
C IIIIKU

The Structure of a

Self-Applicable Partial Evaluator

Peter Sestoft

Datal()gisk Institut, K0benhavns Universitet
Institute of Datalogy, Univ~rsity of Copenhagen

Sigurdsgade 41 DK-22oo K0benhavn N

RAPPORT

NR: 85/11

ISSN 0107-8283

-B
The Structure of a

Self-Applicable Partial Evaluator

Peter Sestoft

DIKU
University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen 0, Denmark
November 15th, 1985

Table of Contents

. '.:
";:r- •

",",; ,

'.
.. ':

"", i.

......

Introouction 3
Outline . 3

1 Partial Evaluation - Concepts and Notation 3
1.1 Programming Languages . 4
1.2 Partial Evaluation . 4
1.3 Interpreters and Compilers . 5

2 Goals, Motivations, and Problems 5
2.1 The Applications of Partial Evaluation to Compiling 5
2.2 Practice Lagging Behind Theory 7
2.3 Obstacles to Self-Application - 7

3 The Partial Evaluator Mix ..'. '. . .'. .. 9
3.1 The Subject Language L ofMix 9
3.2 Structure of the Partial Evaluator 12

3.2.1 Ideas Behind and Structure of Mix 12
3.2.2 Discussion 14

3.3 Description of the Phases. .. 18
3.3.1 KnownlUnknown Abstract Interpretation. 18
3.3.2 Annotation of Parameter Lists and Operators 21
3.3.3 Function Specialization .. 22
3.3.4 Postprocessing. .. 27

3.4 Variable Splitting 28
4 Experience with Using Mix .. 29

4.1 Self-Application of Mix .. 29
4.2 Compilers Generated by Self-Application of Mix 29
4.3 Partially Evaluating a Self-Interpreter. 31
4.4 Conclusion................................... 31

5 Summary .. ,32
References 32
Appendix: Some Listings .. 34

A preliminary version of this paper was presented at the workshop "Programs as Data Objects" at
DIKU, Copenhagen, Denmark in October, 1985. A shorter version will appear in the proceedings
of this workshop, published in Springer Lect~ Notes in Computer Science.

~ ~ '. .' .

The Structure of a
Self-Applicable Partial Evaluator

Peter Sestoft

DIKU
University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen 0, Denmark
November 15th, 1985

IntroductioD

The present paper describes the ideas behind a simple, self-applicable partial evaluator called

Mix as well as its structure. This partial evaluator was developed at DIKU (by Neil D. Jones,

Harald S0ndergaard, and the author) during 1984 with the explicit goal in mindJhat itshould be

self-applicable and thus make possible the automatic construction of compilers from inte,rpreters and

even of a compiler generator. This work is already partly documented in (~ones, Sestoft,

S0ndergaard 85).

Outljne

The structure of the present paper is as follows.

First, the concept of partial evaluation is defined and various pieces of notation are

introduced. Second, the application of partial evaluation to compiling and compil~rgYQ.~ration is

explained, and the goals and problems of the project are discussed. Third, thesolqtions to these

problems and the resulting structure of Mix are described in the central part of the paper. :Finally,

we sum up what has and what has not been done, and suggest further work.

1 Partial Eyaluatjon • Concepts and NotatioD

In this chapter, we give a brief formal definition of partial evaluation and of some co~c~pts

related to compiling. These will be used extensively in the following. The definitions are the same '."

as those given in (Jones, Sestoft, S0nderg"aard 85).
;1 '_

:.',. . ..~ .•...

3

.,... ;. ~ .

1.1 Pro2rammin2 Lan2ua2es
Since we use programs as input to other programs and even to themselves, we assume that

programs and data will be of the same nature, that is, members of a universal domain D of symbols

(e.g. character strings, LISP lists, natural numbers, or the like). Below, D* is the set of finite

sequences ofelements from D; broken arrow - ~ means partial function; equality"=" means that

either both sides are undefined or they are both defmed and equal.

Definition A programming language L, then, is a "semantics function" L: D - ~ D* - ~ D

so that L p is the function L p: D* - ~ D computed by program p, and L p <d1, ... , dn> is

the result of running L-program p on data <d1, ... , dn> E D*. The set of L programs is the

subset ofD to which L assigns a meaning, i.e. L-programs = domain(L) . D

1.2 Partial Eyaluation

First, we will introduce the concept of residual program.

Definition Let L be a programming language, pEL-programs a program. Then r E

L-programs is a residual program for p with respect to known input <Xl, ... , xm> E D* iff'

L P <Xl, ... , xm' YI' ..., Yn> = L r <YI' ..., Yn>

for 'all sequences of remaining input <Yl' ... , Yn> E'D*. D

.That is, the residual program r is the result of "running the original program p on partially

known input" or "specializing p to fixed partial input" Xl' ..., xm.

Now, a partial evaluator mix is defined as being a program that produces residual programs.

Definition An L-partial evaluator mix is an L-program such that for any L-program p, and

partially known input <xl' ..., xm> E D*, L mix <P, xl' ..., xm> is a residual program for p
wW:~
~&./j atL,{t, with respect to <xI' ... , xm> , or in other words,

~i,l7J \'Y\+1 L (Lmix <P, Xl, ... , xm» <YI, ... , Yn> = L P <Xl' ... , xm' Yl' ..., Yn> (1)

for all sequences' of remaining input <yI' ..., Yn> E D*.

The Lprogram p is called a subject program and accordingly, L is the subject language of

the partial evaluator. The data <Xl, ..., xm> are called the known input, and <YI' ..., Yn> the

unknown or residual input. A partial evaluator defined this way (it is itself written in its own

subject language) is called an autoprojector by (Ershov 82). D

A partial evaluator is an implementation ofthe primitive recursive function S from Kleene's

S-m-n'Theorem ofrecursive function theory (Kleene 52). By that theorem, partial evaluators exist.

4

I
'I

'i

'I
!

+z

Let L and S be programming languages.

An interpreterfor S (written in L) is an L-program int so that

Lint <s, dl' ..., dn> = S s <dl' ..., <In> 1,:'\ L k;,::.(vh).cf (2)
o.-.i~ 7tH , ~ ~,(0

all S-programs s and input tuples <d1, ... , dn> E D*. --IJe'(l¥-e. rCfV~
(I»;t 1) &-f (,l0~ _.&~TP If.- f\'f'!

(tLf..I~-g"i:JJ~ {: v Q, : ",&-(~) ,

Definition A compiler from S to L (written in L),!s an L-program comp so that

L (L comp <s» <dV ... , dn> = S s <dl' ..., <in> (3)

for any S-program s and all input tuples <dl' ..., <in> E D*. 0

All the above concepts and definitions can be generalized in various obvious ways. For

example, a panial evaluator may produce residual programs in a language different from the

language in which it is written.

Z Goals. Motiyations. and Problems

First we describe the goals of the Mix project and their background. Then we proceed to

discuss some of the practical and theoretical problems of attaining these goals.

2.1 The Applications of Partial Eyaluation to Compilinl:

This is a very brief account of the relations between partial evaluation and compiling. For a

fuller treatment, see for example (Ershov 78, 82), (Futamura 83), (Jones, Sestoft, S~t?-dergaard

85), or (Turchin 80).

In the following, let L be an implementation language, Le. a language for which we have a

processor (compiler, interpreter), so that L-programs, in fact, can be executed. In our case, L is a

very small subset of LISP with some syntactic sugar (extensions). which will be described in

Section 3.1.

Also, let mix be an L-partial evaluator (an autoprojector for L), and let S be a programming

l~guage. Then, in principle, the following is feasible.

Compilin~

From an S-interpreter fit and an S-program s to make an equivalent L-program target.

Compiler~eneration

From mix and an S-interpreter int to make a compiler comp from S to L written in L.

Compiler, ~enerator f:eneration

From mix alone to make a compiler generator capable of transforming interpreters into compilers.

5

·6

target

(from above) for all S-programs s. Therefore, comp is a compiler from S to L written in L.

Compiler ~enerator ~eneration

Finally, with

(6)

(4)

(5)

by (4)

by (1)

by (2)

by (6)

by (1)

by (5)

. by (5)

by (1)

by (4)

and the S-program s are

=

=
=

=
=

=

Lcomp<s>

L (L mix <mix, int» <s>

L mix <int, s> .

cocom = L mix <mix, mix>

L cocom <int>

L (L mix <mix, mix » <int>

L mix <.mix, int>

L target <d1' ... , <in> =

L (L mix <int, s» <d1' ..., dn> =
Lint <s, d1' ..., dn> =
S s <d1, ... , dn>

for all input <d1, ..., dn> E D*. Therefore, the L-program target

equivalent, and target may be considered a target program for s.
Compiler &t(neration

Withcomp .= L. mix <mix, int>

we have

The fot:rnaI reasons for this are

Compilin&

With target = L mix <int, s:>

we have

we have

comp

(from above) for any S-interpreter int written inL. Therefore, cocom is a general compiler

generator, transforming interpreters into compilers. (More generally, cocom implements the

currying function on the representation of general recursive functions as programs).

Compiling and compiler generation along the lines' sketched above were described for the

first time in (Futamura 71), while it seems that (Turchin 79) contains the first reference to the idea

of obtaining a compiler generator by partial evaluation (according to Prof. Turchin the idea dates

back to 1975).

2,2PraQtice Laggjng Bebind Theory

While the feasibility in principle ofcompiler' resp. compiler generator gene~ation'has been

known for more than a decade, apparently nobody has realized these in practice until fall 1984.

Also, this seems to be the case in spite of the numerous attempts to do that (maihlyin;'Japan,

Sweden, and the USSR). Thus, compiling using partial evaluation was realized,using ii'varietyqof

formalisms and languages, see for example (Ershov 78), (Emanuelson, Haraldsson 80); (Kahn,

Carlsson 84), and (Haraldssod' 78). But as far as we know, no one has reported success in

producing compilers or a compiler generator this way.

Inspired by this problem, we (initially Neil D. Jones and Harald Sf2Sndergaard) set Qut to

produce a partial evaluator capable of producing compilers. as well as a compiler generator. Also,

some interest and insight into the problem stemmed from its relationship to the CERES compiler

generator project, expounded in (Jones, Tofte 83).

As can be seen from equations (5) and (6) above, a partial evaluator has to be selj-applicable

in order to achieve the goal mentioned. Probably, this is the main source of problems; practical as

well as theoretical, and the reason why the earlier efforts remained fruitless.

2,3 Obstacles to Self.Application

I think that the following problems with writing a self-applicable partialevaluatot can be

distinguished:

1, . Partial evaluation is not well defined.

2, When reasoning about the process of self-application one tends to confuse the usually

disparate levels ofprogram and data.

3. The fact that the' subject language of the partial evaluator is input language as .~well as

-- meta-language for the partial evaluator makes the choice of an appropriate subject language' hard as

well as important.

I will discuss these problems in some greater-detail.

1. The definition of a partial evaluator (and equation (1» does not capture the natural

expectation that the residual program produced by a partial evaluator should he "reasonable", i.e.

neither unnecessarily large nor too inefficient We would like the partial evaluator to be able to take

the greatest possible ,advantage of the subject program's known input to make this'intoanefficient

specialized residual program. But the definition of a partial evaluator, in fact,' allows it to make

trivial residual programs. That is, it may make from a subject program p, consisting· of one

function f of two parameters,

f(x,y) = ...

and a known value a for x , a trivial residual program like this

g(y) = f(a, y)

f(x,y) = ...

This residual program is, of course, correct but not interesting (except that it proves the

existence of partial evaluators in the same way the S-m-n Theorem is proved). We would like to

7

make the definition of partial evaluation more precise by stating some of its desired properties, e.g.

always 1l1aking ~be shortest possible (or fastest possible) residual program, or (much weaker)

always producing a constant expression when the, result of the subject program depends only on

the known input. But this seems to make partial evaluation (of general recursive functions) an

uncomputableprQblem. The paper (Heering 85) gives a precise meaning to the vague requirement

"make maximal use oflcnown input" and shows that, in general, this is not possible using a fmite

number of rewriting (reduction) rules. The consequence of this is that we have no precise, useful

requirements for a partial evaluator that could help us in development process, or in proving that an

.alleged partial.evaluator is not the trivial one producing trivial residual programs.

2. When running L mix <mix, mix> , that is, applying a partial evaluator to itself to produce a

compiler generator, we see the text of mix in three very different roles. First, as a partial evaluator

to be run, second, as a program to be partially evaluated (= as first input to a running partial

evaluator), and third, as known input to a program to be partially evaluated (= as second input to

partic4 evaluator). But the fact that the representations (program texts) are indistinguishable, makes

it very hard to reason in cold blood about what takes place during the process of partial evaluation.

3. The subject language of the partial evaluator must be very carefully chosen to satisfy

somewhat conflicting demands:

On. the one hand, as subject language to be processed by the partial evaluator, it should be as

simple as possible to process. Therefore, it should:

have a simple syntax (few, uniform language constructs) so that programs can be"

easily represented and handled as data structures

have a simple semantics (in other words, be quite small and unsophisticated).

On the other hand, as the language in which the partial evaluator is to be written, it should:

support straightforward representation and manipulation of programs (as trees/terms)

support structuring/abstraction/modularization in order to ease program construction

be (humanly) readable

have some reasonably efficient implementation

be expressive, convenient to workwith.

This is mainly a practical problem, of course, but a very important one. Developing a new

algorithm of the complexity of a usable partial evaluator requires (has required!) much

experimentation and repeated rewriting of major parts of the system. When one has to program in a

very restricted language, forcing one to use lots of tricks and clever encodings (such as handling a

recursion stack explicitly), it becomes unbearable and one tends to lose belief in the entire

undertaking. In short, a wise choice of subject language is a prerequisite for success.

8

3 The Partial Eyaluator Mix
In this chapter a quite detailed account of the algorithms of the partial evaluator Mix will be

given.

First, the subject language we chose for Mix is presented. Second, the structure of Mix and

some of Mix's algorithms are presented together \vith reasons for their being that way. Thus

analysis is not clearly separated from presentation. Third? an extension to Mix called "variable

splitting" is described, and some of our experience with producing compilers and a compiler

generator using our partial evaluator Mix are described.

The paper (Sestoft 85) gives some directions for using the Mix system implementation (as of

spring 1985). This is not attempted here.

3.1 The Subject Laoeuaee L of Mix

Above, we used L for the subject language of a partial evaluator mix. Below we describe

our partial evaluator Mix and its particular subject language called L.

First we list some useful characteristics of L, then we ,give its syntax and an informal

semantics.. A syntactic extension called LETL is also described, and an L-intetpreter is given as an

example of the use of LETL.

Characteristics of the Language L

We chose L to be a first-order, statically scoped subset of pure applicative LISP without

special treatment of numbers. ThereforeL has the following characteristics:

programs are easily represented as data structures (LISP lists), and a program is its

own abstract syntax tree; hence, programs are easily analyzed, decomposed and composed, and

therefore, easily transformed.

manipulation of (sYntax) trees is naturally expressed by recursion in L.

L has a very simple and regular syntax (all operators have fixed arities in contrast to

"real" LISP where cond and list violate this requirement) as well as semantics.

there exist reasonably efficient 'implementations ofL.

The main drawback of this language is that it is very tedious to program in because of all the

parentheses needed to express structure and because of the need to use car/cdr sequences to select

branches in a tree. This problem, however, is alleviated by the extension LETL described below.

Syntax and Informal Semantics of L

The only data type is USP lists.

1. A program is a non-empty list of function definitions

<program> ::= «fen-def> <fcn-def> *)
The first function of the program is the goal function. Input to the program is through the

parameters of this function, and output is the value returned by it.

9

...._------------

2. A function defInition consists of a function name, a list of parameters, and a function body.

<fcn-def> ::= «fname> <parlist> <body>)

The scope of the param~ters is the body

of the function.

3. A function name is a symbol (a LISP atom), a parameter list is a list of symbols (LISP

atoms), and a function body is an expression

<fname> ::= <atom>f

<parlist> ::= «atom> *)
<body> ::= <exp>

4. An expression is either a constant, a variable, or an operator car, cdr, atom, cons, equal,

or if, applied to expressions, or a function call

<exp> ::= (quote <LISP-list>) -- shorthand: '<LISP-list>

I <variable>

I (car <exp»

I (cdr <exp>)

I (atom <exp>)

I (cons <exp> <exp>)

I (equal <exp> <exp>)

I (if <exp> <exp> <exp>)

I (call <fname> <argexps»

A variable refers to the value of a parameter of the function in whose body it appears. All operators

are strict and call-by-value except if and quote; and they have their usual (LISP-) semantics.

5. "Argument expressions" is a sequence of expressions

<argexps> ::= <exp> *

Extension LEIL of L

In order to facilitate programming in L, we define an extension LE1L adding much to the

practical usability of L. Also, we have written a LE1L to L compiler automatically transfonning the

LE1Lconstructs into basic L constructs.

LE1L extends L with

let and where decomposition patterns, e.g. (let (op expl exp2) = exp in ...). This

eliminates the need for car/cdr expressions to decompose trees, as well as a lot ofparentheses.

an if-then-elsf-else (syntactically sugared McCarthy) conditional

an infix, right associative cons operator "::". (cons a (cons b c» = (a:: b :: c)

logical connectives: null, not, and, or

a list builder

The paper (Sestoft 85) describes these languages in more detail.

10

)

An L'Inremreter Written in LEn.
Here we give a (metacircular) defmition of L in the form of an interpreter for' L ~ also serving

, ,

as an exar,nple of aLElL program.

(.)(L-int (program mput =
(let «fnamel parlistl bodyl) . rest) = program in

(call Exp body! patlistl input program»)

(Exp (exp vnames vvalues program) =
(let (op expl exp2 exp3) = exp

(call? fname. argexps) = exp in
(if (atom exp) then

(call Lookupv exp vnames vvalues)
elsf (equal op 'quote) then

expl
elsf (equal op 'call) then

(call Call (call Lookupf fname program)
(call Pars argexps vnames vvalues program)
program)

else (let vI = (call Exp expl vnames vvalues program) in
(if (equal op 'car) then (car vI)
e'lsf (equal op'edr) then (cdr vI)
elsf (equal op 'atom) then (atom vI)
elsf (equal op 'it) then

(if vI then (call Exp exp2 vnames vvalues program)
else (can Exp exp3 vnames vvalues program»

else (let v2 = (call Ex.p exp2 vnames vvalues program) in
(if (equal op 'equal) then (equal vI v2)
elsf (equal op 'cons) then (cons vI v2)
else (list 'SYNTAX 'ERROR: exp»»»»

.: (Call (fcn-def vvalues program) =
(let (fname parlist body) = fen-def in

(call Exp body parHst vvalues program»)

~~s(explistvnamesvvaluesprogram)=

(let (expl. exprest) = explist in
(if (null explist) then 'nil
else (cons (call Exp expl vnames vvalues program)

(call Pars exprest vnarnes vvalues program»»)

(Lookupv (var vnarnes vvalues) =
(let (vnl. vnr) = vnames

(vvl . vvr) = vvalues in
(if (null vnames) then (list 'UNKNOWN 'VARIABLE: var)
elsf (equal var vnl) then vvl
else (call Lookupv var vnr vvr»»

(Lookupf (fname program) =
(let «fen-defl: (fl parsl bodyl» . rest) = program in
(if ,(null program) then (list UNKNOWN 'FUNCTION: fname)
elsf (equal fname fl) then fen-defl
else (call Lookupffname rest»»

11

3.2 Structure of the Partial Eyaluator

In this section we will describe the structure of the partial evaluator. First, we give a

presentation of the general ideas and an overview of the phase structure of the partial evaluator, then

a more detailed discussion is attempted. Section 3.3 below describes the individual phases and the

actual algorithms of the partial evaluator.

(rl)

(r2)

12

3.2.1 Ideas Behind and Structure of Mix

An Example of Partial Eyaluation

Consider the following LETL-program (in which we have left out some parentheses) with

two parameters, an atom x and a linear list y. Output is a list of the same length as the list y, each

element of which is the atom x. However, if x is nil, it will be a list of "ails, preceded by the atom

"EXCEPTION".

h(x,y) = if (null x) then (cons 'EXCEPTION (call h 'a y»

else if (null y) then 'nil

else (cons x (call h x (cdr y»)

We would like to partially evaluate this program for y unknown and x known to be nil.

Now we can proceed to evaluate (call h 'nil y) symbolically by unfolding h, i.e. replacing

the call by the function definition. The conditional (null x) is known to be true, therefore

h('nil,y) = (cons 'EXCEPTION (call h 'a y»

Evaluating (call h 'a y) symbolically we get

h('a,y) = if (null y) then 'nil else (cons 'a (call h 'a (cdr y»)

This we could further unfold to

h('a,y) = if (null y) then 'nil

else if (null (cdr y» then '(a)

else (cons 'a (cons 'a (call h 'a (cdr (cdr y»») (r2')

but it would not lead to much improvement, and such further unfolding could never eliminate the

need for recursion, since we have no bound on the length of y, and so we stick to the first version

(r2) above.

Since we cannot do more useful transfonnations by symbolic evaluation alone, we will make

the above equations (rl) and (r2) into a residual program with two functions. The first being the

goal function, which is h specialized to x='nil, and the other a variant ofh specialized to x='a, thus

h['nil] (y) = (cons 'EXCEPTION (call h['a] y»

h['a] (y) = if (null y) then 'nil else (cons 'a (call h['a] (cdr y»)

Summary: This residual program was constructed by evaluating expressions symbolically,

unfolding function definitions, and suspending function calls (deciding not to unfold), and fmally,

by making function variants specialized to certain values of the known parameter. In principle our

partial evaluator Mix uses exactly these transformations. ~

We will introduce a little terminology. Suppose the subject program has goal function

f 1 (Xl' ..., xm' Yl, ... , Yn) = eXP1
and that the subject program's known input parameters (those available during partial evaluation)

are xl' ..., xm. Then a parameter Xij of some function fi is said to be Known during partial

evaluation if the value of xijcan only depe~d on the values.oftheparameters xl' ,,,,.xm that are

available, not on Yt, , Yn that are not avai1able~ Correspondingly, Xij is said to be Unknown if

it may depend on y1, , Yn'

Mix Principles

a. The residual program corresponding to a subject program and its known input consists of a'

collection of function definitions, each resulting from specializing (the body of) some function

defInition in the given subject program to known values of some of its parameters. These are called

residual functions.

b. Intuitively, partial evaluation proceeds as symbolic evaluation of the subject program.

Instead of par~etersbeing bound to their actual values, they are bound to L-expressions denoting

their possible values. Symbolic evaluation of expressions which do not contain function calls is

straightforward reduction/rewriting of the expressions. Evaluating a function call symbolically, we

can do one of two things: Unfold the call (Le. replace it with the reduced equivalent of the called

function's body) or suspend the call (Le. replace it with a call to a residual variant of the called

function).

c. We require the user of the partial evaluator to decide (before applying it) which function calls

in the subject program should be unfolded (eliminable call) and which should be suspended

(residual call). This is done by annotating the function call with an "r" (for residual, yielding calIr)
if the user wants it to be suspended.

d. The partial evaluation process is divided into phases.

First,the (call anriotated) subject program is abstractly interpreted over a value domain only

distinguishing known and unknown values: This results in informatio? on which parameters of

each function will be known at partial evaluation time, and which will possibly,be unknown. The

information obtained is used in the second phase for annotating the subject program, dividing the

parameter list of each function into two: the eliminable parameters (known values at partial

evaluation time) and the residual parameters (vatues possibly unknown). This is required for the

later specialization of each function into its (zero or more) residual variants in the residual program,

cf. a. above. Also, each operator car, cdr,... is annotated either as eliminable (care, cdre, ...)

or as residual (carr, cdrr, ...), yielding a heavily annotated version of the subject program. The

third phase then takes as input the subject program annotated with respect to calls, parameters, and

operators, together with the actual values of the subject program's known input. In this phase, the

residual program is constructed as a number of variants of the subject program's functions?

.specialized to various values of their eliminable parameters.

13

Description of which of the program's parameters

will be known at partial evaluation time

Known/unknown abstract interpretation

IDescription ofeach function's parameters

IResidual program I .
. Fi~. I: Phase Division of Partial Evaluation

Italics denote phases in the process, whereas plain text denotes objects handled by the phases.

3.2.2 Discussion

Here, a more detailed yet brief treatIhent of the above is given.

a. Building the residual program from, specializations of the functions in the

subject program is the main principle. In principle, those specializations which have to appear in

the residual program are determined as follows: If we consider the space of possible inputs to the

subject program with its eliminable parameters restricted to their given, known values <:x1, ...,

xm > we have a subspace {<xl' ..., xm>} x nn of possible inputs, obtained by varying the

remaining input <YI' ..., Yn>' Now the residual program has to have a variant fI<evI'' eVi>]

of a function f specialized to known values <evI, ..., eVi> if in the course of running the subject

program on any input from the subspace mentioned, f is called by a residual call with parameter

values <evI' ..., eVi' rvl' ..., rvj> for some values <TVI' ... , rvj> of the residual parameters.

This is of courseequivalerit to stating that the residual program is complete in the sense that there

has· to be a residual variant of each function for every possible value of the eliminable parameters

with which the original function can be called (because the eliminable parameters will not appear in

the residual program). The variants in the residual program of a function from the subject program

thus make up a kind of tabulation of the possible values of that function's eliminable parameters for

any computation on the mentioned subspace of inputs. Our partial evaluation technique in this

respect thus resembles those described in (Bulyonkov 84) for a simple imperative language, and in

(Futamura 83) for an applicative language. Clearly, for partial evaluation to terminate this tabulation

has to be finite. For "syntax directed" naturally recursive programs such as interpreters this is

usually the case, but for programs handling a recursion stack of known values, for example, this is

often not the case.· (This might indicate that partial evaluation of imperative programs requires mote

sophisticated methods than partial evaluation of applicative programs).

14

b. Symbolic evaluation is the most operational, intuitive conception ()fpcutial,evaluation.

Symbolic evaluation takes place in a "symbolic environment" binding each variapJetoan expressi.on

instead of some concrete value. For each operator car, cdr, ... we have an evaluation (reduction) <

procedure that reduces, say, (car exp) as much as possible based on the form of the residual

expression exp-r for exp, according to this table:

form of e'W-r (car e'W)

(quote (t1 . t2) 1 (quote t1)

(cons eXP1-r eXP2-r) eXP1-r

otherwise (car exp-r)

c. By requiring the user to make the call annotations, we also p:ut much of the

responsibility for a reasonable structure of the residual,programs on him.

Here we list various anomalous behaviours and explain their relation to call annotations.

1. Partial evaluation may loop infinitely. One reason for this may be too Jewresidual

calls, so that it is attempted to unfold a IOQp whose termination (test) essentiallydependsbn the
\.' .

unknown input. Either, this is an inftnite loop that would have occurred in total '(usual) evaluatio~

also, or it corresponds to an attempt to build an inftnite residual expression, for instance, to try to

unfold

f(x) = if c(x) then el (x) else (call f e2(x»

(where c(x), e1(x), and e2(x) are expressions possibly containing x) to its infinite equivalent

f(x) = if c(x) then e1 (x)

else if c(e2(x» then e1 (e2(x))

else if c(e2.(e2(x») then ...
,; (An attempt to produce at partial evaluation time inftnitely many specializations of a function is

another source of non-termination in partial evaluation, and this is independent ofc-allarm.otations).

2. Partial evaluation may produce extremely slow residual programs. Thi~,can'bethe

consequence'of call duplication; that is, in the residual program the same subexpressioncontaining

a call is evaluated more than once. In the case that a function calls itself twice on the same·

substructure of one of its parameters, its run time may well shift from linear to exponential.because

of call unfolding. Witness the linear time program

fen) = if (null n) then 'I else (call g (call f (cdr n»)

g(y) = (cons y y)

(with n unknown) which should not be unfolded to the exponential-time program

fen) = if (null n) then '1 else (cons (call f (cdr n» (call f (cdr n»)

Such call duplication usually can be avoided by inserting more residual calls.

3. Partial evaluation may produce extremely large residual programs. This is a."size"

counterpart of the above exponential run time anomaly. Consider the program

f(n,x) = if (null n) then x else (call g (call f (cdr n) x»

g(y) = (cons y y)

with n known, x unknown. When n has length 1, unfolding f('(l) x) yields (c,ons x x), and

15

when n has length 2, unfolding f('(l 1) x) yields (cons (cons x x) (cons x x)). For an n with

length 10, the residual expression has 210= 1024 XIS and 1023 cons-operators, and it is

equivalent to a'program with 12 functions containing' a total of 20 calls and one cons-operator,

namely

f1(x) (call g (call fO x))

fO(x) x

g(y) (cons y y)

None of these problems are contrived; we have experienced all of them, only in more complicated

settings. Note that, in general, it may be impossible to make call annotations for a subject program

in a way ensuririg reasonable residual programs. However, call annotation of syntax directed

programs usually is not hard and can be semi-automated (by finding unsafe cycles in the call graph

of the subject program without a descending known parameter). We have not done that yet, but it is

Gurrently'being investigated.

d. Dividil1gthe partial evaluation process into phases, a statically determined

partitioning ofeach function's parameters into eliminable resp. residual parameters is obtained, as

well as a staticaily determined classification of all operators in the subject program as either

(definitely) eliminable or (possibly) residual.

The ideas are that known/unknown abstract interpretation yields global infonnation on the:"

subject program's possible run-time behaviour, and that the annotations represent this static

information locally. In principle, static classification of parameters and operators is not necessary

since the classification can be done dynamically (during symbolic evaluation/function

specialization). That is, it can be determined dynamically whether an operator is doable

independently of the unknown input, namely if its operands evaluate (symbolically) to constant

expressions .(quote ...). However, it turns out to be a prerequisite for successful self-application

ofthepmial evaluator (and a distinguishing feature of ours) that the classification is made statically

based on .' a description of which of the subject program's input parameters are known. We will try

to give an operational explanation of this rather subtle problem.

We attempted to produce a compiler comp (from some S-interpreter int) by running

comp = L mixl<mix2' int>, with dynamic operator classification, i.e. without operator annotations.

(Here, mixl = mix2 = Mix, the indices are for reference only). This resulted in compilers of

monstrous size, far too big to be printed out.

The reason turned out to be this: mix1 as well as mix2 contain some procedure for

simplifying expressions such as (car exp) as much as possible at partial evaluation time. This

depends on the residual (reduced) form exp-r of exp, which in tum depends on the form of exp

arid the values· of the subject program intIs known input. The bperators occurring in mix2 are of

course nicely reduced by mix1 but consider mix2 being partially evaluated on int as above. Now

focus on the application of mix2's reduction procedure for car on an expression (car exp) in int.

Let us assume that in int, this car expression's operand is intIs first parameter (an S source

fio(x) = (call g(call f9 x))

16

-

,i.~'+';

I .Y'

_.~\~;: •... ·ii .•.•.
,I !Iii,·' ..•. ' ..•.•.••

program s). During compilation one applies mix to int and a source pr()grarn, target =~ ~~/

<int,s>. Thus the source program s is present; and the car operator ofint can be evaluated by .

mix. But during compiler generation, running crimp = L mixl<mix2, int>, the source programs

is not available and therefore· even the form of the residual expression exp-r forexp in int is

,unknown. Therefore, the reduction procedure (in mix2) for car cannot be executed by mix!, and

the compiler produced (i.e. the. re~idual program for mix2) will contain the entire reduction

procedure for car for this single occurrence of car in int.

This procedure will be entirely superfluous since when running the produced compiler on an .

S source program, that program will be known, and a single car operator could replace the

reduction procedure comprisirig several lines of L text In fact, the problem is ,worse yet, because

(car{cdr exp»in the interpreter intwill be "reduced" to the reduction proced~e for car with the

entire reduction procedure for cdr instantiated in several places. Thus the size of residual

expressions in the compiler depends in an exponential way on the complexity of expressions in the

interpreter, and this is clearly not acceptable.

If, on the other hand, operator annotations (static classifications into eliminable resp. residual

operators) are used, a car operator in int working on int's _eliminable input(the S source

program) will be annotated eliminable (care), and partial evaluation of mix2 on int will produce a

single car operator in the compiler instead of a copy of the complicated reduction procedure. Note

that it is the annotation of int that matters. Hence, this problem really is one of self-application.

No~, could not mixl (dynamically) infer that the operaJ?d of the discussed car operator in

int that mix2 is about to reduce depends o~ly on .int's first parameter, the S source pr9gram?

Then mix! could avoid duplicating the entire reduction procedurefor car (inmu2) in. the compiler,

since it knew that when running the compiler OJ}. an S source program, that progr~. would be

known, and hence a single car would suffice in the compiler. That would require a global flow

analysis of int at partial evaluation time to determine that the argument of this car operator only

depends on the frrst parameter of int as is done during the first phase, the known/unknown abstract

interpretation. ,

This should suffice to justify the need for dividing the partial evaluator into at least two

phases. Notice that the known/unknown abstract interpretation introduces another binding time:

The annotation of a subject program not only requires the subject program but also a description of

which of the subject program's parameters will be known at partial evaluation time, so the subject

program is, in fact, annotated for a particular use.

This concludes the discussion of the distinguishing principles of our partial evaluator.

17

i
IJb _

3.3 Description· of the Phases

In this section, the individual phases of the partial evaluation process and some of the

algorithms· involved are described in the order they are \lsed.

With reference to the sketch of the structUre (Figure 1), the phases are: KnownlUnknown

abstract interpretation described in subsection 3.1.1, the process of partitioning parameter lists and

annotating operators, described in subsection 3.3.2, and the proper function specialization process,

described in subsection 3.3.3. Some further post-transformations are described in subsection 3.3.4

that closes this section.

3.3.1 KnoWDlUnknOWD Abstract InterpretatioD

The purpose of this phase is to compute for every function in the subject program a safe

description of its parameters, whether they are definitely known or possibly unknown at partial

evaluation time.

Inputs to this phase are 1) the call annotated subject program, and 2) a description of which

of the subject program's (i.e. which of the goal function's) parameters are known and which are

unknown at partial evaluation time. That is, this phase does not use the actual values of the known

input, just a description telling which of theinput parameters are known. (Equivalent to providing a

value for m in Kleene's S-m-n Theorem).

Output is a description, i.e. a mapping that associates with every function a parameter

description, classifying each of its parameters as Known resp. Unknown at partial evaluation time.

Here Known means "definitely known for all possible values of the subject program's known

input", and Unknown means "possibly unknown for some (or all) values of the known input".

For the following exposition we will assume this L subject program given

Fii:ure 2: An L Subject PrQi:ram

consisting ofn ~ 1 functions fi each having ki ~ 0 parameters, i=I,... ,n. Then the program's input

is a k I-tuple E okl , where D is the domain of LISP lists.

Ali:orithm 3.3.1

The phase works by an abstract interpretation of the subject program over a domain with two

values for expressions, D = {Known, Unknown}. During this abstract interpretation, for every

function a parameter description is maintained, telling for every parameter of the function whether it

can be called with an unknown value. (Note that a parameter description may be considered an

"abstract environment", associating with every parameter of a function an abstract value). Initially,

all parameters except the goal function's are considered Known, and the parameter description for

the goal function is the initial description given for the subject program's input parameters.

The abstract interpretation proceeds as follows: The body of the goal function is evaluated .~

'·I~........,lY the parameter description) to see which functions it may call, giving them Unknown

oaranlett::r values. The parameter descriptions for these functions are modified. according to these

tln(l111J~s to tell which of their paramete~ may be Unknown. Then the bodies ofthese: functions are

evaluated using the new parameter descriptions to see which functions they in tum may call with

Unknown parameter values and so on. Each time a parameter description of a fupction b~<;:)I]:~:es ;

more unknown than the prevfous one, its body is re-interpreted using the new parameter,

descrip~on, possibly implying further re-interpretations of other functions. The.process,.stops .

when no more parameters of any function fi can become Unknown as a consequence of:acall of.fi

, from some other function. Then the description computed is safe in the sense thata~y parameter'

described as Known will have values only depending on the program's known itlPutat partial

evaluation time.

More precisely, the abstract interpretation of the body of a function fi proceeds in this way:

For every call (call fce1 ... ek[c]) appearing in the body, the actual parameter expressions el' ...,

ek[c] are abstractly interpreted using fi'S current parameter description (as sketched below) ,yielding

an abstract value (Known or Unknown) for every parameter XcI' ... , Xck[c] of the-called function'

fc. If any parameter Xcj described as Known in fc's parameter description becomes Unknown,that

parameter description is changed to Unknown for Xcj' and the body of the called function fc is

re-interpreted to check if any more parameters of (other) functions become Unknown as a

consequence of this.

Abstract interpretation of parameter expressions is straightforward: A variable ·has the:

abstract value given in the current parameter description for the function in which it occurs, iand'auy

composite expression has value Known iff it does not contain any variables des~ribedas Vnknown,

..: otherwis'e, Unknown.

A More Formal Description of the AI~orithm

In order to' describe this pr~ess more formally, we put the ordering Known < Unknown on

the domain D. In the sequel, Known and Unknown will be abbreviatedK andU, respectively. A

description of the parameters of a function fi is a tuple in Dlq, and a description: ofall the parameterS '

in the entire program above is a tuple in Descr =Dk1 x ... x Dkn . .This d~1naindsparpally

ordered by using the above ordering "<" componentwise, and itis·a complete lattice offinite ,height"

with bottom element J.. = <Kk1, ..., Kkn>, the "most known" description. Noticethat thel~ast

upper bound 01 u 02 of any two descriptions 01,02 E Descr exists, and is the tn0st known

description safely approximating 01 as well as 02.

I
I
I

I

Domains and Elements

D = {Known, Unknown}

o : Descr = Dk1 x ... x nkn

1t : D*

19

a description for the entire program.

a parameter description for a function.

:/

II.it. _

=K
=4 1tO]

Function p': Expression -+ D* ~ Descr

This-function computes for a given description exp and a given abstract environment a "small"

description thattells for the functions that may be called from exp, which of their parameters will be

unknown as a consequence of these calls.

P[(quotelist)] x ='_L

P[variahleXfj]'1t = J..
P[(car exp)] 1t = P[exp] 1t

and similarly for cdr, atom.

P[(cons el e2)] 1t = P[el] 1t u P[e2] 1t

P[(equal el e2)] 1t = P[el] 1t u P[e2]1t

P[(if el e2 e3}]1t = P[el] 1t u P[e2] 1t u P[e3]k

P[(call fi tf·...'ekti])]1t = "lei Vj = E[ej] 1t for j=l,...,kj in
onlYi(<v l' ..., Vk[i] >) u (U P[ej] 1t for j=l,...,kj)

same for callr

20 .

E[(quote list)]'1t

E'[varfable Jf..] 1t"IJ
E[(car 'exp)] 1t = E[exp] 1t

and" similarly.for cdr,atom.

E[(cons el e2)] 1t = E[el] 1t U E[e2] 1t

E'[(equal el e2l] 1t = E[el] 1t u EITe2] 1t

E[(irel e2e3)]1t = E[el] 1t U E[e2] 1t U E[e3] 1t

E[(call fi el ~.~"ek[i])]1t= (U E[ej] 1t for j=l,... ,kj)

The last rule states that a function having at least one Unknown parameter may return an Unknown

value, otherwise only Known values. The rule is the same for callr.

Function E' : Expression -+ D* -+ D

This function computes the abstract value (K or U) of an expression in a given abstract

environment.

FunCtiOns
Function A : Program -+ DkI -+ Descr

This fun6tionreturns the final description fdr the entire subject program, mapping every parameter

of ever)' function to either K or U.

A[(fl (xII··· xtk[l]) eXPI)"·)] <VI' ... , Vk[l]> = h(onIYl«vl, ... , Vk[l]»)
wllererec h(o) = 0 u h (U P[exPi] o[i] for i=l,...,n)

By' onlYi(<vi, ~ .., Vk[i]» we denote'the element 0 of Descr with
. ..' .' "00] = <K, , K> = Kkj for j ~ i, and

." .', B[i] = <vI' , Vk[i]> ,

i.e~ 'it is Kfeverywhere except at i, where it is <vI' ...,·vk[i]> .

The actual implementation of the algorithm closely resembles this scheme. It has two tnain

data structures; namely, the partially computed description aE Descr as above, and a set Pending

of pairs of a function name and a parameter description for that function,(fi ' <VI' ... , vk[i]»'

This set represents the function calls whose effects on the final value of Descr are not yet

.computed. A non-deterministic, imperative version of the algorithm is given below (in reality a

deterministic, iterative applicative algorithm is used). In one iteration 'of the algorithm, an element

of Pending (Le. a call description) is chosen and removed from Pending, the effect on 0. of this call

is computed, and possibly the fill: statement adds new call descriptions to Pending in case an old

description for any function has changed. The algorithm terminates when Pending becomes empty

and is guaranteed to terminate (since the lattice Descr is of finite height so that the value of 0. may

only increase a finite number of times). This is a classical way of computing finite fixed points.

Set <VI' ..., vk[I]> := the description of the subject program's input parameters;

Pending := { (fl ' <VI' ..., Vk[I]» }; 0.:= -L;
E1il.e. Pending ¢ 0 d2

choose (fi' <VI' ..,., Vk[i]» E Pending, and remove it from Pending;

a' := au P[eXPi] <VI' ..., vk[i]>;

fm:..all i=I,...,n d2
if o.'[i] > o.[i] .then Pending:= Pending u { (fi ' o.'[i]) };

s: ._ S:'.u.- u,

md;

This concludes the description of the KnownlUnknown abstract interpretation algorithm.

3,3,2 Annotation of Parameter Lists and Operators

In this phase, the given subject program is transformed, i.e. annotated with respect to

parameters and operators for use in the third phase, the function specialization phase.

Inputs to this phase are 1) the call annotated subject program, and 2) the description

computed by the above phase, describing every parameter of every function in the program as

either Known or Unknown.

Output is the subject program annotated with respect to parameters and operators. That is,

the parameter list of each function is divided into a list of eliminable parameters (namely those

described as Known) and a list of residual parameters (those described as Unknown). Of course,

the argument list of every call to a function fi is divided into two lists in exactly the same way as the

formal parameters of fi' Also, every operator car, cdr, cons, ... is annotated either as eliminable

or as residual, becoming care, cdre, conse, ... or carr, cdrr, consr, ... respectively. An

operator being eliminable implies that it is doable during the function specialization phase to follow,

or in other words, its result depends only on the values of the known input supplied to the subject

program at partial evaluation time, not the unknown. This is not quite true for the if operator, since

its being e1iminable means that the value of its conditional expression depends only on the known

21

Itz _

input, but then the if expression can be reduced to one of its branches during the function

specialization phase.

Al20rithm 3,3,2

This phase works like a recursive descent compiler, building the annotated subject program

one function at a time as it goes through the given subject program, A parameter list (in a function

definition) or an argument list (in a function call) is divided into two lists using the description

(computed in the previous phase) in a straightforward way. Operators are annotated on the basis of

an abstract interpretation of their argument expressions using the function E from subsection 3.3.1,

associating with every .expression an abstract value in {Known, Unknown}.

An annotated version of the subject program in Figure 2 may look like

Fi~ure 3: An Annotated Subject Pro~ram

where eXit, .." eXik[il] are the eliminable parameters, rXil' ... , TXik[i2] the residual parameters

of function fi' and together theyform a permutation of the original parameter list XiI, ..., xik[i]' so

kjl + ki2 = lq, and eXPiann is the annotated version of eXPi' This annotated subject program will

be used for reference below.

3,3,3 FunctjouSoecjaJjzatjoD

This phase constructs the residual program by making a number of specialized variants of the

annotated subject program's functions.

Inputs are 1) the annotated subject program produced by the previous (annotation) phase,

and 2) the knoWn input to the subject program, Le. actual values for those of the goal function's'

parameters described as Known.

Output is the residual program that is constructed from variants of the annotated subject

program's functions. They are specialized to various actual values of their eliminable parameters,

The goal function; of the residual program is the variant of the subject program's goal function that

is specialized to the'actual values for its eliminable parameters, Le. the known input to the subject

program. The (formal) parameters of a residual function corresponding to the original function fi

are the residual parameters rXil' ... , fXik[i2] , cf. Figure 3. The residual function's name will be

(the composite) fir<VI' .." Vk[i]>] when the function is called by a residual call with values <VI'

... , vk[i]> for the eliminable parameters eXil' ..., eXik[il] .

22

>

Al&oritbm 3.3.3

The construction of the" residual program has two aspects: 1) Deciding 'which residual

functions are needed for the given ,values of the known input (cf. subsection 3.22,'f1i'Sfparagiaph)~

and 2) Producing these residual functions. In principle, this can be done in separate stages, bufin

our partial evaluator and in the algorithm sketched here, these phases are intermixed~ It is not clear

whether this really is advantageous or whether it just obscures the algorithm. First, the algorithm

will be described in words then a more formal algorithm like that of subsection 3.3.1 will be given.

The reader is' invited to keep the annotated subject program shown in Figure 3 in mind while '

reading this section.

Infonnal Description of the Al~Qrithm

The algQrithm resembles the fixed point computation of the KnownlUnknown abstract

interpretation (subsection 3.3.1) to a great extent. In fact, itcan formally be considered an abstract

interpretation over some suitable domain also, see (Jones, Mycroft 86) on "miriinial function

graphs", but here a less rigorous treatment is given. At any time the algorithm keepsa setPendiilg

of function specializations which still have to be produced, and a list Out which, contains the

residual functiQns produced so far. The elements of Pending are pairs (fi,<v1' "" Vk[i1]» Qf a

functiQn name fi and a tuple of values <VI' '"' vk[i1]> for fi's eliminable parameters. A 'pair '

(fi,<v1' .11' Vk[il]» being in Pending indicates that a variant Qf fi specialized to <VI, II~' Vk[il]>

is required, but it may already be among the residual functions in Out.

Initially Out is the empty list, and Pending contains one element, namely the pair (fl,<vl'

"" vk[11]» consisting of the goal function's name and the known input to the subject program.

Hence, there will always be a residual variant of the subject program's goal function, speciilizedto'

the subject program's known input, and this becomes the goal function of the residual program.

-. Now the algorithm works as fdHows:

1. If Pending is empty, the process is complete and Out is the residual program.

Otherwise, choose some pair (fi,<v1' "" Vk[i1]» in Pending. If the corresponding residual

function already is in Out, repeat this step.

2. Otherwise, produce a residual variant of fi' called fi[<v1, ... ,·vk[i1]>]' with

parameters rXiI' ..., rxik[i2] (the residual parameters offi), and a body eXPtr, wllichis the'result

of evaluating the body eXPiann offi symbolically. This is done as described belowby·the"function'

E, evaluating eXPi symbolically.

3. Collect the set of residual functions needed by the residual function just produced, ie. '

those which it can call. This is represented as a set of pairs (fj' <VI' II.,vk[jl]» ofafunction

name ~ and values for its eliminable parameters, and corresponds to the set ofresidual' c'alls thai ,are

encountered when evaluating eXPi symbolically. It is collected by function P below. Add this' set

to Pending and continue with step 1.

Now we sketch the two main procedures E and P mentioned above: The procedure E

constructing the residual equivalent o~ an expression by symbolic evaluation, and the procedure P

collecting the residual functions called by the residual expression.

23

«

Symbolic Evaluation takes place in a "symbolic environment" binding the parameters of a

function to expressions rather than values. Here, of course, the eliminable variables are bound to

constant expressions (qu'ote ...), and residual variables are bound to arbitrary expressions.

SYIVbolic,evaluation is quite straightfolWard. For instance, a variable evaluates to the expression to

which it is bound, and symbolic evaluation of expressions which do not contain calls works by

reduction. Symbolic evaluation ofcalls is the most interesting case.

An eliminable call (call fi (el ... ek[il]) (rl ... rk[i2]» is evaluated symbolically by

evaluating. the body eXPi of fi symbolically in a symbolic environment constructed like this: The

parameter expressions are evaluated symbolically, yielding residual expressions eVil, ..., eVik:[il]

resp. rVil' ... , rvik[i2] for the eliminable resp. the residual parameter expressions. Now the

eliminable parameters eXil' ... , eXik:[il] of the called function are bound to eVil, ..., eVik[il]' and

the same is the case for the residual parameters., Thus symbolic evaluation of an eliminable call is

uSllal.call-by-value evaluation, except that the value domain consists ofexpressions. Note that

non-termination is possible here (as in usual evaluation) if a function calls itself recursively by an

elimi11able.call.

A residual call (callr fi (el ",' ek[il]) (rl ... rk[i2]» has to appear in the residual program,

and, thus the result of symbolic evaluation is a call (call fir<eVil, ','" eVik:[il]>] rvil'" rvik:[i2])

to a function .with the composite ~ame fir<eVil' ..., eVik:[il]>] and residual argument expressions

rVil' ..., rvik[i2]' Here, as above, eVil' ... , eVik:[il] and rvil''''' rvik[i2] are the residual ­

equiv~entsof the. p~eter expressions in the call that was symbolic'ally evaluated.

CQl1eGti.~~: the Rysiciual Functions Needed for an expression exp to be evaluated symbolically in a
certaip. "symbQlic environment" resembles symbolic evaluation a great deal except that the value of

an expression is a set of pairs, each representing a necessary residual function. This takes place in

anenvi!onment where only the eliminable parameters are bound to (constant) expressions. In

constant expx-essions, in variables, and in eliminable expressions care, cdre, ... (except ife), no

(new) residual calls can appear. The residual calls of an eliminable ifeexpression are the residual

calls of one of its branches;~ branch is decided by the value of the conditional expression in

the given symbolic environment. The set of residual calls of any expression other than a call is the

union of the sets of residual calls of its subexpressions. The set of residual calls of an eliminable

call (call fi (el ... ek[il]) (rl ... rk[i2]» is the union of those appearing in the expressions fl, ...,

rk[i2] for the residual parameters with those in the booyexPi of fi' Similarly, the set of residual

calls ofa residual call (callr fi (el ... ek[il]) (rl ... rk[i2]» is the union of those appearing in the

residual parameter expressions with the singleton {(fi' <VI' ... ,Vk[il]»}' representing the call

itself, where 'Vj is the residual equivalent of eliminable parameter expression ej' j=1,...,kil .

24

A More Formal Presentation of the Alwrithm

In the following, we are a bit careless con~erning the domains. "Program" in the arity of R

means"annotated L program", whereas "Program" in the co-arity means "L program extended with

composite function names". This remark also concerns Expression. Also, the algorithm will, be

given in a mixture with its iterative main loop expressed as an imperative program, and the much

nicer P and E expressed in near-denotational form.

Domains and Elements

F == {fI , ... , fn}

Pend = set of (F x D*)

1tr : Ilr = Expression*

1t = (1te,1tr): ITe x IIr
Out :Program

1te : TIe = Expression*

function names.

set of pairs of a function name fi and values

for the eliminable parameters of fi.

values (constant expressions) for the

eliminable parameters of a function.

values (expressions) for the residual parameters.

values for all parameters of a function.

b

Functions

In the following, (car exp) on the right hand side of an equation will denote the term

(construction) with operator car and the operand denoted by expo

Function R : Program x D* ~ Program.

R[program p] <VI' ... ,Vk[II]> = Out, computed by the following algorithm (if it terminates)

Pending := { (fI' <VI' ".,Vk[II]» }; 'Out:= [];

~ Pending ¢ 0 .d.2
choose (fi' <VI' .",Vk[il]» in Pending, and remove it from Pending;

if fi[<vI, ".,Vk[il]>] is not already defined in Out then

fname := fi[<VI' ".,Vk[iI]>];

body := E[exPiann] «vI' ".,Vk[iI]>,<rxiI' ... , rXik[i2]>)p; (**)

fcn-def := (fname (rxil ... rXjk[i2]) body);

add fcn-def to Out;

Pending := Pending u P[exPiann] <VI' ".,Vk[il]> ;

mdi!;
md;

(**) Note: In this line, <fXiI, ..., rxi.k:[i2]> is a tuple of variable expressions, with the effect that

residual variable rXij is bound to itselfin E when symbolically evaluating eXPiann , j=I,... ,ki2).

25

: (quote t1)

: eXP1-r

: (car exp-r)

: E[e3]1t p

: E[e2]1t p

: E[e2]1t p

: (if exp-r E[e2]1t p

Function E: Expression ~ IIe x IIr~ Program ~ Expression

This function does symbolic evaluation, i.e. given an expression exp and a symbolic environment,

it builds the residual expressio,n corresponding to exp for this environment

E[(quote list)]1t p = (quote list)

E[variable eXij]1t p = 1te[j]

E[variable TXij]1t p = 1tr[j]

E[(care exp)]1t p = (quote t1) where (quote (t1 . t2» = E[exp]1t p

and similarly for cdre, atome, conse, equale.

E[(ife e1 e2 e3)]1t p = if E[e1]1t p = (quote nil) then E[e3]1t p ~ E[e2]1t p

E[(carr exp)]1t p =

1k1 exp-r=E[exp]1t p in

~ form of exp-r Qf

(quote (11' t2»

(cons eXPl-r eXP2-r)

otherwise

and a similar reduction procedure for each of cdrr, atomr, consr, equalr.

E[(ifr e1 e2 e3)]1t p =

1m exp-r = E[el]1t p in
~ form of exp-r Qf ..

(quote nil)

(quote (11 . 12»

(cons eXPl-r eXP2-r)

otherwise

ktld
E[(call fi (e1 ... ek[i1]) (rl ... rk[i2]))]1t p =

k1 eVj = E[ej]1t p for j=1,,,,.,ki1 and rvj = E[rj]1t p for j=d,... ,ki2 in

kt p contain ... (fi (exi1 ... eXik[i1]) (rxil ... rXik[i2]) eXPiann)

in
E[exPiann] «eVil, ..., eVik[il]>,<rvi1' ..., rvik[i2]» P

E[(callr fi (e1 ... ek[il]) (rl ... rk[i2]))]1t p =

k1 eVj = E[ej]1t p for j=1,...,ki1 iU1d rvj = E[rj]1t p for j=1,... ,ki2 in

let p contain ... (fi (exi1 ... eXik[i1]) -(rxil ... rXik[i2]) eXPiann) ...

in

26

Function P: Expression ~ lIe ~ Progrm.n ~ Pend

This function computes the set of residual functions needed by (the residual variant of) thec:~i~yell,:

expression.
p[(quote list)]xe p = 0

p[variable eXij]xe p = 0

p[variable rxij]Xe p = 0
P[(care exp)]xe P = 0 ~

and similarly for cdre, atome, conse, equate.

P[(ife el e2 e3)]xe P = .

if E[el] (xe,<» p = (quote nil) then P[e3]1te p ~ P[e2]1te p

P[(cnrr exp)]xe p = P[exp]~e p.

and similarly for cdr'r, a,tomr.

P[(consr el e2)]xe P = P[el]1te p u P[e2]1te p

and similarly for equal

P[(ifr el e2 e3)]1te p = P[el]xe p u P[e2]1te p u P[e3]xe p

P[(call fi (el ... ek[il]) (rl ... rk[i2]))]xe p =

le1 eVj = E[ej] (xe,<» p for j=l'."~l in
k1 p contain ... (fi (exil ... eXik[il]) (rxil ... rxik[i2]) eXPiann) ...

in
P[exPiann] <eVil' ..., eVik[il]> p u (u P[rj]:n:e p, for j=1,....,~i2)

P[(callr fi (el ... ek[il]) (rl ... rk[i2]))]xe p =

le1 eVj = E[ej] (1te,<» p for j=l,... ,kil in
kt p contain ... (fi (exil ... eXik[il]) (rxil ... rXik[i2]) eXPiann) ...

.; in
{ (fi,<evil ... eVik[il]»} u (u P[rj]xe p for j=1,...,ki2)

'i,

27'

3,3,4 PostprocessjoK

In this section, some postprocessing of the residual program produc~din the fllnctiolJ
. . . ' . . " ~ - ,_.' ,.' ;". ~ "/''' ,.; .' " ~

specialization phase above is described.

The residual program produced by Mix in the function specialization phase: c~p nei~~f::be "

read by humans nor executed by machines unless it is subjected to some postpr?Fes~ina. The;

composite residual function names produced have to be replaced by suitable a~0n¥c:,n~e.~s,a~,a.

prerequisite for being able to run the residual program" and this also .makes it pos~ipl~ to,'1"e~dthe
residual program produced. (The compiler generator produced by runningL,M~x4Mi~,M,i~>

contains the entire program for the function specialization phase of Mix as part of almost all the

residual function names and therefore shrinks by a factor 100 when these are replaced by atoms).

Also, folding (car (cdr (cdr x») into (caddr x), folding nested irs into if-then-elsf-else and

folding (cons Xl (cons x2 ... 'nil) ...) into (list Xl x2 ...) improves readability of the residual

programs a lot. Since it is most interesting to study the residual programs, especially the compilers

produced, we have implemented these transformations as a separate postprocessor phase.
I

I

Ib __

3.4 variable SplittiP2
In this section we describe an extension to Mi-!, allowing the generation of better residual

programs.

A Problem with Generality

As can be inferred from subsection 3.3.3 on function specialization, any residual variant of a

function fi has at most the same number of parameters as fi' since the parameters,of the variant are

the residual parameters of fi' Le. a subset of fils parameters. This can sometimes: ;, ;lfortunate.

Consider an S-interpreter int for a functional language like the one given fOI~,m Section 3.1.

This interPreter contains a parameter (say, "vnanies") holding parameter names for a function in the

source program of this interpreter, and another (say, "vvalues") holding values for these

parameters.
-,~-~:,......

When partially evaluating int with respect to some S source program, "vnames" is known

and disappears during partial evaluation, whereas "vvalues" is unknown and is found in the target

program. In the target program, this En~_yari.!!!,le ho~ds the values of all the parameters in the

source program's function's parameter list. This res~lts in~~£h=p-.E-skingand unpacking of values

when the target program is run and is quite wasteful.

In the interpreter, this generality is necessary: We have to represent the parameter values as a

list of values packed into one variable, since we do not know in advance the. length of the parame~e.~

list in the S source program to be interpreted. But in the target program, this length is known and

fixed, and thus the list could be replaced by a number of variables each corresponding to one :"

parameter froin the S source program (or by an array, if our language allowed this). That the

problem is not contrived, is indicated by the fact that the 'compiler generator cocom generated by an

earlier version of our Mix spent approximately 75% of its run time doing garbage collection.

A Solution: Variable Splittini

We would like that for a function of a specific S source program s for which the parameter

names are vnames =(zl z2". zk)' there should be k variables representing the source program's k

parameters in the target program produced. To obtain this, we have extended the function

specialization phase of Mix and introduced a new kind of annotation. Using the annotations one

can express,fofexample, that the value of residual parameter "vvalues" will always be a list of the

same form as the value of eliminable parameter "vnames". Then in the residual (target) program,

the simpl~ variable "vvalues" is replaced_~l'_as ~~y ~_~~~~e~~ ..._~~~e _,~~"_~~~~~~_!~ i~_:','~~~~" ~

In the above case, where 'wames =(zl z2 ... zk) at compile time, the target program will contain k

varlabtesc:alled "zf', "Z2", ..., "zk" instead of the single residual variable "vvalues".

. 'This improvement of Mix works well in practice, generating more efficient and more

readab1e :residual'programs.

28

4 Experience with usine Mix
First we describe the way in which we apply Mix ,to itself to generate compilers and a

compiler generator, and we then describe· the ~esulting s~cture of these programs and other

experiments with Mix.

4.1 Self.Application of Mix.

When partially evaluating an S-interpreter int with respect to an S source program s, we

proceed as follows.

1. Make call annotations for int

2. Annotate int with respect to parameters and operators (by using the first and second

phases of Mix), describing its first parameter (the S source program) as known, its

second (the input to the S source program) as unknown, obtaining intann.

3. Produce the target (residual) program by applying the function specialization phase

(here called Mix3) to intann and some S source program s,

target := L Mix3<intann,s>

4. Postprocess this to get a runnable target program.

Now, since only Step 3 above requires the S source program s, in self-application of Mix we need

only apply Mix to Mix3, the function specialization phase. Mix self-app1ication~therefore, can be

sketched thus, analogously to the above:

1. Call-annotate Mix3.

2. Annotate Mix3: First parameter (the subject program) known, the second parameter

(the subject program's known input) unknown, obtaining Mix3ann~

3. Produce a compiler by applying Mix3 to itself with the interpreter as know input

comp := LMix3<Mix3ann,intann>.

4. Postprocess comp to get a runnable compiler.

Notice that the interpreter still has to be annotated.

4.2 Compilers Generated by Self.Application of Mjx

Structure of the Compilers

As can be seen from the above, a compiler generated by self-applicat~onof Mix ~s a residual

program for Mix3, and it may therefore inherit some of Mix3's structure and components.

In general the characteristics of a Mix-generated compiler are these.

a. Its main recursion structure is that of Mix3 for generating a set of residual functions.

b. It contains the reduction procedures (for residual operators carr, cdrr, ...), working

as optimizing code generation functions as well as auxiliary functions, which are all

inherited from Mix3.

c. It contains a number of compiling functions (and auxiliary functions) obtained by

transforming interpreting functions (and auxiliary functions) from the in~rpreter int

All in all, a Mix generated compiler usually has a reasonable structure. This structure

resembles that of a recursive descent coinpi1er~ except that Mix carries out constant folding and

some symbolic'reduction while constructing the target program, not in a separate pass.

29

_J"t'.

Size and Efficiency

The size (in lines) of a compiler seems to be a constant plus something dependent on the

complexity of the interpreter it was generated from. The constant part is beCause of the machinery

inherited from Mix3, whereas the rest depends highly on reasonable call annotations in the

.interpreter. It may therefore require some experimentation to get a compiler of a reasonable size.

Bel~w we give program sizes and run times for some experiments.

Size (LElLISP versions of target, int, comp, Mix3 and cocom, not counting comments)

I program I # functions # lines

I source 30
target 13 46

Iinterpreter int 9 105
compiler comp 29 381

IMix3 (function specialization) 34 591
cocom 86 1736

Run Times (in seconds, VAX/785)

I doing run time + garbage ·coll.1 total I'speed-up I

Ires = L int<src, data> 5.50 + 1.16 6.66
. res =L target<data> 0.34 + 0.64 0.98 6.8

Itar = L Mix3<int,src> 3.18 + 0.00 3.18
tar =L comp<src> 0.16 + 0.00 0.16 19.9

Icomp = L Mix3<Mix3,int> 63.56 + 4.54 68.10
comp =L cocomdnt> 2.08 + 2.18 4.26 16.0

Icocom = L Mix3<Mix3,Mix3> 455.94 + 22.64 478.58
cocom =L cocom<Mix3> 14.48 + 12.40 26.88 17.8

The figures only account for the time spent on function specialization (Mix3), which is 96
percent of Mix's run time, and not for the known/unknown abstract interpretation or annotation.

The figures are for the variable splitting version ofMix.

A typical interpreter int (resembling a direct semantics) for a very small imperative language

MP with a list data type, comprising 105 lines, gave a compiler of 381 lines (pretty-printed

LETLISP text).

As a more complex example of a compiler, we may take the compiler generator cocom

(which is a compiler for a "meta-compiling language" with the sYntax of annotated L programs and

a weird semantics (Jones, Tofte 83), produced from the "~terpreter" Mix3). Whereas Mix3

comprises 591 lines, cocom is 1736 lines. "

This indicates that the compilers are of a usable size (in fact, not much larger than equivalent

hand-written compilers would be), although they may contain code that is obviously superfluous.

30

The compilers are also quite efficient.· For the small imperative languageMPmentioned

above and a 30 line MP source program "source" to compute integer exponentiation; compile time

plus target program run time is almost 6 times smaller than interpreted source program runtime!

This, by the way, should prove that our partial evaluator is not a trivial one.

4,3 Partially eyaluatin2 a Self.Interpreter

Another interesting experiment is partial evaluation of a (self-) interpreter for'L written in L;

Call such a program "sint" for self-interpreter. It has the property

L sint <p,dl , ..., dn> = L P <dl , ... , <in>

for any L-program p and input <dI , ..., dn> in D*. Now by equation (1), for anyL-program p

and input <dI , ..., dn>,

L (L Mix <sint,p» <dI , ..., cln> = L sint <p,dI , ·..,dn> =' L P <dI' ... , dn>

so L Mix <sint,p> is an L-program equivalent to p. Furthermore, with

transf = L Mix <Mix,sint>

the program "transf' is an equivalence preserving L program transformer, i.e.

L(L transf <p» <dI' ... , dn> = L P <d1' ..., dn> .

Since the transformed program L transf <p> = L Mix<sint,p> will have some of theproperties of

the self-interpreter, we may obtain different kinds of transformations. For the "natural~

self-interpreter given in Section 3.1, the transformed program produced is not only se~~ntically

eguivalentto the o!i~~L£ro~all!, butalsotextually suivalent (modulo renaming offunctibtis). _

Although this might not seem interesting, it establishes another kind of non~triYi.ality_ofour'partial

evaluator, since, as can be readily seen, the most trivial partial evaluator (cf. Section 2.3) would not

': be able to reproduce a program verbatim by partial evaluation of a self-interpreter.

4.4 Conclusion

Other experiments with Mix concern parser generation and parser generator generation from

a general parsing algorithm (taking as inputs a grammar and a subject string to be parsed). A series

of such experiments is rather completely documented in (Dybkjrer 85), reporting on successes,

problems and pitfalls in applying a version of Mix to this. Although reasonable parser generators

etc. could be generated, this required some experimentation and a certain programming style. This

indicates that partial evaluation in general may prove an important program transformation

technique, that Mix implements fairly powerful transformations by simple means, and finally, that

much work has to be done before Mix can be considered a practically useful tool.

31

,..

5 Summary

We have described an experimental, self-applicable partial evaluator Mix capable of

generating;compilers and a compiler generator of reasonable size and efficiency. To our knowledge

this is.:not;donebefore. The partial evaluator has a multiphasestructure which seems to be a

prerequisite for ·successful self-application and which has not been used for partial evaluators

before. This structure and the algorithms ofMix have been described in much detail.

One of the main deficiencies of our partial evaluator is that the decision whether to unfold or

suspend a function call is not automated. We require the user of the partial evaluator to make this

decision in advance. Also, the partial evaluator is not a powerful general purpose'tool: The goal of

the project was to construct a self-applicable partial evaluator, and here modesty seems essential.

Future Work

.Much work remains to be done before compilers and compiler generators produced by partial

evaluation can be used in practice. Partial evaluation of imperative languages requires more

sophisticated techniques than the ones described here and deserves investigation.

The most promising next step (in a practical direction) probably would be to build a more

powerful partial evaluator along the lines drawn here for some other language having the same

characteristics, e.g. a Prolog subset or a higher order functional language.

Also, there is a pressing need for a more well-founded "theory of partial evaluation". For

~xample" it· might be possible to prove (or disprove) that the static classification of variables

describ~d in this paper is essential for self-application of a partial evaluator.

Acknowledl:ement. .

All·of this is joint work with Neil D. Jones and Harald Sf2Sndergaard (at DIKU). I would like

to thank. them:foT amost fruitful collaboration without which this paper would not have been.

References

(Bulyonkov 84) .
Bulyonkov, M. A. Polyvariant mixed computation for analyzer programs. Acta
Informatica 21, (1984), pp. 473-484.

(Dybkjrer 85)
. Dybkjrer, Hans. Parsers and partial evaluation: An experiment DIKU Student

Report 85-7-15 (July 1985). 128 pp.

(Emanuelson, Haraldsson 80)
Emanuelson, Par & Anders Haraldsson. On compiling embedded languages in LISP.
In ConI. Rec. of the 1980 LISP Conference, Stanford, California, pp. 208-215.

(Ershov 78)
Ershov, Andrei P. On the essence of compilation. In Neuhold, E. 1. (ed.): Formal
Description ofProgramming Concepts, North-Holland, 1978, pp. 391-420.

32

(Ershov 82) ..
Ershov, Andrei P. Mixed computation: Potential applications and problenis' for study.
Theoretical Computer Science 18 (1982), pp~ 41-67.

(Futamura 71) , .., '
Futamura, Yoshihiko. Partial evaluation of computation process- an approach to a
compiler-compiler. Systems, Computers, Controls 2, no., 5 (1971),pp. 45~50.

(Futamura83).. .
Futamura, Yoshihiko. Partial computation of programs. Proc. RIMS Symp.
Software Science and Engineering, Kyoto, Japan, 1982. Springer lNCS 147
(1983), pp. 1-35.

(Haraldsson 78)
Haraldsson, Anders. A partial evaluator and its use for compilingitera.tive statements
in LISP. In Conf Rec. ofthe 5th ACM POPL, Tucson, Arizona, 1978, pp.195-203.

(Reering 85) ,

Heering, Jan. Partial evaluation .and o>-completeness of algebraic specifications.
Report CS-8501, Centre for Mathematics and Computer Science, Amsterdam,
The Netherlands.

(Jones, Mycroft 86)
Jones, Neil D. & Alan Mycroft. Data flow analysis using minimal function graphs.
In Conf Rec. ofthe 13th ACM POPL, St. Petersburg, Florida,1986. (To appear).

(Jones, Sestoft; S0ndergaard 85))
Jones,.Neil D., Peter: Sestoft & Harald S0ndergaard. An experiment in partial
evaluation: The generation of a compiler generator. In Proc. 1st Intl. Conf on
Rewriting Techniques and Applications, Dijon, France, 1985. Springer lNCS202
(1985), pp. 124-140. (A preliminary versionappeared as DIKU Report 85l1,
January 1985).

(Jones, Tofte 83)
Jones, Neil D. & Mads Tofte. Some principles and notations for the construction of
compiler generators. Unpublished working paper, DIKU, July 29, 1983. 15 pp.

(Kahn, Carlsson 84)
Kahn, Kenneth M. & Mats Carlsson. The compilation of Prolog programs without
the use of a Prolog compiler. In Proc. ofthe International Conference oft Fifth
,9'eneration Computer Systems, Tokyo, Japan, 1984, ICOT, 1984, pp. ~48-355.

(Kleene 52)
Kleene, S.C. Introduction to Metamathematics. Van Nostrand, 1952.

(Sestoft 85)
[Sestoft, Peter]. The Mix system: User manual and short description. DIKU, April
26th, 1985. 14 pp. '

(Turchin 79)
Turchin, Valentin F. A supercompiler system based on the language REFAL.
SIGPLAN Notices 14~ no. 2 (February 1979), pp. 46754.

(Turchin 80) ..' .' .
Turchin, Valentin F. Semantic definjtions in REFAL and the automatic construction
orcompilers. In Jones, Neil D. (ed.): Semantics Directed Compiler Generation.
SpringerLNCS 94, (1980), pp. 441-474.

33

Appendix; Some Ljstjn&s

This appendix contains a number of listings 'showing what kllid ofprograms' the Mix system

may produce. We use the interpreter for the snrtpl€t hnperative language MP mentioned in Section

4.2 as an example together with some related programs, namely,

1. The interpreter for MP, called int.

2. A compiler for the MP language generated from this interpreter.

3. A source program in the MP language, namely, the exponentiation program mentioned in

Section 4.2.

4. A target program (in LETLISP) for this source program.

Comments on the Listin&s;

1. The interpreter is given in LETL, and it is not annotated for variable splitting (Section 3.4).

It should be quite straightforwardly understandable, only the environment (that associates values

with variables) is split into two: A name list "vn" and a value list called "vv" or "vvO". .

2. The compiler from MP to L was generated by running

comp = L Mix3<Mix3ann,intann>

or .comp = L cocom<intann>

as demonstrated in Section 2.1.

The functions constituting the compiler can be classified as follows:

Main recursion structure (inheritedfrom Mix3): Ml'-int-1, Geteqn-1, Mixl-l, Lookupout-L

, Compiling functions (from the interpreter):

Code generating: Exp-l, While-I, Block-I, Cmd-l, Initvars2-1, MP-int-2, Update-I.

Controlling target program generation: While-2, Block-2, Cmd-2, MP-int-3.

Optimizing code building functions (from Mix3): Carrl-l, Cool-I, Atomrl-l, Co~srl-l,

Equa1r1-1, Ifr1-1.

Auxiliary functions: U-e-1, Lookupvar-l.

Trivial or superflu~usfunctions (ashaming!): Initvars2-2, Initvars1-2, Initvars1-1, Update-2,

Lookupvar-2, Exp-2.

3. The MP source program computes exponentiation xY as the number of tuples of length y

over a set with x members. It is, admittedly, not very readable.

4. The corresponding target program could be produced either as

target = L Mix3<intann,source>

or target = L comp<source>

as described in Section 2.1 and Section 4.2.

The listings are commented to a certain extent, especially the compiler generated from int.

As can be seen, the compiler could easily be improved by quite simple means (by identifying

functions that only may return one of their parameters, e.g. Lookupvar-2 in the compiler). The

target programs generated by the compiler, on the other hand, could not conceivably be more

compact or efficient granted the rather primitive methods and the primitive target language we use.

34

Interpreter for MP (1st of 3 parts)

))))

Main data structures in the interpreter:
The variables program, block, cmd, exp, vars, and pars

; take values which are program frsgments conforming to
; the syntax (program), (block), etc above.
; The variable vn is a list of variable names.
; The variables vv, vvO are lists of variable values (states).

; Main functions in the interpreter: .
; IIMP-int II interprets ent ire MP programs, "Block II, IICmd ll

, and
; IIWhile" interpret blocks., commands and while statements and
; return the result new state. "EXpll interprets expressions .
, and return the value of an expres~ion.

first branch
iff (exp) not nil
iterate '"hi Ie
(exp) not nil
constant

·,;
·,

·,·,; (exp)·.,
·,

• ~-int - an interpreter for _ simple
, i~er.tive progra.ming language with list. as data type.
, 1985 April 26 .

; Syntax of input programs:
,. (program) :: = (program (pars) (vars) (block»
; (pars) ::= (pars (vname).)
; (vars) ::= (dec (vname).)
; (block) ::= «cmd).):'
; (cmd) ::= (:= (vname) (exp»
; I (if (exp) (block) (block»
;

(while (exp) (block»

::= (quote (list»
I (vname)
I (car (exp»
I (cdr (exp»
I (cons (exp) (exp»
I (atom (exp» -- nil iff not atom
I (equal (exp) (exp» -- n·i I iff unequal""

Semantics: Programs are given a fixed number of input values,
which are bound to the variables named in the (pars •••) li'st.

; The other variables are initially all nil. . .
; The semantics resembles that of Pascal, with
; the exce~tions that 1) the result is the entire store,
; 2) the if command takes its first branch if the expression

is non-nil, 3) the while loops as long as the expression is
non-nil.

«MP-int (program input) =

; Main function: ·program" is the program to,be 1nterpret~dt '.
• in~ut.. 1S input to that program.,·.:,;,!

Output is a list of the final values of the interpreted pro,gr,am"·.s variables.

(let <program? pars vars block) = program in
(let (pars? parlist) = pars'

(dec? '. varlist) = vars in
(let vn = (call Initvarsl varlist parlist)

vv = (call Initvars2 varlist input) in
(call Block block vn vv)

1
2
3
4
~
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
~2
53
54
:55
56
57
sa

_. S9

35

b 'S

(let
(if

else
)))

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
7:5
76
77
78
79
SO
81
82
83
84
8~
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
lOS
106
107
108
109
110
111
112
113
114
I1S
116
117
118
119
120
121
122
123

Interpreter for MP (2nd of 3 parts)

(Block (block vn vvO) =
; Interpretation of a sequence of statements in environment (vn,vvO).

(cmdl • blockrest) = block in
block then

(call Block blockrest vn (callr Cmd cmdl vn vvO»

vvO

(Cmd (cmd vn vvO) =
(let (op e1 e2 e3) = cmd in
(if (equal ':= op) then

(call Update vn vvO e1 (call Exp e2 vn vvO»
elsf (equal 'if op) then

(if (call Exp e1 vn vvO) then
(call Block e2 vn vvO)

else' .
(call Block e3 vn vvO)

)
elsf (equal, "",hi Ie op) then

(calIf' Whi Ie e1 e2 vn vvO)
else

(list 'ILLEGAL 'COMMAND: cmd)
)))

(While (condit block vn vvO) =

(if (call. Exp condit vn vvO) then
(calir While condit block vn (call Block block vn vvO»

else
vvO

))

(Exp (exp vn vvO) =

(let (op e1 e2) = exp 1n
(if (atom exp) t.. hen

(call Lookupvar vn vvO exp)
~lsf (equal '~uote op) then. e1 .
elsf (equal 'car . op) then

(car (call Exp e1 vn vvO»
elsf (equ~l 'cdr op) then

". (cdr (call Exp e1 vn vvO»
elsf (equal 'cons op) then

(cons (call Exp a1 vn vvO)
(c_ll Exp e2 vn vvO»

elsf (equal 'atom op) then
(atom (call Exp e1 vn vvO»

elsf (e~ual 'equal op) then
(equal (call Exp e1 vn vvO)

(call Exp e2 vn vvO)

else
(list 'ILLEGAL 'EXPRESSION: exp)

)))

36

Interpreter for MP (3rd of 3 part,s)

in

pars

input

(vvl :: (call Update vnrest vvrsst var val»

(call ,Lookupvar vnrest vvrest var)

else

)))

)))

)))

else
))))

(Inltvarsl (vars pars) =
; M.ke a list of names of declared variabl•• and p.r...t

(let (vi • restvars) = v&rs in
(if vars then

(vi :: (call Initvarsl restvars'pars»)
else

(InitYars2 (Yars input) =
; Make a list of values of declared variables (which are initialized to
; n1l) and parameters (which sst their values from input).
(let (vi • restvars) = vars in
(if vars then '

('nil :: (call Initvars2 restvars input»
else

(Update (vn YV val" val) =
(let (vnl. vnrest) = vn

(vvl • vvrest) = vv in
(if (equal 'nil vn) , then

(list 'UNKNOWN 'VARIABLE: var)
elsf (equal vnl Yoar) then

(val :: vvrest)

(Lookupvar (Yn vv var) =
(let (vn 1 • vnrest) = vn

(vvl • vvrest) = vv
(if (equal 'nil vn) then

(1i st ' UNK NOWN 'VAR I ABLE: var) ,
elsf (equal vnl var) then

vvl

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147 '
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

, 167

37

A compiler from Me to L (1st of 6 parts)

j
I'

i
J .

!
I

Determines which
target functions
are necessary.

Compilesvari­
able reference
(R-value)

Produces a cdr expres­
sion (possibly reduced)

out)
(Cmd-2 (cadr fname1) (caddr fname1) pending»

out.)
(While-2 (cadr fname1)

(caddr fnalle1)
(cadddr fname1)
pending))

else
(list 'UNDEFINED 'FUNCTION: (car fname1»»

elsf
(equal (car fname1) 'While)
then
(Mixl-1 (cons (list (cons (car fname1) fnamel)

, (vvO)
(While-l (cadr fname1)

(caddr fname1)
(cadddr fname1)
, vvO»

'Cdrrl-1
, (uofel)
"(if (atoll uofe1)

then
(1 ist 'cdr uofe!)
elsf
(equal (car uafe!) 'quote)
then
(1 ist 'quote (cdadr uofe1»
elsf

, (equal (car uafe1) 'cons)
then
(caddr uofel)
el••
(list 'cdr uofe1»)

(deflet

(deflet

l (deflet 'MP-int-1
2 ' (prograM)
3~~~r-::"1:--'11',.(r-8~e,=t~e~gn:.:.-r-l_'-::n..:.;1:;..:·1:..,__(:..,::1:..,::i=5=t_,_'=t1P=--..-=.in:.:.t,;:;.,....IpL..:r;...::a::.Jarlll::.-;.:'.=.::.:;)_'~n;.::i..::.l..:..)..:..) _
, (deflet 'aete~-l
5 '(out fnams1 pending)
~ '(if (equal (car fname1) 'MP~int)
7 then
3 (Mixl-1 (cons (list (cons (car fname1) fname1)
9' , (input)
o (MP-int-2 (cadr fname1) 'input»
1 o~)
2 (MP-int-3 (cadr fname1) pending»
3 elsf
4 (equal (car fname1) 'Cmd)
5 theno (Mixl-1 (cons (list (cons (car fname1) fname1)
7 ' (vvO)
B (Cmd-l (cadr fname1)
9 (caddr fname1)
o 'vvO»
1
2
3
4
5
&
7
B
9
o
1
2
(3
'4
5
'6
7a

38

!I
i I

__h --------- J

A compiler from MP to L (2nd o~ 6 parts)

Superfluous ,tuhction

Produces a c~.k"C expres­
sion (possiblY', reduced)

This and thefpllowing
function cont~ol building

out (car pending» the target prdgram' ',' .
together with.Ge~eqn-l.

(cdr vn) var

Lookupvar- ,
, (vn var pending)
,. (equal' ni 1 vn)

'Carrl-l
, (uofel)
'(if (ato. 'uofel)

then
(list 'car uofel)
elsf
(equal (car uofel) 'quote)
then
(1 ist ' quote;:·(caadr uofel»
elsf :
(equal (car uofel) 'cons)
then
(cadr uofe1)
else
(list 'car uofel»)

6S
66
67
68
69
70
71
72
73
74
75
76
77
78

80
81
82
BJ
84
~
86
97
8a
89
o

1X -
92 '(out pending)
93 ' (if pending
94 then
95 (if (Lookupcut-l
96 then
97 (Mixl-1out (cdr pending»
98 else
99 (Geteqn-l out (car pending) (cdr pending»)

100 else
101 put»

Produces c04~~for a
store updat'e'~"

'UNKNOWN 'VARIABLE: var»

Produces a edrts expres­
sion (possib~y reduced).

39

A compiler from MP to L. (3rdo f '6, part's)

Generate code to initi­
alize variables (to nil).

"nil ~Initvars2-1 (cdr yars) input»

Superfluous function.

(cdr vars) pars»»

Saperfluous'function
(returns the parameter
~ ~~ndit:1gII) •

(cdr vn) var

xp- ' ' "
'(exp vn vvO) . ', (if (atom exp) Complle an expresslon

then in environment:
(Lookupvar-l vn exp vvO) ,(vn v\tO)
elsf ' .
(equal 'quote (car exp»
then
(list 'quote (cadr exp»
elsf
(equal 'car (car exp»
then '
(Carrl-1 (Exp-l (cadr exp) vn vvO»
elsf·
(equal 'cdr (car exp»
then
(Cdrrl-1 (Exp-l (cadr exp) yn vvO»
elsf
(equal 'cons (car exp»
then
(Consrl-1 (Exp-l (cadr exp) vn vvO) (Exp-l (caddr exp) vn vvO»
elsf,· ' '. "
(equal 'atom (car exp»
then:
(~tomrl-1 CExp-1 (cadr exp) vn vvO»
elsf .
(equal 'equal (CAr exp»
then .
(Equalrl-1 (Exp-l (cadr exp) vn vvO) (Exp-l (caddr exp) vn vvO»
else
(11st '9uote

(list 'ILLEGAL 'EXPRESSION: exp»»

U-e-l'
"(ev\/)
,'(if (car evv)

then
(cons (caar eyv) (U-e-1 (list (cdar evv) (cadr evv»»
~15d 'vyltl BUildcomEile time variable name list.

i~ft1tr~"f; hSi 5 pars peAlliAg) 'peodingl Superfluous.

160
161
162
163
164
165
166

150
151
152
153
154
155

157
158

139
140
141
142
143
144
145
146
147
148

168
169
170
171
172
173
174

:]75
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
2Q?

40

A compiler from MP to L (4th of6parts)

Produces an equal expres­
sion (possibly reduced).'

(deflet208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

~~~
228
229
230
231
232,
233
234
235
236
237
238
239
240

<deflet 'Atomr -I
, (uofel)
'(if (atom uofel)

then
(list 'atom uofel)
elsf
(equal '~uote (car uofel»
then
(list '~uote (atom (cadr uofel»)
e1sf
(equal 'cons (car uofel»
then
"nil
else

(cadr uofe2»)

Produces an atom expres­
sion (possibly reduced).

(caddr exp) vn pendin9~)

Superfluous function
(returns the parameter

. II pending It )

'Exp-2
'(exp yn pending)
'(if (atom exp)

then
(Lookupvar-2 vn exp pending)
elsf .
(e9ual 'quote (car exp»
then

nding
e f
(eq I 'car (car
then
(Exe-2
elsf
(equal
then
(Exe-2
elsf
(equal
then
(Ex~
e1
( qual 'atom (car exp)
hen

(Exe-2 (cadr exp) vn pend
e1sf
(equal 'e~ual (car exp»
then ,
(Exp-2 (cad,. ,exp) vn (Exp-2
else

. pending»

242
243
244
245
246 '
247
248
249
250
251
252
253
254
255
236
257
258
259
260
261
262
263
2h4
265
266
267
268
269
270
271
272

41



A compiler from MP to L (6th of 6 parts)

370
371
372
373
374
375
376
377
378
379
380
JBt

Compile a c~~mand 'i~'
env ironmen t (vn, v'v'O)'

(cadddr cmd)
vn
(Block-2 (caddr cmd) vn (Exp-2 (cadr Cmd»)vn pending»)

(caddr cmd) vn (Update-2 vn (cadr cmd) pending»
Determine th~ target func-·
tions necesSa~y for a
~?~~and.

vvO)

elsf
(equal 'while (car cmd»
then
(list 'call

(list 'While
'Whi Ie
(cadI" cmd)
(caddr cmd)
vn)

else
(list 'quote (list 'ILLEGAL 'COMMAND: cmd»»

43

'e.d-l
'(cmd vn vvO)
'(if (equal ':= (car cmd»

then
(Update-l vn (cadr Clad) vvO (Exp-l (caddrcmd) vn \lV,O,»
elsf
,(equal 'if (Cilr cmd»
then
(Ifrl-1 (Exp-l (cadr cmd) vn vvO)

(Block-l (caddr cmd) vn vvO)
(Block-l (cadddr cmd) vn vvO»

'MP-int-3, (program pending) Determine a part of the
'(Initvars2-2 (cdaddr program) target functions neces-

(Block-2 (cadddr program) sary for the program.
(U-e-l
(list (cdaddr program) (cdadr program»)

pending» )

'MP-int-2'(program input) First process declarations,
, (Block-t (cadddr program) then compile a block.

(U-e-l (list (cdaddr program) (cdadr program»)
(Initvars2-1 (cdaddr program) input»}

<deflet

(deflet

(deflet

(deflet

330
JJl
JJ2
J3J
334
335
JJ6
337
338
J39
340
341
342
343
344
345
346
347
348
349
3~0
3~1

~:5253
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

,
/

I
I
!'



A compiler from MP to L (6th of 6 parts)

else
(list 'quote (list 'ILLEGAL 'COMMAND: cmd»»

'C..d-l
'Ccmd vn vvO)
'(if Cequ.l ':= (car cmd»

then
(l)pdate-1 yn (cadr Clad) yvO CExp-1 (caddrcmd) vn~v;O»

elsf
,(equal 'if (car cmd»
then
(Ifrl-1 (Exp-l (cadI'" cmd) vn vvO)

(Block-l (caddr cmd) vn vvO)
(Block-l (cadddr cmd) yn vvO»

JJO
JJI
3J2
33J
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
3:50
3:51

~~j

(deflet

(deflet

elsf
(equal 'while (car cmd»
then
(list 'call

(list 'While
'Whi Ie
(cadI'" cmd) .
(caddr cmd)
vn)

yvO)

Compile a command ±~.

environment (vn, V 1JO)

(Update-2 yn (cadI'" cmd) pending»
Determine the target func­
tions nece5S~~y for a
5::9~!!!and. .'

'MP-int-3, Cerogram pending) Determine a part of the
'(Initvars2-2 (cdaddr program) target functions neces-

(Bloc:k-2 (cadddr program) sary for the program.
(U-e-l
(list (cdaddr program) (cdadr program»)

pending» )

'MP-int-2'(program input> First process declarations,
'(Block-l (cadddr program) then compile a block.

(U-e-l (list (cdaddr program) (cdadr program»)
(InitYars2-1 (cdaddr program) input»)

(deflet

(deflet

375
376
377
378
379
380
381

370
371
372
373
374

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

43

-



A source program inMP: Exponentiation

) )
)

)
) ; end of progra.

(program (pars x y) (dec out next kn)
( <: = kn y)

(whi Ie kn«:= next (cons x next»(:= k n (cdr k n) )

; First combination

; while mere tuples
; if next(l) can be increased

(car next»; do that
next» )

(while kn ; whi Ie .next ( tty do«:= next (cons x next»; put x in front of next
(:= kn . (cdr kn» ; preserving invariant

)
(:= out (cons·next out»
; Invariaht:lnext + tkn = Iy
(while next

«if (cdr (car next»«:= next (cons (cdr
(cdr

)
t:= out ~cons next out»

)
else, backtrack, preserVing invariant«:= next (cdr next»
,(,:=!= kn (cons' I kn) >
)

; An exponentiation program in "P. .
; The pro9r~m computes X to the V'th power a. the nuaber of
! tuples of length V with elements from .n X-element set.,
: Notat ion:·We let Ix denote the length of 11st x.,
; Inp-ut: Two lists x and y, the lengths of which are X = lx, V = Iy.
; Effect: The final value of variable out is a list all of V-tuples
; with elements from an X-element set, that is,
; lout = X to the V'th power = Ix to the Iy'th pOtIer.
; Output from the program is a list (a dump) of the variables' final

values with out's value as its first element.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
.32
33
34
35
36
37
3S
39
40
41
42

·43

44

<



A target program (in LETLISP) for the exponentiation program

ey(",;ra,y.~

v.,p,j <Jf.•/!;;J!

(x • (y • nil)). - inputinput is a list:

'n'1\,1
(cPn$ 'n1 I (cons 'nl I .input) ) ) ) ) ) ) )

(car vvO)
(cons '(cadr vvO)

(cons (cons 'l(caddt" vvO» (cdddr vvO»»)

'f1P-int-l
'(inRut)
'(Cmd...6

,(Cmd-5
tCmd-2
'(Cmd-l

(cons

'Cmd-l
, (vvO)
'(cons (car vvO:) '(cans 'Ccca"dr vvO) (cons (caddddr vvO) (cdddr vvO»»)
'Cmd-2 '(vvO) 'tWhile-;l vvO»
'Whi le-l
, (vvO)
, (i f ' (caddr vvO) then CWhi 1e-l fCmd-4 (Cmd-J vvO») else vvO»
'Cmd-3
, '(MVO)
'(cons (car vvO) (cons (cons (cadddr vvO) (cadr vvO» (cddr vvO»»
'Cmd-4
'(vvO)
'(cons (car vvO) (cons (cadt" vvO) (cons (cdaddt" wO) (cdddr vvO»»)
'Cmd-5
, (vvO) ,
'(cons (cons (cadt" vvO) (car vvO» (cdr vvO»)
'Cmd-6 '(vvO) '(While-2 vvO»
'Whi le-2
, (vvO)
'(if (cadr vvO) then (While-2 (C"d-7 vvO» else wOr)
'Cmd-7
, (vvO)
'(if (cdaadr vvO)

then
(Cmd-~ (Cmd-2 (Cmd-l0 vvO»)
else
(Cmd-9 (Cmd-8 vvO»»

'Cmd-8
, (vvO)
'(cons (car vvO) (cons (c,dadr vvO) lcddr vvO»»
'Cmd-9
'(vvO)
'(cons

(deflet

(deflet
(deflet

(deflet

(deflet

(deflet

(deflet
(deflet

(deflet

(deflet

(dltflet

(cieflet 'Cmd-lO
, (vvO)
'(cons (car vvO) (cons (cans (cdaadr 'vvO) (edadr vvO» (cddr vvO»»

1
2
,3
4
.5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22 .
23
24
25
26
27
28
29
30

.31
32
33
34
35
36 . ,(deflet
37
38
39
40
41
42
43
44
45
46

4S



For~egnelse over rapporter i .1983

83/1 Stepwise Development of Operational and Denotational Semantics
for Prolog. Neil D. Jones and Alan Mycroft.

83/2 A Skeleton Interpreter~9r Specialized L~~g~ages.

J¢rgen Steens~aard-Madsen.

83/3 Nami~g Commands. An Analysis of Designers' Naming Behaviour.
Anker Helms J¢rgensen et al.

83/4 Gendannelse af forringede billeder ved invers - og Wienerfiltrering.
J¢rgen Bansler og S¢ren Olsen.

83/5 Stepwise Development of Logic Programmed Software Development
Methods. Gregers Koch~

83/6 An Algorithm for the Steiner Problem in the Euclidean Plane.
Pa\tlel Winter.

83/7 Eksperimentelle teknikker i systemarbejdet.
J¢rgen Bansler og Keld B¢dker.

83/8 Generering af en oversrettergenerator. Mads Tofte.

83/9 Interval Arithmetic Implementations Using Floating Point Arithmetic.·
Michael·Clemmesen.

83/10 Design practice and interface usability: evidence. from interviews
with designers. Anker Helms J¢rgensen, N. Hammond,A. MacLean,
P. Barnard, and J. .Long.

83/11 En model for brugeres opfattelse af edb-baserede systemer.
Jan Chr. Clausen.

83/12 Definition of the Programming Language MODEF.
J¢rgen Steensgaard-Madsen og Lars M¢ller Olsen.

83/13 The effect of task structure in interactive systems: a pilot
experiment. Anker Helms J¢rgensen, Phil Barnard, Nick Hammond,
Allan MacLean.

83/14 The psychology of developing and using computer systems: five
contributions. Anker Helms J¢rgensen.

83/15 System~dvikling sam element i.den kapitalistiske tekn610giudvikling.
J¢rgen Bansler og Keld B¢dker.

83/16 Oversretterteknik for programmeringssprog' ved hj~lp af PROLOG.
Flemm~ng Als , Carsten Hendriksen og Jens Johansen.

83/17 Generalized Steiner Problem in Outerplanar Networks.
Pawel Winter.



84/1

84/2

84/3

84/4

84/5

84/6

84/7

84/8

84/9

84/10

Fortegnelse over rapporter i 1984

Production and Location on a Network under Demand Uncertainty.
Francois Louveaux and Jacques-Francois Thisse.

Typed Representation of Objects by Functions.
J¢rgen Steensgaard-Madsen.

Steiner Problem in Halin Networks. Pawel Winter.

An Algorithm for the Enumeration of Spanning Trees.
Pawel Winter.

Open Problems Presented at the Copenhagen Workshop on Computer Vision.
Knud Henriksen, Peter Johansen, S¢ren Olsen. \

Bufferingsmetoder. Bent Pedersen.

Datalogi 2 Notes:: ,Functions, ,Expres,stLons" Programming Languages,
Computability. Neil D. Jones.

COMPILER GENERATORS - what they can do, what they might do, and what
they will probably never do. Mads Tofte.

Forelc:esnangsnoter til administrativ databehandling. Ole Caprani,
H.B. Hansen og S¢ren Lauesen.

Computer Vision in a Computer Science Framework. Peter Johansen'and
Edda Sveinsdottir.

84/11 Analyse af stereobilleder - rekonstruktion, af tredimensionaleflader.
S¢ren O~sen.

85/12 Ingredients of Locational Analyses. Jakob Krarup & Peter Pruzan.

84/.13 MODEF/I100 User's Guide. J. Steensgaard-Madsen.

84/14 A New Family of Exponential LP-problems. Jens Clausen.

84/15 Two Families of Bad LP-problems. Jens Clausen.

84/16 A Note on 'the Edmonds-Fukuda Pivoting Rule for Simplex. Jens Clausen.

84/17 Network Management. Brian E. Christiansen.



85/10 Afpr¢vning af systemudvikling med prototyper. Klaus Viby Mogensen.

'85/11 The Structure of a Self-Applicable Partial Evaluator. Peter Sestoft.

85/1

85/2

85/3

85/4

85/5

85/6

85/7

85/8

Fortegnelse over rapporter i 1985

An Experiment in Partial Evaluation: The Generation of a Compiler
Generator. Neil D. Jones, Peter Sestoft, Harald S¢ndergaard.

.FIFTHGENERATION PROGRAMMING Vol. 1. Logic Programming in Natural
Language Analysis .. Proceedings I from a workshop in Copenhagen
December 1984. Edited by Gregers Koch.

A Survey of Systems Programming Languages: Concepts and Facilities.
William F. Appelbe and Klaus Hansen.

Hjemmedatamaten - et br~kjern til fremtiden? Leif Caspersen, Jacob
N¢rbjerg, Annelise Ravn, Thomas Sturup.

OSI modellens ¢vre lag. John Hunderup, Benny Pedersen, S¢ren Stock~

marr, Kim Wagner, Michael Bundgaard, Kurt Pedersen, Carsten Bjerna,
J¢rgen Munster.

FIFTH GENERATION PROGRAMMING Vol. 2. Logic Programming in Natural
Language Analysis. Proceedings II from a workshop in Copenhagen
December 1984. Edited by Gregers Koch.

Int~r-p;(ocess Communication in Pistributed Operating SystePl.s. Erik Jul.

\'


	GENERIC35BW120100603092823
	GENERIC35BW120100603092916
	GENERIC35BW120100603092953
	GENERIC35BW120100603093029
	GENERIC35BW120100603093214



