Standard ML on the Web server:
Visualizing Lambda Calculus Reduction

Peter Sestoft (sestoft@dina.kvl.dk)
Department of Mathematics and Physics
Royal Veterinary and Agricultural University, Denmark

1996-11-18

1 Introduction

We show that World Wide Web (WWW) browsers provide an easy and portable way to create
user interface for Standard ML (SML) programs, by writing the Standard ML applications as
CGI! programs and running them on a WWW server. This also demonstrates that SML is a
suitable language for CGI programming?.

As an example interactive application we present a lambda reducer, a tool for visualizing
reduction strategies for the pure untyped lambda calculus. Another example application (joint
work with Ulla Dindorp) is a WWW-based browser for experimental data from agricultural
research [3].

1.1 The lambda reducer

We use a WWW browser, such as Netscape Navigator, as the front-end of the lambda reducer,
and run the reducer itself as a CGI program on a WWW server. The reducer is implemented
in Standard ML, using the SML Basis Library [4] and the Moscow ML implementation [6].
The lambda reducer reads and parses a lambda term supplied by the user, and reduces it using
the chosen reduction strategy and reduction tracer. It generates HTML? code which is sent
by the WWW server to the browser on the user’s machine. The browser interprets the HTML
code and shows reduction traces etc. on the user’s display.

The lambda reducer may be used as an educational tool, but we do not intend it to say
anything new about the lambda calculus.

The lambda reducer is at http://ellemose.dina.kvl.dk/ sestoft/lamreduce/.

1.2 An example session

An example session with the lambda reducer is shown in Figure 1. In the upper frame, the
user may enter a term and choose a reduction strategy and a reduction tracer, then click on
the ‘Do it’ button. The response by the lambda reducer, usually a reduced term or a reduction
trace, is then displayed in the lower frame. The S, K and I combinators, and a number of
other abbreviations for lambda terms, are predefined.

In every term displayed, the current redex is highlighted and active: clicking on the redex
will reduce that redex and display the resulting term, highlighting the next redex under the
chosen strategy.

1CGI abbreviates Common Gateway Interface. A CGI program produces HTML code on request from a
WWW browser and sends it to the browser.

2This observation is due to Jonas Barklund, Uppsala University.

SHTML stands for Hypertext Mark-up Language. HTML code instructs a WWW-browser to produce the
lay-out, texts and images seen by the user.

N Hetscape: Lambda term reducer [_ (O]

File Edit View Go Bookmarks Options Directory Window Help

Location: Iﬂlttp :fiellemose.dina.evl .dkf ~sesrtaf £, lamreduce 1 amf rames . html

What’s New?' What’s Cuul?' Destinatiuns' MNet Searchl Peuplel Software

2 KK

| 5| I P

Reset trace = normal arder = | Doitl

Wormal order:
(s x (g %)) ($K) $K
==> Mg K= (g x)) (B
==> ‘w0 (FE =)
== 'w. [y (FE)

==k XX

Performed 4 beta—reductons

Figure 1: The lambda term reducer

2 Implementing reduction strategies for tracing

We consider the pure untyped lambda calculus, in which a term is a variable x, an abstraction
Az.e, or an application (e; ez). The lambda terms may have free variables; these play the rule
of constants or constructors in programming languages. We implement the following reduction
strategies:

call-by-name

head spine reduction
normal order
call-by-value
applicative order
hybrid reduction

For brevity, we consider only the call-by-name strategy in this paper.

2.1 An example reduction strategy: call-by-name

The call-by-name strategy is leftmost outermost reduction to weak head normal form (whnf).
We describe the reduction strategy by (big-step) operational semantics rules as shown below.

A variable z is in whnf and reduces to itself by rule Var. An abstraction (Az.e) is in whnf
and reduces to itself by rule Lam.

An application (e; eg) is reduced by first reducing e; to €}. If €} is an abstraction (Az.e),
then (e} es) is a redex, which is reduced by performing the substitution e[es/z] (possibly
renaming bound variables to avoid capture), and then reducing the resulting term (rule Appr).

If €} is not an abstraction, then (€] e2) is not a redex; consequently e; must be reduced
to e and the application (€] e5) must be returned (rule Appn). Namely, €] must be a head
normal form (hnf), that is, a variable applied to zero or more terms, so (€} e2) is a hnf and a
weak head normal form (whnf) too.

(cbn Var)
2
(cbn Lam)
(Az.e) RN (Az.e)
bn bn
e1r — (Az.e) elea/x] — € (cbn Appr)
(61 62) ﬂ) 6’
b
e1 — € Z Az.e (cbn Appn)

b
(e1 e2) = (€] e2)

Rule Appn with the negative premise e; bn, e} #Z Az.e can be thought of as an abbreviation
for two positive rules, covering the cases €] = z and €] = (e11 e12).

2.2 A reducer for the call-by-name strategy

Representing a variable z by the data structure Var x (of type lam), an abstraction Az.e by
Lam(x,e), and an application (ej e2) by App(e;, e2), the operational semantics rules above
can be implemented in Standard ML as follows:

fun cbn (Var x) = Var x
| cbn (Lam(x, e)) = Lam(x, e)
| cbn (App(el, e2))
(case cbn el of
Lam (x, e) => cbn (subst(e, e2, x))
| e1’ => App(el’, e2))

The type of cbn is lam -> lam, and the intention is that cbn e = ¢ iff e by e Tt is clear
that the Var and Lam branches of the function implement the semantics rules Var and Lam.

The rules Appr and Appn are implemented by the two cases of the App branch. In the first
case, expression e; reduces to an abstraction (Az.e), the substitution e[es/z] (with possible
renaming) is performed by the call subst(e, e2, x), and reduction by cbn continues from
this expression, as prescribed by rule Appr. In the second case, e; reduces to a non-abstraction
€}, and the term (€} ey) is returned.

2.3 Traces, contexts and labels

The cbn reducer above performs the beta-reductions in the expected leftmost outermost order
(because SML is call-by-value), and returns the final reduced term (or loops). However, the
cbn function always focuses on some subterm ey, of the entire current term e, but to trace
the reduction, we want to display the entire current term eop. For instance, when performing
the beta-reduction

(@ ((Myy)2) 2 (z2)

the reducer will focus on the redex ((Ay.y) z), but we want the tracer to display the reduction
on the entire term, as above.

For this purpose, we define a tracing reducer cbnc by modifying cbn. The tracing reducer
takes as argument a context c[], which can reconstruct e, from egyp, and applies this context
to the redex before every beta-reduction. This application will mark the redex and recon-
struct the entire current term; if desired it may print the reconstructed term as a side effect,
highlighting the redex. The context ¢[] does not affect the reduction strategy in any way.

For marking the redex e, we use labelled terms e*, where i is an integer®.

As the reducer descends into the term, the context c[] must be extended. If ¢ in the
program represents context c[], then

Lamx x is the context c[Az.[]]
Lbli i is the context c[[]]

App2 el is the context ¢[(e1[])]
Appl e2 is the context ¢[([]e2)]

O o0 o0 o0
O O O ©

“Lévy labels [1, appendix] could be used instead.

2.4 The tracing call-by-name reducer

The tracing reducer cbnc, of type (lam -> unit) -> (lam -> lam), is

fun cbnc ¢ (Var x) = Var x
| cbnc ¢ (Lbl(i, e)) = Lbl(i, cbnc (c o Lbli i) e)
| cbnc ¢ (Lam(x, e)) = Lam(x, e)
| cbnc ¢ (App(el, e2)) =

findlam (cbnc (c o Appl e2) el)
(cbnc ¢ o csubst c e2)
(Appl e2)

A variable reduces to itself. A labelled term e’ is reduced by reducing e and labelling the
result with 7. The reduction of e takes place in the context c[[]!], that is, the current context
c extended with the labelling 7. An abstraction Az.e reduces to itself.

An application (e es) is reduced by the call to auxiliary function findlam; this function
implements the choice between the Appr and Appn rules in the operational semantics of
Section 2.1.

First, the argument (cbnc (c o Appl e2) el) is evaluated to reduce e; in the context
c[([]e2)], possibly producing some reduced term €. (The second and third arguments are
partial applications and their evaluation does not involve any calls to cbnc).

If ¢! is a (possibly labelled) abstraction (... (((Az.e)*)?)...)", n >0, then findlam strips
the marks off the abstraction and applies (cbnc ¢ o csubst ¢ e2) to the pair (€}, Az.e). This
causes function csubst to build the labelled redex (e} e;)* and apply the context function ¢ to
it for tracing. Then csubst performs the substitution e[es/z] (with possible renaming), and
the result is passed to cbnc for further reduction in the original context ¢[].

If €} is not an abstraction, then findlam applies (Appl e2) to €}, producing the term
(€] ea).

Note that the context and the subterm ‘add up’ to the entire current term in all recursive
calls to cbnc.

3 Implementing the reduction tracers

There are several functions for tracing the reduction of a lambda term:

trace the reduction sequence, highlighting current redex

normalize the term, and count the number of beta reductions performed
trace the reduction sequence, labelling all redexes and the contracted terms
singlestep through the reduction sequence

These tracers can be used with all the reduction strategies previously mentioned. A tracer
must be called with a limit max on the number of beta-reductions to perform; this is necessary
for limiting the server resources consumed by remote users.

Here we describe only the full-trace and the normalizing tracer; Section 4.6 describes the
single-stepping tracer.

3.1 Tracing: print all steps of the reduction

The tracer trace runs a reducer, printing the current term before every beta-reduction:

fun trace max reduce e =
let val incr = stopat max
fun ppreduces e = (Format.ppp e; print "
==> "; incr e)
val e’ = reduce ppreduces e
in Format.ppp e’; showsteps () end
handle Enough _ => exceeded max

Function stopat creates a function incr for counting the number of reduction steps. This
function will raise exception Enough with the current term when max beta-reductions have
been performed.

Function ppreduces is the initial context function; when applied to a lambda term, it
invokes function Format.ppp to pretty-print it (see Section 4.4), issues an HTML linebreak

, and increments the step counter.

The function reduce, which might be the call-by-name reducer cbnc from Section 2.4, is
applied to the initial context function ppreduces and the term e to be reduced. As described
in Section 2.3, the ppreduces function will be invoked by reduce before every beta-reduction,
thus printing the current term and counting the number of beta-reductions. If the term reaches
a normal form e’ (by reduce) in at most max steps, then e’ and the total step count are printed
(by function showsteps). If more than max steps are required, then reduction stops because
incr raises Enough, and an error message is printed.

For example, with @ = ((Az.(zx)) (Az.(zx))), the application trace 100 cbnc Q will

print 100 steps of the infinite reduction sequence {2 LN JLUNY LN ..., then terminate

with an error message.

3.2 Displaying the reduced term

The tracer show runs the reducer, counting the number of beta-reductions, and prints the final
term together with this count:

fun show max reduce e =
let val incr = stopat max
val e’ = reduce incr e
in Format.ppp e’; showsteps () end
handle Enough e’’ => (exceeded max; showlast e’’)

The main difference from trace is that the initial context function is incr, which simply
discards the intermediate terms.

If the term reaches a normal form e’ (by reduce) in at most max steps, then €' and the
total step count are printed (by function showsteps). If more than max steps are required,
then the last term e’ produced will be printed, by handling the exception Enough raised by
incr.

4 Using a WWW browser as front-end for interactive programs

4.1 Basic machinery

The client is the user’s computer, running the WWW browser (e.g., Netscape Navigator); the
server is the remote computer, running the WWW services, including the lambda reducer.

The cycle of interaction between the user and the CGI program (the lambda reducer) is the
following;:

The user clicks on a hyperlink or ‘Do it’ button inside WWW browser on client.

An HTTP request is sent to the WWW server.

The server invokes the requested CGI program with the given parameters.

The CGI program parses the parameters; performs some computation; generates HTML
code.

The server sends the HTML code to client.

6. The WWW browser on the client interprets the HTML code received and displays text.

-~

ot

If the CGI program in step (4) is the lambda reducer, then the following actions are performed
as part of step (4):

4.1 Get the CGI parameters, specifying the lambda term, reduction strategy, and reduction
tracer.

4.2 Scan and parse the lambda term.

4.3 Perform and trace the reduction of the lambda term, possibly printing intermediate terms
in HTML-format to standard output.

Note that the CGI program is invoked to compute the response to a single request; hence no
state is preserved from one invocation to the next one. However, some state information may
be encoded in the (hyperlinks of the) response sent from the server to the client, to be sent
back to the server along with the next request from the client. An example of this is given in
Section 4.6.

The data entry area in the upper half of Figure 1 is created by a ‘form’ element, a piece of
HTML code. The form specifies the name of the server to which to send the completed form
(when the user clicks on ‘Do it’), and which CGI program on the server to invoke to process
the form.

4.2 Wordseq: Efficiently concatenable strings

We want the ability to generate HTML code compositionally. For instance, we may want to
generate the contents s of an HTML page (or table, etc.), and subsequently wrap the required
mark-up around it, as in "<BODY>" "~ s ~ "</BODY>", to create an HTML page.

However, wrapping such ‘parentheses’ around a given string s in this naive way requires
copying the entire string twice. In addition to the work involved in copying, this requires
allocation of ever larger strings, may cause fragmentation in the ML heap, and hence may put
much load on the garbage collector.

A simple solution is to introduce a type of word sequences which permits constant-time
concatenation at the expense of some space overhead. A word sequence is empty, or consists
of a single string, or is the concatenation of two word sequences:

datatype wordseq =
Empty
| $ of string
| && of wordseq * wordseq

A word sequence may be printed to standard output (as a side effect) by a simple tree traversal.
Now we can have a non-copying constant-time operation val prpar: wordseq -> wordseq
to surround a word sequence by parentheses:

fun prpar s = $ "(" & s & $ ")"

There are other possible solutions to this problem, which may have less space overhead: (1) a
language in which string concatenation is lazy by default (implicitly delayed evaluation), and
(2) a functional representation of the strings (explicitly delayed evaluation).

Alternative (1) reduces space consumption only if the language as a whole uses lazy eval-
uation, in which case extra care must be taken to avoid laziness where it is not needed.
Alternative (2) does not allow the examination of a string already built, an operation which
is useful e.g. for avoiding excess parentheses around a term.

The word sequence solution works well in practice, probably because the amount of text
displayed in a WWW browser window usefully is less than 100 KB.

4.3 HTML as the application program’s interface

Using word sequences, various HTML mark-up functions are easily written in SML:

val markO : string -> wordseq -> wordseq

val markil : string -> wordseq -> wordseq -> wordseq

val href : wordseq —> wordseq -> wordseq

val htmldoc : wordseq —> wordseq -> wordseq

val cgiencode: string -> wordseq

val cgicall : string -> (string * wordseq) list -> wordseq

4.4 Printing lambda terms with hyperlinks from redexes

When the Format . ppp function prints a lambda terms, it creates special mark-up for the redex,
so that clicking on the redex will reduce it and print the resulting term. This is useful for
singlestepping the reduction of the term; see Section 4.6.

The markup for invoking a CGI program on the WWW server resembles that for loading an
HTML file, except that the file name is replaced by the program name, followed by a question
mark ‘?’, followed by program arguments:

<a href="http:lamreduce?action=singlestep&expression=S+K+K
&evalorder=normal+order&stepno=1">

(Linebreak inserted for readability). This markup invokes the CGI program lamreduce, that is,
the lambda reducer. It passes four arguments, bound to the parameters action, expression,
evalorder, and stepno. The argument values are encoded (where necessary) by replacing
space with +; thus S+K+K means S K K.

This markup is generated by the following SML program fragment:

Html.cgicall "lamreduce"
[("action", action),
("expression", exprws),
("evalorder", evalordws),
("stepno", $ (Int.toString (1 + Lambda.stepCount())))]

4.5 Accessing the parameters of CGI programs

The CGI program obtains the values of its parameters, such as expression, from the environ-
ment. The mosmlcgi library [2] created by Jonas Barklund, Uppsala, provides access to the
parameters (using 0S.Process.getEnv from the Basis Library). For instance,

mosmlcgi.cgi_field_string "expression"

returns SOME e if the CGI program was invoked with an argument specification expression=e.

4.6 Singlestepping reduction

The single-stepping tracer (cf. Section 3) called single performs at most stepno beta-reductions,
and displays the resulting term. To implement this we create a function incr, which will raise
Enough with the current expression after stepno beta-reductions. We reduce the term e using
that initial context function, and arrange to handle Enough and print the term €’ passed with
it, when stepno beta-reductions have been performed:

fun single stepno reduce e =
let val incr = stopat stepno
val e’ = reduce incr e
in Format.ppp e’ end
handle Enough e’ => Format.ppp e’;

In the term produced after n beta-reductions, the redex (if any) is marked up with a call to the
singlestepping tracer, whose step count is set to n+1. Hence a click on the redex (in the browser
window) will perform one more beta-reduction and display the result. The perceived effect is
that repeated clicking on the redex singlesteps through the reduction sequence, although in
fact the reduction start from scratch, and just proceeding one step further than before.

For example, this is the sequence of marked-up terms produced by single-stepping normal
order reduction of the term S K K, where S = Af.Ag.A\z.fz(gz) and K = Az.A\y.z. Note
that the expression passed to lamreduce is S K K in all five steps; only the stepno changes
from invocation to invocation:

<a href="lamreduce?

action=singlestep&expression=S+K+K&evalorder=normal+order&stepno=1">

(\f.\g.\x.f x (g x)) (K) K

<a href="lamreduce?
action=singlestep&expression=S+K+K&evalorder=normal+order&stepno=2">

(\g.\x.K x (g x)) (K)

\x.<a href="lamreduce?
action=singlestep&expression=S+K+K&evalorder=normal+order&stepno=3">

(\x.\y.x) (x) (K x)

\x.<a href="lamreduce?
action=singlestep&expression=S+K+K&evalorder=normal+order&stepno=4">
(\y.x) (K x)

\x.x

5 Evaluation

5.1 Size of the implementation

The complete lambda reducer, implementing six reduction strategies and four tracers, consists
of five SML modules, plus specifications of the lexical and syntactic structure of the input
language (which may contain comments and global abbreviations, not discussed in this paper):

Module Signature | Implementation | Contents

Env 13 lines 59 lines | Global abbreviations

Format 8 lines 81 lines | Making hyperlinks from redexes
Lambda 120 lines | Terms, substitution, abbreviations
Main 65 lines | Argument parsing, invoke reducers
Reducers 24 lines 193 lines | Reduction strategies and tracers
Lexer specification 53 lines | Lexical (comments, identifiers, ...)
Parser specification 55 lines | Syntax (user-defined abbreviations)

The total size of the source is 671 lines or 21 KB. In addition, we use the general modules
Wordseq (32 line signature and 84 line implementation) and Html (31 line signature and 69
line implementation).

5.2 Speed

CGI programs written in Moscow ML load fast and give good interactive response. There
are two reasons for this: the runtime system is small, and the programs are precompiled to
compact bytecode files.

The size of the Moscow ML runtime system (which is closely based on the Caml Light
runtime system [5]) is 75 KB, as compared to the Perl interpreter’s 520 KB (for the Solaris 2
operating system).

Moscow ML programs are compiled to compact bytecode files; the size of the bytecode file
for the lambda reducer is 27 KB. A Perl script, on the other hand, is stored in source form
and is parsed and compiled to an internal form on every invocation, causing a certain delay at
every invocation.

5.3 General-purpose programming language versus scripting languages

The traditional scripting languages provide powerful functions for string manipulation, but
these are typically line-oriented and do not handle recursive structures well. We have found
that neat Perl scripts, which ‘almost’ solve the problem at hand, frequently grow into a com-
plicated tangles of fixes, and finally have to be discarded.

Standard ML is a general purpose programming language, and provides the means for
combining solutions to the various tasks facing the CGI programmer: higher order functions,
user-defined data structures, parametric polymorphism, the SML Basis Library with support
for string manipulation, a module system permitting separate compilation and top-down as
well as bottom-up program development.

10

String manipulation, associative arrays, access to CGI parameters, automatic storage man-
agement, and fast turn-around (because no need to compile and link) are some of the reasons
Perl scripts are prevalent for CGI programming. We have found that using a light-weight SML
implementation supported by suitable libraries is no harder and leads to robust, reliable, and
maintainable CGI programs.

5.4 Using WWW and HTML for creating visual user interfaces

WWW browsers and the HTML language offer a simple way to create visual user interfaces
for Standard ML programs. No special operating system support is needed, only the ability
to print to standard output, and the ability to access environment variables (needed by the
mosmlcgi package). Both are provided by the language and the Basis Library.

HTML is platform independent, and freely licensed WWW browsers exist for almost all
platforms (Unixes, Windows’95, MacOS, 0S/2).

Some platform-independent packages for developing visual user interfaces exist, but they
are usually tied to particular languages, such as C, C++, or Common Lisp. To our knowledge,
there are no such packages for Standard ML at present.

The present simple approach to creating visual user interfaces is portable, and perhaps
even durable: although currently evolving, HTML is being standardized, and we will probably
use HTML five or ten years from now. By contrast, many platform- and language-specific
window application program interfaces are likely to be obsolete by that time.

Our approach has some limitations, too:

o If the user needs to modify data stored on the WWW server, a number of security and
resource issues must be addressed, which are rather similar to those of mainframe instal-
lations. A closer integration with the WWW browser, perhaps by exploiting applets, is
needed for the user to store and modify data locally.

e Considerable network and server resources are required, compared to the visual user
interfaces running on the user’s personal computer.

e Using HTML provides less control over the actual appearance of windows etc. on the
user’s display than do traditional tools for creating visual user interfaces; this is the
down-side of platform independence.

6 Related work

One source of inspiration is Olin Shivers’s Scheme shell scsh, in which Shivers intended Scheme
to replace the ‘little languages’ such as awk, perl, sed, and shell scripting languages [8]. The
little languages have a number of syntactic quirks, and usually lack suitable means of program
structuring and integration.

Another source of inspiration is Jonas Barklund’s summer course The Internet and Pro-
gramming given at Uppsala University, in which he used SML and the Moscow ML imple-
mentation. In that connection he created the mosmlcgi library which provides access to the
arguments of CGI scripts [2].

11

7 Conclusion

We have found that Standard ML programs can be given visual user interfaces by exploiting
current WWW browser technology and the HTML language. With a modest programming
effort this can improve the appeal and usability of some Standard ML programs considerably.

One possible application area is educational software, where the ability to make updates
centrally, and to create a single version for all platforms, is useful.

Future work The lambda reducer may be adapted to visualize reduction in a lazy (call-
by-need) version of the lambda calculus, most likely based on a suitable abstract machine
[7].

The Html and Wordseq libraries should be overhauled and packaged up for distribution.
For other applications we plan add forms-based file upload to the mosmlcgi library.

Acknowledgements We are indebted to Jonas Barklund for the inspiration provided by his
use of SML in the summer course The Internet and Programming, and also for his mosmlcgi
library.

References

[1] H.P. Barendregt, J.R. Kennaway, J.W. Klop, and M.R. Sleep. Needed reduction and spine
strategies for the lambda calculus. Information and Computation, 75:191-231, 1987.

2] J. Barklund. The mosmlcgi library. Web page at
http://www.csd.uu.se/” jonas/mosmlcgi/.

[3] U. Dindorp and P. Sestoft. The sfd dataset browser. overview and technical description.
Technical report, Royal Veterinary and Agricultural University, Denmark, 1996. Draft
0.07.

[4] E. Gansner and J. Reppy. Standard ML Basis Library. Technical report, AT&T Research,
1996.

[6] X. Leroy. The Zinc experiment: An economical implementation of the ML language.
Rapport Technique 117, INRIA Rocquencourt, France, 1990.

[6] S. Romanenko and P. Sestoft. Moscow ML Owner’s Manual, version 1.41, October 1996.
Available at http://www.dina.kvl.dk/ sestoft/mosml.html.

[7] P. Sestoft. Deriving a lazy abstract machine. Journal of Func-
tional Programming, 7(3), May 1997. (To appear). Available at
ftp://ftp.dina.kvl.dk /pub/Staff/Peter.Sestoft /papers/amlazy5.ps.gz.

[8] O. Shivers. A scheme shell. Technical Report TR-635, Laboratory for Computer Science,
MIT, 1994. To appear in Journal of Lisp and Symbolic Computation.

12

