hstmgs showmg what kind of programs the Mix system

may produce. We use the interpreter for the simple imperative language MP mentioned in Section

4.2 as an example together with some related programs, namely,

1. The interpreter for MP, called int. ‘

2. Acompiler for the MP language generated from this interpreter,

3. A source program in the MP language, namely, the exponentiation program mentloned in
Section 4.2. .

4, A target program (in LETLISP) for this source program.

1. The interpreter is given in LETL, and it is noz annotated for variable splitting (Section 3.4).
It should be quite straightforwardly understandable, only the environment (that associates values -
with variables) is split into two: A name list "vn" and a value list called "vv" or "vv0'. '
2. The compiler from MP to L was generated by running ‘

comp = L Mix3<Mix3300intaNM
or ‘comp = L cocom<intd™®>

e R

as demonstrated in Section 2.1.
The functions constituting the compiler can be classified as follows:
Main recursion structure (inherited from Mix3): MP-int-1, Geteqn-1, Mix1-1, Lookupout-1.
- Compiling functions (from the interpreter):
Code generating: Exp-1, While-1, Block-1, Cmd-1, Initvars2-1, MP-int-2, Update-1.
| Controlling target program generation: While-2, Block-2, Cmd-2, MP-int-3.
Optimizing code building functions (from Mix3): Carrl-1, Cdrrl-1, Atomrl-1, Consrl-1,
Equalrl-1, Ifr1-1.
Auxiliary functions: U-e-1, Lookupvar-1.
Trivial or supeiﬂuious functions (ashaming!): Initvars2-2, Initvars1-2, Initvars1-1, Update-2, {
Lookupvar-2, Exp-2.
3. The MP source program computes exponentiation xY as the number of tuples of length y
over a set with x members. It is, admittedly, not very readable.
4. The correspondirig target program could be produced either as
target = L Mix3<«int3", source>
or target = L comp<source>
as described in Section 2.1 and Section 4.2.

The listings are commented to a certain extent, especially the compiler generatéd from int.

As can be seen, the compiler could easily be improved by quite simple means (by identifying
functions that only may'return one of their parameters, e.g. Lookupvar-2 in the compiler). The
target programs generated by the compiler, on the other hand, could not conceivably be more
compact or efficient granted the rather primitive methods and the primitive target language we use.

34

D) s ot (ot s o s o gt et el ‘
OOVONCUNHLLIN=OIDNCUADRLIN®

21

Interpreter for MP (1st of 3

parts)

{vname)

{car (exp))

(cdr (exp})

(cons (exp) {(exp})
(atom (exp))
(equal (exp) (exp)

3 MP-int - an interpreter for a simple :
3 igserative Erosranmzng language with lists as data type.
$ 1985 April 26 :

3 Syntax of input programs:

$ {(program) ::= {program (pars) (vars) (block))

;3 {pars) it= (pars {(vname)»*)

i (vars) ti= (dec {vname)*)

i (black? 1i= ((cmd)s) -

5 (cmd) 1i= {i= {vname) (exE))

5 ! (if (exp) (block)

]

3 ! (while (exp) {(block})

; {exp) :i= (quote {(list))

;

3

;

which are boun

The semantics resembles that of

“E R WP ¥R VS VP ¥ we

non-nil.

Main data structures in the inte
The variables program, block. cm

w% W0 Y8 WO we us

return the result new state. "E
and return the value of an expre

o0 B8 @8 UE W

((MP-int (praogram input) =

Main function: “program" is the
“input" is inpu

(let (program? pars vars block)
(let (pars? . parlist)
(dec? . varlist)

(let wn = (call Initvarsi

vv = (call Initvars2

1) (call Block block vn vv)

take values which are program fragmen
the syntax (program), (block), etc above.
The variable vn is a list of variable names.
The variables vv, vv0 are lists of variable values (states).

(block?})

)

scal, with

rpreter:

d» exga vars, and pars
s conforming to

Main functions in the interpreter: ‘
"MP-int" interprets entire MP programs. "Block", "Cmd". and:
"While” interpret blocks. commands and while statements and

first branch .

iff (exp} not nil
iterate while: -

{exp) not nil

constant

nil iff not atom
nll iff UHEqUal-—.‘._ i

the exceptions that 1) the result is the entire store,
2) the if command takes its first branch if the expression
is non-nil, 3) the while loops as long as the expression is

Semantics: Programs are given a fixed number of input values,
to the variables named in the (pars ...)

list. =
The other variables are initiall; all nil. . '
a

Xp" interprets expressions =

ssion.

:rugram‘toﬁbe interpreted,: _ e
rogram. T T .
Output is a list of the final values of thg igterpreted prognaq.giyariables.?};

to that

= program
= pars
= vars

in

in

varlist parlist)
varlist input)

35

Interpreter for MP_(2nd of 3 parts)
60
gé (Block (block vn vv0) = ’
gi i Interpretation of a sequence of statements in environment (vn.vv0).
65 (let {cmdl . blockrest) = block in ,
. b6 (if block then ‘
&7 (call Block blockrest vn (callr Cmd cmdi vn vv0))
68 else
69 vvO
70 1))
71 o
;2 (Cmd (cmd vn vvO) =
73 (let (op el e2 ed) = cmd in
76 (if (e?ual 1= og) then
77 call Update vn vv0 el (call Exp e2 vn vvO))
78 elsf (equal 'if op) then
79 (if (call Exp el vn vw0) then
80 (call Block e2 vyn vv0)
81 else -
gg , ({call Block e3 vn vvO0)
B4 elsf (equal *while op) then
85 (callr While el e2 vn vv0)
86 else
87 (list 'ILLEGAL *'COMMAND: cmd)
88)))
89
0
3% (While (condit block vn vv0) =
93 (if (call Exp condit vn vv0) then ;
94 (callr While condit block vn (call Block block vn vv0))
95 else
96 vvO
97)
98
99 ,
ig? (Exp (exp vn vv0) =
102 (let (op el e2) = exp in
103 (if (atom exE) then
104 (call Lookupvar vn vvO exp)
105 elsf (equal 'quote op) then
1046 ' el '
107 elsf (equal 'car _ op) then
108 {car (call Exp el vn vv0))
109 elsf {(equal ‘cdr _ op) then
110 - v~ (cdr (call Exp el vn vv0)})
111 elsf (equal 'cons _op) then
112 (cons (call Exp el vn vv0)
113 {(call Exp e2 vn vv0))
114 elsf (equal ?atom _op) then
115 (atom (call Exp el vn vv0))
116 elsf (equal ’equal op) then
117 (equal {(call Exp el vn vv0)
118 {call Exp e2 vn vv()
119)
120 else ,
121 (list *ILLEGAL 'EXPRESSION: exp)
122)
123
36

'(U date (vn vv var val)

Interpreter for MP (3rd of 3 parts)

(Initvars! (vars pars) =
i Make a list of names of declared variables and parameters.
(let (vl . restvars) = vars in
(if vars then
(vl i: (call Initvarsi restvars pars))
else
pars

tvars2 (vars input) =

ke a list of values of declared variables (which are initialized to
1) and parameters (which get their values from input).

t (vl . restvars) = vars in

(if vars then : . .

("nil I (call Initvars2 restvars input))

input

vn
vy in

{let (vnl . vnrest)

(vvl . vvrest)
(if (equal 'nil vn) hen

(list 'UNKNOWN *VARIABLE: wvar)
elsf (equal vnl var) then

{val :: vvrest)

“+RHnu

else

'y) (vvl i (call Update vnrest vvrest var val))

(Lookupvar (vn vv var) =
(let (vnl . vnrest) = vn
(vwi . vvrest) = vV in
(if (equal 'nil vn) then
(list YUNKNOWN 'VARIABLE: var)
elsf (equal vnil var) then
vvl
else

1)) (call Lookupvar vnrest vvrest var)

37

A compiler from MB to L (1st of 6 parts)

1 {(deflet "MP-int-1
' (program) . .
! (Gete ;1 ‘nil (list "MP-int pragram) 'nil))
e eqn- :
' (out ¥fnamel pending)
T{if é:qual {car fnamel) 'MP-=int)
en

i
3123
[]

(Mixi-1 (cons (llst (??ns égar fnamel) fnamel)
npu
t) (MP-int-2 (cadr fnamel) 'input))
ou
lsf (MP-int-3 (cadr fnamel) pending)) . Determines which
els .
(equal (car fnamel) 'Cmd) - ‘target functions
then : are necessary. -
(Mixi-1 (cons (list (sang)(car fnamel) fnamel)
vV .
{Cmd-1 (cadr fnamel)
(caddr fnamel)
Ty})
out) »
1t (Cmd-2 (cadr fnamel) (caddr fnamel) pending))
els :
égqual (car fnamel) 'While)
en , _
{Mix1-1 (cons (list (%ung)(car fnamel) fnamel) : ~
vV)

(While-1 (cadr fnameil)
(caddr fnamel)
(cadddr fnamel)
Tvv0))

out)
(While—-2 (cadr fnamel)
{(caddr fnamel)
{cadddr fnamel)

pending))
e se -
(list 'UNDEFINED *FUNCTION: (car fnamel)}))

(deflet ’Lookupvar-i
* {vn var vv)
*{if éequal nil vn)

hen ‘
(list "quote (list "UNKNOWN *VARIABLE: var)) Compiles. vari-

IBNTABARN=OJW N NP GIN O DU N T UTP GBI == O 0 00 N O U1 P GEN ™ CF N0 00~ 0~ U

elsf '

{equal {(car vn) var) . able reference

then (R-value)

(Carri-1 vv) i
else :

- r vn) var (Cdrri-1 vv)}))

0 (deflet :Cdrrl 1 ?
é ’Eg?f?égom uofel) , Produces a cdr expres- |
3 then , sion (possibly reduced)

4 , (list *cdr uofel)

S - elsf

S? (equal (car uofel) 'quote)

j en :
8 (list 'quote (cdadr uofel)) ' EA
9 - elsf ,
ﬁ? - {equal (car uofel) 'cons)

) en

12 (caddr uofel)

3 else

) (l1ist 'cdr uofel)))

A compiler from MP to L (2nd of 6 parts)

65 (deflet 'Carri-l

66 ' (uofel)
67 '(if (atom uofel)
&8 then
&9 (list 'car uofel) -
70 elst
71 (equal (car uofel) ’quote) Produces a ca, expres-
72 then sion (p0551b1y reduced)
;2 ({1$t 'quote - (caadr uofel))
els
;2 (ﬁqual {(car uofel) fcons)
77 . {cadr uofel)
78 else
78 . k(lxst ;car uofel))) e
8 t ookupvar- P .
81 g (w1vg~pendu1) Superfluous. function
B2 ' (equal *nil vn) L
83
84
85
86
87
88
89
(Lookupvar-2 (cdr vn) var pendin S
1%]- .
92 ' (out pending) , This and the following
32 Yif gendxna function control bulldlng.
95 (if (Lookupout-1 out (car pending)) the target program
(- 7% then together w1th Geteqn 1.
97 (Mlxl 1 out (cdr pending)) ,
98 else
99 (Geteqn-1 out (car pending) (cdr pending)))
100 else ‘
101 - out))
102 (deflet 'Lookupout
103 ' {out fname)
104 '{if out
105 then
106 (if (equal. fname (cdaar out))
107-) then
108 (car out)
109 else
110 (Lookupout-1 (cdr out) fname))
111 else
113~ (deflet 'Upd ;"m) ——
efle ate-1 .
114 ' (on var vv val) : .. Produces code.for a
115 Y(if (equal 'nil vn) store update::
115 then paate
i%g (%1§t ‘quote (list 'UNKNOWN 'VARIABLE: var))
119 (equal (car vn) var) :
i%é (?Dnsrl 1 val (Cdrri-1 vv}) o
*%% (Consri-1 (Carri-i vv) (Update—l (cdr vn) var (Cdr @-1 vv) val)l))
efle onsri- -
125 ; (uofel uofe2) Produces a eons expres-
%%9 (ffég;gmtmeU : ' o sion- (p0531bly reduced) .
128 (list 'cons uofel uofe2) e
129 elsf
130 - (atom uofe2)
131 then
132 (list 'cons uafel uofe2)
133 elsf
igg égqual '(quote . quote) (cons (car uofel) (car uofe2)))
136 (list 'quote (cons {(cadr uofel) (cadr uofe2)))
137 else
138 (list 'cons uofel uofe2)))

39

A compiler from MP to L (3rd.of 6 parts)

139 et 'Update~-2
140 *{vn var pending)
141 equal *nil wvn)
142
143
144 (
145 Superfluous function
144 ' . o
147 (returns the parameter
149 (Update-2 () rpendisgh).
ate-2 (cdr vn) var pendin) '
150 (deflet 'Initvars2-{ 3 -
igé ,§V§"S input) ' : Generate code to initi-
153 - ! ¥§;§ alize variables (to nil).
154 (Consri-1 *'nil (Initvars2-1 (cdr vars) input))
155 - else
A36 _input))
157 e s2—2 .
IgB ' (vars pen Superfluous function.
159 i ars then (Initvars’- ending) else pending))
ig? *Initvarsi-l . 1 _ £ g
162 Superfluous function.
163
164 o
%gg v (U-e-1 (list (cdr vars) pars))))
'quote pars)))

168

169 S Y (evw)

170 2(if (car evv)

171 then

172 (cons (caar evv) (U-e-1 (list (:dar evy) (cadr evv))}))

173 EISE Bulld comolle tlme variable name list.
[Superfluous
etle xp-1-

177 ' (exp vn vv0) .

178 1{if (atom exp) Compile an expression

}gg EEenk . ; 0 in environment.

ookupvar—1 vn exp vv S . -

181 eist (vn, wvv0)

182 (equal 'quote (car exp))

183 then

184 (list 'quote (cadr exp))

185 elsf

186 ~ (equal ’car (car exp))

187 B then

188 ‘ (Carri 1 (Exp-1 (cadr exp) vn vv0})

189 elsf .

190 (equal 'cdr (car exp))

191 then '

192 (Cdrri-1 (Exp-1 (cadr exp) vn vv0))

193 elsf

194 (equal 'cons (car exp))

195 : then

%gg ‘ _ (?ogsrl 1 (Exp-l (cadr exp) vn vv0) (Exp-1 (caddr exp) vn vvO0})

198 (equal 'atom (car exp))

199 SRR then :

200 L (Atomrl 1 (Exp-1 (cadr exp) vn vv0))

201 o elsf

202 (equal 'equal (car exp))

203 then

204 (Equalri-1 (Exp-1 (cadr exp) vn vv0) (Exp-1 (caddr exp) vn vvO))

205 else

206 (list 'quo

207 o 115t VILLEGAL ’EXPRESSIDN' exp))))

40

A_compiler from MP to L (4th of 6 parts)

208 (deflet 'Equairli-i
209 ' (uofel uofel)
210 '(if (atom uofel)
211 then
2{% (%15t ‘equal uofel uofe2) v
:2214 7a§nm uofe2) ' Produces an equal expres-
215 then sion (possibly reduced).
216 (list 'equal uofel uafe2)
217 elsf ‘
218 (equal 'quote (car uofel))
219 then
220 (14 {equal 'quute (car uofe2))
221 then
222 (list "quote (equal (cadr uofel) (cadr uofe2)))
223 else
224 (list 'equal uofel uofe2))
225 eiset ‘equal fel fe2)))
ist 'equal uofel ucfe
2 (deflet 'htnmrT“T
228 ! {(uofel)
%%g ’(i{(gtmnuofen Produces an atom expres-
en : T
531 (1ist 'atom uafel) : sion (posslbly reduced).
232 elsf ‘
233 (equal 'quote (car uofel))
234 then
235 (list 'quote (atom (cadr uofel)))
236 elsf
237 (equal '"cons (car uofel))
238 then
239 'i'nil
240 else
241 (list 'atom uofel)))
242 eflet "Exp-2 -
243 ' (exp vn pending) .
244 ’(1; (atom exp) Superfluous function
%22 Etg&ﬂ:var 5 dina) (returns the parameter
247 elsf vn SXp penaing "pending")
248 (equal 'quote (car exp))
249 then
250
251
252
253
234
255
256
257.
238
259
%b? "ons (car_exp)) .
()
%22 (cadr exp) vh (Exp-2 (caddr exp) vn pending))
3 .
264 tatom (car exp)
265
%66 (cadr exp) vn pending)
&7
%bg (ﬁqual ‘equal (car exp))
b en . ‘
270 (Exp—z (cadr exp) vn (Exp-2 (caddr exp) vn pending))
271 else
272 _pending))

41

A compiler from MP to L (6th of 6 parts)

330 (deflet 'Cmd-1 _
331 Y(cmd vn vvO)
ggg *(if (equal *:= (car cmd))
%g (lilpdate-l vn {(cadr cmd) vvO (Exp-l (caddr cmd) vn va))
336 (equal 'if (car cmd)) ' R
337 then » .
338 (Ifri-1 (Exp- (cadr cmd) vn vvO)
339 (Block-1 (caddr emd) vn vvO0)
340 (Block—-1 (cadddr cmd) vn vvQ))
341 elsf " oh
gzg (eg:al while (car cmd)) Compile a command PR
344 (list 'call environment (vn, vv0)
345 (list *While v .
346 ‘While
347 (cadr cmd) -
348 (caddr cmd)
349 vn)
330 vv0)
351 else
352 (list 'quote (list *ILLEGAL 'COMMAND: cmd))))
{(deflet Cmad-2
354 *(cmd vn pending)
355 Y(if (equal ':= (car cmd))
: 356 then
] 357 (Exp-2 (caddr cmd) vn (Update-2 vn (cadr cmd) pending)) ,
; 358 elsf .
] 359 (equal’if (car cmd)) Determine the target func-
i 350 then tions necessary for a
| ggé (Block—2 (cadddr cmd) command. s = e
7 ggg - (Block-z {caddr cmd) vn (Exp~2 {cadr cmd) VH pending)))
3 e
: 365 (equal *while (car cmd))
1 366 then :
1 367 (cons (list 'While (cadr cmd) (caddr cmd) vn) pending)
‘ 368 else .
§ 362 5)) ~' ' . :
g?,? (deflet "p;én:;% input) ' First process declarations,
372 ’(glock -1 (cadddr rogram) then compile a block.
373 (U-e-1 (list (cdaddr program) (cdadr gr*ogram)))
274 ; (Initvars2-1 {(cdaddr program) input))
:35;2 (deflet "P;énr.;m endin Determine a part of the
377 q varsg-—z (cgaddr program) target functions neces-
g;g Block-2 (Cédd‘f" program} sary for the program.
380 (list (cdaddr program) (cdadr program)))
381 pending)})

43

A compiler from MP to L (6th of 6 parts)

330 (deflet 'Cmd—l
331 (ecmd vn vvO0)
332 '(xf (equal *:= (car cmd))
333 then
334 (Update—1 vn (cadr cmd) vvO (Exp-1 (caddr cmd) vn va))
335 elst :
336 (equal *if (car cmd)) ‘ R
337 then
338 (Ifri—-1 (Exp-1 (cadr cmd) vn vvO) ‘
339 (Block~- 1 {caddr cmd) vn vv0)
340 (Block—1 (cadddr cmd) vn vv0})
341 elsf . s Lo .
g:g (eggal while (car cmd)) Compile a command 1n
344 (list 'call environment (vn, vv0) -
345 (list 'While L
346 ‘While
347 (cadr cmd) -
348 (caddr cmd)
349 vn)
330 vv0)
331 else
ggz (list 'quote (list *ILLEGAL °’®COMMAND: cmd))))
(detlet 'Cmd-2
354 ' {cmd vn pending)
ggg Y(if (gqual "--' (car cmd))
ggg (%xg-z (caddr cmd) vn {(Update-2 vn (cadr cmd) pending)) :
els ;
359 (equal 'if (car cmd)) Determine the target func- :
3560 the tions necessary for a
ggé (Block-2 (cadddr‘ cmd) command. . SRS
ggg - (Block-z (caddr cmd) vn (Exp~2 (cadr cmd) Vn pending)))
e
365 (equal 'while (car cmd))
366 then
367 (cons (list 'While (cadr cmd) (caddr cmd) vn) pending)
368 else
g -)) '
g;? (deflet Tp;égf.;% input) First process declarations,
372 ' (Black-1 (cadddr r'o ram) then compile a block.
373 (U-e-1 ({cdaddr program) (cdadr grogram)))
5 (Imtvgrsz i (cdaddr program) input))
‘:‘gg (deflet MP;én.t’:‘;g endin Determine a part of the
377 ' (Ini varss-z (cgaddr‘ program) target functions neces-
g;g Block-2 (ﬁadd?"‘ program) sary for the program.
-e—
380 {list (cdaddr program) (cdadr program)))
381 pending)))

43

VONCULUNHOOONOUADLIN-

PO R s 1ot Pt 1ot 1ods o P Joih ot ot

[ale

0 MR NS WS VS YE S Gk U WS GE 98 U8

-)
)

A source progfcm in MP: Exponentiation

An exponentiation program in MP. A
he Yrogram computes X ¢to the Y'th power as the number of
tuples of length Y with elements from an X-element set.

Notation: - We let #x denote the length of list x.

Input: Two lists x and y», the lengths of which are X = #x, Y = #y,
Effect: The final value of variable out is a list all of Y-tuples
with elements from an X-element set, that is,
#out = X to the Y'th power = #x to the #y’th power,
Output from the program is a list (a dump) of the variables' final
values with out's value as its first element.

fprogaam fpafs x y) (dec aut next kn)
«= kn

{while kn
(¢
{
)

= out (cons next out))
Invariant: #next + #kn = #y ‘
hile next 5 while more tuples
({(if (cdr (car next)) t if next(1) can be increased
' ((:= next (cons (cdr (car next)) % do that
v (cdr next))
. (while kn 3 while #next « do
‘ {{:= next (cons x next))} put x in front of next
(:= kn (cdr kn)) H preserving invariant.

next (cons x next))
kn (cdr kn))

First combination

e

- (2= out (cons next out))

ext (cdr next))

)

)(

5 ?%se, backtrack, preserving invariant
=n

)t = kn (cons '1 kn))

EY)
, .

5 end.of.pnoghqm

44

VONCUNDLLIN=ODONEUND LN~

DI D) 0t 1 ot 4ot et et Pt e ot

O

A target program (in LETLISP) for the exponentiation program

(deflet

(deflet

(deflet
(deflet

{deflet

(deflet

- (deflet

(deflet
(deflet

(deflet

 (deflet

(deflet

(deflet

'MP-int-1 . . Loy ,
' (input) input is a list: (x . (y . nil)) = input
Y (Cmd-&
ACmd~-5
(Cmd-2
{Cmd-1
{cons 'nil
(cons 'nil {(cons 'nil input))))))))
'Cmd-1

' (vv0)

' (cons (car vvO) (cnns {cadr vv0) (cons (caddddr vv0} (cdddr vv0)))))

'Cmd-2 * (vv0) '(While-1 vvO))

‘While-1

! (vvO)

’éx; écaddr vv0) then (While-1 (Cmd-4 (Cmd-3 vv0))) else vv0O})
m—

? (vv0) :

:écgnz (car vv0) (cons (cons (cadddr vv0) (cadr vw0)) (cddr vv0)}))
M~ . .

*{vv0) v

:écgng (car vv0) (cons (cadr vv0) (cons (cdaddr vv0Q) (cdddr vv0)))))
m—

! (vv0)- '

' (cons (cons (cadr vv0) (car vv0)) (cdr vv0)))

'Cmd-6 ' (vv0) '(While~2 vv0))

'While-2

' {vv0)

’éxg ;cadr vv0) then (whzle-z (Cmd~7 vv0)) else vv0})
m—

* (vv0)

' (if (cdaadr vvO)

then . ‘
(?md—S (Cmd-2 (Cmd-10 vv0)})
(Cmd—-9 (Emd-8 VVO))))

'Cmd-8
? (vw0) :
:écong (car vv0}) (cons (cdadr va) (cddr vv0)))) - N
md- Lo
* (vv0) T ' \ _
'(cons . (car va) ‘ . @it onmed
{cons (cadr vv0) ot G1.0ef
(cons (cons '1 (caddr vv0)) (cdddr va)))))ﬂ '
'Cmd-10
' (vv0)

'(cons (car vv0) (cons (cons (cdaadr vvO0) (cdadr vv0)) (cddr va))))

45

83/1
83/2
83/3
83/4
83/5.
83/6
83/7

83/8

83/9

83/10

83/11

83/12

83/13

83/14
83/15
83/16

83/17

Fortegnelse over rapporter i 1983

Stepwise Development of Operatiocnal and Denotational Semantlcs
for Prolog. Neil D. Jones and Alan Mycroft.

A Skeleton Interpreter for Specialized Languages.
Jgrgen Steensgaard Madsen.

Naming Commands. An Analysis of Designers' Naming Behaviour.
Anker Helms Jgrgensen et'alf

Gendannelse af forringede billeder ved invers - og Wienerfiltrering.
Jgrgen Bansler og Sgren Olsen.

Stepwise Development of Logic Programmed Software Development
Methods. Gregers Koch.

An Algorithm for the Steiner Problem in the Euclidean Plane.
Pavel Winter. '

Eksperlmentelle teknlkker i systemarbejdet.
Jgrgen Bansler og Keld Bgdker.

Generering af en oversattergenerator. Mads Tofte.

Interval Arithmetic Implementations‘Using Floating Point Arithmetic.
Michael - Clemmesen.

Design practice and interface usability: evidence. from interviews
with designers. Anker Helms Jgrgensen, N. Hammond, A. MacLean,
P. Barnard, and J. Long. :

En model for brugeres opfattelse af edb-baserede systemer.
Jan Chr. Clausen.

Definition of the Programming Language MODEF .
Jprgen Steensgaard-Madsen og Lars Mgller Olsen,

The effect of task structure in interactive systems: a pilot
experiment. Anker Helms Jgrgensen, Phil Barnard, Nick Hammond,
Allan MacLean.

The psychology of developing and using computer systems: five
contributions, Anker Helms Jg¢grgensen.

Systemudvikling som element i den kapltallstlske teknolog1udv1kllng.
Jgrgen Bansler og Keld Bgdker.

Oversatterteknlk for programmerlngssprog ved hjalp af PROLOG
Flemmlng Als, Carsten Hendriksen og Jens Johansen.

Generalized Steiner Problem in Outerplanar Networks.
Pawel Winter,

84/1

84/2

84/3

84/4

84/5

84/6

84/7

84/8

84/9

84/10

84/11

85/12
84/13
84/14
84/15
84/16

84/17

Fortegnelse over rapporter i 1984

Production and Location on a Network under Demand Uncertainty.
Francois Louveaux and Jacques-Francois Thisse.

Typed Representation of Objects by Functlons.
Jg¢rgen Steensgaard-Madsen.

Steiner Problem in Halin Networks. Pawel Winter.

An Algorlthm for the Enumeration of Spannlng Trees. ot
Pawel Winter.

Open Problems Presented at the Copenhagen Workshop on Computer Vision.
Knud Henriksen, Peter Johansen, S¢ren Olsen. A ,

Bufferingsmetoder. Bent Pedersen.

Datalogi 2 Notes: Functions, Expressions, Programming Languages,
Computability. Neil D. Jones. .

COMPILER GENERATORS ~ what they can do, what they might do, and what
they will probably never do. Mads Tofte.

Forelasningsnoter til administrativ databehandllng. Ole Capranl,

" H.B. Hansen og Sgren Lauesen.

Computer Vision in a Computer Sc1ence Framework. Peter Johansen and
Edda Sveinsdottir.

Analyse af stereobilleder - rekonstruktion af tredimensionale flader.
S¢ren Olsen.

Iﬁgredients of Location;l Analyses. Jakob Krarup & Peter Pruzan.
MODEF/1100 User's Guide. J. Steensgaard-Madsen.

A New Family of Exponential LP-problems. Jens Clausen.

Two Families of Bad LP-problems. Jens Clausen.

A Note on the Edmonds-Fukuda Pivoting Rule for Simplex. Jens Clausen.

Network Management. Brian E. Christiansen.

Fortegnelse over rapporter i. 1985

85/1 An Experiment in Partiai‘Evaluation: The Generation of a Compiler
Generator. Neil D. Jones, Peter Sestoft, Harald S¢ndergaard.

85/2 FIFTH GENERATION PROGRAMMING Vol. 1. Logic Programming in Natural
Language Analysis. Proceedings I from a workshop in Copenhagen
December 1984. Edited by Gregers Koch.

85/3 A Survey of SystemS‘Programming Languages: Concepts and Facilities.
William F. Appelbe and Klaus Hansen.

85/4 Hjemmedatamaten - et brakjern til fremtiden! Leif Caspersen, Jacob
Ngrbjerg, Annelise Ravn, Thomas Stiirup.

85/5 O0SI modellens ¢gvre lag. John Hunderup, Benny Pedersen, Sgren Stock-
marr, Kim Wagner, Michael Bundgaard, Kurt Pedersen, Carsten Bjerna,
~Jgrgen Minster.

85/6 FIFTH GENERATION PROGRAMMING Vol. 2. Logic Programming in Natural
Language Analysis. Proceedings II from a workshop in Copenhagen
December 1984. Edited by Gregers Koch.

85/7>‘Intggfprocess Communication in Distributed Qperating Systems, Erik Jul.
85/8

85/9

85/10 Afprgvning af systemudvikling med prototyper. Klaus Viby Mogensen.
‘85/11 The Structure of a Self-Applicable Partial Evaluator. Peter Sestoft.

	GENERIC35BW120100603092823
	GENERIC35BW120100603092916
	GENERIC35BW120100603092953
	GENERIC35BW120100603093029
	GENERIC35BW120100603093214

