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SUMMARY: This work concerns efficient implementation of strict functional
languages or, equivalently, automatic transformation of functional programs into
imperative ones. Specifically, we investigate when function parameters can be
safely replaced by global variables. This replacement is called globalization. The
objective of globalization is to reduce the time and space cost of stack (or heap)
allocation of function parameters when possible. The tools employed are
automnatic analysis and transformation of programs. In particular we present an
interference analysis that decides whether a given function parameter may safely
be globalized, and an algorithm that finds globalizable variable groups: sets of
function parameters that may be globalized using only one global variable for
cach set. The analyses and transformations are based on formal operational
semantics to facilitate correctness proofs.

The main contribution of this report is to introduce the concepts of
definition-use path, path semantics, interference, and definition-use grammar. A
definition-use path is a linear recording of the definitions and uses of variables
during a computation. The path semantics of a language prescribes the path for a
computation and is an extension of the operational semantics. Inzerference in a
path means that the value of a variable becomes modified (by a redefinition)
before its last use. A non-interfering variable is globalizable. A definition-use
grammar is constructed from a program and the path semantics, and derives a
superset of all possible paths for the program. The interference analysis is done
by an analysis of the gramimar, and it safely approximates the "exact” interference
in the program. Finally, the globalization transformation uses the results of the
interference analysis,

The techniques apply to both first order and higher order languages with
strict (i.e., call by value) semantics. We compare our techniques to those used in
related work reported in the literature.
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PREFACE

This report discusses a particular optimizing transformation applicable to functional languages: the
replacement of function parameters by global variables. The report is a "speciale”, corresponding
to an M.Sc, thesis. It was written at DIKU (the Department of Computer Science at the University
of Copenhagen) in the period from June 1987 to September 1988.

Neil D. Jones suggested the subject of this work and was the supervisor of the project.
The original goal was to apply David A. Schmidt's work on single-threading in denotational
specifications to the area of functional programs in general. It appears that we have succeeded in
this, but the technique we have developed is quite different from Schmidt's.

The report should be relevant to people interested in implementation, optimization,
analysis, or transformation of eager functional programming languages. The presentation is
somewhat formal, with definitions, propositions, and lemmas, but hopefully not unbearably so,
We have tried to give examples and intuitive explanations throughout. We have not actually
programmed any of the analyses or algorithms presented, but it should be fairly easy to make
experimental implementations.

Prior knowledge about structural operational semantics, context free grammars, graphs,
and implementation of eager functional programming languages will be beneficial, but is not
indispensable. We use the concepts in a rather straightforward manner and try to give some
introductory explanation in each case.
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1. INTRODUCTION AND OVERVIEW

This section motivates our interest in globalization: the replacement of function parameters by
global variables. Furthermore, it lists related work and gives an outline of the report.

1.1 Globalization

Globalization means replacement of function parameters by global variables. This transformation
applies to (strict) functional programs and introduces global variables and assignments, so the
result is an imperative program.

For examnple, consider the following function definition:

fix) = x*x7

Evaluation of a call £ (13) of £ will create a new environment which binds x to 13; the body x*7
of £ is evaluated in this environment; and the environment is discarded. Thus the binding of x to
13 is temporary. Now if x is replaced by global variable 2, then the call of £ will assign 13 to 2,
and Z will retain this value until altered by a new assignment. If £ is called recursively, z might be
altered too early, and the replacement of x by Z would not be correct.

The goal of globalization is efficiency: imperative programs can be implemented more
efficiently than functional ones on existent (von Neumann type) computers. The stack or heap
management necessary for functional language implementations is more expensive in terms of
run-time and storage consumption than fixed global allocation,

In general it will be incorrect to replace just any function parameter by a global variable:
this may alter the meaning of the program. Our goal is to devise an analysis that finds those
parameters in a given program which can be globalized without changing the meaning of the
program. This analysis is automatic and safe: it will say that a parameter is globalizable only if it
definitely is. On the other hand, the analysis is approximate: it may fail to identify parameters that
are globalizable. We also design a globalization transformation that does the globalization on the
basis of the analysis.

We emphasize that the analysis and transformation must be correct. We give a formal
(operational) semantics for the example languages we work with, and prove the correctness of the
globalization method on this basis.

The report introduces several concepts to discuss globalization and to develop the
analysis and globalization transformation: definition-use path, interference, path semantics, variable
group, definition-use grammar and so on. These concepts are introduced and motivated as they are
needed in the development.

But first we will elaborate on the motivations for studying globalization.
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1.2 Implementation of Strict Functional Languages

Functonal programs are easier to write and read than imperative ones. They have simpler
semantics because of the absence of assignment statements and similar constructs. Therefore they
are also easier to reason about and to prove correct. Moreover, higher order functions provide a
simple and powerful abstraction tool which is not easily introduced into imperative languages.
These are some of the well-known arguments in favour of using functional languages [Backus
1978], [Henderson 1980], [Turner 1982]. '

The argument against is inefficiency. Implementations of functional languages on
present-day (monoprocessor) computers require more expensive storage management than
implementations of imperative languages [Aho, Sethi, Ullman 1986], [Henderson 1980], [Steele
1978]. An "imperative programmer” using Pascal, for example, will know when to use a global
variable for storing some data. The "pure functional programmer"” has no choice: he must pass his
data around via parameters, which is less efficient when running the program.,

One solution is to let the programmer write his neat (and provably correct) functional
program and then automatically replace function parameters by global variables wherever this is
admissible. The result is a more efficient and equally correct (but probably less neat) imperative
program. This way efficiency is achieved without the programmer having to fight the complexities
of assignment.

Thus our globalization method is expected to be useful as a technique for optimization of
functional programs, or as a technique to aid in the efficient implementation of functional
languages.

Our globalization method works for serict (or eager) functional languages, such as
Standard ML and Scheme. These have "evaluate arguments first” or "call by value" semantics.
Lazy functional languages such as Hope, Miranda, or Lazy ML require completely different kinds
of implementations. Therefore the efficiency problems and the optimization techniques for lazy
languages are quite different from those of eager languages. We hope, however, eventually to
extend the approach of this work to apply to lazy languages also.

1.3 Semantics-Directed Compiler Generation

Semantics-directed compiler generation is concerned with automatic construction of
implementations from formal language definitions. Formal language definitions are usually
expressed in some functional language, often a variant of the lambda calculus. (This is not always
the case, see for instance [Tofte 1984] and [Jensen, Dam 1985]). Therefore a language definition
may be executable. In that case it can be considered an interpreter, called "int", for the defined

language. A program "p" in the defined language now can be executed by running the language
definition int on p and p's input data.
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The efficiency of executing p depends heavily on the efficiency of the interpreter int. But
if an automatic analysis can show that the interpreter itself can be implemented in a particularly
efficient way, then it may be feasible to execute the defined language efficiently. Clearly,
globalization is relevant, and the work by . A. Schmidt addresses precisely the problem of
detecting global variables in denotational language definitions [Schmidt 1985}

The discussion so far concerns interprerive implementation of the defined language.
Compilation may be done by splitting the interpreter's actions into compile time actions (for
example tests on the source program's syntax) and run time actions (for example actions that do
work prescribed by the source program). This splitting can be carried out by specializing the
interpreter or language definition to the source program [Mosses 1979}, that is, by some form of
partial evaluation [Futamura 1971), [Ershov 1978]. The splitting may be a source to source
transformation of the interpreter so the generated object program is written in the same (functional)
language as the interpreter. Again, globalization is a relevant optimization that improves the
execution efficiency of such object programs. Thus globalization is relevant for postprocessing of
programs generated by the partial evaluator mix, for example [Jones, Sestoft, Sendergaard 1988).

It is undesirable to have to analyse and transform every object program to do
globalization. We would want to analyze the language definition (int) once and for all, and then
apply only such transformations to it that preserve globalizability (during partial evaluation, for
instance). This approach is discussed in [Schmidt 1988]. We shall not discuss this any further.

1.4 Related work

The work by D. A. Schmidt on detecting global variables in denotational semantics definitions was
the starting point of these investigations [Schmidt 1985]. A more comprehensive discussion of
Schmidt's work is given in Section 6.1,

The work by U. Kastens and M. Schmidt on lifetime analysis for procedure parameters
has goals and methods very similar to ours [Kastens, Schmidt 1986]. (Note that D. A. Schmidt #
M. Schmidt). However, our work was developed independently to a certain point and puts more
emphasis on correctness and formalism than theirs. A detailed comparison is made in Section 6.2.

The related subject "destructive operators” (such as "destruciive cons") in applicative
languages seems to be an active research field. Early work in this direction is [Pettorossi 1978,
1984] (mentioned in Section 6.3) and [Mycroft 1981].

Our work is certainly related to classical optimization techniques such as live variable
analysis or definition-use chaining etc. in compiler technology [Aho, Sethi, Ullman 1986]. The
objective of those techniques is to optimize register allocation or to minimize the number of
temporary variables and avoid unnecessary copying of values. The techniques are used to optimize
the code generated for expressions. They do not achieve the effect of replacing function parameters
by global variables.

Section 1



The Biiss compiler has particularly sophisticated mechanisms for detecting the lifetime of
temporary variables in intermediate code. This gives very good register usage [Wulf ez 2/, 1975).
The objective again is to generate high quality code for expressions, and the mechanisms are
applied only to one subroutine at a time. The effect is that the mechanisms must be very
pessimistic about the way subroutines call each other; they cannot take advantage of a certain call
pattern, for example. Our analysis will not do any register optimization, but will be more global,
and thus will yield savings not possible with the Bliss approach.

In a functional language, a tail call in a function is a call which is the last action in an
evaluation of the function's body. It is well known that a directly recursive function, all of whose
calls are tail calls, can be evaluated without using a stack [Gill 1965], [Knuth 1972]. This is
because there is no need to retain the values of the current local variables (that is, function
parameters) during evaluation of a new recursive call. Thus the new values for the parameters may
be put in the same place as the old ones. Modern implementations of functional languages
recognize tail calls and implement them efficiently as jumps without using a stack [Steele 1978],
[Peyton Jones 1987].

Our globalization techniques will allow us to globalize function parameters even in the
absence of tail calls and thus is more general than the tail call optimization. Our techniques as
presented will detect some tail calls automatically. However, handling tail calls in general may
require introduction of temporary variables and this complication is not addressed in our approach.

Work under the heading "recursion elimination” has attempted to extend the tail recursion
concept. That is, its goal is to identify certain recursion patterns that could be implemented more
cheaply than with the general stack mechanism [Haskell 1975], [Strong 1971}, [Walker, Strong
1973]. These recursion schemes appear to be rather restricted, however, and recursion elimination
seems to have had little practical impact [Steele 1977].

1.5 Outline of the Report

Sections 2 through 5 constitute the core of this report and should be read in the order they appear.
They develop concepts and tools for automatic globalization in first order and higher order
languages. Not to attack too many problems at once, Sections 2 and 3 introduce all the important
ideas in the context of the simple first order language 1; then Section 4 presents the modifications
necessary for a higher order language H.

Section 2 introduces the globalization problem and gives some examples. To allow for a
precise discussion, it introduces a (strict) first order example language L, giving its syntax and
operational semantics. It then defines some concepts central to this work: definition-use path and
interference in a definition-use path, and gives a so-called path semantics for L based on the
operational semantics for L. Finally, the concept of variable group is defined.

Section 3 develops the construction of a definition-use grammar (from the path
semantics) for a given program, and an interference analysis for such grammars. An algorithm that
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uses this analysis to find interference free variable groupings, and the globalization transformation
that replaces function parameters by global variables, are both given. The development in Sections
2 and 3 is complete for the first order case. Section 3.5 summarizes the development so far.

Section 4 contains the extension to the higher order case. It defines the syntax,
operational semantics, and path semantics for a (strict) higher order example language H. Then it
presents a closure analysis that is needed for the grammar construction for higher order functions.
The interference analysis and the construction of a non-interfering variable grouping are identical to
those for the first order case.

Section 5 concerns the correctness of the closure analysis and the globalization
transformation for H.

Section 6 discusses other work closely related to ours. In particular, D. A, Schmidt's
work on single-threading in denotational semantics definitions inspired this study, and U. Kastens
and M. Schmidt's work on lifetime analysis for procedure parameters seems to use methods very
similar to those employed here.

Section 7 briefly assesses our results and returns to the broader context of functional
language implementation te discuss the utility of globalization.

Section 8 discusses open problems and possibilities for applying the tools developed here
10 related problems, in particular the following one: when may a heap (for storing closures and
other dynamically allocated objects) be replaced by a stack? The goal of this kind of transformation
is the same as the one discussed above: to save time and space by replacing an expensive storage
allocation method (heap) by a less expensive one (stack),

Sections 9, 10, and 11 contain a conclusion, a glossary of symbols, and a list of
references.
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2. REPLACING PARAMETERS BY GLOBAL VARIABLES

This section falls in two parts. First, globalization is discussed and illustrated by means of
examples. Second, we introduce a simple first order example language L and a number of
concepts to allow for a more precise treatment of the problem. The syntax, an operational
semantics and a path semantics for L are given. The concepts are: the definition-use path for a
computation (abstracting the sequence of definitions and uses of a function parameter); interference
in a path (expressing that the value of a variable is changed before its last use); and the path
semantics for a language (prescribing the definition-use path for evaluation of an expression in a
given environment).

Here and in Section 3 we treat the first order language L, and in Section 4 we present
extensions and modifications necessary for a higher order language H.

2.1 Introduction

To illustrate the problem of replacing function parameters by global variables, we consider a few
example programs written in a simple applicative programming language L with strict application
(call by value semantics), left to right evalnation order, and lexical scope. 1t is presented in Section
2.2 below. We shall assume that L. is implemented with a stack of activation records for parameter
passing, so that a call of function £ involves the following actions: argument expressions are
evaluated from left to right and their values are pushed onto the parameter passing stack. Then the
body expression of £ is evaluated in a new environment that binds £'s variables to the argument
values on the stack. After evaluation of the body expression, the argument values are taken off the
stack again and control passes back to the point of the call of £.

The requirement of left to right evaluation order is not essential but simplifies the
discussion considerably. Call by value semantics, on the other hand, is a natural and important
prerequisite for this development. Call by name, call by need, or even lazy evaluation requires a
quite different kind of implementation and does not combine too well with side effects.

We begin with the particularly simple case of an essentially iterative program,

Example 2.1-1: Powers of two. The program has a single defined function £ with two parameters
r and n, and an initial expression which is a call £ (1, x) of the function. For given input x
which must be a nonnegative integer, the program computes 2x,

def f{r,n) = n=0 —>r,
f{2*r,n-1)
in £{(1,x)

Consider the call from f to itself. The value of r is not needed after evaluation of 2*r, so the
value of 2*r need not be pushed onto the parameter passing stack. It may be stored in the location
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formerly occupied by r. Likewise, the value of n is not needed after n-1 is computed, and so
n-1 may be stored in the location formerly occupied by n. Thus r and n can be globalized, that
is, replaced by global variables R and N, and the program transformed into this version using no
stack:

def £{() = N=0 —R,
R:=2*R;N:=N-1;f ()
in R:=1;N:=x;f() d

In this case the transformation was particularly simple since the global variables could simply be
assignied their new values before the call. However, consider the case where the recursive call had
the form g (n*r, n-1) instead and assume that for some reason the second parameter n is to be
globalized while r is not. Then il would be wrong to replace the call by an assignment to global
variable N followed by the call as in N:=N-1; g (N*r). This is because N would be assigned a
new value too early and so N*r would yield the wrong result. We conclude that the order of
assignments to the global variables is important and must be the same as that of the argument
expressions they replace. (Recall that argument evaluation is left to right.)

The language L will be equipped with a simple device that allows us to put assignments
into a parameter list. Writing an assignment N :=N-1 within brackets [N:=N-1] in an argument
expression means that the assignment is evaluated for its effect on N, but no value is pushed on the
(parameter passing) stack. Using this notation, the hypothetical call g (N*r, N~1) above should
be transformed into g (N*xr, [N:=N-1]). This expression will first evaluate N*x and push the
result onto the stack, and then evaluate N-1 and assign the value to N, but push nothing onto the
stack. While the bracket notation may look strange at first, it is nevertheless quite natural when
seen from the implementation level. The bracket notation also obviates the need for an explicit
sequencing operator “; " in the language. Although the argument list of the call to g has two
elements, only one argument is pushed onto stack, and g has only one parameter.

Using the new notation and returning to Example 2.1-1, the transformed program will be

def f{) = N=0 =K,
f{([R:=2*%R], [N:=N-1])
in f£([R:=1], [N:=x])

The second example program is an interpreter for a (very) simple imperative language uP. The
interpreted language has three kinds of commands: assignment, sequencing, and skip; and three
kinds of expressions: constants, variables, and addition. Expressions cannot have side effects.

Example 2.1-2: Interpreter for UP. The interpreter takes as input a source program in pP and
evaluates it with an empty initial store. Function emd executes a command c in a given store sc
and returns a new store. Function exp evaluates an expression e in store se and retorns the value
of e.
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def cmd{c,sc) =

c= "skip" - sc¢,

c="zr=e " ~» update(sc,z,expleq,sc)),

c="cy;co0" — cmd (e, emd (cq, 8C)),
exp{e,se) =

e=constant "'k" — k
n "

e=variable "z" — lookup(z, se),
e="ej+e," — plus(exp(e,,se),expley, se)),

in c¢md{source, emptystore)

Update, lookup, and plus are basic functions and emptystore is a basic constant. Variable
sc in cmd is globalizable, for in neither of the recursive calls from cmd to itself is the old value of
sc used after evaluation of the argument expressions. (Flere the assumption about call by value is
important). Variable se of exp is also globalizable because all its incarnations have the same value
in an evaluation of exp. Thus sc and se can be replaced by global variables SC and SE,
respectively. Moreover, they can be replaced by a common global variable S, since SE is just a
copy of the current SC and exp does not modify SE at all. Notice that the call exp (e, se) in
exp would be transformed into exp (e;, [S:=5]} by a naive replacement of the argument
expressions by assignments. Trivial assignments of this form will be left out, however. The
resulting transformed program using S for sc and se is;

def ecmd(c) =
o= "skip" - 5,
c="zi=e," ~» update (S, z,expl{e;)),
c="c1;05" — cmd(ey, [S:=cmd{cq) 1),
exp(e) =

e=constant "k" — k,

e=variable "z" — lookup(z, S),
e="ej+e," — plus(exp(e;),exp(ey))

in cmd{source, [S:=emptystore]) 1

This is a quite natural and pleasing result, (Note however that S is still explicitly passed as a
parameter to the basic functions update and lockup).

In an imperative language the store is updated in a sequential manner and therefore it is no
surprise that it can be represented by one global variable. It is entirely another problem to
recognize from an interpreter written in a functional style that the variable(s) representing the store
can be globalized. The goal of this work is 1o do this recognition autornatically.

The recursive call in the Example 2.1-1 program above is a tail call (or is in tail position).
A call in a function body is a tail call if evaluation of the call is the last action in evaluation of the
body. It is well known that a tail call can be implemented by a jump to the called function: there is
no need to return to the place of the call [Gill 1965], [Knuth 1974]. Also, after evaluation of the
argument expressions, the values of local variables in the calling function will no longer be needed
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and therefore can be discarded before the jump. Our techniques for globalization will not
incorporate explicit detection of tail calls. The techniques will detect many cases but not all, for in
general transformation of a tail call into a jump will require the introduction of temporary variables
(or reordering of argument expressions) and this is not attempted. Traditional compiler technigues
such as live variable analysis can be used for these purposes, and these analyses need be done only
locally in this case [Aho, Sethi, Ullman 1986]. The present approach is easily modified to assume
that any temnporary variables needed are introduced, and will then detect all tail calls. A few simple
changes to the path semantics (Section 2.3.2) and the grammar construction (Section 3.1.2) will
do.

The target language for the globalization transformation contains the bracket notation
[...] not found in usual functional programming languages. To do globalization in the language
Scheme, for instance, a call such as £ ([R:=2*R], [N:=N~1]) must be replaced by a sequential
expression doing the assignments before the call is evaluated:

{(begin (set! R (* 2 R)) (set! N (-~ N 1)) (f)).

This transformation is simple and can be done locally, but in general it may require introducing
temporary variables. This will not be discussed further.

2.2 A First Order Example Language L

This section introduces the first order example language L. The language is introduced informally
and its syntax and an operational semantics will be given. The example programs shown above
were written in L, so no further examples are given here. We start by describing the applicative
part of L, then its imperative extensions.

2.2.1 The Applicative Part of L

The language L is a strict {i.., call by value) first order language of recursive functions. Here we
present the purely applicative parts of the language which will be treated by the interference
analysis in later sections.

An L program consists of a finite non-empty set of recursion equations (function
definitions), indexed by a finite set I, and an initial expression e? to evaluate:

def ([fi(xi, .., xiamy(fi)) = el}ier
in e0

The £1 are referred to as (defined) function symbols and the iy, ... are called the parameters or the
(local) variables of £1. The name of a variable shows its position: xi; denotes parameter position j
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of function £i, In examples we (have not nared and) shall not name variables this way, but we
require that all variable names in a program are distinct. This is just to avoid excessively
complicated notation. Each equation is called a function definition, and the expression in the
definition of function £l is called the body of £i. Every defined function f has a fixed
non-negative arity (i.e., number of parameters) designated by arity(£). The language has lexical
scope rules for variables and so only the variables x1y, ..., Xy of function £1 may appear in
its body el,i e L A program is evaluated in an initial environment that provides values for the
variables occurring in the initial expression e?.
Expressions in the language follow the syntax

e = ox - variable (parameter)
| Aleq, .., ep) - call of basic function a
| Q] — e, e3 - (McCarthy) conditional
| fley, v eg) - call of defined function f

It is assumed that a suitable set of basic functions A is given. A parameterless basic function is
considered a constant (numeral, boolean, ...}, and a call A() will usually be written A, Evaluation
of an expression takes place in an environment which binds variables to their values. A variable
occurrence x evaluates to the value x is bound to in the environment. A basic function call A(e 1s
.-y €5) is evaluated by first evaluating all its argument expressions from left to right to obtain their
values, and then applying the denotation of the basic function to these values. A conditional
expression e — ey, 3 is evaluated by evaluating e to obtain a boolean vatue. If it is true, then
ej is evaluated; if it is false, then e3 is. A call £(ey, ..., e,) is evaluated by evaluating its
argument expressions from left to right to obtain their values; then a new local environment is
created that binds the variables of the called function £ to these values; and the body of f is
evaluated in this new environment,

Notice that the conditional is strict only in its first parameter position whereas all
functions, defined as well as basic, are strict in all parameter positions, and the evaluation order is
left to right and inside-out. We shall use the typographical convention that L program phrases are
wriiten in the typewriter font. The set of L expressions is denoted by LExpr.

This completes the description of the syntax and informal semantics of purely applicative
L programs.

2,2.2 Operational Semantics
The semantics of L can be described more formally by means of structural operational semantics

[Plotkin 19811, [Kahn 1987]. Such a description is a set of inference rules, each involving one or
more evaluation fudgements of the form
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Pre=v

where p is an environment that binds (local) variables to values, e is an L, expression, and vis a
value. This judgement reads as follows: in environment p, evaluation of expression e will
terminate with result v (or may terminate with result v, depending on the language being
deterministic or not). This is a "big-step" semantics: the judgement shows the final value of
evaluation of e. The notation with "F" (which may be pronounced "entails") indicates the
dependency of e's evaluation on the current environment p. In general the evaluation depends also
on the rest of the program (namely, in case e contains a call of a defined function), so we really
ought to write "pgm, p | ¢ = v" (where pgm is the program) to make this dependency explicit.
However, the program remains constant thronghout evaluation so we shall just assume that &
program pgm is available and not burden the evaluation judgements with this extra symbol.

A judgement may be understood as a proposition about the value of an expression in a
given environment. Then evaluation (program execution) is theorem proving, and the semantics of
a language can be described using semantics rules which are in essence logical inference rules
involving (i.e., relating) one or more evaluation judgements. We take the rules for evaluation of a
conditional expression e; — ey, ej to illustrate this approach:

PFep=true
Pres=v

pPhte; ez e3=v

p ke = false
prey=>v

pPte;degez3=v

The rules state that if in the given environment p, ¢ may evaluate to true and e, may evaluate to v,
then the entire conditional expression may evaluvate to v; and that if e may evaluate to false and e3
may evaluate to v, then the entire conditional expression may evaluate to v. According to these
rules, the conditional is strict in its first position: e must terminate with a result for the conditional
to have a value. Also, if e; evaluates to anything but true or false, then the conditional is
undefined (for the above rules are the only ones defining the conditional). Finally, the conditional
is non-strict in its second (and third) positions because evaluation of ey (or e3) may fail o
terminate with a result and still the conditional may evaluate to a value.

The judgements over the line are called premises and the one below is called the
conclusion. If a rule has no premises, then the line will be omitted. Further conditions on the
applicability of a rule may be stated to the right of the rule with the obvious meaning,
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The complete set of semantic rules is given below. We assume {cf. above) that a
program

pgm= def {fi(xly, .., ¥} = el}icyin &0

is given along with an initial environment pg which binds the variables of e? to initial values: the
input to pgm.

Letting FreeVars(e) be the sets of variables that occur in expression e, and A — — B be
the set of partial functions from A to B, we use the following sets and mappings in the semantics
rules below:

v:  Value = Boolean ' Integer U ... value,
Input = FreeVars(e0) input parameters of the program,
Varj = (xly, .., xlryyceh} local variables of function fi,
Var=1J { Var; lie1) local variable of defined function,
p: Env=Var—— Value local environment.

The set Input of input parameters must be disjoint from the set Var of local variables. For any
given program, Var is a finite set and so p is a finite function. We write

%} for the empty function (everywhere undefined),
plxr>v] for Az.if z=x then v else p(z),

plxirzvy, xak> vl for plxgt=vy][xaHvs], and

[xF=v] for D[xr>v].

The result of evaluating the entire program is the result of evaluating the initial expression in some
initial environment pg: Input — Values.

pokel=v
(P1)

Pokdef (£i(d), ..., Xlggy(siy) = ellier in O v

The judgement below the line (that is, in the conclusion) concerns evaluation of programs, not
expressions. To be completely formal we should subscript the "F" symbol with "program” to
make this difference explicit: Fprogram, but we will not do that. The rules for evaluation of
CXPressions are:
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(E1} prx=v where p(x) =v
ptej=vjforj=l...a where & = arity(3)
(E2) .y 5 and v = A(vy, ..., V)
p s ey Bg) DV
g [t €1 : troe
er=pv
(E3)
Pltei2erey3=v
pF e = false
B4 PFrey=v
plFe;—eye;=>v
pF ej=>vj forj=1,..a where a = arity(f}),
pPrel=v el is the body of function £,
(ES5) and p‘=[x11l->v1,..., X,

pE fi(el, e €g) DV

Comparing these rules with the informal description of the semantics given in Section 2.2.1 above
should show that they are straightforward translations into symbols of the informal description.

Evaluation of an expression e in environment p using semantic rules may be seen as the
process of building a finite evaluation rree whose root is a judgement of form p F e = v. Each
branching point is an instance of a semantic rule: its stem is the conclusion of the rule instance and
its branches are the premises of the rule instance. The leaves of the evaluation tree are instances of
rules that have no premises (here: evaluation of variable occurrences by rule El or of parameterless
basic function calls by rule E2). The evaluation tree is a Gentzen-style (natural deduction) proof
tree for the proposition that e evaluates to v in environment p {L.yndon 1966]. Itis easy to see that
L is deterministic: if pl e =vandplF e = v, then v =v'

Example 2.2 2-1: Evaluation tree for evaluation of the expression "x=y — 21, z" in environment
p =[xr=7, y=9, z13]. The infix basic function "=" has arity two. The evaluation tree involves
one application of rule E4, one of rule B2, and three applications of rule E1:

Prx=>7 pry=9

P F x=y = false prz=13

pFx=y—21,z =13 O

The operational semantics does not explicitly deal with nonterminating evaluations: these would
correspond to infinite evaluation trees. In a denotational semantics, a nonterminating evaluation of
expression e in environment p would yield a special "value” (L, say) while in the operational
semantics there would just be no (ordinary} value v such that p } e = v according to the semantic
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rules. This has the implication that our correctmess arguments (in later sections) apply enly to
terminating evaluations. Henceforth, by evaluation we mean terminating evaluation,

2,2,.3 The Imperative Part of L

Later on, we shall transform applicative L. programs to use global variables, so we must extend L
with imperative constructs. These are given here but they are not used before Section 3.4 and so
may be skipped until then. (I admit that the imperative extensions could be more elegant. See
Section 8.1.1). _

The language is enriched with the concepts of global variable and global state (to hold the
values of the global variables). The syntactic category of expressions is extended as follows:

e = X - reference to global variable X
I X:i=e - assignment of e's value to X
| [X:=e] - evaluate X : =e; do not push to stack

An occurrence of a global variable X evaluaies to its value in the current global state, Evaluation of
X :=¢ is done by evaluating ¢ to obtain a value and then modifying the global state at X to have this
value. The value of X :=e is the value of . An expression of form [X:=e] can occur only as
argument expression in a call to a defined function and is evaluated only for its effect on the global
state: X :=e is evaluated but its value does not become bound in the new environment built for
evaluation of the called function's body. Global variables are written in upper case to distinguish
them from the others, and we require that the set of global variables is disjoint from the set of local
variables. Evaluation of a basic function A can neither access nor modify the state of global
variables. Evaluation of a program starts in an initial state Oy that contains no bindings at all, and
so it is illegal to reference a global variable before it has been assigned a value,

The arity a = arity(£!) of £1 is its number of local variables xij,..., xi,. The number m of
argument expressions in 2 call fi(e;,...,e) to £1 may vary, but the number of argument
expressions ej which do not have form [...] must equal arity(fi). The set of expressions in
imperative L is denoted by LIExpr.

The evaluation of an expression now also depends on the global state &, so the evaluation
judgements are modified to include the dependency on the global state and to show the final
("output™) state of evaluation:

P.O1Fe=v 0
This reads: in environment p and global state G, evaluation of expression e may terminate in state

o7 with result v. All the rules of the operational semantics must be changed to reflect the presence
of a global state which can be updated at any time. The modifications required are straightforward:
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they must reflect the left-to-right order of subexpression evaluation. In addition, three new rules
must be added to define the new expressions.

The sets and mappings given above must be extended with a finite set GloVar of global
variables, disjoint from the set Var of local variables and from Input, the set of input parameters.

X GloVar = {X;,..} global variable,
o: State = GloVar — — Value global state,
Oppit =@ : State the empty initial state.

Because GloVar is finite, ¢ is a finite function, Now the are three kinds of "variables": local
variables x € Var, global variables X € GloVar, and input parameters x € Input, The sets Var,
GloVar, and Input must be mutually disjoint. The program and expression evaluation rules are:

Pos Cinig F eV = v, 0

(Ir1) — - -
Po i def {fl(xll, aey xlarity(fi)) =el)icrin =y
dEl) p,Oolx=v,Q where x € Varand p(x)=v
P, Cj.1 F ¢j=>vj, j forj=1.....a where a = arity(a)
(IE2) and v = A(vy, ..., V)
P, gk Aley, ..., &) = v, O,
P, Og F ey = true, 0y
P, O Fea=v, 09
(IE3)
P.Ogkep—epe3=v,0;
P, Gg F e = false, oy
P. 01 Fes=v,0q
(IE4)
P, Gpler—erne;=v,0p
P, Oj.1 F & = vj, 6 forj=1,...m where m 2 a = arity(£1),
psOmF eil =V, 0 elis the bedy of function £1,
(IE5) - and p'=[x\t>vy] for j=1....,8,
P. Gk f‘(el, . em) =2Vv,O where eha),...,eh('a) all# [...]
(dE6) p,6FX=>v,0 where X € GloVar and o(X) =v

p.Opke=v, 00
(IE7) where 07 = oy[Xt=v]
PO Xi=me = v, 0y

P,Opte=v,0q

(IES)

P, Gk [e] =v,0
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In rule IES5, the function h:{1,..,a}—{1...,m} must be strictly increasing so that €h(1)s-1Eh(a) IS 2
subsequence of ey, ..., ep,. The language is still deterministic: if p, 6o e = v, 6y and p, o
e =V, 0"}, then v = v' and 67 = ¢'y. This semantics is an extension of that for applicative L: on
applicative L. programs they yield the same result.

In this section we defined first the applicative and then the imperative parts of the
language L. For now only the applicative part is studied. Throughout the report we take variable
to mean local variable, designating a parameter position. Global variables will always be explicitly
referred to as such.

2.3 Definition-Use Paths and Path Semantics

In this section we shall first develop a tool to describe the order in which (local) variables are
defined and used during evaluation of an L program. This tool is called a definition-use path
(du-path for short) and is a kind of structured execution trace: a linear recording of the actions taken
during evalvation. This idea is presented in Section 2.3.1.

In Section 2.3.2 we shall show how to extend the standard operational semantics for L to
a path semantics that prescribes the definition-use path for evaluation of a given program in a given
initial environment.

2.3.1 Definition-Use Paths

A definition-use path (du-path) is a finite sequence of the actions done during an evaluation. The
actions of interest to us are those that concern definition and use of local variables (function
parameiers): '
+ Use of variable x: when is x referenced during evaluation. Symbol: Tx
* Definition of variable x: when does variable x become defined (or redefined). That is,
when is a (new) value for x pushed on the parameter passing stack. Symbol: 4x
+ Definition of variable x by copying: when does x become defined by a copying of
another variable's value, That is, when is the value of some variable y pushed onto
the parameter stack to become the new value of x. Symbol: y»x
Notice the symbols for the three kinds of actions. Mnemonically, Tx = up x =use x; Lx =down
x = define x; and y»x = copy y 10 x. The roles of the use and definition actions should be quite
clear, whereas that of the copy action deserves some explanation. The intention is that a copy
action y»x is a form of potential definition. If x and v are allocated as one common global variable
(or they are the same local variable), then the copy action is not a definition at all, since it cannot
change the value of x. Butif x and y cannot be allocated as a common global variable (and are not
the same local variable), it is a definition that may change the value of x. The use of this will
become clearer in Section 2.4.2 on variable groups,
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- The du-paths are to be used in the interference criteria below. Their purpose is to detect
the archetypical situation that prevents a variable from being allocated globally: a (re)definition
interferes between the definition of a variable and its last use, which will then retarn the wrong
value. To detect interference correctly, we must know which definition is the right one
corresponding 1o a given use. In the simple first order languagé L, this is deterniined by the
nesting of function calls during evaluation. Therefore the du-paths will not merely be linear
sequences of actions, but will have a structure corresponding to call nesting. In a du-path,
evaluation of a function call f£(ey,...,e,) is represented by a function call structure which is a
balanced bracket structure with two subpaths 118;... 1,8, and = like this:

<M38)... Tedy O 1 >,

The first subpath 7t,9;... %,8, corresponds to the call prelude. Path m; describes the evaluation of
argument expression e;, and on describes the definition of £'s parameter x;, i.e., the pushing of its
value onto the stack. The second subpath = corresponds to evaluation of £'s body. Thus
operationally "<" marks the beginning of the call prelude, "¢" marks the passing of control from
the call point to the function body (and hence to a new environment), and ">" marks the passing
back of control (to the old environment). Notice that the definition and copy symbols (such as Bj)
can appear only in call preludes 7;8;... 7,8, because they denote the action of pushing values onto
the parameter passing stack, and that both the 7; and T may contain nested function call structures.

The language of du-paths is the set Path of paths built from uses (Tx) and function call
structures (which may involve 4 x and y»x), closed under formation of finite sequences and
function call structures. Formally, for a given set Var of (local) variables, the alphabets of
primitive symbols are

Use = {Tx |xe Var}, - use symbols

Copy = {y»x lx,ye Var}, - copy symbols

Def = {lx |xe Var}u Copy, - definition and copy symbols
z = { <, >0} uUse U Def, - all symbols

and the set Path of paths is defined inductively as the smallest set satisfying

Path = UseuPath® U { <m8; ... 1,8, O m> Im, mje Path; §; & Def for j=1.....a}.
We denote the concatenation of two paths 71y and 7) by juxtaposition ;%,, and do not distinguish
the symbol Tx, say, from the path of length one containing just this symbol. The empty path (of

length zero) is written €. To grasp the idea, consider some du-paths for evaluation of the example
programs from Section 2.1.
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Example 2.3.1-1: A du-path for an evaluation of the powers of two algorithm (Example 2.1-1).
Evaluating this program on input x=1, first the initial call £ (1, 1) is evaluated, yielding <drdn ¢
...> for a start. Then the body of £ is evaluated: first n=0 is evaluated, implying a use Tn of n.
But n=1+0, so the second branch of the conditional is evaluated. This is a call to £ and so yields a
new call structure <n1¢n3>. The prelude n; is TrdrTnln because setting up the parameters
comprises a use of r to compute 2*r; a push of this value onto the stack thus defining r; a use of
n to compute n-1; and a push of this value thus defining n. The path ®5 corresponding to
evaluation of the body is TnTr: first the test n=0 requires a use of n, then (because n=0 in fact),
the first branch of the conditional is evaluated, which is just a use of xr. The resulting path is
<lrln ¢
Tne<TeleTndn ¢
TnTr>> O

Example 2.3.1-2: A du-path for an evaluation of the PP interpreter (Example 2.1-2). Evaluation
of the interpreter on program source = "a:=1+3" yields the path '

<lcdse ¢ I
TcTelseTe <TeleTsc sense ¢ 2)
TeTeTe <Telelse sevse ¢ €3]
TeTe > 4)
<TeleTse sevse ¢ 5
TeTe >>> (6)

Briefly, in line 1 ¢ and sc become defined in the prelude of the initial call to cmd. In line 2 the
body of cmd is evaluated: first the tests c="skip" and c="z:=e," are evaluated, sc is used and ¢
is used (to get z which is a part of ¢); then, in the prelude to the call of exp, c is used (to get e,
which is a part of c), e becomes defined, sc is used and copied to se. Line 3; in the body of
exp, e is tested (and hence used) three times and in the prelude to the first recursive call to exp, e
is used (to get eq), and its value is pushed to define e; finally se is used and copied to se. Line 4:
in the body of this recursive call to exp, e is tested (and hence used), then used again (to get k),
and the call returns (yielding a ">" in the path). Then the completely similar second recursive call
10 exp is evaluated: the prelude is in line 5 and the body in line 6. U

Example 2.3.1-3: Another du-path for an evaluation of the pP interpreter (Example 2.1-2).
Evaluation of the interpreter on program source = "skip;skip" yields the path

<lclscd 4y
TeTeTe <Tole <TelcTse sensc @ 2)
TeTse> 3
lsc¢ @
TeTse>> (&)

Inline 1, ¢ and sc become defined in the initial call to cmd. In line 2, c is tested (and hence used)
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three times; the prelude of the outer recursive call to cmd begins with a use of ¢ (to get ¢, a part
of <), and a push of this value; then the prelude of the inner recursive call to cmd begins: use of ¢,
definition of ¢, use of sc, and copy of s¢. In line 3, evaluation of the body requires a test of ¢
and one use of sc. In line 4, the value computed by the inner recursive call is pushed to define
sc, and in line 5 the body of cmd is evaluated once more: test of ¢, use of sc. a

After these examples of paths, let us define the notion of use level in a path. Consider the path
(shown in Example 2.3.1-1) corresponding to evaluation of £(1,1):
<dr dn® Tn<TrdrTndn 0 TnTr>>
#1  #2 #3 #4 #5

Clearly there are two different levels of use of variable n, say. The uses of n marked #2 and #3 are
level 1 uses, corrasponding to the first level of nesting of the recursive function calls, and refer to
the definition of n at #1. (At #1, in the prelude of the first call to £, a new value of n is pushed
onto the parameter passing stack and at #2 and #3, in the body of £, the value is used). The third
use of n (at#5} is a level 2 use, correspending to the new definition of n at #4,

In general, the use level increases by 1 when control passes from a call point to the called
function's body, and decreases by 1 when control passes back. In terms of du-paths, the use level
increases by 1 after a "0" and decreases by 1 after a ">". We define the initial level of uses in any
path to be 0.

2.3.2 Path Semantics for L

We saw in the preceding section that there corresponds a du-path to every (terminating) evaluation
of an L program.

Here we shall show how 1o extend the standard operational semantics from Section 2.2.2
into a path semantics that determines the du-path for a given L program and a given initial
environment. We shall give this only for the applicative part of L. The path semantics properly
extends the operational semantics: it gives the final result computed by the evaluation and in
addition the du-path for the evaluation. The path semantics may thus be seen as a more precise
specification or description of the language: whereas the standard semantics specifies which result
an evaluation must yield, the path semantics also specifies the exact sequence of the actions done
duoring the evaluation. For example, the standard semantics for (applicative} L does not describe
the order of evaluation of argument expressions in a function call; the path semantics does.

The path semantics we give below is completely deterministic in the sense that for a given
expression and a given environment, there is (at most} one possible du-path. This is not to say that
a "nondeterministic” path semantics cound not be given that would realize one out of several
possible evaluations, each with a different du-path, when given an expression and an environment.
We shall not study this possibility here, but it would be very useful for the treatment of languages
(such as Pascal or Scheme) for which evaluation order of argument expressions is undefined.
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Because the path semantics gives more information about an evaluation than the standard
semantics does, it cannot be derived mechanically from the latter. On the other hand, the path
semantics must reflect the semantics of imperative L to some extent, for it will be used to decide
whether local variables can be replaced by global ones. Like the standard operational semantics,
the path semantics cannot be used to describe non-terminating computations.

The L path semantics is completely similar in structure to the standard semantics but uses
another kind of judgement. It still depends on the environment p, but gives two "results" for the
evaluation of an expression: the ordinary result value v and the du-path 7 traced during evaluation
of the expression. The standard form of the path semantics judgement is p | ¢ = v, ® which
reads: in environment p, evaluation of expression e may (or will) trace the path 7 of actions and
yield final result v.

As before, we shall not make the dependency on the actual program explicit in the rules
of the semantics; we just assume that an applicative L program pgm is given along with an initial
environment py: Input - Values. Again, the result of evaluating the entire pmgram is the result of
evaluating the initial expression in the initial environment pg:

pokel=v,
(PP1)

po b def (£ifxiy, ..., tlaritycei) = ellier in 0= v, x

The path semantics rules for expressions are all very simple except for the function call rule:

(PE1) prx=v,Tx where p(x) = v
Pk ej= v for j=1,...,a where a = arity(a)
(PE2) and v = A(vy, ..., V)

phale,,e) =V, .M,

pFep=tuem
Pler=v.m,

(PE3)

PFey—ee;=v, M

p ke = false, m;

Pres=vVv, M
(PE4)

PF €] 2 e, e3 =V, Ny

p Fej=vm for j=1,...,.a where a = arity(£1),

'k i =SV, el is the body of funcuon fi,
(PES) - ""[Xl |—)V1,: s %l

pF fieg,..ey) = V,<R1 811,08, ¢ m> and 5 = A(xj, i i‘ 1,..,a

An auxiliary function A: Var x LExpr — Path is used to simulate a copy or a definition:
Alx, €) =

X»x if e is a variable v
x if e is not a variable
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Like the operational semantics in Section 2.2.2, this path semantics is intended to be a direct
translation into symbols of the intended semantics of L programs (in particular their order of
evaluation). This path semantics is deterministic, for the evaluation order of L is fixed: left to right.
By modifying rules PE2 and PE5 we could make the evaluation right to left. By adding several
versions of PE2 and PE5 the path semantics could be made nondeterministic, corresponding to an
unspecified order of evaluation in L. In any case, the path semantics must reflect the (possible)
order(s) of evaluation in imperative L.

Using the path semantics we can now define the set of possible paths for evaluation of an
expression in any given environment p. These definitions are needed in Section 3 below.

Definition 2.3.2-1: The set I'l{(e) of paths of expression e is the set of all du-paths that evaluation
of e can produce: [I{e)={ n & Path |E|p,v. Pre=v,x ). il

Definition 2.3.2-2: The set TI{(pgm) of paths of program pgm is the set of all du-paths that
evaluation of pgm can produce: IKpgm) ={ n € Path IEipO,v. Ppobkpgmi=v,x ). 0

2.4 Interference and Variable Groups

First, Section 2.4.1 introduces the concept of interference in (the du-path of) an evaluation.
Interference means that the value of a variable is changed before its last use (by an interfering
definition of the same variable). This notion is made precise in terms of the du-path for the
evaluation. The importance of the concept is that in case there is no interference with respect to
variable x in the du-path & for some evaluation, then x may be allocated as a global variable
without changing the the result of the evaluation. Interference and the criteria for its presence in a
du-path are central to the theme of this report and will be used heavily in later sections.

Then in Section 2.4.2 the interference concept is refined to apply to variable groups. A
variable group is a set of variables that are considered for replacement by one and the same global
variable.

2.4.1 Interference

Consider an evaluation yielding a du-path n. Path % has interference with respect to variable x if
replacing x by a global variable X could change the result of the evaluation. This happens when the
value of X becomes modified before the last use of that value, by a (re)definition of X. A
(re)definition of a global variable will destroy its former value, whereas a (re)definition of a (local)
variable will not destroy the old valne which is retained on the parameter passing stack.
Replacement of x by X may or may not cause an old value to be lost while it is still in use,
depending on the evaluation, that is, depending on the du-path for the evaluation.
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Let us investigate the various ways a variable x can be interfering in path & and then
derive safe criteria for detection of interference. Interference detection is done assuming that x is
replaced by a global variable X, so that all uses of x are replaced by references to X, and all
definitions of x (that is, pushes of a new value for x onto the stack) are replaced by assignments to
X.

We consider the three basic forms of paths in turn (from the inductive definition of the set
Path in Section 2.3.1). The value of x at the beginning of the path is accessible only by level 0
uses of x, but may be modified (destroyed) by any redefinition of x preceding a level 0 use. So x
is interfering in x if a definition of x in & (at any level) precedes a level O use of x; orif x is
interfering in any nested call structure in m. Uses at other levels do not come into consideration
immediately because they do not refer to the level 0 value of x: the value at the beginning of the
path., By definition, uses at higher levels follow a ¢ in a call structure < ... 9 ... >, and refer to
values defined in the prelude of this call structure. Interference in nested call structures is
discovered by recursive application of the criteria below.,

+ The path of length one, © = Tx: Here x obviously is not interfering.

* Path ® =m; ... n,: Here, x is interfering if x is redefined in some =; and then
subsequently used (at level 0) in x; with i<j. In addition, x may be interfering in one of the m;.

+ Path # = <®y8; ... 1,8, ¢ ®'>: There are three possibilities. First, x may be
interfering in the prelude if x is redefined in n;8; and then subsequently used (at level 0) in m; with
i<j. Secondly, a new value for x may be defined (intentionally) by 8;=x or §;=2»x for some z
and then spoiled by a redefinition of x in 7; with i<j before its use (at level 1) in the body ',
Thirdly, x may be interfering in one of the m; or in the body &'

We shall define the interference of a path & to be the set of variables interfering in it. To do this
formally we first introduce functions for computing the set Ug(n) of variables with level 0 uses and
the set D(n) of variables with definitions in a given path %. For the purpose of this we take a copy
¥»x to be a definition Jx of x unless v and x are identical.

Definition 2.4.1-1: The set Up(w) of variables with a level 0 use and the set D(r) of variables with
a definition in path & are defined inductively as follows, where 7; € Path, 6j € Def:

Up: Path - @(Var)
Ug(Tx)

Ugp(my .. mp)

U0(<ﬂ:181 'n:aSa Y >)

(x}
Uolrp w ... U Uglny)
Uplry) v .. W Up(wy)
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D:  (PathuDef) = @ (Var)

D(Tx) = {}

D(lx) = {x]

D(y»x) = {x |y and x are distinct variables )
D(r .. np) = D(ry v ... uDy

D(<m1d1 ... ®gd, ¢ T>)

Dirp) U ... U D(x,) U D)
VD@ v.. uDEy) [

Notice that by this definition of D, the copy action y»x with v and x distinct is considered a
definition as mentioned above. The preceding discussion justifies

Definition 2.4.1-2: The interference Interf(r) of path 7 is the set of variables interfering in 7 and is
defined as follows
Interf(r) = I(w)
where
I. Path —» @p{Var)
I(Tx)
I(rmy..|y)

{}
{ x |3ij.i<j A x € D(my) A x € Uglmy) }
Iy O Img)
{x |3ij. igj A x € D(m) UDE) A x € Ug(m;) }
u { x | 3ij. i<j A (8=Lx or 8=2»x for some z)
A XE D(‘Ej) A xeUp@)}
VIrp U .. wing) v Kx) O

I(<m181..7,8, ¢ 1)

Definirion 2.4.1-3: The interference Interf(pgm) of program pgm is the set of variables interfering

in any path of the program:
Interf(pgm) = U { Interf(n) |7 e I(pgm) ) O

Definition 2.4.1-4: Variable x € Var is interfering in program pgm iff x e Interf(pgm). (|

We have seen that if x is not interfering in pgm then x is globalizable in pgm: it may be replaced by
a global variable without modifying the meaning of the program. The correctness of this will be
proved on the basis of the semantics and path semantics for L programs in Section 3.4, but the
definition of interference above should also make this intuitively plausible. To illustrate the
definitions we consider a number of examples.
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Example 2.4.1-1: Interference with respect to x, first case. Consider the du-path
Txadx ¢..5Tx

which could correspond to evaluation of x+qg (2} +x where g (x) =..x+g (2) +x... . This path
has interference with respect to x because x becomes redefined in the call to g before its last use.
Clearly, x could not be replaced by a global variable X as in X+g ( [X:=21) +X without risk of
modifying the result. The path maiches the second case of Definition 2.4.1-2 with 7;=Tx,
ny=<dx ¢ ..> and n3=Tx, and x is easily seen to be interfering in the path according to the
definition. O

Example 2.4.1-2: Interference with respect to x, second case. Consider the du-path
<dxTxly 0>

which could correspond to evaluation of g (2, x*3) where g (x, y}=...g (2,x*3) ... This
path has interference with respect to x because x becomes redefined in the first argument
expression of the call to g before it is used in the second argument expression., Clearly, x could
not be replaced by a global variable X asin g ( [X:=2], X) without risk of modifying the result.
The path matches the third case of Definition 2.4.1-2 with 7;=¢, the empty path, §;= lx, 1,=Tx,
8y=ly and m=..., and x is easily seen to be interfering according to the definition. (|

Example 2 4.1-3: Interference with respect to x, third case. Consider the du-path
<z <lxly 0 Tendy ¢ Tx>

which could correspond to evaluation of g (2, g(3,5)) where g(x, y)=x. This path has
interference with respect to x because x becomes defined (intentionally) in the first argument
expression of the outer call to g, but is redefined (unintentionally) in the nested call before it is used
during evaluation of the body corresponding to the outer call. So x clearly cannot be replaced by a
global variable X asin g ([X:=21,g({X:=31,5)); this would evaluate to 3 whereas the
original expression would evaluate to 2. The path matches the third case of Definition 2.4.1-2 with
Ty=¢, 3= lx, wo= <lxly ¢ Tx>, 8y=ly and n=Tx, and = is easily seen to be interfering

according to the definition. ]

Example 2.4.1-4: No interference with respect to x. The du-path

<<lx 0 Txnly 0. >
corresponding to evalnation of g (£ (x*2) ) where £ (x)=x*7 and g (y) =... has no interference
with respect to x, for there cannot be any level 0 uses of x in ..., the body of g. U

Notice that if the delimiters "<", "¢", and ">" were dropped, then this path would be identical to

the one in Example 2.4.1-2 which has interference for x. From this we conclude that these
delimiters really convey useful information for the detection of interference.,
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Example 2.4.1-5: No interference in the powers of two algorithm. Consider the du-path for
evaluation of the powers of two algorithm shown in Example 2.3.1-1:

<lrdn ¢ Tn < TrlrTndn ¢ TnTe >>
None of r and n is interfering in this path (as is verified vsing Definition 2.4.1-2) which shows
that this particular evaluation would not be disturbed if r and n were replaced by global variables.
This is in accordance with our claim in Example 2.1-1 that r and n could be replaced by global
variables without disturbing any evaluation of the program. 0

Example 2.4.1-6: The pP interpreter. Consider the du-path shown in Example 2.3.1-2 for
evaluation of the P interpreter on source program "a:=1+3", This path has no interference with
respect to ¢, s¢, and se, but it has with respect to e. First ¢ is defined in line 2, then redefined in
line 3 before the uses in line 5 that correspond to the first definition. This case of interference is the
same as that in Example 2.4.1-1 above.

The path given in Example 2.3.1-3 for evaluation of the interpreter on source program
"skip;skip" has no interference for sc, e, and se, but it has for ¢. A value for c is defined and
then changed in line 2 before its last use in line 5. This case of interference is the same as that in
Example 2.4.1-3 above. We conclude from these two paths that neither ¢ nor e could be replaced
by a global variable without changing the value of some evaluation, and that sc and se may be
globalized at least in these example evaluations. Later on we shall see that sc and se may in fact
be replaced by one common global variable in all evaluations. O

We have defined the interference Interf(rn) of a du-path x as the set of variables that cannot be
replaced by global variables without possibly disturbing the evaluation corresponding to 7. In the
next section we shall see how to detect whether two or more global variables can be replaced by the
same global variable.

2.4.2 Variable Groups

In some cases not only a collection of local variables can each be replaced by a global variable, they
can even be replaced by a common global variable. Detection of such cases calls for a refinement
of the interference concept from the preceding section.

In the path ...l xTy..., neither x nor y are interfering, but it would be wrong to allocate
them as the same global variable: the definition of x would affect y too (because they would share)
and could change the value of their common global variable. We shall say that x interferes with v
in this case. More precisely, x interferes with y in path 7 if and only if changing all definitions
({x) of x into definitions (L) of v would make y interfering in w. Here a copy action z»x counts
as a definition of x if z is distinct from x. Observe that x interferes with x in 7t precisely if x is
interfering in % according to the definition in the preceding section.
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Thus replacement of x and y by the same global variable may introduce interference, but
it may also have the opposite effect. Variable y is interfering in path ...x»y Ty..., for it becomes
defined by the copy action, assuming that variables x and y are distinct. But if they are replaced by
the same global variable, then the copy action cannot modify the value of v and therefore v is not
interfering in the path. This is the very reason for having the copy action in the language of
du-paths: it allows us to recognize situations where copying the value of one variable to another is
harmless.

We shall make the "interferes with" relation relative 1o the collections of variables that we
intend to allocate together. The concepts of variable group and variable grouping are useful here.
A variabie group is a non-empty collection y ¢ Var of variables. A variable grouping is a set T of
disjoint variable groups. We interpret a variable group v as a collection of variables considered for
replacement by one global variable called X,. A variable cannot be replaced by two different global
variables at the same time, and therefore the variable groups in a variable grouping must be
disjoint. Notice that a variable grouping is not necessarily a partition of the set of all variables:
there may be variables that are not considered for allocation by a global variable. Formally,

VGroup = { ye g(Var) |y={})
VGrouping = { T ¢ VGroup | ¥y, e yy=poryynya={} }.

The first step in defining the "interferes with" relation formally is to modify the D function from
Definition 2.4.1-1 into a function DG which finds the set of variables with definitions in & relative
to a variable grouping I'. A copy y»x is considered a definition of x if and only if there isno ye

I" such that x, vy € ¥. Hence a variable group plays the same role as did each single variable in
Definition 2.4.1-1 of D above.

Definition 2.4.2-1: The set of variables DG(m)I” with definition in path & relative to I is defined as
follows, where w; € Path and §; € Def:

DG: (PathuDef)=»VGrouping— g2 (Var)

DG(Tx)I" = {}
DG x)T =[x}
DG(y»x)T = (x| thereisnoye I'suchthatx € YAy e )

DG(ry ... i)T
DG(<m181 ... w,0, ¢ =)

DGl U ... U DG{r,)T
DGR U ... U DG(x)T" U DGl
wDGEPT v ... @ DGEHT 0
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Definition 2.4.2-2: The interference Interf(n,I") of path = relative to variable grouping T is
Interf(n, ) = (I

where
I. Path — VGrouping — g (Var?)
KT=x)r = {}
I(ny..x )T = { (xy) 13ij. i<j A x € DG)T A y € Ug(x;) }

vinpl'u... (eI
{ Goy) 131 ij A x € DGEITUDGEHT A ye Ug(ry) }
U { xy) | 3ij.icj A G=lyor d;=2»y for some z)

A XE DG(ch)l"UDG(Sj)I‘Aye Up(m)}
virpru .. e ) o I 0

I(<TC151...TI:&83 0 a>"

Choosing I to be the finest possible variable grouping I'pes; = {{x} | xe Var }, this definition
extends Definition 2.4.1-2: for all %t € Path and x € Var it holds that x € Interf(z) if and only if
(x,x) € Interf(m, Dgpeqy)-

Example 2.4.2-1: Consider the (WP interpreter from Example 2.1-2. There we argued that variable
sc of function cmd and variable se of function exp could be replaced by one global variable S
without altering the meaning of the program. Indeed, none of (sc,sc), (sc,se), (se,s¢), and
(se,se) is in Interf(n,I") where & is the du-path in Example 2.3.1-2and I"'={ {sc,se}}. O

Definition 2.4.2-3: The interference Interf(pgm,I') of program pgm relative to I' is
Interf(pgm,[) = \ { Interf(r,I) | © e I(pgm) }. |

This extends Definition 2.4.1-3: for all x € Var it holds that x € Interf(pgm) if and only if (x,x)
€ Interf(pgm, T'jjpeq). The interference of a program is a subset of Var2, that is, a relation on the
set of variables,

Definition 2.4.2-4: Variable group 'y e T is interfering in path 7 relative to T iff there are x and v
in v such that (x,v) € Interf(x,I'). O

Definition 2.4.2-5: Variable group ¥ e I is interfering in program pgm relative to I'iff there is a
path € TI{pgm) such thaty is interfering in & relative to T, O

This extends the "interfering in" concept of Section 2.4.1: the singleton variable group { x } is
interfering in pgm relative to ['pe precisely if variable x is interfering in pgm.

We extend the above definitions to apply to variable groupings also. Variable grouping '
is interfering in path t iff there is a Y e I which is interfering in x relative to I'. Variable grouping
T is interfering in program pgm iff there is © € [I(pgm) such that I" is interfering in x.
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Intuitively, vy is interfering in pgm relative to I" if there are x and v in ¥ and an evaluation
(a path) in which a definition of x may change the current value of y before its last use, assuming
that all variables in y are allocated as the same global variable. Notice that x may be identical to v.
Conversely, if Yis not interfering relative to I', then no definition of any variable x in y can change
the value of any v in y before its last use, assurning that all variables in vy are allocated as one global
variable. Hence it is safe to replace all the variables in y by one and the same global variable.

This can be proved formally once the globalization transformation is made precise. The
correctness proof involves the standard semantics and the path semantics for applicative programs,
the standard semantics for imperative programs, and the above definitions of interference. Since all
these components are precisely defined, the proof will be completely rigorous. The correctness of
globalization for L programs is proved in Proposition 3.4-1, whereas the higher order case (H
programs) is proved in Proposition 5.2-1. '

In Section 2.4.1 we defined the interference Interf(n) of a path © without considering
variable groups. In this section we have defined Interf(z,I") relative to a variable grouping, by
letting each variable group 'y e I” play the same role (in copy actions) as single variables did before.
The reader may find it strange that the first kind of interference is a set of variables, while the
second is a relation on the set of all variables. Would it not be more natural to let Interf(n.I') be the
set of those variable groups in I" that are interfering in =t relative 1o I'? This approach is perfectly
possible and would be useful for detection of interference. But we are interested also in
construction of non-interfering variable groupings. Assume that we have tried some variable group
v and found that it is interfering in pgm relative to I". Then we must throw out some elements of 7.
Using the information that x interferes with y, say, tells us that either x or v must out. If we did
not have this information, we would have to try out all possible ways to throw out elements of .
Section 3.3 presents an algorithm to construct a non-interfering variable grouping Iy, for a given
program,

Using the interference criteria given in Sections 2.4.1 and 2.4.2 we are able to make
precise statements about interference in any given path (corresponding to a given evaluation). The
path semantics presented in Section 2.3.2 enables us to make such statements not oaly for a given
path, but also for a given L expression (or program) and a given initial environment: the path
semantics supplies us with the path for the given program and initial environment, and we apply
the criteria to that path.

Below we shall see how to make safe approximate statements about the interference of a
program when only the program and no fixed initial environment is given. (A safe approximation
to the interference relation Interf(pgm,I) is a relation that includes it). We do this by constructing a
definition-use grammar that generates a superset of the set of paths for the program. Then we
define an interference analysis that simulates the working of the I function from Definition 2.4.2-2
on grammar rules instead of paths. Applying the interference analysis to the grammar then
produces an approximation to Interf(pgm,I).
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3. DEFINITION-USE GRAMMARS: INTERFERENCE ANALYSIS

This section presents an analysis that for any given program determines a variable grouping which
is definitely non-interfering. Also, a transformation is developed that will replace every variable
group by a global variable. This section concerns the first order language L but most of the
approach applies to the higher order case as well (with some further complications). Section 4
presents the extension to higher order languages.

In general, the set of possible paths for a given program (derivable by the path semantics)
is infinite. Hence the path semantics cannot be used directly in an automatic analysis to detect
possible interference, Section 3.1 shows how to construct a (finite context free) so-called
definition-use grammar for a given program. This grammar approximates the path semantics in the
sense that it generates a superset of the set of paths for the program. The finite grammar is then
subjected to an automatic interference analysis that gives approximate but safe information about
interference: if the approximate analysis says there is no interference, then it is guaranteed that there
is none. On the other hand, the analysis may say that there is interference in cases where there is in
fact none. Such an approximate interference analysis is developed in Section 3.2.

Section 3.3 presents an algorithm to find a non-interfering variable grouping for any
given program. Section 3.4 presents the transformation that takes a non-interfering variable
grouping and an L program, and produces an equivalent imperative L program where each variable
group is replaced by one global variable. Finally, Section 3.5 gives an overview of concepts,
analyses and transformations from Sections 2 and 3, placing each of the components in its proper
context,

3.1 Definition-Use Grammars from Path Semantics

First, definition-use grammars are introduced and their use explained intuitively in Section 3.1.1.
Then the grammar consiruction algorithm is developed in Section 3.1.2,

3.1.1 Definition-Use Grammars

A definition-use grammar (du-grammar for short) Gpgm for a given program pgm is a context free
gramamar that can generate every du-path of the program. In other words the du-grammar is a
{finite and) safe approximation to the set of paths II{pgm) of the program. The intention is that an
analysis may be able to guarantee that a certain variable x is not interfering in any path generated by
the grammar. Then we can conclude that x is not interfering in any path of the program with the
implication that x is not interfering in pgm and may be globalized,

In this section we describe the principles of how to construct automatically a du-grammar
for a given program from the path semantics. The principles apply not only o programs in the
language L but to any language whose path semantics satisfies certain requirements.
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The du-grammar Gj,or, for program pgm has a distinguished start nonterminal Npgm and
other nonterminals N, each corresponding to some (sub)expression e found in the program. The
terminal symbols are those from which paths are constructed, that is, those of Z= { <, >, 0 J L
Use v Def. (Notice that this set of symbols depends on the set Var of variables in pgm).

Whenever = is a path of pgm for some evaluation, © must be derivable from Npgm:
written Npgr —* n. Similarly, if x is a path of expression e for some evaluation of e, then &t
shall be derivable from N, written N, —" . The idea behind the du-grammar construction is that

a path semantics judgement
pre=Dv,w

may be taken to say that under certain circumstances, namely, in a certain environment p,
evaluation of expression e may produce path & (in addition to some value v). Abstracting away
from the circumstances (and the value v), we have the derivation

*
N,—='=n

expressing that evaluation of e may yield path 7. Now consider an example expression
A(el,e2). By disregarding p and the v's in path semantics rule PE2 for evaluation of
A(el, e2) and assuming arity(a) = 2, the rule

pFel=v,m
PEeZ=vy, 10 where 2 = arity(a)
and v = A(vy, va)

prAlel,e2) =V, A,

abstracts to

*
Nel "-9* L%
Ne2 — 2

n '
N (e1,62) = T2

In other words, if nonterminal Ng; can derive 7 and N, can derive ny, then Np (o1, 2) can
derive their concatenation Ty, This is expressed more conventionally by the (context free)

grammar rule
Na(e1,ez) =* NeaNeo.
This grammar rule then is an abstraction of {or approximation to) the path semantics rule instance

just shown. Every grammar rule is an abstraction of a path semantics rule instance: a path
semantics rule specialized to a concrete value for e. Grammar rules with nonterminals in the right
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hand side abstract path semantics rules with premises; those with only terminal symbols in the right
hand side abstract path semantics rules without premises.

The du-grammar for a program must contain a sufficient set of grammar rules to
approximate every path semantics rule instance used in some evaluation of the program,
Importantly, in the case of the L path semantics this set is finite for any given program. Notice also
that the idea behind this kind of grammar construction works only when the path semantics rules
satisfy a rather natural requirement: the path in the conclusion must be a concatenation in some
order of all the paths of the premises (and possibly further symbols). Otherwise the path semantics
rules could not be approximated by context free grammar rules. All the path semantics rules of L
satisfy this requirement as is ¢asily verified.

Before proceeding to the actual construction of du-grammars we give a formal definition.
For the purpose of this we denote the set of paths derivable from nonterminal Nby LIN) ={ t e
Path IN>*x}. In particular L(CGpgm) = L{Npgr,) is the set of paths derivable by the grammar.

Definition 3.1.1-1: A definition-use grammar Gpgm = (&, VN» Npgm» R) for program pgm with
set of variables Var is a context free grammar with

+ terminal symbols £ = { <, >, ¢ } w Use L Def,

+ nonterminal symbols Vi < { Npgm } v { Ng leisa {(sub)expression in pgm },

* start nonterminal Npo, € Vi, and

» aset R of rules N, - o, with rule right hand side a € Rhs (defined below)

such that TI(pgm) LNpem)- O

Alternatively, the last requirement may be stated like this: if &t € IT(pgm), then Npgm —"* . The
set Rhs of admissible grammar rule right hand sides o is defined inductively as follows:

Rhs= Vy
U{Tx |xe Var)
U { o0y [ o Rbs, j=1,..n020)
U { <0187..058, ¢ o> | @, aj € Rhs, §; € Def, j=1,...a }

In particular we require that within each rule right hand side, function call structures are always
balanced. Notice that Path ¢ Rhs. We write 0 —* © when T € Path may be derived from e
Rbs,and L{o)={ te Path |a =* } for the set of all paths derivable from o,

3.1.2 The Definition-Use Grammar Construction

Now we present the actual construction of a du-grammar for a given program. The grammar for

pgm is constructed iteratively by adding new rules until every nonterminal used in the right hand
side of a grammar rule is defined by one or more rules. While constructing the grammar we use

Section 3



36

the intention with each nonterminal N, that if = € I1(e) then N, —* 7. This is rot an invariant of
the construction algorithm but a property of each nonterminal in the complete grammar that we shall
prove later on {(Proposition 3.1.2-1).

Algorithm 3.1.2-1: Definition-use grammar construction for L.,
Input: An applicative L program pgm = de £ { £i(x}, ..., xlyroceiy) = ef Jiep in &0,
Output: The set R of rules of the definition-use grammar Gy, for pgm.

R:={ Npgm — Neo };
while there is a nonterminal that is used but not defined in R do
choose such a nonterminal N;

case e of
variable x : R=RuU{ N,— Tx)
Afel,...,ea) : R=RU{ Ny(a1,.. ., ea) > No1Ngs.. Ny )
el-ve2,e3 ! Ri=RU{ Ng1se2,63 ~* No1Ne2,

Nel—)eZ,eB - NelNeS) }
fltel,...,ea) : R=RU{ Ngita1, ... ea) = Ne1dj .. No,5, O N> )
where §; = A(xij, e]) for j=1,...,a,
and el is the body of function f£i,
ndcase
endwhile O

Initially, the grammar G, consists of only the rule for the start nonterminal, This must be able to
derive every path of the program, and according to the path semantics (rule PP1) every path of the
initial expression e0 is a path of the program pgm (and vice versa, in fact). Hence every string
derivable by N0 is derivable by Npg,, which justifies intuitively the grammar rule Npgm = Ngo.
Because of the vice versa, there are no more rules for the start nonterminal: every path of the
program pgm comes from the initial expression 0,

The rest of the grammar is constructed by repeatedly selecting a nonterminal N, which
occurs in the right hand side of a rule but which is not (yet) defined by any rule. The grammar
construction is complete and terminates when there is no such nonterminal left.

Now let N be such a nonterminal in the right hand side of a rule, We must add one or
more rules to define N, so that for every n € I{e), it holds that & is derivable from N,. This is
done by simulating the evaluation of e (abstracting away from environments and values) as hinted
atin Section 3.1.1 above. The expression e is matched against the expressions in the conclusions
of the path semantics rules, and for every matching rule a grammar rule right hand side for N, is
constructed. This right hand side is a sequence of terminal and nonterminal symbols
corresponding to the path expression in the conclusion. Terminal symbols (such as "<", "0", etc.)
in the path expression remain terminal symbols, but every path fragment corresponding to

Section 3



37

evaluation of an expression (e', say) in a premise is replaced by the corresponding nonterminal
Ng. Consulting the relevant path semantics rule in Section 2.3.2 (this is strongly recommended)
for each case of e (from N,) we find that

+ if e is x (a variable occurrence}, then path semantics rule PE1 matches and the
grammar rule N, — Tx is added to Gpgm:

« ifeisA{el,...,ea) (acall of a basic function), then rule PE2 matches and the
grammarrule Na o1, . .., ea) =? Ne1Nez...Ng, is added to Gpgn.

* ifeisel—e2,e3 (aconditional expression), then rules PE3 and PE4 match and so
two grammar rules: Ngj 305 o3 > Ne1Neg and Noq_yep o3 = NgaNg3 are
added to Gygn,. .

¢ ifeis fl(el, ..., ea) (acall of a defined function), then rule PES matches and the
grammar rule Ngigo1, ., ea) = <Ne1dy ... Nga8, O Noi > is added to G,
where el is the body of the called function £l and Bj = A(xij, ejlisacopy y»xora
definition lxij according as e is a variable y or not, j=1....,8. (Function A was
defined at the end of Section 2.3.2).

The process of repeatedly selecting a nonterminal N, which is used but not defined, and then
adding rules to the grammar to define it, continues until no snch nonterminal can be found
anymore. Every nonterminal (except Npgp,) corresponds to a subexpression of pgm, so the
number of possible nonterminals in the du-grammar for a given program is finite. In every
iteration all the rules for one nonterminal are added to the grammar and therefore the procedure
must terminate,

It is easy to see why the grammar does not in general derive the exact set of paths of
pgm. Consider the conditional expression true—e2, e3. Obviously, the only paths for this are
those of e2. But the du-grammar will contain both the rules Ny yye ye2, 03 = NprueNe2 and
Nirne—sez,e3 = NerueNes and will be able to derive also the paths for e 3, although they are
not actually possible for the program.

When using the grammar construction algorithm, we shall assume that it simply ignores
those variables that are input parameters of the program pgm. The reason is that they are read-only
variables (and not members of Var). They cannot be replaced by global variables, so they are not
interesting for interference analysis.

Example 3.1 2-1: Definition-use grammar for the powers of two algorithm,
When applied to the program in Example 2.1-1, the du-grammar construction proceeds as follows,
First the start symbol is defined in terms of the nonterminal for the initial expression e0:

Npgm e 4 Nf(l,x)'
The only nonterminal used but not defined is Ng (3 ) Tepresenting a call of a defined function.
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We therefore add one rule

Nt (1,3 — <drln 0 N; >
which uses the nonterminal N¢ corresponding to £'s body n=0—»r, £ (2*r,n-1). Thisisa
conditional expression and is defined in turn by two rules

N¢ — Np.oNy

N¢ = No=oNg(oxp,n-1)-
Now "=" is a basic function so N, ., is defined in terms of two further nonterminals. Notice that
Ny derives only the empty path £. Nonterminal N requires only one rule:

Nn=0 - NnNG
N, - Tn
Ny — E

N - Tr.

The rule for the remaining nonterminal N¢ (. .1, represents s call of a defined function:
Nf (2*].’,11—1) — < Nz*r\Lan_l'l‘n 0 Nf >
and requires several further nonterminals

Nz*r - Ner
N, - E
Nj-1 - Nan
N, — &

Now all nonterminals used have been defined and the grammar is complete. It may be simplified
considerably, however, by eliminating e-rules and by replacing some nonterminals by the terminal
strings they derive. This yields the final grammar for the powers of two program:

Npgm - <drin¢ Ng¢ >
N¢ - TnTr
Ng - Tn<TrlrTnln ¢ Ng¢ >

The du-path shown in Example 2.3.1-1 is derivable from Npgm by this grammar as expected. [J

Example 3.1.2-2: Du-grammar for the PP interpreter (Example 2.1-2):

Npgm - <lolsc O N>

Nema - TcTse

Nema — TeTelseTecTeleTse somse ¢ Neyp>

Nema = TeTele<Tede <Teletse sense ¢ Npg>dse 0 Ngpe>
Nexp — TeTe

Nexp — TeTeTeTse

Nexp — TeTeTe<TeleTse sersedNg, > <TeleTse se»sedNg >

Notice that the paths shown in Example 2.3.1-2 and 2.3.1-3 are derivable from Npgp, by this
grammar, O
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A good implementation of Algorithm 3.1.2-1 should avoid the generation of e-rules and should not
generate nonterminals and extra rules for variable uses, but insert the relevant terminal symbols
instead. In fact, nonterminals need be generated only for the initial expresion (Npgm)» for each
conditional, and for each function body. Notice that the rule right hand sides generated by the
algorithm have the form required for elements of Rhs. For the interference analysis developed in
Section 3.2, the order and multiplicity of adjacent use action occurrences such as TeTeTscTe are
irrelevant. For example, this may be simplified to TscTc, which could be done by the algorithm
also.

The correctness of the grammar construction is the subject of Proposition 3.1.2-1 below.
Furst a little terminology. An expression occurrence is reachable in program pgm if

+ itis the initial expression &0, or

* itis a subexpression of some reachable expression, or

+ itis the body of a function called from a reachable expression.
It is easy to see that a du-grammar has a nonterminal N, exactly for those e that have a reachable
- occurrence. Furthermore, if some evaluation of pgm involves evaluation of a subexpression e,
then it must be reachable. The converse does not hold, witness the expression true—e,, e in
which ej is reachable (if the entire expression is) but will never be evaluated. Unreachable
expression occurrences are wholly superfluous and can be removed. Henceforth we assume that
programs do not contain any unreachable expressions.

Proposition 3.1.2-1: The grammar G generated by Algorithm 3.1.2-1 satisfies
I(pgm) ¢ L(G).

Proof: We show that for every expression e and environment p, if p | e = v,n for some v e
Value, then N_ —* %. Then the proposition follows by letting e be the initial expression &0,
because rule Ny, — Neoisin G. The proof will be by induction on the structure of the
evaluation tree for p | e => v,n. The induction hypothesis is that for all p,e,v,x,

pFe=v,n implies N, ="=x
whenever the evaluation tree for p | € = v, 7 is a subtree of the tree under consideration.

Case e=x matches path semantics rule PE1: We must have n = Tx. But the rule
N, = Tx is in the grammar, and therefore N, —* Tx. (Here we exploit that x must have a
reachable occurrence in pgm, cf. the discussion above).

Case e=a (e;,...,e,) matches rule PE2 with arity(a) = a: We must have &t = 1.7,
where p | e = vj,m; for j=1,..,a. By the induction hypothesis, Ng; —* #; for j=1....,a, and
therefore Np (o1 ea) — #1...T4 for G contains the rule N, tel,..ea) = Ng1..Nga.

Case e=e;—ej,e; matches rule PE3 or PE4: For rule PE3 (when e) evaluates to true)
we must have & =7, where p + e; = v;,%; for j=1,2. By the induction hypothesis,

Ngj =" =; for j=1,2, and therefore N1 05 o3 =* %17, for G contains the rule
Ne1-e2,e3 = Ng1Ngs. The other case (PE4) is similar,
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Case e=fi(e,...,e,) matches rule PE5 with arity(£i) = a: We must have &t =
<R18;... 30, ¢ K> where p | ) = v;.; and §; = A(xd;e)) for j=1..,a and p' } el = v,n". By
the induction hypothesis, Ng; —" &; for j=1....,a, and Ngi —* #"
Hence Ngi(o1  aay = <R8}..7,8, 0 ', for G contains the rule
Nei(e1,.ea) > <Neg181... Nga8y ¢ Nai>.
This concludes the induction proof and hence the proof of the proposition. (W]

3.2 Interference Analysis on Grammars

We shall develop a computable interference analysis § = 1a(Gpym)I” working on a du-grammar
Gppm. This is to be a safe approximation to the interference relation Interf(pgm,I”) on Var, shown
in Definition 2.4.2-3. We choose to approximate that relation because it generalizes the
interference criteria for single variables from Definition 2.4.1-3. Moreover it will be particularly
useful for determining a non-interfering variable grouping in Section 3.3 below.

The interference analysis ia is to be safz in the sense that

1a(Gpgp)L 2 Interf(pgm, T).
Assume that for variable group ye I" and all %, y € it holds that (x,y) & ia(Gpgm)l". Then (x,y)
€ Interf(pgm,I") which shows that ¥y is not interfering in pgm relative to I. Hence ¥ is safely
globalizable: all the variables in y can be replaced by one common global variable.

On the other hand the analysis ia is approximate. It may well be the case that (x,y) €
ia(Gpgm)I” and yet (x,y) # Interf(pgm,I'). So we may erroneously decide from the analysis that y
is not globalizable when in fact it is. The analysis is approximate because it works on the set of
paths generated by the du-grammar, and in general this set may include some paths not actually
possible for the program. An exact analysis would be incomputable,

We shall construct the interference analysis simply by “lifting" the function K[ given in
Definition 2.4.2-2 to work on a sequence o of grammar symbols instead of a single path . A
sequence o of grammar symbols may be taken to represent the set L(ct) of paths derivable from o,
and therefore in a sense 1 is lifted to work on sets of paths.

The interference analysis is developed in several steps. The definition of I(#)I" used the
functions Ug(n) and DG(m)T to find the set of level zero uses in & and the set of definitions in &
relative to I'. Thus we must define "lifted” versions of these functions too. This is done in Section
3.2.1. The interference analysis is then defined in Section 3.2.2, and its correctness is proved in
Section 3.2.3,

3.2.1 The Auxiliary Functions uay and dap
Consider lifting the Uy function from Definition 2.4.1-1 to a function UAg that works on a

sequence o of grammar symbols. Since ¢ may contain a nonterminal N, UA( must be given
information about the uses in any path « derivable from N. This information can be provided by a
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function uenv: UEnv = Vy — g (Var). It must satisfy that uenv(N) is the set of variables with
level 0 uses in any path derivable from nonterminal N.

We want UAglacluenv to be the set of variables with level 0 uses in any path ©
derivable from ol, assuming that this set is uenv(N) for every nonterminal N. What requirements
must we put on uenv? First, it must be consistent, so that uenv(N) contains UAglalluenv for
everyrule N - ain Gpgm. Second, each set nenv(N) should contain no unnecessary variables (or
else the result is too imprecise). Thus we define uenv to be the pointwise inclusion-least solution
to the equation

uenv = AN.U{ UAgLollueny | rule N> is in Gpgm }-

The formal definition of UAy is given below. For brevity, we further define uag(a) to be
UAgTolluenv. For use in the interference analysis, uag(ct) must be a safe approximation to the set
- of variables with a level zero use in path % for any & derivable from o € Rhs. This is shown to
hold in Lemma 3.2.3-2. The structural similarity between the definitions of Uy and UA should
make the correctness intuitively plavsible, however. Notice in particular that for o = & € Path,
Ug(m) = UAgLocllueny.

Definition 3.2.1-1: Given a du-grammar Gy, we define uag: Rhs — @ (Var) by
uag(e) = UAgLallueny
where uenv: UEnv = Vig — g2 (Var) is the (pointwise inclusion-least) solution to
uenv = AN.U[ UAglalluenv | rule N>a is in Gpgm }
and UAg: Rhs — UEnv — @ (Var)
UApINTue
UAQL TxJue
UAgLety...ocpJue
UAgl<ot;8;...0,8,00>Tue

i

we(N)

(=)

UAoﬂ:ﬂ-ll]ue [ P UA()E%]]UC

UAploglue v ... U UAgTa,Jue 0

It

Definition 3.2.1-2; Given du-grammar Gpgm and variable grouping I', we define
dar: (RhsuDef) — @ (Var) by
dap(a) = DAL T denvp
where denvp: DEnv = Vg — @ (Var) is the (pointwise inclusion-least) solution to
denvp = AN.U{ DALl denvy | rule N—at is in G
and DA: (RhsuDef) — VGrouping — DEnv — g{Var)

pgm]

DAINII de = de(N)

DALTxII de = {}

DALLxIT de = {x}

DAly»xIT de = [ x |thereisnoye I'such that v, x & v)

DALa;...c,IT de
DA[[<0¢151...0L36a0a>]]1" de

DAloylIde u ... u DAlla,IT de
DAl de u... u DAle, IT de w DALa ]I de
UDA[LS Il'deu ... DAL, II" de O
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This "lifted" version DA of DG from Definition 2.4.2-1 is developed by a reasoning completely
similar to that for UAg. For use in the interference analysis, the function dap(or) =
DA[LelI” denvp must safely approximate DG. This is formalized in Lemma 3.2.3-2 also.

3.2.2 The Approximate Interference Analysis

The development of a "lifted” version IA of the I function from Definition 2.4.2-2 is completely
similar to that of the UA( function above. We want that IATalT ienv is the interference in all
paths derivable from «, assuming that ienv(N) is the interference in all paths derivable from
nonterminal N. As for UAy, ienvr is the pointwise inclusion-least consistent element of IEnv =
VN — o (Var?),

By putting ia(Gpgp)T = IA[[Npng [ ienv we then have the wanted safe interference
analysis. Every path ® of the program is derivable from Npgm. s0 if there is a path m of pgm with
(x,y) € Interf(n,I"), then (x,y) € IALN, BT ienvr also. This should motivate the following
definition. The correciness is proved in Proposition 3.2.3-1 below.

Definition 3.2.2-1: Let a du-grammar Gpgm and a variable grouping I” for program pgm be given.
The approximate interference analysis ia is defined by
18(Gpgm)" = TAIN,r IT ienvp
where ienvp: IEnv = Vg = @(Var?) is the (pointwise inclusion-least) solution to
ienvp = AN. U( IALelr ieavp | rule N—ot is in Gpg ),
and IA: Rhs — VGrouping — IEnv — g (Var2) '

TAINIT ienv = ienv(N)
IALTxII ienv = {}
IAla;...0IT ienv = [(xy) |3 iq A x € dap(ay) A v € uag(a))}

UIALoITienv U ... U IAl e, IT ienv
IAL <0 8y...0,8,00> I  denv = { (x,y) [3ij. i<j A e dap{o)dar(®;) A ye uag(e)}
U [ (y) 130 i<j A B=Ly or §;=z»y for some z)
A ze dap(oy) U dap(B) A yeuag(a) }
UIALo Il ienv L ... UIALe, IT ienv
UIAToalT ienv 0

The relation  on IEnv defined by

ienvy C ienvy if VNe V. ienvi(N) ¢ ienvy(N)
is a partial ordering called the pointwise inclusion ordering. With this ordering, IEnv is a lattice
with finite height (Lemma 3.2.3-3). Therefore a particularly straightforward way to compute ienvy-
is to iterate the monotonic functional F (shown at the end of Proposition 3.2.3-1) on
approximations to ienvy starting with the least element 1 o, = AN.{}:
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Algorithm 32.2-1: Computation of the fixed point ienvp of Fr.
Input: A du-grammar Gpo, and a variable grouping I,
Output: ienvy e 1BEnv satisfying ieav(N) o U{ Interf(x,[) {N >* 1 } forevery N e VN-

ienv := AN.{);
ienvye, = Fr(ienv);
while ienv #ienvye, do
ienv :=ienvy
ienvy ey, = Fr(ienv)
endwhile:
lenvp = ienv O

This algorithm is potentially exceedingly slow, however. The height of the lattice (IEnv,C) is n2m
where n is the number of variables in Var and m is the number of nonterminals in the grammar,
Thus a priori we have no better bound on the number of iterations than this number which is
monstrous for all but the most trivial programs, However, an algorithm which makes explicit use
of the dependencies among the nonterminals should be feasible and would have a much better
worst-case behaviour.

The approximate interference analysis depends only on the du-grammar, not on the way
the grammar is constructed. Therefore the interference analysis will be usable not only for L
programs but also for the higher order language H: the criteria for interference in a path are the
same for H as for L.

The next subsection (3.2.3) presents the correctness proposition for the interference
analysis (and its proof), and may be skipped except for the proposition. An example use of the
interference analysis in finding a non-interfering variable grouping appears in Section 3.3 below.

3.2.3 Correctness of the Interference Analysis

Proposition 3.2.3-1: For any given du-grammar Gpgm and variable grouping I" for pgm it holds
that

ia(Gpgm)l" D Interf(pgm, I')
and ia(Gpgm)l" is effectively computable,
Proof: By Lemma 3.2.3-1 it holds that icnvr-(Npgm) 2 U{ Interf(x.I") [Npgm —*x },and by
Proposition 3.1.2-1 it holds that { % € Path | Nygy —* 1 } 2 [I(pgm) which shows the first
postulate. The second one follows from the fact (Lemma 3.2.3-3) that (IEnv,Z) is a (complete)
lattice of finite height with least element Ly, = AN.{} such that

Fr = Adenv. AN, U { IA[aIT ienv [rule N->ouis in Gpgm)
is monotonic (Lemma 3.2.3-4). Then the fixed point ienvp- of F[- is reached in finitely many steps
by iteration of Fron _L ;i holds that ienvy = Fr(_L 1.p,,) for some nonnegative integern, [
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Lemma 3.2.3-1: For the fixed point ienvr of Fr- it holds for every N € Vi that
ienv(N) o U{ Interf(r,I} IN =* 1 }.
Proof: It is sufficient to prove that for each o. € Rhs and & € Path with o —* =,
IATalI ienvy o Interf(r,l)
for then jenvp(N) = \ W[ IALoIT ienvp | rule N—eis in Gpgm 1o
{ Interfm,) | =" 1 where rule N—>otis in Gy} = U{ Interf(nT) |N —* n}.
The new thesis in turn follows by showing that
JAI®IT ienvp o Interf(x,I) for all x & Path
and
IATall ienvy o TALoIT ienvp whenever o —* o' with ¢, o' € Rhs,
and by taking o' = € Path:
IALa]T ienvy o TAERIT ienvy o Interf(z,I).
The first statement is easily proved by induction on the structure of &, using the correcmess of
auxiliary functions uag and dar (Lemma 3.2.3-2 below).
The second one is shown by induction on the length of the derivation o« —=* o',
The base case is a derivation of length zero, that is, for ¢ = o', which is immediate.
For the inductive case, assume that IALalT ienvp o IALe'IT ienvp forall o, o' €
Rhs for which & —" o' in at most m20 steps (this is called the major induction hypothesis), and
let &, " € Rhs such that o0 —* " in at most m+1 steps. We use induction on the structure of o
The base case is o = N, a nonterminal; for this case there must be some o' € Rhs such that rule
N—t'is in Gpge and o' —* o in at most m steps. Then
IAINIT ienvp = ienvp(N) =
U{ IATo"IT ienvy |rule Noo™ is in Gpgm )
o [ALo'IT ienvp
2 Ao Il ienvp,
where the second "2" is because of the major induction hypothesis.
For the (first inductive) case O = ;...04,, there are ¢ such that & = &"y... 0"y, There
must be some j such that o; —* o'j in one step. Then o'; =" o} in at most m steps, so
TAL ;I ienvr o TAL o j]]I‘ ienvr by the major induction hypothesis. Furthermore, by the
minor induction hypothesis (for induction on ¢), IA[{aj]]I" ienvp 2 JAlloIIT ienvp.
For i=j, o; =" o in at most m steps, and so for all i=1,...,n it holds that
IALoyIT ienvy o IAL o, IT ienvy. From this and the properties of uag and dag- that
nag(a) o vag(e”) and dap(ar’) o dap(a") whenever o' —* o, the desired conclusion follows:
IALoty...00, I ienvp o IALo";... o IT ienvy
For the other inductive case, o = <o) y...01,0, ¢ «'>, the proof is similar. O
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Lemma 3.2.3-2: For given du-grammar Gopgm and variable grouping I the functions uag and dar
from Definitions 3.2.1-1 and 3.2.1-2 satisfy that for all o € Rhs,

uag(e) o U { Up(m) oo =* 7} and

dap(e) 2 U [ DGmT la=* 7 ).
Proof: (Similar in structure to the proof of Lemma 3.2.3-1 above). For uay it suffices to show that
uag(n) 2 Up(n) for all & € Path, and that whenever @ = o' with ¢, o' & Rhs, it holds that
uag(ar) D uvag(e’). The first part is obvious from the definition of UAy because « contains no
nonterminal symbols. The truth of the second part follows by induction on the length of the
derivation & —* o'. The same proof procedure works for dar. a

Lemma 3.2.3-3: (IEnv,C) is a lattice of finite height (and hence complete) with least element | 1o,
= AN.{} and greatest element T p,p, = AN.Var2,

Proof: Clearly, | foqy is the least and T g, is the greatest element of IEnv under the pointwise
inclusion ordering . Then (IEnv,C) is a lattice with least upper bounds ienv Ll ienv, =
AN.ienvy(N) U ienvy(N) and greatest lower bounds ienvy [ ienvy = AN.ienv{(N)  ienv,(N) for
all ienvy, ienv, & IEnv. IEnv has finitely many elements, for the set Var of variables and the set
V of nonterminals are finite, and then so are @ (Var?) and Viy — @(Var2). So trivially,
(IEnv,2) has finite height. d

Lemma 3.2.34: The function Fr: IEnv — IEnv given by
Fr = Adenv. AN. U{ TAL oIl ienv |rule N—a is in Gpgm!}
is monotonic.
Proof: Letienv; C ienvy be given. It is sufficient to prove that for each « € Rhs,
IAlalT ienvy ¢ JALeIl ienv,. This is proved by induction on the structure of o
o = nonterminal N: obvious from the definition of .
a = Tx: obvious that IA[eITienv; = {} = [ALaITienv,.
o = @)...0n: follows from the induction hypothesis for o, ..., o,

O = <0 8;...038, ¢ o'>: follows from the induction hypothesis for ¢,..., 0, and o 1
With the correctness proposition and its lemmas the approximate interference analysis for

du-grammars is complete. In the next section the interference analysis is employed in an algorithm
to construct a non-interfering variable grouping for a given du-grammar (or program).
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3.3 Construction of a Non-Interfering Variable Grouping

So far we have introduced paths, path semantics, interference and variable groups. We have
shown how to construct a definition-use grammar that approximates the set of paths for a program.
Then we developed the interference analysis for grammars that allows us to discover interference in
the corresponding program. Now we want to use these achievements in an algorithm to construct a
variable grouping which is not interfering in the given program.

Recall that a variable grouping I" is a set of disjoint sets of variables called variable
groups. The intention with each variable group v € T is that all the variables in v are replaced by
one common global variable X,. Clearly, we want as many variables as possible to be allocated
globally, thus saving the time and space overhead of stack allocation. Letting card(A) denote the
number of elements of the (finite) set A, the total number card(\ L") of variables in the variable
groups of I" should therefore be as high as possible. At the same time the number of global
variables used should be as small as possible thus increasing the sharing of global storage; hence
the number card(I") of variable groups should be as small as possible. We therefore express the
quality of a variable grouping I" (rather crudely) in terms of its index #I" defined as #T" =
2*card(LX) — card(), that is, two times the total pumber of variables globalized minus the number
of global variables required.

It is desirable to find a non-interfering variable grouping with as high an index as
possible, However, we have found no way of guaranteeing this short of trying out all variable
groupings to see which are not interfering, and selecting one of those with greatest index. This is
impractical (for there are very many different variable groupings), and therefore the algorithm given
here is not in general optimal. To see that there is no "best" non-interfering variable grouping,
consider a program with three variables x, v, and z. It may happen that x and y can be grouped
together, and x and z can be grouped together, but %, v, and z cannot be grouped together. The
two possible variable groupings {{x,v}, {z}] and {{x,z}, {v}] both have index 4, and thus
none is not better than the other with this simple quality measure.

The algorithm we shall give approximates the wanted non-interfering I',, ., "from above",
always working with a I that globalizes at least as many variables as the final consistent I'pg,. It
starts with the coarsest possible variable grouping I' = {Var} that has the highest possible index
#{Var} = 2n-1 where n = card(Var) is the number of variables in the program under consideration.
This initial I" represents the optimistic hope to globalize all variables using only one global variable.
In most cases this hope is inconsistent with the (approximation to) interference in the program as
computed by ia(Gpgm)I', and a new approximation must be computed until a Iy, is obtained that
is consistent with ia(Gpgr )l 'non-

A new approximation is computed using interference analysis on the du-grammar as
follows. Using the current T, the relation § = ia(Gpgm)I” on Var is computed. Whenever (x,x) €
§, variable x may be interfering in pgm relative to I” despite the optimistic I". Hence every x with
(x,x) € § must be disregarded from inclusion in the final I'. For the remaining variables, we
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know that a variable group v € I is globalizable only if for all x, y € yit holds that (x,y) € § and
(v,x) & §. Itis instructive to rephrase this in terms of graph colourings.

Recall that a colouring of an irreflexive directed graph (V,E) with vertex set V and edge
setEc {(ab)e V2 |azb ) isa surjective function p: V — Q such that whenever (a,b) € E it
holds that p(a) # p(b). The elements of Q are called colours and a colouring must assign different
colours to every two adjacent vertices. A minimal colouring is one that uses as few colours as
possible (that is, as small a set Q as possible). A colour component of the colouring is a set of
fomplg)={aeV |p(a) =q } for g € Q. The colour components are non-empty and disjoint,
and cover the vertex set V. That is, the set of colour components is a partition of V.,

Now let (V,E) be the irreflexive directed graph with vertex set V = [ xe Var | (x,x)§ )
andedge setE=V2n §andletp: V3 Qbea colouring of (V,E). The graph has an edge from x
to y precisely if x is interfering with v in some path derivable from Gpgm {relative to the current
I'). Hence if variables x and y have the same colour, then x does not interfere with v, and y does
not interfere with x. So all variables with the same colour constitute a variable group which is not
interfering in any path derivable from Gy, relative to I, The converse is also true: if yisa
variable group not interfering in any path derivable from Gpgm- then all members of y can be given
the same colour,

Therefore a good new approximation I'y., to a consistent variable grouping could be
constructed by choosing a colouring of the graph and letting I',o, be the set of colour components,

This procedure of making new approximations is iterated until I stabilizes. To ensure
that this happens, we shall always choose the colouring such that no two vertices (that is,
variables) that had different colours in the previous iteration will get the same colour by the new
colouring, Then the algorithm terminates in at most 2n iterations (where n = card(Var)), since each
iteration decreases the index of I by at least one and the smallest possible index is 0 = #{}, The
index is decreased by at least one in each step since the new colouring of the graph is chosen such
that each colour component is a subset of a colour component of the previous graph. From this it
follows that the index of the new I is strictly smaller than the index of the previous one as we shall
see below.
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Algorithm 3.3-1: Construction of a non-interfering variable grouping I' for a program,
Input: A du-grammar Gy, and the set Var of variables of pgm.
Output: A variable grouping I" which is not interfering in any 7 derivable from Gpgm-

T:= {Var); - the coarsest variable grouping

Fhew := NewGamma(Il');

while I'# Iy do
[ =T hews
Fhew = NewGamma(T)

endwhile;

where

function NewGamma(l™ VGrouping): VGrouping;
§ = 1a(Gpgr)Ts - compute the relation § ¢ Var2
Vi=(xe Var [(xx)e § ); - construct the directed graph (V,E)
E:=VIn§;
let p: V — Q be a colouring of (V,E) such that p(x)=p(y) implies x,.y € ye T}
Tpew = { pl@ Iq €eQh
retum ooy,

ndfunction; ]

The correctness and termination properties of this algorithm are summarized in

Proposition 3.3-1: The above procedure terminates and the final I" is not interfering in pgm.

Proof: The procedure must terminate, for in every iteration the index #I” decreases by at least 1
(Lemma 3.3-2) and obvicusly #I” must be nonnegative. Since I' = NewGamma(T') by
construction, it holds for every ye I" and x, y € y that x and vy have the same colour. Hence there
is no edge (x,v) or (y,x) between x and y, and therefore (x,v) € ia(Gpgm)F and (y,x) &
1(Gpgm)1™. Then by Proposition 3.2.3-1, (x,y) € Interf(pgm,I'} and (y,x) ¢ Interf(pgm,I),
which proves that v is not interfering in pgm relative to I'. Hence I is not interfering in pgm. [

Lemma 3.3-1: (1) The relation £ on VGrouping defined by
Iyeln iff vyeldnelonen

is a partial ordering with least element {] and greatest element {Var).

(2) The index function #: VGrouping - {0,1,2,...} defined by #[=2*card(\T)-card{I)
is strongly order preserving: ifI'y £ Iy and I'y # Ty then #I'y < #I,.
Proof: (1): reflexivity, transitivity, and Jeast and greatest elements are obvious, but for
antisymmeltry it is crucial that a variable grouping is a set of mutually disjoint subsets.
(2) The proof of strong order preservation is done by the two cases: \WI'y =T and LTy = WD,
It depends heavily on the disjointness of the elements of I'y and of I';. The details are omitted. {1
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Lemma 3.3-2: In the algorithm, NewGamma(T") # I” implies #NewGamma(l") < #T.
Proof: This follows from (2) of Lemma 3.3-1 and from the fact that T}, is chosen such that I,
c ' in NewGamma, g

Intuitively, the more variables that are grouped together by a variable grouping I, the fewer copy
actions in ¢ will be considered definitions by dap(cx), and the less interference should be found in
o by iar(a). Thatis, I'y T’y implies dap (@) o dapo(a). Using this property of da, we can

further show that the more variables that are grouped together by T, the less variables interfere with
each other: whenever Iy C I, it holds for every & € Rhs that iapj{o) 2 iapp(0r). The result about
da is proved below; that for ia can be proved by the same procedure. These results may be helpful
when implementing the construction of a non-interfering F, ;.

Lemma 3.3-3: If 'y £ Ty then for all o € Rhs, DALalT'y denvpy o DALaIE, denvpy (where
denvy and denvpy are the fixed points from Definition 3.2.1-2).
Proof: First we make two observations

1.If I'y ¢ ' then for all de € DEnv and o. € Rhs, DA[alT'y de > DA’y de. This

is proved by induction on the structure of @ where the interesting case is o = y»x.

2. If de; i dey, then for every I and every o € Rhs, DAJall” de; o DALaIT des.

This can be proved by induction on the structure of ¢; the interesting case is = N.
Now, assuming I'y ¢ I'y, we prove the lemma by proving DALalIl'y denvpy o DALaIT, de for
the successive approximations de to the fixed point denvyy. Since denvp, is reached in finitely
many steps (for the lattice (DEnv,C2) has finite height), this proves the postulate. (This is a simple
case of fixed point induction where the "admissibility" of the statement proved is obvious [Bird
1976D).

First we prove it for de = AN.{}, the least element of DEnv, But for given o € Rhs,
DA[LelI'y denvyy o DALl AN.{} o DAL IT; AN.{} by observations 2 and 1.

Then under the assumption that for de € DEnv and for all o' € Rhs, DAL’ Iy denvpy
2 DAL oIT de, we must prove that with de' = AN.U{ DATa"TT; de | rule N—o” is in Gpgm }
the postulate holds for this new de’ and for every a € Rhs: DATaIIM; denvpy o DALalT, de'.

Solet o € Rhs; the proof is done by induction on the structure of o, where the
interesting case is & = N, a nonterminal. But

DA[[N]]F] denvn =

denvr(N) =

U( DALoIT denvyy |N—ofisin Gpgm } 2

W( DAL Il de | N-sa'is in Gy } =

DAIN ]]rz de
where the inclusion is because of the (major) induction hypothesis and the equalities hold because
of the definition of DA. The other cases of  are simple. This completes the proof that
DA[ally denvry o DALaIT,; denvy for all & € Rhs. O
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Example 3.3-1: Computation of I',,, for the uP interpreter given in Example 2.1-2; the
du-grammar Gpgm was shown in Example 3.1.2-2, The set of variables is Var = {c,s¢,e,5e].

Initially, I'g = [ (c,sc,e,se}} which yields § = ia(Gpgm)FO = {(e,s8¢), (c.c), {e,e),
(sc,c), (e,c), (e,se)}. The directed graph generated from this has vertex set V = {s¢,se}, and
empty edge set E={}:

se : sC

This clearly can be coloured using a single colour. The next approximation to I'yo, is Ty =
{{sc,se}}, and we get §; = 1a(Gyg)T') which is identical to §g and so Fpoq =Ty = {{sc,5e}).
This shows that variables sc and se can be globalized using one global variable 5 as we
informally concluded already in Example 2.1-2. d

In this section we have motivated and presented an algorithm that constructs a non-interfering
variable grouping [y, for any program pgm when given its du-grammar Gpgr. The algorithm
was proved to be correct. As to its efficiency, it requires at most 2n iterations to reach the wanted
variable grouping, where n is the number of variables in pgm. Each iteration involves a
recomputation of the interference analysis ia on the du-grammar, construction of a graph and
finding a colouring of that graph. However, the construction of a minimal colouring is an
NP-complete problem, and therefore no reasonably efficient algorithm for this is known [Aho,
Hopcroft, Ullman 1974], [Garey, Johnson 1979]. Instead we may use so-called heuristic
algorithms that yield approximate rather than minimal results. Such algorithms are discussed in for
example [Brélaz 1979].

Also, the time for computing ia depends on the algorithm used; clearly a more efficient
one than the proposed Algorithm 3.2.2-1 is desirable.

Notice that the mappings uenv, denvy, and ienvp computed during the interference
analysis need not be reconstructed from scratch in each iteration of Algorithm 3.3-1 above. This is
because venv is completely independent of the current approximation I to Tpop, and in each
iteration I'yqy, = I', s0 by Lemma 3.3-3, denvr C denvyye,, and ienvr i ienvpyey,. Hence the old
values denvr- and ienvy are valid approximations to the new ones and can be used as starting points
for finding these.

In the next section we shall use the non-interfering variable grouping I'y,,, to control the
globalization transformation of a given program.,

Section 3



51
3.4 The Globalization Transformation for L

This section presents the transformation T that replaces all non-interfering variables by global
variables. The transformation takes as input an (applicative} L program pgm and a non-interfering
variable grouping I" and produces a transformed program pgmy-, This is an imperative L program
which uses a global variable X, for each variable group ye I'. To every function £ in the original
program pgm there corresponds a transformed function £1in pgmr.

The definition £1 (xl},..., x1;) =el of each function £l is transformed by removing those
parameters xij that are to be globalized, that is, those for which there is a variable group y € I such
that x’ € .

An expression e is transformed this way: every use of a variable x that belongs to some
variable group y e T is replaced by the global variable Xy for that group. Every argument
expression e; in some position j of a call £i(e 13:08j>-s€) Of £l is transformed as follows: if the
variable x} receiving the value of ej belongs to some variable group ¥ € T, then the argument
expression e;is replaced by a non-pushing assignment [Xy:=e;] to the global variable X, for that
group (and recursively, e; is transformed also). The effect is that whenever pgm would evaluate
argument expression e; and push its value onto the parameter passing stack as a new value for
variable x%, the transformed program pgmp will evaluate the (transformed) expression ej and
assign its value to the global variable X, and hence push nothing onto the parameter passing stack.

Algorithm 3 4-1: The globalization transformation for L.
Input: An applicative L program

pgm= def {£1(xl),..., xiry(siy) =el)jcy in 0
and a variable grouping I" for pgm which is not interfering in pgm.
Output: An imperative L program pgmr in which every variable group v € I is replaced by a
global variable X,
The transformed program is

pgmr = def {£i(xl),., xiy) =tel}jc;in ted
where the variables x;),..., xliy; of transformed function £i form a subsequence of the variables
xip,..., xi; of the corresponding original function £i. Variable x4, of original function £1is among
those of the transformed function if and only if there is no vardable group y € I" such that xij isin
. The body expression el of function 1 is transformed into t el = T[eillT" where the expression
transformation T is defined below. Similarly, the initial expression ¥ is transformed into te0 =

TLeOIT. O
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Definition 34-1: The globalization transformation T for applicative L expressions is defined as
follows (where LExpr is the set of applicative L expressions and LIExpr is the set of imperative
ones):

T: LExpr — VGrouping — LIExpr

TL=xIr = X%y ifxe yforsomeyeT
x  otherwise
A(TLeyIL,..., THe,IIN
TLe1IT— Tle,IT, TEe3IT
fi({e",..,e"y) where

e"j =[Xy: zT[[ej]]I‘} if xij e yforyel
= Tle;IT otherwise O

H

TLA (es.ey) IT
Tﬂ:ei—:»ez,e;;]]l"
TLfi (eq,....e5) IT

0

H

Note that in the last case (function call), if ej = %y € Yand xij € v, then a trivial assignment
{Xy:=Xy] would be generated. An improved transformation algorithm should avoid the
generation of sach trivial assignments.

The algorithm above takes a well-formed applicative L program pgm and a
non-interfering variable grouping I' and produces a well-formed imperative L program. The
transformation implemented by the algorithm together with T is correct in the sense that pgmy-is at
least as strong as pgm. More precisely, for every initial environment pg, if pgm terminates with a
result v, then pgmy will also terminate with result v. This will be proved in Proposition 3.4-1
below. To prove that the two programs arc strongly equivalent, we should prove also that if pgm
does not terminate in initial environment pg, then the transformed program pgmp does not
terminate either. For the present purposes, we consider this to be less important, though.,

Example 3.4-1: The result of applying Algorithm 3.4-1 to the UP interpreter from Example 2.1-2
and the variable grouping I' = {{sc,se}} found in Example 3.3-1 is the imperative program also
shown in Example 2.1-2. The only difference is that X{,, 4o} Was called S, and trivial
assignments [S:=S] were omitted. [

First we shall see how the correctness proof for the globalization transformation can be structured.
We notice that the expression transformation function T does three things, First, it adds an
assignment to global variable X, everywhere a new value of some variable x belonging to variable
group Y € I is pushed onto the parameter passing stack. (This can happen only in an argument
expression of a call to a defined function). Secondly, it replaces all uses of every variable x that
belongs to a variable group ¥ by uses of the corresponding global variable Xy Thirdly, it puts
brackets around assignments [Xy:=...] to global variables such that no value is pushed onto the
parameter passing stack.
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The transformation can be rewritten so that it works in precisely these three steps:

1: Add assignments: each function body is transformed so that whenever a new value for
x € Y& I'is pushed onto the stack, the value pushed is also assigned to global variable Xy

2: Add uses of global variables: replace every use of x € Ye T by use of Xy

3: Remove pushes: add brackets around assignments to global variables and remove
from the definition of function £ those parameters x1; that belong to some ye T".

To these steps there correspond three expression transformation functions Ty, To, and T3 (shown
in Definition 3.4-2 below). Now it is easy to see why the total transformation is correct. Let an
applicative L program pgmy be given and let pgm, be the transformed program after step 1 and so
on. Then pgm; obviously produces the same result as pgmg, for pgm, does the same actions as
pgmg and in addition some assignments to global variables. It never references any global
variables and so its evaluation does not depend on the value of these global variables,

But at any time a variable x that belongs to a variable group ye T is needed during
evaluation of pgm,, the current value of the corresponding global variable Xy equals that of x.
This property will be called consistency of the evalnation of pgm;. It will be formalized below as a
property of the evaluation trees for pgm;, and it will be proved in Proposition 3.4-1 that every
evaluation tree of pgm, is consistent (if I" is not interfering in pgmyy).

The importance of consistency is that every use of a variable x that belongs to variable
group Y€ I’ can be replaced by a use of the global variable Xy atevery use of x, the global
variable X, has the same value as x. This replacement is done by step 2, yielding program pgm,
which therefore produces the same result as pgm,;.

But now in pgmy there are no more uses of any variable x that belongs to some ye T}
the uses have been replaced by uses of the global variables. Thus we can safely delete all pushes
of a new value for such variables x. This is done in step 3 by enclosing the argument expressions
computing a new value for x in brackets {...]. (These argument expressions are precisely those
that were made into assignments to X, in step 1). At the same time, each such x must be removed
from the parameter list of the function definition in which it occurs; this is also done in step 3.

Clearly, the program pgm3 obtained by this procedure produces the same result as pgmy,
and from this it follows that pgms3 and the original pgmy are equivalent. Furthermore, it is easy to
see that pgmy is identical to the pgmr defined above, for T is the composition of Ty, Ty, and T3
defined below. This proves the correctness of the transformation.

The rest of this section is a detailed proof that every evaluation of pgmy is consistent.
The reader may skip to Proposition 3.4-2 at the end of the section without loss of continuity.
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Definition 3.4-2: The expression transformation functions Ty, Tp, and T3 are defined as follows.
Ty: LExpr — VGrouping — LIExpr
T,[xIr = x
Ti[a(ey,..eq) IT A(T[e IT...., T, I
Tliel—)ez,e:g..ﬂr' T1IIe1]]I‘—) Tl[IeZJ]I’, Tli[egl]l"
Tl £i(eq,mey) IT fi(e" |,y €",) where
e'j = Xy:=T|[gIl' ifxlje yforye I’
= TyleIl otherwise

Ta: LIExpr — VGrouping — LIExpr

To[xIT = X, ifxe yforsomeye

x  otherwise

A (Tole(ll...., Tole,IIN)

Tole Il TollesIIT, ToleslT
£i(Tylle IT,..., Tolle,IT)

TollA (eq,..eq) IT
Tz[[ ej—req.e 3]]F
Tl fi(e,.ney) IT

It

Tg[[XY:ie]]r = Xy:=T2[Ie]]l"

Ts: LIExpr — LIExpr

T30<] = X

T3[[Xry]] = Xy

Tala(er...e3) I = A(T3lle ..., Tsle,I)

Tileioes,e3] = T3lle - Tileyll, T3lesl

T3l fi(ep,ea) ] = £1(Tileql,.., T3le,D)

T3[%y:=el = [Xy:=Talle]] O

We still have to prove the consistency of every evaluation of pgmy; this in turn requires a precise
definition of consistency. We will apply this predicate only to terminating evaluations: those for
which the evaluation tree is finite. An evaluation of program pgm is consistent if every judgement
in the evaluation tree is consistent, where consistency of a judgement is defined below.,

Definition 34-3: Let an (imperative) L program pgm be given. Expression evaluation judgement
p, ¢ F e = v, G' (in an evaluation tree for pgm) is consistent for variable grouping I iff
whenever

+ x belongs to variable group yfor some ye T,

» the current value (incarnation) of x is used in evaluation of e
it holds that

* PG = a(ty. O
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Intuitively, a judgement is consistent if the value of Xyequals that of x € Ye I' whenever the
current incarnation of x is used in the evaluation of e. By the current incarnation of x we mean x
as defined by the current local environment p. Notice that if the current incarnation of x is used in
an evaluation of e, then there is a level zero use (Tx) of x in the corresponding du-path for e (and
vice versa). This can be verified by looking at the path semantics for L.

Proposition 34-1: (Correctness of the globalization transformation for L). Let an applicative L
program pgmy, be given and let I be a variable grouping which it not interfering in pgmy. Then for
every initial environment py,
if Po - pgmo = v
then  pot pgmr =v
where pgmy- is the result of applying Algorithm 3.4-1 to pgmg and T, that is, pgmg with every
variable group v < I" replaced by a global variable.
Proof: In accordance with the discussion of the correctness proof above, it is sufficient to show
that every judgement in the evaluation tree for py | pgmy = v is consistent, where pgm; is the
result of applying expression transformation T to every function body el and the initial expression
e0in program pgmy,.

The proof is done by induction on the structure of the evaluation tree (which is finite).
The lowest part of the evalnation tree looks like this (according to semantics rule IP1 from Section
2.2.3):

Po: Cinit F €0 =2 v, &

Po kpgmy =v

where Gy is the empty initial state of global variables and eV is the initial expression of pgm;.

The base case is clear: since none of the input parameters in dom(pg) is in Var, they are
also not in any variable group ye T, and so the judgement py, Gjpy F €0 = v, ¢' is trivially
consistent.

The induction step is done by showing for every node (that is, branching point) of the
tree that consistency of the judgement in the conclusion (below the line) implies consistency of all
Jjudgements in the premises (above the line). This is done by case of the form of expression e’ in
the conclusion judgement.

Solet p, 0 | €' = v, 07 be a consistent judgement in the tree. We can assume that &'
=Ty elll" where e is some (sub)expression from pgmy, and further assume thatp f e = v, &
for some path 1 by the L. path semantics. Now we consider the possible cases for expression e to
prove that the premises of p, 6 F ' = v, Gy are consistent.

Case e = x: Then €' = x and there are no premises by semantics rule IE1; this is a leaf
node in the tree.
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Case e =A(eq,...,ey): Thene'=a(e'y,...,e’y}. The path & is ®;...%, where
P+ e; = vj, mj for j=1,...,a. The tree node under consideration is, by semantics rule IE2,

P, Oj1 b e'j = Vj, Oj for j=1,...,.a

P, ook Ale',...ely) = v, 0,

and we prove the consistency of each p, ;) } e'; = v;, 6; by contradiction. Assume that x € ¥
g T, that % is used during evaluation of e'j, and that p(x) # aj_l(x.y). Then evaluation of some e
with i<j must have modified X, for its value was correct before evaluation of e’ (by consistency
of the conclusion judgement). But this can happen only by an assignment to Xy during evaluation
of e'}, and therefore evaluation of the original e; must involve a push of a new value for some
variable y which belongs to the same variable group yas x. Butthen y € DG(r;)[ and x €
Uo(ﬂ:j) and so y interferes with x in 7 relative to T, which contradicts the assumption that I is not
interfering in pgmy,. Hence p, 6j.1 F e'j =% vj, 0 must be consistent.

Case e = e;—ej,e3: Then ' =e'j—e’,e'y. Assume that the conditional e, evaluates
10 true (the other case, false, is completely similar). Then the path T = 11y with p F & =V}, T
for j=1,2. The tree node under consideration is, by semantics rule IE3,

P ool e'] =tue,o; o1 F e'2=>v, Gy

p. gk e'1—e'ye'3 = v, 0p

The consistency of both premises is proved in exactly the same manner as the above case.
Case e = £k (ey,...ey) , k€ I: Thene'=rfk(e'|,..,e'y) where ejis Xy=e"; if
xX; € ¥ for some ¥ € T. The path & is <x18;...%,8, 0 n'> where p | &j = Vj & for j=1,...,a;
and p' I ek = v, T where p'(xK;) = v; for j=1,....a.
The tree node under consideration is, by semantics rule [E3,

P, G F ey = vy, o forj=1.....a
P G; F erk-]=> V,Jo' ] where p'(xkj) = vj for j=1,...,a

p. ok £K(e'e’y) =V, 0

and e’ =T [ ekII" is the transformed body of £X in program pgm;.

The consistency of each judgement p, oi1F e’j = v}, 0 is proved by contradiction.
Assnme variable x € ye I'is used during evaluation of e'j and p(x) # 6j.1(%y). Then evaluation
of some e'; with i<j must have assigned a new value to X, for by consistency of the conclusion
judgement, p(x) = Gg(X,). This can happen in two ways. Either e} is an assignment Xy=e"j and
so it must be the case that §;=Ly or 8;=z»y for some y and z with y « yand z ¢ ¥, or e'; is not
an assignment and then v € DG(x)I” for some v in . In both cases, x € Uo(nj), 50 y interferes
with x in m relative to I" which contradicts the assumed non-interference of I
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Now assume likewise that p', 0, I e’k = v, G is not consistent: there is a variable
xj € Y€ I' which is used during evaiuation of e'k, and p'(x;) # ca(xq(). The cormrect value of
P'(x)) is v; by definition of p', and because e'; must be an assignment X, : =e"; (for which
P, Oi.1 F e"j = v, '), we know that p'(x;)= 6j(Xy). So a new value must have been assigned
to X,Yafter evaluation of e: there must be some e'y with j>i such that y & DG(r)I’ or
v E DG(Sj)F for some v belonging to the same variable group y as x;. By the assumption made,
8;=4x; or §;=2z»x;, and x; € Ug(n). But then y interferes with x in x = <m181...1,3, O >
relative to I', which contradicts the assumption that I is not interfering in pgm.
Hence also p, 0, ek = v, ¢ is consistent,

This completes the case analysis for the induction step, and we conclude that every
expression evaluation judgement in the evaluation tree is consistent. Since the initial environment
po was arbitrary, this holds for every possible evaluation of the program. Hence we have proved
that the globalization transformation is correct: if I is not interfering in pgm, then the transformed
program pgmp will produce the same results as pgm. (|

This finafly allows us to conclude that it is correct to put together the construction of a non-
interfering variable grouping and the globalization transformation:

Proposition 34-2: (Main correctness proposition for L). Let pgm be an applicative L program, let
T'non be the variable grouping constructed by Algorithm 3.3-1; and let pgmpy, be the program
constructed by Algorithm 3.4-1 when applied to pgm and I'yg,. Then pgmp,e, is at least as strong
as pgm.

Proof: Iy, is not interfering in pgm according to Proposition 3.3-1. Therefore by Proposition
3.4-1, pg + pgm = v implies py F pgmpyen = V. ' O
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3.5 Overview: The Globalization Method for L

We will close Section 3 with a brief summary of the ideas presented in Sections 2 and 3.
Section 2 presented the following concepts and topics:
+ globalization: the idea of replacing locat variables by global ones
+ an example language L together with an operational semantics for L
* definition-use paths, and use, definition, and copy actions
* a path semantics for L
* interference in a definition-use path
+ variable groups and variable groupings.
Section 3 presentad:
» definition-use grammars
* construction of a definition-use grammar for an L program
» interference analysis on definition-use grammars
« construction of a non-interfering variable grouping, based on the interference analysis
» the globalization transformation for L programs.

The relations among these topics can be illustrated by sketching the steps in analysis and
transformation of a given L program pgm:

1. For the given program pgm, a definition-use grammar Gpgm is constructed as shown
in Section 3.1. This construction depends on the path semantics for L, given in
Section 2.3.2.

2. A non-interfering variable grouping I',,, for pgm is constructed, based on the du-
grammar Gp,gp,, using the interference analysis ia developed in Section 3.2.

3. The given program pgm is transformed into pgmppq,. using the variable grouping
I, on Constructed in step 2.

This overview concludes the treatment of globalization for the first order example language L. In
the next section, it will be redone (more succinctly) for the higher order example language H which
is an extension of L. The entire approach works equally well for the higher order case as we shall
see; the only major complication is that a simple flow analysis of the program has to be done to
assist the du-grammar construction.

Naturally, H must be given a new syntax, semantics and path semantics, and the
grammar construction as well as the transformation in step 3 must be modified to work for H
programs. But the interference concept and hence the interference analysis need not be modified at
all {on the condition that the path semantics for I is reasonable); neither does the construction of a
non-interfering variable grouping, for it relies only on the du-grammar, not on the program. This
reflects the strong modularity of the approach to globalization taken in this report.
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4. EXTENSION TO HIGHER ORDER FUNCTIONS

This section does part of the work of Sections 2 and 3 once again, this time for a higher order
example language H. The main new complication is that a flow analysis is needed for the
construction of definition-use grammars,

The entire globalization method for H is a modification of that for L. The concepts of
path and interference are unchanged, and so the interference analysis on grammars and the
construction of non-interfering variable groupings need no modification. The path semantics
(Section 4.2) for H is different, however, so the grammar construction must be modified (Sections
4.3 and 4.4). Also, the globalization transformation itself must be changed to suit the syntax of H
(Section 4.5). The overall structure of the globalization method is as for L and is recapitulated in
Section 4.6.

First the language H which extends L is defined: its syntax, operational semantics and
path semantics are given. Then the problems with the grammar construction are explained and a
flow analysis is devised to overcome these. For every expression the flow analysis computes (an
approximation to) the set of its possible closure values. This is called a closure analysis. The
definition-use grammar construction is then given, followed by the globalization transformation for
H programs and an overview of the globalization method.

4.1 A Higher Order Example Language H

A program in the higher order language H is a system of recursion equations with strict application.
The language is designed to be as simple as possible while still being able to model the purely
functional parts of current eager functional programming languages such as Standard ML and
Scheme, in addition to a strict version of the lambda calculus as used in denotational semantics
definitions [Schmidt 1986b].

An H program is a list of global definitions of strict functions or named combinators; the
language does not embody the concept of anonymous functions (lambda abstractions) or local
function definitions. Therefore local and anonymous definitions in, for example, the lambda
calculus need to be ransformed into global definitions. Fortunately, this is always possible by the
process called lambda lifting in [Johnsson 1985] and discussed also in [Hughes 1982} and [Peyton
Jones 1987]. In essence, lambda lifting makes an anonymous or local definition global by
inventing a unique name for it and making a global definition with that name. Furthermore, it
introduces a parameter for each free variable of the anonymous or local definition.

The higher order nature of H is due to the fact that all defined functions are curried. This
implies that partial applications are legal expressions. When f is a function with two parameters, x
and y, it is legal to apply £ to only one argument expression e, and this application is written with
the infix application operator @ as £@e. If e evaluates to v, then the value of the partial
application is a closure, written f(v,). This closure represents a new function which when given a
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value v, for the second parameter of £ will produce the same result as would £ when applied to
both v, and v, at once. Such an application, in which values for all the parameters are available,
will be called a full application. H is a higher order language because a closure value may be
passed as a parameter or returned as the result of evaluation. (An aside: partial evaluation is partial
application plus optimizing syntactic transformations).

In a first order language such as L, non-interference of a variable guarantees that there
exists at most one value for it at any time. In a higher order language, this is not true. Even
though a variable is not interfering, there may well exist several values for it at the same time.
Namely, the values may be enclosed, that is, made part of a closure {(which represents a functional
object) and allocated on the heap. We say that variable xij of function £l is enclosed during an
evaluation if a closure for £? is built that contains a value for variable x%j, that is, for parameter
position j of £1,

Non-interference of variable xi; of £! implies that xi; need not be made part of each new
local environment built for evaluation of £i's body el, Instead the corresponding global variable X
should be assigned a new value at the time the environment is built. Non-interference does not
imply that xij is never enclosed during an evaluation, however. Non-interference and
non-enclosure of x!; imply that at any time there is at most one value for xij. This property is
called single-threading in [Schmidt 1985]. Non-enclosure of variable xij is rather easy to check for
in the simple version of H we use here: xij must be the last variable in the parameter list of fi.

4.1.1 Syntax and Semantics of Applicative H Programs

A program is a finite set of mutually recursive function definitions, indexed by a finite set [,
together with an initial expression e0:

def {fi @ (xil,...,xiamy(fi)) = ei}iel in &0

Every defined function £1 has a fixed arity, written arity(£1), which must be positive: parameteriess
functions are not allowed. The language has lexical scope and so only the variables xij,...,
xiamy(fi) of £ican appear in the body el. All variables in the program must be distinct. Initial
input is through the input parameters of the program, namely those parameters that appear in e0,
Only basic values (booleans, integers, and so on) can be input to a program; closures are not
allowed as input or output values. Expressions follow the abstract syntax

e U= x - variable (or, parameter)
| f - defined function symbol
l A(ey,...ep) - call of basic function
| e;—>ey, es - conditional expression
| ep Qe - application
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We assume that a set of basic functions A is given, each of which has a fixed non-negative arity
arity(a). Zero-arity basic functions are considered constants, and a call 2 {) to such a function is
just written A. Evaluation of expressions takes place in an environment that binds values to
variables. A variable (or parameter) x evaluates to the value it is currently bound to. A function
symbol £ evaluates to an empty closure which we shall denote by £(). A basic function call
b (e},...,ey) is evaluated by evaluating all its argument expressions ej,...,e, from left to right and
then applying the function to their values, The number of argument expressions must equal
arity(A): partial application of basic functions is not allowed. A basic function is only allowed to
return those closure values it was given as arguments and cannot evaluate (apply) any closure given
to it as an argument; that is, there cannot exist a basic function "apply" that applies a closure. The
conditional is as for the L. language. An application eg @ e is evaluated by evaluating e to obtain
a closure £(vy, ..., vip) where £ is a defined function symbol and vy, ..., v, are values for the
first m variables of £. It must hold that m < arity(£f). Then e is evaluated to obtain a value vy,
for the (m+1)th parameter of £. In case m+1 < arity(£), the application is partial, and the result is a
new closure f(vy, .., Vpmi1). In case m+1 = arity(f), a fuli application is done: a new
environment is built which binds the variables of £ to vy, ..., Vip4q and the body of f is evaluated
in this environment to obtain the value of the application.

Along with the abstract syntax we shall use a more readable concrete one. We will write
function definitions without parentheses:

flxly .. xlarity(fi) =el

and we write application e @ ey without the application operator, that is, by juxtaposition eg ;.
The following disambiguation rules are adopted. Application associates to the left. Application
binds more strongly than the conditional, 50 e} =+ €3, 3 ¢4 means 7 — e3, (3 e4). Infix basic
functions are allowed and bind less strongly than application but more strongly than conditionals.

Example 4.1.1-1: An interpreter written in H (concrete syntax) for a small imperative language.
This is a lambda-lifted version of the example language definition given in Figure 3 (page 301) of
[Schmidt 1985). That example is a denotational semantics definition based on a call by value
version of the lambda calculus. The interpreter uses the special basic functions update and
access that work on the store data structure in the interpreter and a special constant empty which
represents an empty store.
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def Cmdc=
c="idi=e" Upd id e,
c="cq;cy" Compose (Cmd c3) (Cmd cy),

If e o cp
Compose (F e ¢4q) (Cmd ci},

Ll

c="if e then ¢ else ¢,"
c="repeat c, until e"

Expe =

e= :?1‘:'32" — Add ey ey,
e="id — Look 1d,
e="n" = n,

update (idu,Exp eu su, su)

Exp ei 51 = 0 =5 Cmd c¢il si, Cmd ci2 si
Exp ef sf # 0 =5 F ef cf (Cmd cf sf), sf
f1 (£2 x)

Upd idu eu su
If ei ¢il e¢i2 si
F ef cf sf
Compose f1 £f2 x
Add eal ea2 sa plus {(Exp eal sa, Exp ea2 sa)
Look id sl access(id, sl)

in Cmd ¢ empty 1

FUR I I |

An operational semantics for H similar to the one for L in Section 2.2.2 is given below, but first
we must define some structures to support the description of the semantics.

BValue = Boolean U Integer U ... - basic values,
v: Value = BValue U Closure - value,
Closure = { £i(vy,...,vp) | vje Value, j=1,..,m; O<m<arity(£i),ie I}
Input = FreeVars(e®) - input parameters of the program,
Var - local variable of defined functon,
p: Env=Var— -5 Value - local environment.

The set Input of input parameters must be disjoint from Var, Let the H program
pem= def [fi @ (Xils"-’xiarity(fi}) = ei]iEI in ef

be given. Itis evaluated in an initial environment pg: Input — BValue, and the resuit of this is the
result of evaluating the initial expression in environment pg:

poFel=v
(HP1)

ppt+ def {fi@ (xil,...,xiamy(fi)) = ei}iel in el =>v

The judgement below the line concerns evaluation of an H program; the one above the line
concerns evaluation of an H expression. The rules for evaluation of expressions are:
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(HE1l) pEx=v where p(x) =v

(HE2) p} fi= £l

pRej=v; forj=l..a where a = arity(a)
(HE3) and v = A(Vy,....vVy)
PFA(e.,ey) =V

plep=>true
Pley>v
(HE4)

pPFedeyey=v

pFe; = false
Prey=>v

(HES)

pFej—ejpe;=v

PFeg= £V, V) .
PFel = v where m+1 < arity(£?)

(HES6) ,
PFegler = 1V Vi)

PFeg= fi(vie,vy) L
PFe;= vy where m+1 = a = arity(£?),
P'Fel=v el is the body of £,

{HET) p' =[xy P vyaxlP ]
P F eq @ e =yv

Notice that the semantics is deterministic: if pF e => vand p | e = v, then v=v".

The version of H presented here allows single applications eg @ e only. Asa
consequence, no less than n closures will be built during evaluation of a full application £ ¢ e @
ej @ ... @ ep, which is undesirable. Another unfortunate effect is that all variables except the last
one in the parameter list of a function will be enclosed; that is, they will be made part of a closure
and hence allocated on the heap. Therefore only the last variable is really an interesting candidate
for globalization.

As a remedy, we might equip H with mulri-applications of the form ey @ (ey,...,eq) 50
that the application of £ above could be written £ @ (eq,....e;) . Evaluation of this expression
should build only the trivial closure £() and avoid enclosure of the values of €1y, We do not
elaborate on this possibility here; a brief discussion is given in Section 8.1.2.

We keep the single application version of H since it is adequate to demonstrate that our
globalization method works for strict higher order languages.
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4.1.2 The Imperative Part of H

To get an imperative version of H, we extend the language with the concepts of global variable X &
GloVar and global state 6. Global variables will be written in upper case as for the L language.

How can we add assignments to H? First, we cannot use the syntax [X:=e] in call
argument expressions as in L. For in a hypothetical application eg @ [X:=e], the function
expression e may evaluate to several different closures, some for functions that have no
globalizable variables and some for functions that have globalizable variables. We want to
globalize certain variables, that is, certain (formal) parameter positions. The action taken at
evaluation of e @ ey must depend on which closure ey evaluates to; it cannot depend on the call
syntax alone. Thus we shall let the called function's definition decide what happens. This is done
by putting a global variable in the parameter list of the function definition. If function f is defined
by £ X y =... where X is a global variable and v a local one, a call to £ of form £ 5 7 will assign 5
to the global variable X and build a new environment in which y is bound to 7.

The question remains when the assignment to X should be done: at the time of closure
building (at evaluation of £ 5) or only later on, at full application. With the former choice, few
variables are likely to be globalizable, for it requires (among other things) that a variable is enclosed
in at most one closure at a time. The latter choice will allow more variables to be globalized and is
more easily reflected in a path semantics. We chose the latter alternative, assignment at full
application, which is adopted also in [Schmidt 1985]. So in the partial application £ 5, a closure
£(5) is built, containing the value 5 which will be assigned to X only later, in case £ is fully
applied.

Thus the (abstract) syntax for a function definiton now is

flg (&iy,... 8L) =el
where each &ij is either a local variable (parameter) or a global variable, All the local variables
among £l,,...,El, must be distinct, but the global variables among them need not be. Use of a
global variable is now an admissible expression, and the expression syntax is extended with:

e n= X - global variable

Evaluation of a global variable X returns the value of X in the current global state, Evaluation of
other expressions except applications proceeds as for applicative H. An application eg @ e is
evaluated by evaluating eq to obtain a closure fi(vy,...,vy,). If the application is partial (m+1 <
arity(£1)), then e is evaluated to obtain a value vy, and a new closure 4V s Vine Ve 1) iS
returned. If the application is full, that is, m+1=arity(£1), then first the global state is updated: if
the &1 in parameter position j of £iis a global variable X, then the corresponding value vj is
assigned to X. This is done from left to right for j=1,...,m. Then the argument expression e; is
evaluated in the resulting state to obtain the value vy, . If &k, is a global variable, then its state
is updated with vy, .. Finally a new environment p' is built using those argument values among
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ViseeVmVme1 that were not assigned to global variables, and the body of £i is evaluated in this
new environment.

The formal semantics of H with imperative extensions is expressed using operational
semantics as before. We assume that for any given program a finite set Var of local variables and a
finite set GloVar of global variables are given and that they are disjoint:

x: Var - local variable of a defined function,
X GloVar - global variable,

& VaruGloVar

o: State = GloVar - — Value - state of global variables,

Ciniy = #0: State - the initial empty state.

The set of input parameters Input = FreeVars(e®) must be disjoint from the set Var U GloVar of
local and global variables, and all local variables in the program must be distinct. Moreover, for
every function definition £i @ (&l,,...,.El,) = e, each local variable that occurs in the body ei must
appear in the parameter list £1;,...,EL,.

We introduce some notational devices to simplify environment definitions and state
modifications in the semantics. When p € Env, v € Value, and € € Var U GloVar, we take

plé=vl tomean plxr>v] if§isalocal variable & = x ¢ Var,

o) if £ is a global variable.
Consequently, with vy, ..., v, € Value, and §;...,, §, € Var U GloVar,

p = [§jr>vjfor j=1,.,a] means P =[xp;Vpimer Xkt Vil
where xp,..., xpk is the subsequence of §j,..., &, for which xp; = &y is a local variable.
Similarly, for ¢ € State, we take

olé>v] tomean o[Xr>v] ifEis a global variable £ = X & GloVar,

c if € is a local variable.
Consequently, c[gj»vj for j=1,..,a] means O[Xg1m Vg1l ... [Xgnt>vgp] where Kglswnr Xgh is the
subsequence of &;...., &, for which Xgj = Egjis a global variable.

With these conventions, we can quite compactly write the new environment p' and the
new state ¢' built by a full application ey @ e where e evaluates to the closure £i(vy,...,vy,) for
the defined function £1 @ (&l),....EL;) = el and e evaluates to vy,1. The new environment will
be p' = [EL>v; for j=1,.,m+1] and the new state will be ' = 6[ELy, 17V, 1] where G is the
state just after evaluation of e,

For a given imperative H program

pgm= def {fi @ (ﬁil,..., iarity(fi)) =ei}ie1 in e0

with Input = FreeVars(e?), and a given initial environment pg: Input — BValue, the program
evaluation rule is '
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Po: Oinig F 0= v, 0
(HIP1)

po k def {1 @ (Ely,...Eliieh) = ellier in V=V
The expression evaluation rules are:
(HIE1) p,6Fx=vV,C where x € Varand p(x) =v
(HIE2) p,otX=v, 0 where X € GloVar and 6(X) = v

(HIE3) p,ot+ fi= fi(), o

P, Oj.1 ¢y =vj 03 forj=l...a where a = arity(a)
(HIE4) and v = A(V],...Vy)
POk Alep..eg) =V, 0y

P, 0'0}' e] = e, 01
P,C1Fer=v,0,
(HIES)

P, Og b ey—ege3=>v, 0

p, G F e1 =» false, oy
PO Fez=v,0p
(HIEG)

p.9g F ej—epe3 =V, 0p

P.Ogleg= fi(vl,...,vm), o

P, 60 F e1 = Vi, O} where m+1 < arity(£i)
(HIE7) -

P, 0ot eglie = fl(Vl,...,Vm+1), oy

P» Og F g = £i(vy,...vp), O'p where m+1 = a = arity(£1),

P, 0 gk €17 V41, O} elisthcbodyoff'

pLe"1F el2vV, 0 o'y =0‘0[§:‘I—>v for j=1,. ,m],
(HIES) 0’"1-0 1&Tm+1 T+1}’

p,Oglegl ey =v, 0 —[@HV for j=1,..,a]

With this semantics the description of imperative H is complete. It is deterministic as is the
sernantics for applicative H, and clearly extends that semantics: on applicative H programs they
yield the same result.

4.2 Path Semantics for H

Here we give the path semantics of applicative H programs. The path semantics will reflect our
assumptions about the behaviour of assignment in imperative H programs. In particular, the new
environment for evaluation of a function body is not built until a full application of a closure is
done. This means that variable definitions | x happen only at full applications.
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As for L. programs, the path semantics will prescribe the definition-use path for
evaluation of program pgm in initial environment py for any given pgm and pg (provided the
evaluation terminates). The path semantics will have precisely the same structure as the operational
semantics for applicative H from Section 4.1.1, and will use the same definitions (of the set Path
and so on) as the L path semantics from Section 2.3.1. The path semantics is deterministic,

Let an applicative H program

pgm= def {fie (# e xlgrity(eiy) = elljer in &0

and an initial environment pg: Input — BValue be given. Evaluation of pgm yields the path & if
and only if evaluation of the initial expression eV yields path n:

pored=v,n

(HPP1) . : - -
po F def [{f1@ (xllv"'xlarity(fi)) = el]iEI in &0 =V,

For the expression evaluation rules, recall that € € Path is the empty path:
(HPE1) pF x=>v, Tx where p(x) =v

(HPE2) p} £1 = £i(, e

pFej=vjmn; forj=l,..a where a = arity(a)
(HPE3) and v = A{vy,...,v,)
PFA(e]..,ey) =V, .0,

pFe;=true,m

Prex=v,m
(HPE4)

o e1—der ez =V,

Plre;= false, Ei%]
Plrey=v, Ny
(HPES)

pFej—eje;= v, My

P eg= £i(V,envpy), Ty

PFep= vy Ty where a=arity{£l)

(HPEG6) - andm+l<a
PFegler = f4vy,,Vme)s TR
pEep=> fi(vy,..vg), Ty where a=arity(£1),
PFep=vn R m+l =a, .
Prel=v,w el is the body of £,

(HFE7) g' = [x‘li?vl,...,xlal*va], and
PFegler=v, 1= A%y, €1)

E0<~LX11...JrXimTE181 o>
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The auxiliary function A was defined at the end of Section 2.3.2. With this path sernantics we can
obtain the definition-use path for evaluation of a given program in a given initial environment. The
interference criteria given in Section 2.4 can then be applied-to check for interference in this path,
To get a computable check for interference on the set of all possible paths of the program, we
construct a du-grammar Gpgyy, for the program pgm and make an approximate interference analysis
on this grammar that works like the interference criteria for a single path. The general grammar
construction for H programs is shown in Section 4.4, The interference analysis is the same as for
L programs (Section 3.2). Unlike the grammar construction for L programs, the present one
requires the support of a flow analysis, to be presented in the next section.

4.3 Closure Analysis

We shall construct definition-use grammars for H programs as we did for L programs. How can
we extend the grammar construction of Section 3.1.2 to work for H programs also? The only new
problem is the application expression e @ ;. The grammar nonterminal symbol N ggae; for this
expression must be able to derive all paths that evaluation of eg @ e can yield. But the path for
evaluation of eg @ e; will depend on which closure e evaluates to, as can be seen from path
semantics rules HPE6S and HPE7. During the grammar construction we cannot g priori know this.
One possibility then is to take the safe but very conservative view that ey may evaluate to any
closure possible for the program, and make the grammar derive paths for all these possibilities.
This will give a too conservative interference analysis, however, and may spoil oppoftunities to
globalize variables.

A better solution is to do a flow ahalysis of the program (before the grammar
construction) that will allow us to find a more accurate approximation ca(eg) to the set of closures
that e may evaluate to. Using the information collected by this analysis we can make the grammar
generate fewer unnecessary paths. We call this a closure analysis, abbreviate it ca, and describe it
below. It must hold that every closure that evaluation of ey may return is a member of the set
described by ca(eg).

Recall that a concrete closure has the form fi(vy,...,vy,) where the v's are values and 0 <
m < arity(f1). The closure analysis will work with abstract closures of the form (£i,m), The
abstraction of a concrete closure £i(vy,...,vy,) is (£1,m) in which the actual values vy,...,vy, are
disregarded. An abstract closure (£i,m) represents the set { £i(vq,...,vyp) | Vi€ Value, j=1,...,m ]}
of concrete closures,

Abstract application of (£i,m) to some value v yields a new abstract closure (£,m-+1) if
m+1 < arity(£1), If m+1 = arity(£1), then the result is the set of abstractions of closures that
standard evaluation of el may return. (Note that the argument value vis disregarded completely).

The closure analysis works by building two finite functions (tables) cf and ¢v. The
intention is that cf(£1) shall contain the set of all abstract closures that (abstract) evaluation of el can
ever return, and cv(x) shall contain the set of all abstract closures that variable x can ever be bound
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to. Formally, we define the set AClo of abstract closures and the types of cf and cv as follows:

¢: AClo={ (fim) | O<m<arity(£l), ieI } - abstract closures,
cf: CF=1-— @(AClo) - abstract closure values for functions,
cv: CV =Var - p(ACIo) - abstract closure values for variables,

Here, I is the indexing set for the functions in the given H program pgm. In this section we will
identify each local variable xKj in Var with the pair (k,j) where 1<j<arity(£¥) and ke 1. This is

admissible because all variables are assumed to be distinct. The functions cf and cv are defined
recursively in terms of two functions CA and VA. The intention is that CA [ e Jcf cv is the set of
abstract closures that evaluation of e may return under the assumptions that function £ can return
only closures in cf(f) and that variable x can be bound only to those abstract closures that are in
cv(x). Analogously, VALell(k,j) cf cv is the set of abstract closures that evaluation of e may bind
to variable xkj under those assumptions.

Definition 4.3-1: For a given applicative H program pgm the functions CA and VA are defined as
follows (where HExpr is the set of applicative H expressions):
CA: HExpr — CF — CV — @2(AClo)

CAllxJefev = cv(x)

CAlLfillcf ev = { (£1,0) }

CAlA (eq,....ey) Jefev = CAllejlefevu ... U CAlle Icf v
CAlley—eg, e3llefev = CAlleslcf cv U CAllezlef ov
CAlleg @ ey Jcfev = U{ aapp(c.efev) lce CAleglcfov }

where aapp((£i,m),cfcv) = if m+l=arity(fi) then cf(£i) else { (fim+1)}

VA; HExpr -3 Var = CF — CV - @(ACo)

VALxI(k,j) ef cv = [}

VAL £13(k,j) cf cv = ()

VALA (e ymep) Jkj) of ov = VALe; Tk ef ov U ... U VALe J(k ) cf ov

VAllej—ey, eslitkj cfev = VAle lkjefevu ... w VALeslltk,j)ef ev

VAleg@ e It cfev = Cpyu VALegl(k,j) of cv U VALe; Iky) cf ov
where Cy = CAllejJcfev if (£kj-1) € CAlleglef cv

{) otherwise g

Clearly for the functions cf and cv we want that cf(£1) equals CAleillef cv and that cv(xkj) is the
union of VAllell(k,j) cf cv for all expressions e in pgm. At the same time cf{£}) and cv(x) should
contain as few elements as possible or else the closure analysis will be unnecessarily imprecise.
This indicates that the cf and cv we want are simultaneous least fixed points of A(cf,cv). Ad.
CAleilcfcv and Alcfev). Ak,j). W {VALeill(kjefev lie 1),
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This insight is exploited in

Definition 4.3-2: The approximate closure analysis ca: HExp — g (AClo) for a given applicative
H program pgm is defined by

ca(e) = CAllelcfey
where (cf,cv) is the pointwise inclusion-least solution to

cf(£) = CAlleillefcv foriel

ev(xk) = U VALellkj) efov lie 1} forx¥je Var a

The required solution (cf,cv) in the definition exists, is unigue and is effectively computable, for
Alcf,ev). M. CAlleillcfov and Adef,ev). Ak,j). U {VALeil(kj)cfev |lie I} are monotonic

on CF x CV when this set is made into a lattice by the pointwise inclusion ordering on each
component. The correctness requirement on this analysis is: if there is a terminating evaluation of
program pgm in which evaluation of e returns closure fi(vl,...,vm}, then its abstraction {fim) is
in ca(e). This is proved to be the case in Proposition 5.1-1.

The construction of cf and cv can be implemented simply by an iterative algorithm that
starts with ¢f = Afi{} and cv = Ax.{) and repeatedly recomputes cf(£i) := CAleillcf cv and
ov(xky) := U {VALell(k,j) cf ov |ie I} until of and cv stabilize which will happen in finitely
many iterations.

Example 4.3-1: For the interpreter program from Example 4.1.1-1, the closure analysis will
construct the following functions cf and cv:

cf(Cmd) = {(Upd,2), (Compose,2), {I£,3) )

cf(Exp) = {(ndd,2), (Look,1) }

cf(£) ={} for all other functions £
cv(fi) = { (Upg,2), (Compose,2), (I£,3), (F.2) }

cv(f2) = { (Upd,2), (Comp,2), (I£,3) )

cv(x) = {} for all other variables x

With these cf and cv, the closure analysis yields ca(Cmd ¢) = { (Upd,2}), (Compose,2), (I£,3) }.
Using this fact and cf(Upd) = cf(Compose) = ¢f(If) = { } it is easy to see that
ca(Cmd ¢ empty)={ ] which shows that the result of the interpreter cannot be a closure, O
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4,4 Definition-Use Grammar Construction for H

For a given applicative H program pgm we can construct a definition-use grammar Gpgm that
derives every path possible for the program. The construction is quite similar to that for L
programs given in Section 3.1.2, except that the present construction needs the results of the
approximate closure analysis ca developed in Section 4.3.

As for an L program, the du-grammar for an H program pgm will have start nonterminal
Npgm- and the other nonterminals will be of form N, where e is a (sub)expression in pgm. The
nonterminals are also interpreted in the same way: if x is a possible path for program pgm, then &
must be derivable from the start nonterminal Ny, Likewise, if ® is a possible path of expression
e in some evaluation, then © must be derivable from N,..

The grammar construction is based on the H path semantics (Section 4.2), The only case
in the construction which is not straightforward is application eq @ e. The closure analysis must
tell which (abstract) closures e may return, and partial applications (path semantics rule HPEG6)
must be distinguished from full applications (rule HPE7).

Algorithm 4.4-1: Definition-use grammar construction for H.
Input: An applicative H program pgm = de £ (£1 @ (xy,....xlyigy(eiy) = ellier in el
Output: The set R of rules of definition-use grammar Gpgm for pgm.

R:={ Npgm = Net |5
while there is a nonterminal that is used but not defined in R do

choose such a nonterminal N;

case e of
variable x :R:=RU(N, —»Tx}
£l tR:==RuU{Nsi—oe}

Afel,...ea) :R=RU{Nai1,. ea) 2 NeiNazNea b
el—e2,e3 ! R:=RU{Ngj 03,63~ NaiNess
Nel-ubeZ,e3 - NelNe3 b
ed@el:
for each (£im) e ca(e0) do
if m+1 = arity(fi) then
R:=RU [ Nggge1 = Neo<dsdy.. dxi N 18) O N_i> )
where 8; = AGxl,,1,e1)
else (x m+1 < arity(£1) )
R:=RU [Neoge1 = NeoNes |
endif
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This grammar construction algorithm could be improved by suppressing generation of e-rules and
rules that can produce only a single terminal symbol. Notice that the right hand sides of the rules

generated have the

form required for members of Rhs (defined in Section 3.1.1).

The correciness of the grammar construction heavily depends on the correctness of the

closure analysis, but otherwise the correctness proof is completely similar to that given for the L

grammar construction in Section 3.1.

Example 4.4-1: A definition-use grammar for the interpreter from Example 4.1.1-1. The

construction of this grammar relies on the results of the approximate closure analysis shown in
Example 4.3-1. The grammar below has been rewritten to reduce the number of rules.

gpgm
}fﬂﬂn
gm
Cmd
NCmd
Cmd
Pqud
NEx g}
Exp
Exp

NE—F
IJE-F
NC—F
C-F
I\'IC~F
Compose
Compose
Compose
Compose
£2
qu2
Nf2
E-A
E-A
Look

= <led Ncmd><i'idu¢eu~lrsu O Npoa>

— <lc ON_ ><dferleadx ON,,

- <le ONCmd><leilcilici2ci

B Tel

— TeTeeTecde 0N, > <Tedec O N, >

- Teteletelelo e

= TeleTeTeTeTe <Tele ¢ Ne o™

- TeTeTe

- TeTele

— TeTeTeTe

- Tigu<teueure ¢ Neyp™ <teallea2Tsu sursa O N, »>Tsu

— Tidu<Teu eurne ¢ NExp> <didTsu su»si ¢ NLook>?su
<Tei eire ONg, >N, <Teil cilse 0N >N ;

<Teieire ONp, >Np - <Teiz ciZwe 0Ng >N ;

<leallea2Tsi sivsa O N, >

<l1dTsi sinsl ON, >

<liduleuTsisi»su Nypa™

<le1de2Tsi sivk 0N 000>

<leilcillciz2Tsi sinsid N >

<Tef efre ONg, >Ny _TetTcfclerdct No_p Isf O N>

<Tef efre ONEXP>NE_FTsf

<leallea2Tsf sf»sa 0N, >

<{idTsf sErslON; >

<Tef cfrc ONepg> <biduleulss sevsu 0Ny >

<Tef cfre @ Nepa® <l£1lf2Tsf sErx ON

mPOSe>
S1ON;e>

>

<Tet ctne O N, > <leidcitlcizTss sfic;.mf%sﬁIp
<lefdcf N, s ON> .
<liduleuN;, Isu ¢ Nypa>

<bE1L£2Nep 32 ONc oo™

<deilcillciz N,, 1358 N;.>

<liduleuTsx x»au § Nupd>
<b£1d£2Tx 202 O Ne oo se™
<leilcilicizTx x»si 0N >
<wleallea?Tsa sanza 0 Nyga>
<lidTsa sansl ¥ Nicox™

TigTs1 O
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From this du-grammar it can be deduced that with y = {su, si, sf, x, sa, s1} and I = {v},

none of the variables in y interferes with each other relative to T in the interpreter. Hence all

variables in ¥ can

be replaced by one global store variable S. Furthermore, every one of these
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variables appears as the last one in its parameter list and therefore its value is never enclosed. This
is the result obtained in the paper [Schmidt 1985] from which the interpreter example originates.

4.5 The Globalization Transformation for H

The transformation that globalizes variables in an applicative H program is quite similar to the
transformation for L programs presented in Section 3.4. The presentation here will therefore be
fairly terse.

The transformation takes as input an applicative H program pgm and a variable grouping
I" for pgm, and produces as output an imperative H program pgmp. This program uses one global
variable called X for each variable group ye T and is constructed by transforming each function
definition £1 @ (xby,...,xlaryy(¢i)) =el as follows. Every parameter i in the parameter list which
belongs to some variable group v € I is replaced by the corresponding global variable Xy
Consistently with this, the body expression e! is transformed so that every use of variable xl; is
replaced by a use of X,.

The effect is that a full application of the transformed function £1 will build an
environment p' that contains bindings only for those xij that do not belong o any variable group in
. The value for a variable that does belong to a variable group ¥ will be assigned to the
corresponding global variable X, instead. These assignments to global variables during the
building of the new environment p' happen strictly in the order of evaluation of the argument
expressions, that is, from left to right. If the full application is the result of an application of a
non-empty closure £i(vy,...,v,,) to one further argument, and j < m, then the value of v for xl;

J
comes from the closure, but it is assigned to the global variable X, only at full application.

Algorithm 4 .5-1: The globalization transformation for H programs.
Input: An applicative H program
pgm= def {£@ (xi,...,.xly(riy) =ellier in 0
and a variable grouping I" for pgm which is not interfering in pgm.
Qutput: An imperative H program in which every variable group ye T is replaced by a global

variable Xy
The transformed program is
pgmr = def {fig@ (§i1,-.-,§iarity(fi)) =tel}er in &0

where &} is the global variable X, if xi; of pgm belongs to variable group ye T, and &; is the local
variable xl; of pgm otherwise, j=1,....arity(£1). Each body expression ef is transformed into tef
= TLelIT using the expression transformation T defined below. The initial expression e@ is not
transformed, for it contains no variable x that belongs to a variable group. (It can contain only
input parameters of the program and these are not considered variables). (|
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Definition 4.5-1: The globalization transformation T for applicative H expressions is defined as
follows (where HExpr denotes the set of applicative H expressions and HIExpr denotes the set of

imperative ones):

T: HExpr — ¥ Grouping — HIExpr

TLxIT = Ky ifxe yforsomeye I’
= X otherwise
TL £ = fl
TLa(ep,e) IT = A(TleyIn..., Tle,ID)
Tlei—eq.e3Il = Tle Il » TIe,IT, TlesIT
Tlegee, I = Tlegl’ @ Te,IT O

The correctness of the globalization transformation is shown in Proposition 5.2-1.
4.6 Overview: The Globalization Method for H

Above we have presented the modifications to the globalization method necessary for a higher
order language H. In summary, the method works in these steps for an applicative H program

pgo:

' 1. Do the closure analysis to obtain the functions cf and cv for pgm (Section 4.3)
2. Use these results to construct a du-grammar Gpgm (Section 4.4)
3. Construct a non-interfering variable grouping [, by repeated application of the
interference analysis to the grammar (Sections 3.2 and 3.3).
4. Transform pgm into pgmpye, in which every variable group in I',, is replaced by a
global variable (Section 4.5).
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5. CORRECTNESS FOR H

This section proves the correctness of the globalization method for H. Since the globalization
method for H reuses many of the components from L, only the closure analysis from Section 4.3
and the transformation from Section 4.5 will be proved in detail. The steps in the overall
correctness proof for H are:
1. The grammar construction is similar to that for L and no new proof will be given.
Its correctness depends on the correctness of the closure analysis, however.
2. The closure analysis is proved correct in Section 5.1.

LN

The interference analysis is as for L and no new proof will be given.

4. The construction of a non-interfering variable grouping is exactly as for L and no
new proof will be given.

5. The globalization transformation is proved correct in Section 5.2.

The first four steps guarantee that a non-interfering variable grouping I',,, is in fact constructed by
our methods. The fifth step guarantees that given pgm and a variable grouping I not interfering in
pgm, the transformed pgmy is at least as strong as pgm.

5.1 Correctness of the Closure Analysis
Let an applicative H program
pgm= def {fi @ (Xil,..., xiarity(fi)) = ei]iel in eo

be given, and let ca: HExpr — % (AClo) represent the results of the closure analysis for pgm.

The correctness requirement for the closure analysis is: if during some evaluation of pgm,
expression e evaluates to a closure £i{vy,...,v,,), then cale) contains the approximation (£i,m) of
this closure. This is a property of the set of possible evaluation trees for pgm, relative to the
obtained closure analysis ca. For every (finite) evaluation tree and every expression evaluation
judgement p F e = v in the tree, if v is a closure fi(vl,...,vm), then (fi,m) e ca(e).

This will be proved by induction on the structure of evaluation trees for pgm. In outline,
we will prove that if ca safely describes the closures in p, then it safely describes the result v of
evaluation of e in p | e = v. This will suffice, for an initial environment pg: Input — BValue
cannot contain any closures at all and hence trivially is safely described by ca. But then so is every
judgement in an evaluation tree, and from this it follows that its results are safely described by ca.

First we must formalize the meaning of "safely describes".

Definition 5.1-1: Closure fi(vl,...,vm) is ¢c-safe for ca iff vj= £'(v'1,....V' ) € Closure implies
that (£',m’) € ca(x}) and v; is itself c-safe for ca, j=1,...,m, O
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Intuitively, £1(v,...,vy) is ¢-safe for ca if v; being a closure implies that the abstraction of vjisa
possible value for parameter position j of £l according to the closure analysis.

Definition 5.1-2: Letp I e => v be an expression evaluation judgement. The judgement is p-safe
Jorcaiff p(x) = fi(vl,...,vm) e Closure implies that (£1,m) € ca(x) and fi(vl,...,vm) is c-safe.

The judgement is v-safe for ca iff v = £i(vy,...,v,) € Closure implies that (£i,m) e ca(e) and v is
c-safe. g

Intuitively, p | e = v is p-safe if all the closures in p (and the closures these contain and so on)
are possible values (according to the closure analysis) for the parameter positions they occupy.
The judgement is v-safe if v is a possible value of e according to ca whenever v is a closure.

Proposition 5.1-1: Let py: Input — BValue be an initial environment, Every expression evaluation
judgement in the (finite) evaluation tree for py t e = v is v-safe for ca.

Proof: Since this root judgement is trivially p-safe for ca, every judgement in the tree is v-safe by
Lemma 5.1-1, and so in particular the root judgement is v-safe. O

Lemma 5.1-1: Let a (sub)expression e of pgm be given and assume the evaluation tree for

P I e = vis finite. If this (root) judgement is p-safe, then every judgement in the evaluation tree
is v-safe for ca.

Proof: By induction on the structure of the evaluation tree for p | e = v. The proof depends on
the operational semantics for H given in Section 4.1.1.

Case e=x matches rule HE1. We must have v = p(x). By p-safety, v = £i(vy,...v;) €
Closure implies that (£i,m) € ca(x) and that fi(vl,...,vm) is c-safe. Therefore the (only)
judgement in the tree is v-safe.

Case e=fi matches rule HE2. Clearly, v = £i() € ca(f}) = { (£1,0) }. Thus the (only)
judgement in the tree is v-safe.

Case e=A(ey,...,e5) matches rule HE3 with a = arity(2). Every premise judgement

p | ej= v for j=1,..,a is p-safe, and hence by the induction hypothesis, all judgements in their
evaluation trees are v-safe. It remains to prove the v-safety of the root judgementp b e = v. If
v=£'(V' ],V then v = Vj for some j & {l,...,a}, for the basic function A cannot return any
closure not passed to it as an argument. Therefore (f'.m" e ca(e;) by the v-safety of p ej =V
(which also proves that v is c-safe). Hence (£'m') € ca(e) =cale) v ..U ca{e,), which proves
the v-safety of the root judgement.

Case e=e)—ej,e3 matches rule HE4 or HES. Assume p | e = true so rule HE4
matches; the other case is similar. Clearly, p |- e; = vj for j=1,2 are both p-safe, so all the
judgements in their evaluation trees are v-safe. It remains to prove the v-safety of the root
judgement. Butif v = £'(v',....v\y), then (£',m) € calep) by the v-safety of p | e = v, and
so (£',m") e cale). Also, v is c-safe, and hence the root judgement is v-safe,
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Case e=e(@ey matches rule HE6 or HE7. First assume p | eg = £i(vy,...,v,,) With
m+1 < arity(£1) so rule HE6 applies. Both premise judgements are p-safe, and so by the induction
hypothesis all judgements in their evaluation trees are v-safe. Tt remains to be shown that the root
judgement is v-safe. Its value must be v = £i(vy,...,v V1) fOT SOMeE v, 1. But by the v-safety
of p F eg = £i(vy,...,vp), it follows that (£i,m) e caleg) and so (£i,m+1) & ca(eg@e;). The
c-safety of v follows because £i(vy,...,vy) and vy, are c-safe due to the v-safety of the premise
judgements, and because if v, = £'(V'1,...,v'y), then (£, m") € ca(e;) ¢
VAllegee; Ii,m+1)cf ev ¢ ev{xiy, 1) = ca(xiy, 1) which is a consequence of v-safety of the
premises and e being a (sub)expression in pgm. Thus also the root judgement is v-safe.

Now to the second case: m+1 = a = arity(£i) which matches rule HE7. Both
P F ep= £ivy,...,vy) and p F e] = vy, are p-safe, and hence all judgements in their
evaluation trees are v-safe by the induction hypothesis. First we prove p-safety of
p' b el = v where p' = [xijF>vy,... x> v,] and el is the body of £i, But p-safety of
p b eg = £i(vy,..,vy) implies c-safety of £i(vy,...,vyy). Moreover, vy = £V V) €
Closure implies (£',m") € ca(e}) ¢ VAlegee lG.m+1)ef cv ¢ evxiy, ) = ca(xiy,1) by the
v-safety of p F e =» vy, by definition of ca, and by e being a (sub)expression of pgm. This
shows that p' | el = v is p-safe, and hence by the induction hypothesis, every judgement in its
evaluation tree is v-safe. In particular, if v = £'(v'(,...,v'y) € Closure, then v is c-safe and
(£',m") € ca(el) which proves the v-safety of the root judgement, for then (£'.m") € ca(egleq) =
cf(£l) = ca(el). Hence every judgement is v-safe.

This completes the proof by induction on the structure of the evaluation trees. Hence if
an evaluation tree for e has a p-safe root, then every judgement in the tree is v-safe. g

Thus the closure analysis is correct in the sense mentioned above. In the next section we prove that
the globalization transformation and the entire method are correct.

5.2 Correctness of the Globalization Transformation for H

The globalization transformation for H programs presented in Section 4.5 is different from that for
L programs and requires a new proof.

Let an applicative H program pgm be given and let " be a variable grouping not
interfering in pgm. Then the transformed program pgmr is at least as strong as pgm: if
Po | pgm = v then py - pgmr- => v.

We will prave that for every (sub)expression e in pgm and environment p,
if . pre=v,

+ T'is notinterfering in the evaluation of e,

» the environment pr and the state & are consistent with p, and

» e'=T[elI is the transformed version of e,
then * PO e’ = v, o" for some o".
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That is, the transformed expression e’ evaluates to v also. Consistency of pr and ¢ with p means
that those variables in dom(p) which are not globalized must have the same value in pras in p, and
those that are globalized and are used in e must have the same value in ¢ as in p. By the variables
used in e we mean those in Up(®) where p | e = v, © by the path semantics. The concept of
consistency is made more precise in the definition below.

Definition 5 2-1. The wple {pr, G, e) is consistent with p iff
i. Ifxe dom(p)and x e UT,
then x € dom(pyp) and pr(x) = p(x).
2. If x € dom{p)and x € ¥ e I" and x is referenced during evaluation of e,
then Xy € dom(@) and o(Xy) = p(x). O

Variable x is referenced during evaluation of e precisely if x € Ugy(n) where p+ e = v, 7.
Notice that if (pr, 0, e) is consistent with p, then so is (pr, 6, ") for every e" which is a
subexpression of e.

Proposition 5.2-1. Letpgm be an applicative H program pgm and assume that I is not interfering

in pgm. For every initial environment pg: Input — BValue, if pg + pgm = v, then

Po F pgmr = v where pgmyr is the result of applying Algorithm 4.5-1 to pgm and I'.

Proof: T is notinterfering in path & where pg + €0 = v, m in the H path semantics, and

(Pg» Oinip> €V) is trivially consistent with pg. Hence pg, Oipi | € = v, ¢ in pgmy- for some o by

Lemma 5.2-1. N

Lemma 52-1: Let e be a (sub)expression of pgm, let p be an environment, and let I” be a variable
grouping for pgm. Assume that

* pF e =v,n inthe H path semantics,

« I'is notinterfering in path x,

* (pp. O, &) is consistent with p, and

« e'=T[elr is the transformed version of e.

Then + pr, G} e = v, ¢"in pgmy for some G",

Proof: By induction on the structure of the evaluation tree for p | & = v (which is the same as the
structure of that for p | ¢ = v, ). The induction hypothesis in the proof for p | e =5 v is that
the proposition holds for every judgement whose evaluation tree is a proper subtree of the
evaloation tree for p F e = v. Under the four assumptions stated above we will prove the
conclusion: the transformed &' produces the same result v as e does.

Case e=x matches rule HE1. Clearly p(x) =v. On the one hand, if x ¢ (UT, then e'=x
and pr, O | €' = v, ¢ as wanted because pp(x) = p(x) by the consistency assumption. On the
other hand, if x € ye I', then e’=Xyand pr, O | &' = v, 0 because p(x) = O(Xy) by the
consistency assumption.
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Case e=fi matches rule HE2. Clearly, p } ¢ = £i() and e'=e, and
$O Pr, O } ' = £i(), 0 as wanted. _

Case e=a (ey,...,e,) matches rule HE3 wi_th a = arity(a). We havep | €j =V}, & for
j=1,..a and e'=A (e'y,...,¢"3) With P, Gj; | &= v}, 0 for j=1,...a where 6y = ©.

Furthermore, %8 = R1...1, and v = A(vy,...,v,).

First we see that (pr, Oj_1» ej) is consistent with p for every j=1,..,a. For otherwise
there is an x € dom{p) with x € y€ I"and a j with 1<j<a such that p{x) # csj_l(xY) and
X € Uo(nj). But since p(x) = O‘O(Xy) by the consistency assumption, there must be ani < j such
that evaluation of e‘j changes X Thus there is a variable v € ysuch that y e DG(@)I, so v
interferes with x in =;...w, which contradicts the non-interference of I. Thus by the induction
hypothesis, v‘j = Vj for all j=1...,a, and 50 pr, G | A(e),...,@,) = Vv, O, as desired.

Case e=e)—rej,e3 matches rule HE4 or HES. It holds that e'=e'|—e'),e';. Assume
p | €1 = true which matches rule HE4; the other case is similar. We have p | e; = true, #; and
p t ey = v, Ty by the path semantics, and = = ®17;. By the induction hypothesis,

Pr. © | €'1 = true, G; (for some G;) for the consistency with p of (pr, G, e1) follows from that
of (pr. ©, €). Furthermore, (pr, Gy.e4) must be consistent, or else evaluation of e'; has modified
the value Xy for some x € ywith x € Up(ny). But then evaluation of eq has defined some y € 7.
That is, y € DG(xy)I" and so y interferes with x in 7y7) contrary to the assumption that T is not
interfering in m. We conclude that (pr, O, e5} is consistent with p, and by the induction
hypothesis it follows that pr, 6 | €'y = v, G, (for some Gy) with the correct value v as desired.

Case e=eg@e; matches rule HE6 or HE7. We must have e'=e'p@e’;. We treat the
cases of partial and full applications separately,

First the case of partial application. Assume p } eg = £i(vy,...,vy), Ty with m+1 <
arity(£1) so that rule HEG6 applies. Then &t = rgn; where p F €1 = V41, Ty and v =
£U(V],es¥myVme1)- We must show that v’ equals v in the evaluation pp, 6 | e'ple’; = V', 6"
of the transformed program. But pr, 0 + e'g = £i(vy,...,vy,), g for some 6 by the induction
hypothesis, for the consistency of (pr, &, eg) with p follows from the consistency of (pr, ©, ).
Then rule HIE7 applies:

Pr.Okey= fi(vl""’v!“)’ Co where m+1 < arity(£i)
Pr. Ok €'1 = Vine1, 0

Pr- Gk 9'0@9'1 =3 fi(vl,...,vm,v‘mﬂ), "

and we now just need to prove that v'y, .1 = V.1 to get the desired conclusion that
VLV V'ime 1) = V. By the induction hypothesis, it suffices to show that

(Pr» Cp, 1) is consistent with p. But if (pr, O, e1) is not consistent with p, then there is an x
used in evaluation of e; such that x € y& I’ and ¢'g(x,) # p(x), and thus its value must have
been changed during evaluation of ey, So evaluation of eg must define some vy € v. Hence v e
DG(mg)I" and x € Ug(n;) and so y interferes with x in & = mgm,, which contradicts the
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assumption that I is not interfering in 7.

Now to the full application case. Assume p | eg = £i(vq,....,vy), Ry Withm+l =a =
arity(£l) so that rule HE7 applies. Then & = ny<dxij...dxi 7;8; ¢ n'> where
PFe;=>vpe, 7 and p'F el = v, 1" and 8] = A(xip,q,e1). We must show that v' equals v
in the evaluation pr, 6 } ege'| => v', G" of the transformed program. By an argument similar
to that used above, it holds that pp, 6 + e'p = £i(v},....vp), O (for some &) and then rule HIES
applies. The variable list of the called function £1is xi;,...,xl; and that of the transformed fi in

pgmy- is &ip,....Ely.

pPr. o F e'g = £l (vl, -V ), Gp wherem+l =a= anty(fl)
pr,col-elzbvm_,_l,o'l 'llsthebodyofflmpgmr,
PG Fel=>v, G" 0—0’{ l->v for j=1,..,a],
c 1=0~ m+f‘"v +1], and
P Ok elgle’; = v, 6" PT=I tl aa ! fDr_]-— J: 1

Now letting 6" = co[ﬁijl—r»vj for j=1,..,a], the tuple (pr, 6", ey) is consistent with p. For else
there is an x € Up(ry) with x € ye I" which has been redefined either by a definition of some v €
¥ during evaluation of e, or by a push of some xij & 7y from the closure. In the first case v e
DG(my)I" and so y interferes with x, and in the second case xi; DG(lxij)F and so xi; intexferes
with x in <dxij...Lsxl 7,8, ¢ x> and hence in %, In either case the non-interference assumption
is contradicted, and so (pp, 0", 1) must be consistent with p. From the induction hypothesis we
conclude that v'y,, 1 equals vy, q in pp, 6" F €'1 = Vige1, O'1-

It now only remains to be shown that with p'- = [ €it>v; for j=1,..,a] and
6" 1=0"1[€114 1" Vm+1] we have (p'r, 0", ') consistent with p' = [xinvj for j=1,..,a].

Condition 1 for consistency: for xij € dom(p") with xi; & UT’, we have EL=xle Var
and hence p r(xl) vj=p (xi ).

Condition 2: assume xlj is used in evaluation of e, For xij € dom(p") and xij eveT,
we have &,ij =Xy Now if j = m+1 then clearly C"1(Xy) = Va1 = P4 1). If on the other hand
j <m+1 and contrary 10 Our expectation, G"I(X,Y) # p'(xfj), it must be because of an assignment to
Xy by ey or because another parameter xiy also in yhas been defined after xij {for some k > j
where 1 £k < m+1). In the first case, y € DG(n)T for some y € v, and in the second case xi; €
DG xi)T. In either case xi; € Up(r') and thus y (respectively x) interferes with xij in
<lxiy Ixipm 8, ¢ &> which contradicts the assumption that I is not interfering in 7.

This proves that (p'r, 61, ') is consistent with p', and so by the induction hypothesis
that p'r, 6"y | e = v, ¢" for some ¢": the correct result v is returned by the transformed
expression e' in this case also.

This concludes the proof by induction on the structure of the evaluation tree for
p b e = v and hence the lemma. O

This completes the proof of the globalization transformation. Now we will show that alt the
components in the method serve their purpose. Let an applicative H program pgm be given.
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Proposition 5.2-2: The grammar Gy, constructed for pgm by Algorithm 4.4-1 satisfies

(pgm) ¢ L(Gpgm)-
Proof: Similar to the proof of the corresponding Proposition 3.1.2-1. The proof of the case
e=eqle; requires the correctmess result for the closure analysis (Proposition 5,1-1); a rule must be
generated for each possible abstract closure value of eq. a

The interference analysis ia presented in Section 3.2 can be applied to the grammars constructed by
Algorithm 4.4-1, for the rule right hand sides have the form required for members of Rhs (defined
in Section 3.1.1). The comectness of using the interference analysis on Gpgm is proved in

Proposition 5.2-3: For du-grammar Gy, and variable grouping I for pgm, it holds that
ia(Gpgm)I” 2 Interf(pgm, I).

Proof: We have ia(Gpg)T = IAINper, I = ienvi(Npgm) 2 U { Interf(, T) | Npgry —* ) by

Lemma 3.2.3-1, and by Proposition 5.2-2, we have LNpgm) = L(Gpgm) 2 H{pgm) which proves

the postulate. ' (|

Now using Algorithm 3.3-1 to find an non-interfering variable grouping for pgm on the basis of ia
is correct, for the correctness of the algorithm depends only on the correctness of the interference

analysis which we have just proved.

Proposition 5.2-4; The variable grouping I" constructed by Algorithm 3.3-1 is not interfering in

Proof: As for Proposition 3.3-1 but with reference to Proposition 5.2-3 instead of Proposition
3.2.3-1. J

Now the correctness of the entire globalization method for H can be stated.

Proposition 5.2-5: (Main correctness proposition for H). Let pgm be an applicative H program; let
T'non be the variable grouping constructed by Algorithm 3.3-1; and let pgmpy,, be the program
constructed by Algorithm 4.5-1 when applied to pgm and ', Then pgmyq, is at least as strong
as pgm.

Proof: I'yep is not interfering in pgm according to Proposition 5.2-4, and therefore by Proposition
5.2-1, po F pgm = v implies py | pgmpy, = V. ]

This concludes the demonstration of correctness of the globalization method for H programs.
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6. RELATED WORK

This section compares our goals and approach to those of related work. Work by D, A, Schmidt
on detecting global variables in denotational definitions inspired this study and deserves special
mention. Schmidt's goal is to achieve better (more efficient) implementations from language
definitions expressed in denotational semantics using a strict lambda calculus. He employs an
analysis, based on the types of expressions, to detect whether all the store typed parameters in a
langnage definition could indeed be replaced by a single global store structure.

U. Kastens and M. Schmidt derive an approach to lifetime analysis for procedure
parameters from the attribute optimization techniques used in the compiler generator system called
Gag. Their approach is very similar to ours and their goals are essentially the same. Their
globalization method appears to be slightly weaker that ours and is not explicitly related to the
(operational) semantics of the language under consideration.

A. Pettorossi discusses globalization in a strict first order language quite similar to our L,
His technique adds "destructive markings” (annotations) to the program. The destructive markings
govern explicit deallocation of store cells. If the store cell for a function parameter value is
deallocated, the cell may be reused for a new value of the same (or another) function parameter.

Subsections 6.1 through 6.3 below detail these three approaches to globalization. Each is
characterized by its application area, language, goal, main concepts, globalization criteria,
transformation, and correctness considerations. In addition we try to assess each approach and
compare it to our own.

Section 6.4 summarizes the characteristics of the three globalization methods mentioned
and our own. Section 6.5 mentions related techniques used in compiler writing.

6.1 D. A. Schmidt: Detecting Global Variables in Denotational Specifications
This section is based on the paper [Schmidt 1985] and on Section 10.5.2 of [Schmidt 1986b)].
6.1.1 Characteristics

The application area is that of semantics-directed compiler generation. This area is concerned with
awtomatic construction of language implementations from formal language definitions. Usually,
the definitions are denotational semantics specifications, expressed using a variant of the lambda
calculus.

The langrage considered by Schmidt is a strict (call by value) version of the typed lambda
calculus, and therefore is higher order. It has unspecified evaluation order unlike our H.

The goal of Schmidt's work is to alleviate some of the efficiency problems resulting from
semantics-directed compiler generation. In particular, the objective is to obtain better object
programs from automatically generated compilers. To this end, he develops criteria for detecting
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whether all store typed parameters in a denotational definition could be replaced by a single global
variable. The globalizability of the store component is very important for run-time and storage
efficient implementations of sequential languages such as Pascal: it is awkward to have several
copies of the semantic store component at run-time. The criteria developed are useful also in
designing optimizing compilers for applicative languages.

The main concept is that of single-threading: "A semantic definition whose store
argumnent can be replaced by access rights to a single global variable while preserving operational
properties is said to be single-threaded (in its store).” [Schmidt 1985, p. 300]. The paper gives
sufficient criteria for single-threading, based on the types of the definition's expressions. To
present the criteria we need two auxiliary definitions. A subexpression is active if it is not properly
contained within an abstraction Ax.M. A store-typed expression is trivial if it is justa store-typed
identifier ocourrence. The sufficient single-threading criteria are [Schmidt 1985, pp. 304-305]:

"Definition. A closed expression F is single-threaded (in its store argument) if all
subexpressions E of F possess the properties:

A, Noninterference
(i) I E is store-typed, then if E contains multiple, disjoint active occurrences of
store-typed expressions, then they are the same trivial idendfier.
(ify If E is not store-typed, all occurrences of active store-typed expressions in E are the
same trivial identifier.

B. hnmediate evaluation
(& IfE=(x.M): Store - D, then all active store-typed identifiers in M are
occurrences of x.
(ii) IfE=(Ax.M): C — D, and C is not store-typed, then M contains no active
store-typed expressions.”

The single-threading criteria have two parts, noninterference and immediate evaluation. Non-
interference corresponds to our concept with the same name, and immediate evaluation corresponds
to non-enclosure. The use of the criteria can be shown by a few examples [Schmidt 1985, p. 305]:

@ CICy; Cpl = As. CIC3H(CICy1s)
() E[E; + Eq] = As. E[E{)s plus E[E;]s
() Plprocedure C using I] = An. As. C[Cl{updateil)n 5)
where P: Procedure —» Nat — Store — Siore
@ M{plusl]=tn. succn
where M; Operator — Nat — Nat
(& CIC; op Cy) = As. CICy)s combine C[Cy]s
(@ E[valof C is E] = As. E[E)}(C[Cls)
(® Qlprocedure C]=3s. As". C[C]s
where Q: Procedure — Siore — (Store — Store)
M) Clcall P(E)] = As. F[P]{An. E[Els}s
where F: Procedure — (Nat — Nat) — Store — Store

Expressions (a}{(d) are single-threaded. In particular, expression (a) complies with property
(A1), for its store-typed expressions are nested, not disjoint. The call-by-value reduction
strategy forces a lock-stepped evaluation. Expression (b) shows the proper use of multiple
access rights, complying with property (Aii), and expression (c) complies with property (Bi),
for the occurrence of the store variable 5 is properly bound 1o the enclosing As, guaranteeing
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that the call-time store will be used with the procedure upon invocation, Expression (d)
clearly satisfies property (Bii). Property (Ai) is violated by expression (), for the disjoint
active occurrences of C{C,]s and C[C,]s suggest that C; and C, will each need local stores
to properly complete the noninterfering evaluvation, Expression (f) violates property (Aii),
which creates a problem when it is used in an expression such as [(valof (C)is E{) + Epl: a
locat store for B, is needed. Expression (g) violates property (Bi), for the procedurs object
saves its declaration-time store for evaluation and ignores its call-time one. Finally,
expression (h) violates property (Bii), for the thunk’ (An. E[E]s) created at procedure call time
saves the call-time store for later use.”

If we translate the expressions (a) through (h) into H, we can test onr criteria on them. (The above
examples are rot dependent on the evaluation order being unspecified). We find that the s variables
are not interfering in any of (a) through {d), aésuming that evaluation of E cannot define s.
Furthermore, s is not enclosed during evaluation of these expressions. But s is interfering in (e)
under the (reasonable) assumption that evaluation of C may define 5. In example (f) we observe
that if C may define s, then so may E, and this is inconsistent with the assumption just made about
E. Expressions (g) and (f) both enclose a store variable.

The transformation of a single-threaded denotational definition works as follows. The
definition is assumed to use a store aigebra that contains all functions working on the store type.
All manipulation of store values is ultimately done by these store algebra functions. Now the
definition is transformed by replacing the store algebra by a store class in the Simula sense. The
store class contains one store variable and a collection of operations that access or modify this
variable. Each function from the store algebra that has a store-typed parameter is replaced by an
operation that accesses the store variable; and each function from the algebra that returns a
store-typed value is replaced by an operation that modifies the store variable. The transformed
definition uses the store class operations instead of the store algebra functions but is not otherwise
modified. The net effect is that evaluation of a non-trivial store-typed expression assigns the result
(the new store value) to the global store variable, and all references to store-typed values are made
to the global store variable.

The correciness of the transformation is proved by an interpreter equivalence proof which
is outlined but not given in the paper [Schmidt 1985]. It is not easy to see intuitively why the
single-threading criteria are reasonable.

6.1.2 Assessment: D. A, Schmidt

In Schmidt's framework the type consistency requirements restrict the way expressions can be put
together and the way they can behave. That is why the apparently very "local” single-threading
conditions are sufficient. Our du-paths must explicitly tell what happens in subexpressions and in
functions called from the expression under consideration. In the typed lambda calculus, this
information is provided by the types of expressions and function calls, This approach would not
work if coercion of the store type into another type or vice versa were allowed: the type system
must be completely unforgiving,
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Schmidt's criteria for single-threading are elegant and easily checkable, Why then have
we developed another technigue? There are several partial reasons for this:

1. Schmidt's language has no conditional expression and the inclusion of one requires numerous
refinements to the single-threading concept. In the lambda calculus a non-strict conditionat can
be simulated using a strict basic function if(x,y,z) and letting y and z be function-valued
expressions, but this is not possible in a first order langnage.

2. The use of types of expressions is highly "intensional". It is very important that expressions are
given types in a certain way for a definition to be single-threaded in its store argument. In fact,
types automatically assigned by a straightforward type system may fail to satisfy the single-
threading criteria; extra conditions on the type system, or some human intervention, is needed to
obtain single-threading.

3. Therefore it is not clear how the approach should be extended to apply to an untyped language.

4. The set of store-typed variables in a program plays the role of a single variable group in our
framework. To find several variable groups would require detection of single-threading in
several "store" types at the same time. While this may be feasible, it is not clear which
requirements it would impose on the type system. Thus it is not clear how the approach could
be extended to detect several globalizable variable groups.

5. The criteria do not rely on any particular evaluation order and thus may yield too conservative
results in case a particular evaluation order could be guaranteed. It is not clear how a specific
evaluation order could be taken into account.

6. Schmidt requires the store type to be non-functional. It is not clear to us whether this is
essential for the validity of the single-threading criteria.

In conclusion, Schmidt's approach is simple and elegant for the typed lambda calculus, but it
would require rather comprehensive modifications to apply it to an untyped functional language
with a non-strict conditional, for example.

6.2 U. Kastens and M, Schmidt: Lifetime Analysis for Procedure Parameters

This section is based on [Kastens, Schmidt 1986]. Their approach originates from optimization of
attribute evaluation in compilers generated by the compiler generator system Gag [Kastens, Hutt,
Zimmermann 1982], [Farrow, Yellin 1986], [Kastens 1987]. The approach is quite similar to ours
and came to our attention only rather late in the project, after we had independently explored the
concepts of definition-use path, grammars, and globalization criteria to some extent,
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6.2.1 Characteristics

The application area is optimizing transformations of procedure calls, The language is a kind of
extended Pascal; procedures have input parameters and output parameters. Function results are
returned via output parameters. The language is higher order; functional parameters are allowed.
{But the techniques seem to be insufficient to handle the higher order case properly).

The goal of the work is to replace procedure parameters (input as well as output) by
global variables whenever this is possible. The techniques can also be used to improve calling
sequences, thus yielding optimization of fail recursive calls as a special case,

The concepts of lifetime analysis and lifetime grammar are central. The lifetime grammar
is constructed from the program, and the lifetime analysis is done on the grammar as in our
approach. To begin with, consider the restricted case of first order programs without nested
procedures. The grammar for a program has a nonterminal symbol for each procedure in the
program, The strings detivable from the gprammar are comparable to our du-paths (Section 2.3).
They contain terminal symbols D, for definition of parameter x and U, for use of x, corresponding
to our 4x and Tx. There is no counterpart of our copy action y»x or of the call structure brackets
"<, 07, and ">". However, "If several calls of the same procedure occur in one context or if a
procedure is called directly recursive then references to their objects [that is, variables or
parameters] are distinguished by number indices, ..." [Kastens, Schmidt 1986, p. 56]. The
purpose of this probably is the same as that of our brackets: to distinguish different invocations of
the sarne function and hence different incarnations of the same variable.

To find the lifetime of an object, only its definition and its last use need be known. Each
rule right hand side is processed by deleting all but the last use U, for each x and replacing this last
one by the symbol L. (This is meaningful because each right hand side represents precisely one
procedure body, that is, a single lexical scope). Now the lifetime of one incarnation of object x
begins with a Dy and ends with the first L, following that. The resulting grammar Gy may be
"projected” onto a set B of variables (which plays the role of a variable group in our terminology).
Projection means that every symbol D, with x € B is replaced by D, and the D, for whichx ¢ B,
are delected. The use symbols U, are treated similarly. The projected grammar is called Gg.

The globalization condition is that definitions and uses alternate in every string derivable
from the grammar: L{Gg) ¢ (DL)*. Intuitively, the last use of an object must precede the
definition of its next incarnation.

The above technique works for first order and nonnested procedure definitions. A local
definition (within another definition) can be made global by introducing a new parameter for each
non-local variable. This way nested procedure definitions can be made nonnested, and so the
technique applies also to (first order) nested definitions.

The extension to higher order programs (that is, with procedures passed via input or
output parameters) is more problematical. According to the paper it is sufficient to add "chain
productions” to the grammar [Kastens, Schmidt 1986, p. 58]:
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"Let p be a procedure with a functional parameter f, and ¢ the name of an arbitrary declared or
formal procedure. If fis an input parameter a call of p may have the form p(q) and f may be
called (or further passed as a parameter) in the body of p. If f is an output parameter the body
of p contains parameter assignments of the form f := ¢ and f may be called (or further passed as
a parameter) after a call of p. For the construction of our lifetime grammar Gy calls of £ are
treated like calls of declared procedures: They are transformed into occurrences of the
nonterminal f. For each parameter assignment to f (input as well as output) a chain
production f ;1= g is added to G."

This approach however is too simple to work properly in general. Consider the example program
below in which one functional parameter is applied to another (such cases will often result by
flattening a nested higher order program): '

proc p(proc pf, pg)
begin pfipg) end;

proc g(proc gf)
begin gf end;

procr
begin ... end;

plg,n)

The "chain production" approach as described would yield chain productions pf ::= g and pg ==,

which is correct. But the rule gf ::= pg must also be added, and this requires that we know that g is
a possible value of pf. This information can be collected by a simple version of our closure
analysis (Section 4.3), or by rewriting pf using the grammar rules already produced (as in the flow
analysis described in [Jones 1987]).

Another problem with the extension to higher order programs is the adding of indices to
terminal symbols in the grammar. In the expression f{...) + g(...), f and g may be functional
parameters bound to the same procedure p, and thus indices should be added to the grammar rule
symbols for this expression. But discovering that f and g might denote the same procedure would
again require a closure analysis or a rewriting of f and g using the grammar chain productions. We
conclude that the lifetime grammar technique can probably be extended to higher order programs
but that the extensions have not been presented in complete detail in the paper.

The globalization transformation simply replaces a set B of variables for which L(Gg) ¢
(DL)* by a single global variable X. First, assume x € B is an input parameter of procedure p. In
p’s body, every occurrence of x is replaced by X, and in each call to p, the argument expression
corresponding to x is removed and an assignment to X is inserted before the call. Second, assume
X is an output parameter of p. Then the assignments to x in p's body are replaced by assignments
to X, and in each call to p, the argument expression corresponding to x, which must be an
occurrence of some variable y, is removed and an assignment y := X is inserted gfter the call.

The correctness of this approach to globalization is not discussed in the paper. The
construction of lifetime grammars is not formalized and is not (explicitly) based on assumptions
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about the semantics of the language. However, the globalization condition is simple and intuitively
reasonable, and it is clear that the approach could be formalized if desired.

6.2.2 Assessment: U. Kastens and M. Schmidt

The globalization criteria are much simpler and probably easier (and more efficient) to apply than
ours. Also, the lifetime grammar constructed for a program is likely to be more compact than our
du-grammars. However, the technique appears to be somewhat more conservative than ours, One
reason is the lack of copy actions. Consider the exp function in cur pP interpreter (Example
2.1-2)

exp{e,se) =
e=constant "k" — k,

H_n

e=variable "z" — lookup(z, se),
e="e te," — plus(exp(e;,se},exples,se)),

The lifetime grammar for this could be (compare with the du-grammar in Example 3.1.2-2):

exp = U, U,
] Ue Ue Ue USEE!
| UgU,U,U,D, U, D, exp U, D, U, D, exp

Deleting all but the last U in each rule and replacing the last one by L, we obtain

exp = L | Lo Lge | D.DgoexpL,D.L,. D, exp
Finally, projecting this grammar onto B = {se}, we get

expu=¢ LD expLDexp
Repeatedly choosing the last alternative in this rule will derive a substring of form ...DDD..., and
so the set of strings generated by the grammar cannot be a subset of (DL)*. Therefore Kastens
and Schmidt's globalization condition is not satisfied for variable se of function exp, but our
analysis in Example 3.3-1 found that se is indeed globalizable (together with variable sc). The
problem is that the definitions Dy of se are not definitions at all; they are copies se»se in our
terminology.

It does not seem to be easy to extend this approach to include copy symbols. For
correctness of the globalization condition, it is essential that there is at least one Dy for every L, in
each string derivable from the grammar, and this would not be the case if definitions could be
deleted when they are just copies. However, to do justice to this approach we should point out that
copies which are not definitions are less likely to occur in imperative programs than in purely
applicative ones.

The lack of call structure brackets is another reason for the approach being conservative.
This can be helped by a small wick, however. Consider the contrived program
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proc fix, y)
begin if y =0 then a := x else {3, y—1) end

Informally it is easy to see that x is globalizable, but it fails to satisfy the globalization condition.
The lifetime grammar is

f u= LyLy | DyLyDyf
and projected onto B = {x}, it is

f ==L |Df
which can derive the substring ...DDD... The (minor) problem here is that x is not used in the
second branch of the conditional. The analysis will work properly if an artificial last use L, of x is
added at the beginning of the second grammar rule alternative. This observation is made also in
[Kastens 1987] in the context of lifetime analysis for attribute grammars.

In conclusion, this approach is simpler and easier to understand than ours, but at the cost
of being somewhat more conservative. Furthermore, the approach is not readily applicable to
higher order langunages.

6.3 A. Pettorossi: Recursive Programs Which Are Memory Efficient
This description is based on [Pettorossi 1978] and [Pettorossi 19841,
6.3.1 Characteristics

The appiication area is transformation of recursive programs. The language is first order recursion
equations with strict application and left to right evaluation, very similar to our L. The
implementation of the language must work with a pool of store cells (locations), each marked
"active” or "inactive" according as the cell is in use or not. All intermediate values in an evaluation
must reside in a store cell, A parameter is passed by reference if the argument expression is a
variable, by value otherwise. Notice that this is not the stack-based implementation of first order
recursive programs we have assumed in the rest of the report.

The goal of the work is to reduce the storage requirements of recursive programs. This is
done by explicitly marking store cells "inactive" as early as possible, thus freeing them to hold
other values.

A central concept is that of destructive marking. A destructive marking is an annotation
of an operator that tells which of its argument values may be discarded after evaluation of the
operator. A marking is a tuple <010...0> of ones and zeroes describing the destructibility of each
argument position of the operator. A "1" means that the value in the corresponding argument
position may be discarded after evaluation of the operator, and a "0" means that it cannot be
discarded (yet). Discarding a value is done by marking its store cell “inactive”. For example,
times.0.(X, ) means that the value of x may be discarded while that of y must be retained. Thus
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the result of the multiplication may be stored in the cell formerly occupied by x. Operators are
basic functions (plus, times, ...) or the conditional (if).

The destructive markings must be correct for the program; the value of a variable must
not be destroyed before its last use.

A program is transformed by adding destructive markings to every operator occurrence.
This is done as follows. To begin with, each operator is marked with <0...0>, that is, no
arguments at all may be destroyed. This is clearly safe. Then 0's are changed into 1's, one at a
time, as Jong as this can be done while preserving the meaning of the program. This is done using
two functions called correct and inspect. The former is used to check whether an attempted change
of a single 0 into 1 would preserve the meaning of the program. The latter computes an
approximation (probably) to the set of variables that evaluation of a given term may destroy.

As to correctness, the semantics of programs with destructive markings is defined
formally, and correctness requirements for destructive markings are given in [Pettorossi 1978].
Also some requirements on the functions correct and inspect are given. However, these important
functions are not defined in the papers, either formally or informally, and thus the correctness of
the marking procedure is not proved.

6.3.2 Assessment: A. Pettorossi

Pettorossi's approach is different from the others we have considered. The other approaches
would replace a function parameter by a fixed global variable in a fixed location; it is statically
decided which location the variable will occupy (namely, that of the global variable). In this
framework, this is not the case. Each new incarnation of a variable may be put into a different
store cell, for example one just freed by destroying another value.

This yields the effect of "dynamic variable groups": in one computation, variable x may
use the sarne cell as y but not the same as z, and in another computation, x and z may use the same
cell, never used by y. This allows for more optimal storage reuse than the other, more static,
globalization concepts. On the other hand, Pettorossi's approach presupposes a heap-like store,
which is rather expensive in terms of run-time for a first order language (due to management of the
"active" tags on store celis).

Pettorossi's method also requires that composite values (those that require more than one
store cell) do not share. That is, destruction of one structured value must not affect any other
value. This restriction is lifted in Mycroft's Ph. D. thesis [Mycroft 1981].

6.4 Overview

Below we give in compact tabular form an overview of the three globalization methods in addition
to our own.,
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Schmidt Kastens & Schmidt Pettorossi Sestoft

Topic {Section 6.1) (Section 6.2) {Section 6.3)

Language Lambda-calculus, "Extended Pascal pro-  First order recursion  Strict first/higher order
strict, higher order, cedures”, strict, higher equations, strict, recursion equations,
unspecified eval. order order?, left-to-right left-to-right left-to-right

Globalization  Single-threading, based Disjoint lifetimes, "Destructive markings” Interference in du-paths,

criteria on the types of analysis of Lifetime are provided by an interference analysis of
expressions analysis, not given du-grammar gencrated

in detail from path semantics

Variable groups The store type corre-
sponds to a single vari- possible, automatically deallocatedassoonas  possible, automatically

able group and must be detected

chosen manually

possible, "dynamic
variable groups”

Several variable gronps Locations are explicitly Several variable groups

constructed

Transformation Store algebrais repla-  Stack pushes are repla- "Destructive markings™ Stack pushes are repla-
ced by a store class that ced by assignments  governs explicit deallo- ced by assignments
has a single global var. cation of store cells
of type store

Correctness Interpreter equivalence  Not formally stated Correciness require- Proof on (operational
proof: "tracking proof” menis are stated bt semantics) evaluation

not proved trees

Advantages Easycheckontyped  Quite simple and effi-  Works for untyped Discovers many oppor-
expressions, nice cient analysis, works  languages, deallocates  tunities for globaliza-
transformation for untyped languages, carly tion, works for untyped

adaptable to eval. order languages, adaptable w0
evalmation order

Drawbacks Hard 10 automate type  Conservative in some  Only first order Clostly analysis (7),
assignment or extend  cases, not guits ad- languages, expensive  complicated interference
to untyped lang., not  equate for higher order  store model criteria

adaptable to eval. order langnages

6.5 Other Work

A notion of path semantics for a first order language with call by need is found in [Bloss, Hudak
1988]. A path through a function expresses the order of evaluation of the (delayed) argument
expressions of the function. Thus the concept of a path is related to but not identical to ours. Their
path semantics is expressed in a denotational style, and an approximation is used for strictness
analysis and other optimizations.

Our concept of interference is somewhat related to that of [Reynolds 1978]. His concept
applies to imperative languages: two program phrases interfere if they may access and modify the
same structures. Thus the effect of parallel execution of interfering program phrases is
unpredictable in general.

In Section 1.4 we discussed other related work (compiler optimizations).
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7. EVALUATION AND RESULTS

We can measure the quality of our globalization method (developed in Sections 2 through 5) along
the following three dimensions:

1. How good are the globalization criteria?
2. How expensive are the analyses and transformations to apply?
3. How much efficiency can be gained by using the globalization method?

7.1 Quality of the Globalization Criteria

The globalization criteria have two parts for higher order languages: interference and enclosure;
only the first applies to first order languages. Here we focus on the interference criteria as
developed in Section 2.4. The problem of enclosure in the present simple H is trivial because H
has only single applications ey 8 e. The problem of a reasonable enclosure analysis for a version
of H with multi-applications is addressed in Section 8.1.2.

The interference criteria perform quite well on the examples that we have applied them to.
We have not found that our criteria fail in any cases where globalizability is intuitively "obvious”.
Also, we have not found any cases where our globalization criteria are more conservative than
those of [Schmidt 1985]. The comparison in Section 6.2 shows that our criteria are (strictly) less
conservative than those of [Kastens, Schmidt 1986].

It would be interesting to make formal comparisons between Schmidt's criteria and ours.
This would require that we formalize the translation of a denotational definition def in the lambda
calculus into an H program pgm (by lambda-lifting {Johnsson 1985]). The types of expressions in
def must carty over to pgm. Then if def is single-threaded in its store type, we let y be the variable
group containing all store-typed variables in pgm, and let ' = { vy } be the variable grovping
containing only y. Then we must show that I' is not interfering in pgm according to our
interference concept. We shall not atternpt to do this here, however.

7.2 Expected Cost of the Analyses and Transformations

The cost of doing the analyses and transformation is hard 1o judge. The algorithms given for the
du-grammar construction and the globalization transformation can be implemented quite efficiently
without much modification. On the other hand, the interference analysis ia (Algorithm 3.2.2-1)
should probably be improved, along with the related analyses uag and dar- (Section 3.2.1). The
same holds for the closure analysis (Section 4.3). Simple straightforward implementations of these
analyses will have a worst-case run-time which is exponential in the size of the programs. More
sophisticated implementations may be feasible, however.

Section 7



93

Furthermore, the average behaviour on "typical" programs may be much better than the
worst-case behaviour. In practice, the theoretical worst-case behaviour may not be very
significant. An experimental implementation of our techniques would give valuable information on
this point, and would allow us to focus improvement efforts on the most critical parts of the system
(that is, those that are slowest in practical nsage).

7.3 Benefits to Be Expected from Globalization

The run-time and storage savings of globalization can be expected to be quite substantial in a
langnage like Pascal because values do not share and so stacking a value (for a call by value
parameter) requires a new complete copy of it. Run-time improvements of 25 per cent are reported
in [Kastens, Schmidt 1986].

On the other hand, in languages such as Lisp or Scheme where structured values may
share, passing a value paramneter to a function requires only that a pointer is passed. Therefore one
cannot expect that globalization in izself will give any substantial run-time or storage benefits,

We have made a small experiment (using the Franz Lisp system and the Chez Scheme
system, running compiled code on a VAX11/785) which confirms this, An applicative first order
interpreter int for a tiny language similar to UP from Example 2.1-2 was implemented (in Lisp and
in Scheme). It contained a number of store variables (corresponding to sc and se in the example),
Then we transformed int into an imperative program int;- in which the store variables were replaced
by a single global store variable (corresponding to S in the example). The resulting program is
similar to that given at the end of Example 2.1-2. Running inty (instead of int) will avoid passing
the current store value as parameter, and thus should save some run-time and storage. However,
as said above, only a pointer is passed which is a relatively inexpensive operation. And in fact the
two versions, int and inty, have identical run-time and storage consumption for a range of inputs:
globalization gives no improvement in this case.

Globalization makes another optimization possible, however. Once all the store variables
in the interpreter are replaced by one global variable 3, we can replace those "basic functions"
(update, lookup, ...) that work on the store by destructive versions. Hence we may replace the
basic function update by a procedure that updates the value of S destructively (using rplaca in
Lisp or set—car! in Scheme, for example). This modification substantially reduces the storage
requirements and the need for garbage collection in our experiments: by around 70 per cent. Note
that this corresponds to the replacement of a store algebra by a store class as in [Schmidt 1985].

For bigger and more realistic programs we expect that globalization in itself will yield
reasonable run-time and storage improvements in contrast to these toy examples. Furthermore, the
effect of the "destructive” update optimizations can be expected to be considerable. Notice that it is
safe to use destructive functions (such as set.—car!) here, even though it is usually considered a
bad or unsafe programming style.
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8. DIRECTIONS AND OPEN PROBLEMS

The present work may be improved and extended in varions directions. Section 8.1 first presents
three minor technical improvements. Then Section 8.2 discusses extension and alternative uses of
path semantics. In particular, can our approach be used to detect when heap allocated objects may
be stored on a stack?

All of this work concerns strict languages, but lazy languages currently receive much
attention. Section 8.3 discusses the prospect for applying our approach to the analysis of lazy
languages.

8.1 Improvements of This Work
A few small improvements of the present work will be suggested here.
8.1.1 Consistent Presentation

The imperative parts of the Janguage L could employ the same syntax and mechanisms for
assignment that H does. This would simplify the definition of L and make Sections 2.2.3 and
4.1.2 more parallel. At present, in L we write £ ([X:=71), 9} if fisdefined by £(y)=. ..,
and in H's concrete syntax we would write £ 7 9 where £ X y=.... The H notation without
the explicit assignment operator is the more elegant and should be used for L also.

With this change, the globalization transformations for L and H could be made almost
identical. This further allows us to make their proofs (in Sections 3.4 and 5.2) structurally similar.
This improvement would require a change in the definition of imperative L, the L globalization
transformation, and its proof. In particular, the proof would become shorter but would have more
complicated induction steps, like the proof for H. This change has not been done for lack of time,

8.1.2 Multi-Applications in H

The higher order language H should be extended with multi-applications e @ (ey, ..., gy) t0
avoid unnecessary enclosure of variables, as discussed at the end of Section 4.1.1,
A multi-application expression is evaluated by first evaluating e to obtain a closure
fi(vl, v V). (Recall that m < arity(£1)), The further action depends on whether the total
number m + n of arguments is less than, equal to, or greater than, the arity a = arity(£l) of £i:
(1) If m +n <a, then e through e, are evaluated to obtain values vy, 1. ..., Ve a0d
a new extended closure £i(vq, ..., Vi, Vina1s - Ymen) iS Teturned.

(2) If m +n = a, then e through e, are evaluated to obtain values vy, 1, ., Vpyns 2
new environment is built that binds x1y, ..., x5 t0 v, .., Ve Vins1s o0 Vinsme
respectively, and the body e of £! is evaluated in this new environment.
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(3) ¥ m + n > a, then sufficiently many argument expressions are evaluated to provide
£1 with all its arguments, a new environment is built, and the body of £ is evaluated.
The result is a new closure which is applied to the remaining argument expressions.
That is, in this case the expression e @ (ey, ..., ep) is evaluated just as

{eg@ (e, wueam)) @ (€a.mels - Ep) -

This way of evalnating multi-applications is rather similar to the "DISPATCH k" instruction of the G
machine for evaluation of lazy supercombinator programs [Peyton Jones 1987, pp. 371-376].

The imperative extension of H should be extended with multi-applications also. They
would be evaluated as for applicative H with the natural modifications for assignment. In case (1)
above, no assignments are done. In cases (2) and (3), assignments may take place as soon as each
argument expression e,... is evaluated. Alternatively, all the assignments may be done at the time
of building the new environment. The new H path sernantics must reflect the choice.

Introduction of multi-applications requires modification of Sections 4 and 5, but the
changes are straightforward. They concern the syntax and semantics for applicative and imperative
H, path semantics, closure analysis, grammar construction, and the globalization transformation.

Assuming that the closure analysis ca (Section 4.3) is modified to work for multi-
application H, we can use it to find those variables that may be enclosed during an evaluation. This
is wseful, for variables that are never enclosed are particularly interesting candidates for
globalization; they cannot be allocated on the heap. Let pgm be an H program (with multi-
applications). We intend that Enclosed(pgm) is a superset of the set of variables that may be
enclosed in an evaluation of pgm.

Definition 8.1.2-1: The enclosure analysis Enclosed(pgm) for an H program pgm with multi-
applications is defined as follows (where HMExpr is the set of expressions in H extended with
multi-applications):

Enclosed(pgm) =  { ECleil |ie I}
where EC: HMExpr — g (Var)

EC[x] = {}

ECEfi] = {}

ECLA (eq,...eq) I = ECle;l v .. WEC[e,J
ECle;—eqeszl = ECle;I U ECIey] i ECles]

EClep @ (eq,..ep) I ECllep] UECIeql U ... UECTe I
U {appte, o) lce caeq) )

where app: AClox {0, 1,2, ..} = g(Var)

app((fim),n) = { xip, .. %0 ) ifm+n<a
= {} ifm+n=a
= U {app(c’, m+n-a) |c'e ca(el) } ifm+n>a
where  a = arity(fl) a
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The auxiliary function app is well-defined because all arities are non-negative and becausem+n-a
< n which follows from the property that m < arity(£1) for all closures (£i,m).

With this analysis a variable x of pgm is an interesting candidate for globalization if x ¢
Enclosed(pgm) and (x,x) € ia(Gpgy)I'. An "enclosure analysis” like the one above could also be
designed for the (single application) version of H discussed in Section 4, but its results would be
rather trivial: all variables except the last one of each function will always be enclosed, and the last
one will never be enclosed.

8.1.3 Tail Recursion Detection

As noted in Section 2.1, our techniques will not detect all tail recursive calls because this might
require the introduction of temporary variables in general. A small change to the path semantics
will allow the detection of all tail recursive calls (in the case of the first order language L). The path
semantics rule for a function call £i(e,...,e,) must be changed to reflect the assumption that
termporary variables are introduced during evaluation of argument expressions whenever needed.
This is done by moving all the definition (or copy) actions to the end of the prelude in a call
structure: the path <y 81...1,8, ¢ m> becomes <x;...7Ky51...8, ¢ m>. The new path semantics rule
which replaces rule PES is

PFej=v,m forj=1,..a where a = arity(£1), _
p'rél=v, el is the body of functon £,
- =[x v, Xl V],

pF fie),...e5) = V,<R1.7301..0, 0 1> Sj = A&xlj,ej) for j=1,...,a.

Naturally, the semantics for imperative L should be modified to implement the assumption about
introduction of temporary variables. However, the new semantics rule for this cannot be expressed
elegantly unless the notation for assignment in L is modified as noted in Section 8.1.1.

8.2 Other Uses of Path Semantics

In this section we propose some possible uses for suitably modified concepts of path semantics.
The idea is to reuse the development of this report for other purposes, in the hope that the grammar
constructed from a program and its path semantics may have other uses besides that of interference
detection. We can use path actions other than Tx, dx, and y»x, design an exact analysis
applicable to such modified paths, and derive an abstraction of this new analysis which is
applicable to the grammar. The ideas presented here are very preliminary, and some of the
applications may turn out to be infeasible.

Section 8



97
8.2.1 Sharing Analysis

Assume our {first order strict) language L is extended with operators cons, car, and cdr similar
to those of Lisp or Scheme. - That is, the result of evaluating cons (x, y) is a composite value
(structure) which has the values of x and y as substructures. If now this value is bound to variable
z, then z and x (as well as z and v) share a substructure. Hence modification of the structure
bound to x may modify the structure bound to z, and vice versa. Changing the structure of a
variable such as x by modifying the structure bound to it (instead of binding a new structure) is
called destructive update [Mycroft 1981], [Pettorossi 1978, 1984].

Destructive updates are desirable because they conserve space and garbage collection,
But clearly, a destructive update of variable x is admissible only if x does not share its value or any
part of it with other variables. Therefore sharing analysis of a program is interesting; it is useful to
know when & variable is guaranteed not to share with others.

It may be feasible to do a sharing analysis as in [Mycroft 1981] by using a modification
of the path concept and the path semantics. To see how this might be done we define a new kind
of path, called substructure paths (ss-paths for short), The path actions are uses: Tx, substructure
definitions: w»x, and call structures: <fty»xi;...Ky»xi, ¢ >, The T»x action means that variable x
gets a new value which shares (or may share) with the variables with uses in ©. Thus

{ Tx [ % e Var }
Use U SSPath* U [ <p»xij.mprxiy O n> | 7€ SSPath, xije Var }.

Use
SSPath

Il

A path semantics may be defined that gives the ss-path & for an expression e in addition to its value
v. The ss-path semantics will have special rules for cons, car, and ecdr. A substructure path
analysis SU that finds the set of variables SU[[x] that may share with v can be defined as follows:

SU: SSPath — @(Var)
SULTx] = {x}

SULxw;...n, I SULxn I v ... v SULR,]
SUL<mprxij . mpxidn>] = U { SUE‘EJ']] !xij e SUl=] }

The last equation is the most interesting: variable z may share with value v returned by the function
call if there is a parameter x}; that shares with v and z shares with xi.

It is not clear whether a good sharing analysis can really be built on this approach. The
set of path actions suggested here is probably too primitive and small, so the sharing analysis is
likely to be very conservative.

The way the interference analysis is extended to work for higher order functions cannot
be used for this sharing analysis, so it applies only to first order functions.
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8.2.2 Relative Globalization

Globalization of a variable means that it is replaced by a completely global variable that can be
statically allocated. This was the only meaningful possibility in the languages L and H because
these languages do not have nested scopes.

In languages with nested scopes (like Pascal or Scheme), one might define relative
globalization of a variable. By this we mean that the variable may be made global in some scope
which need not be the outermost {most global) one. The variable cannot be allocated statically
then, but if scopes are entered and left in a first-entered-last-left manner (as in Pascal), then the
variable may be allocated on evaluation stack at entry to the scope. The benefits of this are the
same as for globalization: fewer copies of the variable need be kept at run-time.

For this relative globalization to be correct, the lifetime of the variable must be at least as
long as the lifetime of the scope in which it has been made global.

It is likely that a slight extension of the path semantics could be used to detect cases
where relative globalization can be done, for the nested call structures show the sequence of entries
and exits of scopes during evaluation. Therefore it may suffice to add name tags to the cail
structures, so that the different lexical scopes can be distinguished in the paths. Then a more
complex interference analysis may be able to find the most global (that is, the outermost) scope in
which a variable can validly be made global.

8.2.3 Stackability

Stackability generalizes globalization: when can a heap for storage of dynamically allocated objects
(such as function closures) be replaced by a (usual last-in first-out) stack? That is, how can one
detect that (some) objects may be deallocated in the reverse order of that in which they were
allocated? A good solution of this problem would be very useful in the implementation of higher
order languages such as Scheme or Standard ML.

This is because heap allocation is more expensive in terms of run-time and storage than
stack allocation, Particularly annoying is the need for garbage collection and the run-time overhead
it incurs at unpredictable intervals. However, in extreme cases, heap allocation may be more
efficient than stack allocation (in terms of run time, but then not in terms of storage). In theory, the
asymptotic cost of garbage collection may be smaller than that of stacking and unstacking, when
the amount of available storage is much greater than the amount of active cells at any time. With a
two-space stop and copy garbage collector only the (few) cells actually in use need be visited and
copied during garbage collection. Experiments confirm this [Appel 1987]. We shall assume,
however, that stackability is desirable. Stackability has been studied in connection with attribute
evaluators [Kastens 1987] and denotational language definitions [Schmidt 1986a].

This problem is more general than the problem of replacing stack usage by global
variables, for if a variable can be allocated globally, then it can also be allocated in a stack (which
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will never contain more than one element). An analysis to detect stack-like allocation behaviour
would therefore be more complicated, posing weaker requirements on a given program for (some
of) its heap usage to be replaceable by stack usage.

The reason for allocating an object on the heap is that its lifetime cannot (easily) be
predicted. This holds for closures as well as for cons cells in a Lisp system, say. Both may be
returned by a function and hence survive the environment in which they were created. This means
that they cannot be deallocated when the environment is left and its bindings are deallocated. Since
the environment's bindings were allocated before the closure (say), it follows that allocation and
deallocation are not done in a stack-like manner (in which what is last allocated should be first
deallocated). The problem is even more acute because the closure value may be enclosed in other
closures (similarly, cons cells may be made part of structures referred to by other cons cells).

It is likely that some variant of the path concept is useful for the detection of closures that
may in fact be allocated on stack instead of heap, and similarly for cons cells. The requirement is
that (apart from being applied) the closure is only passed as parameter to functions calted from the
environment in which the closure was created; it must not be returned as a result so that it survives
the environment. This is known as a downward funarg in the Lisp community, The function call
structures in paths give information about the order of creation and deletion of environments and
thus should be suitable for checking this requirement. In addition it is necessary to have sharing
information that can ensure that the closure is not enclosed in any other closure which may survive
the environment. This information could possibly be delivered by a more sophisticated version of
the sharing analysis sketched in Section 8.2.1.

8.3 Application to Lazy Languages?

Because of the present surge in the activity on lazy languages and their implementations, it would
be desirable to apply our (operational) path semantics approach to the analysis of such languages.

It is rather straightforward to design an operational sernantics for a version of L with cali
by name, and also the corresponding path semantics (that records every use of a variable). This
form of path semantics can be used for strictness analysis: function £! is sirict in parameter position
jif there is a use of xij in every possible evaluation path for the body of fi,

To obtain a version of L with call by need (or lazy evaluation), we may follow [Bloss,
Hudak 1588] and replace the simple concatenation %75 in the (call by name) path semantics rules
by an operation join(m,1tp) that removes all those uses Tx from 1 that are already in ;. Thus the
path for evaluation of a function body will contain at most one use of every variable. This reflects
the property of call by need that an argument expression is evaluated the first time its value is
needed and nevermore. This kind of path semantics is not amenable to approximation by a context
free grammar, however; the path for a composite expression is not a concatenation of the paths for
its subexpressions.
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9. CONCLUSION

We addressed the globalization problem for applicative languages: when may function parameters
(local variables) be replaced by global variables? One practical motivation for this is the desire to
reduce the run-time and storage claims of applicative programs. A related motivation is the
applications in semantics-directed compiler generation: the automatic construction of efficient
implementations from formal language definitions.

The criteria for globalization are non-interference and non-enclosure (for higher order
languages; the first suffices for first order languages). We focused on the concept of interference
and developed a simple theoretical framework for discussing interference in strict applicative
programs; we introduced the concepts of definition-use path, path semantics, interference, and
variable groups. The problems, concepts, and techniques were illustrated in detail using simple
first order and higher order recursion equation languages.

We developed an automatic interference analysis and an automatic globalization
transformation. A definition-use gramrar construction, a variable grouping analysis, and a closure
analysis were introduced to support them. We gave algorithms for all these constructions, but
none of themn has been implemented.

Correctness of the analyses and transformations has been emphasized throughout, and
proofs have been given or sketched for all constructions,

We compared our globalization approach to other work with related goals or techniques.
We found that our techniques are at least as powerful and theoretically well-founded as others
known to us. OQur techniques may turn out to be more complicated and more expensive to
implement, however. While the techniques look promising, it is not clear whether the run-time and
storage savings will make up for the effort required to apply them. Would it be reasonable to build
these techniques into a compiler for applicative languages? An implementation of the analyses and
transformations would cast more light on these questions.

Finally, several possible extensions and improvements of the approach were discussed.
A particulatly useful extension would allow us to detect cases where heap usage could be replaced
by stack usage. This would allow us to detect automatically those parts of a higher order language
that might be implemented with stack (e.g., for storing closures) instead of heap.

Another direction is the possible extension of this approach to languages that do not have
strict application, such as lazy languages.
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10. GLOSSARY OF SYMBOLS

General
O end of Example, Definition, Algorithm, Proposition, or Lemma

Sets and Functions

AB,I sets

PA) the powerset of A, i.e., the set of all subsets of A

card(A) the cardinality of A, i.e., its number of elements (for finite A only)
UA distributed union of a family A of sets, i.e., { b |JacA. be a}

{ 3 }ie1 the set of a;'s indexed byie I, e, theset{ a; lie I}

h:A—->B the set of total functions from A to B

h:A-——B the set of partial functions from A to B

dom(h: A—— B) the domain of h, i.e., the set of a € A for which h(a) is defined
rng(h: A — — B) the range of h, i.e., the set of b ¢ B for which Jac A. h{a)=b

The Language L (Section 2.2)

pem a given program

e an expression

el the initial expression in a given program

A a basic function

£l a defined function, i £ 1

arity(£1) the arity of £i, i.e., its number of parameters (local variables)
xij € Var local variable, i.e., parameter position j of function fi

X € GloVar global variable

v e Value avalue

FreeVars(e) the set of variables with (free) occurrences in e

Input = FreeVars(eU)  the set of input parameters in a given program

The Language H (Section 4.1)
£i(vy,....vp)e Closure  a closure, i.e., a functional value (where m < arity(£1))
£ € Var U GloVar 2 local or global variable in the parameter list of an imperative H program

Operational Semantics (Sections 2.2 and 4.1)

pe Env = Var—Value a local environment

po € Input-—Value the input to a given program, i.e., values for its input parameters
e State =GloVar——Value  a global state

pre=v in environment p, expression e may evaluate to value v

PO Fe=v,0p in p and initial state 6, e may evaluate to v with final state G,
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Paths and Path Semantics (Sections 2.3 and 4.2)

Tx e Use

dx e Def

y»x € Copy g Def
7 € Path

£

o Def

<m8y .8, 0>
plFe=v,n

Ii{e)

(pgm)

A(xij,e)

use of x

definition of x

copy, i.e., definition of x by a copying of y's value

a du-path

the empty path (length zero)

a definition or a copy

a call structure with prelude 7,8 ... 7,8, and body &
in environment p, e may evaluate to v and trace path &
the set of paths possible for expression e

the set of paths possible for program pgm

is y»x if e is an occurrence of variable v, L x otherwise

Interference and Variable Groups (Section 2.4)

Up(m)

D(r)

Interf(n) ¢ Var
Y€ VGroup

I' € VGrouping
DG(r)C
Interf(n,I)

Interf(pgm,)
Xy € GloVar

the set of variables with level Ousesin

the set of variables with definitions in &t

the interference of path ©

a variable group, i.e., a non-empty set of variables

a variable grouping, i.e., a set of disjoint variable groups
the set of variables with definitions in &, relative to I

the interference of path rt relative to T

the interference of program pgm relative to I’

the global variable replacing all variables in variable group vy

Definition-Use Grammars (Section 3.1)

Gpgm

Ne VN
Ne
Npgm
o.€ Rhs

uo"x

the du-grammar for a given program

a nonterminal symbol

the du-grammar nonterminal corresponding to expression e

the du-grammar start nonterminal

a grammar rule right hand side, i.e., a sequence of grammar symbols
path © is derivable from o (in particular for ¢ being 2 nonterminal N)
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Interference Analysis on Grammars (Section 3.2)

uag{o) superset of the set of variable uses in all T with o0 =»* 1t

uenv € UEny superset of the set of variable uses in all x with N »5* =
UAgLoluenv superset of the set of variable uses in all * with o =* &t
dar(o) superset of the set of variable definitions in all © with oo =* &
denvr € DEnv superset of the set of variable definitions in all # with N »* &
DA[alI" denvy superset of the set of variable definitions in all & with & »* &
§= ia(Gpgm)l" safe approximation to Interf(pgm,I), i.e., § 2 Interf(pgm,I)
ienvp € IEnv ienvp{N) approximates Interf(r,I") for all n with N =»* =
IAfa]lT ienvy approximation to Interf(z,I") for all © with o —* &

Non-Interfering Variable Groupings (Section 3.3)

#I the guality index for variable grouping I

(V.E) the directed graph with vertex set V and edge set E ¢ V2

mV-=Q a graph colouring, i.e., p is surjective, and p(a) = p(b) implies (a,b) ¢ E
Thon the non-interfering variable grouping constructed for a given program

The Globalization Transformations (Sections 3.4 and 4.5)
pgmp pgm with each variable group in I replaced by a global variable
TEell the result of globalizing the variable groups of I in expression e

The Approximate Closure Analysis (Section 4.3)

cale) the abstract closures that evaluation of e may return

c: AClo an abstract closure (£i,m) with0 < m < arity(fyandie 1

of: CF=I—@(AClo)  cf(£) is the set of abstract closures that a call to £1 may return
CAllelefcv the abstract closures that evaluation of & may return

cv: CV=Var— @(AClo) cv(x) is the set of abstract closures to which x may be bound
VAlel(kj) cfcv the abstract closures that evaluation of e may bind to variable xX;
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