
IT-University of Copenhagen

Master Thesis

Funsheet

Integration of Sheet-Defined Functions in Excel using C#

Authors:

Simon Eikeland Timmermann

Jonas Druedahl Rask

Supervisor:

Prof. Peter Sestoft

A thesis submitted in fulfilment of the requirements

for the degree of MSc of IT: Software Engineering

1st June 2014

http://www.itu.dk

IT-UNIVERSITY OF COPENHAGEN

Abstract

MSc of IT: Software Engineering

Funsheet

Integration of Sheet-Defined Functions in Excel using C#

by

Simon Eikeland Timmermann

Jonas Druedahl Rask

In this thesis the concept of sheet-defined functions, found in the research spreadsheet

implementation Corecalc and Funcalc developed by Peter Sestoft, is integrated into Ex-

cel through an Excel XLL add-in named Funsheet. A series of benchmark experiments

have been constructed and executed to explore the most effective technology to use

for the implementation of Funsheet. A collection of design goals targeting both func-

tional and non-functional requirements of Funsheet have been identified. Considering

the benchmark results and the design goals, Excel-DNA has been chosen as the superior

technology to use for the implementation of Funsheet. The thesis then describes the

design and implementation of the Funsheet add-in. Finally, the thesis describe how the

implementation of Funsheet was verified through a collection of tests.

http://www.itu.dk

Contents

Abstract i

Contents ii

Abbreviations vii

1 Introduction 1

1.1 Foreword . 1

1.2 Motivation . 1

1.3 Results . 2

1.4 Thesis Organization . 2

1.5 Deliverables . 3

2 Background 4

2.1 Spreadsheet Technology . 4

2.2 Sheet-Defined Functions . 5

2.3 Corecalc and Funcalc . 6

2.4 VBA . 6

2.5 COM . 6

2.6 XLL . 7

2.7 Excel-DNA . 7

3 Related Work 8

3.1 Introduction . 8

3.2 The inception of sheet-defined functions 8

3.3 Corecalc and Funcalc: The realization . 9

3.4 Excel-DNA . 9

4 Experiments 10

4.1 Hypotheses . 10

4.2 Experimental Setup . 11

4.2.1 UDF 1 Setup - Generate Random Number 11

4.2.2 UDF 2 Setup - Calculate Square Root 12

4.2.3 UDF 3 Setup - Calculate Average of Cell Range 13

4.3 Results and Evaluation . 13

4.3.1 UDF 1 . 14

4.3.2 UDF 2 . 14

ii

Contents iii

4.3.3 UDF 3 . 15

4.3.4 Evaluation . 16

5 Design 20

5.1 Design Goals . 20

5.1.1 Technical Goals . 20

5.1.2 Quality Goals . 22

5.1.2.1 Performance Goals . 22

5.1.2.2 Maintainability Goals . 22

5.1.2.3 Portability Goals . 22

5.1.2.4 Usability Goals . 23

5.2 Technology Choice . 23

5.3 Funsheet Design . 25

5.3.1 Design overview . 25

5.3.2 User Interface . 26

5.3.3 Monitor Cell Changes . 27

5.3.3.1 Alternative A . 28

5.3.3.2 Alternative B . 28

5.3.3.3 Alternative C . 29

5.3.4 Error Handling . 29

5.3.5 Funsheet Functions . 31

5.3.5.1 Define Function . 32

5.3.5.2 Closure Function . 33

5.3.5.3 Specialize Function . 35

5.3.5.4 Apply Function . 35

5.3.5.5 Benchmark Function . 36

5.4 Design Evaluation . 36

6 Implementation 39

6.1 System overview . 39

6.2 Portability, Maintainability and Coupling Considerations 40

6.3 Value Conversion . 42

6.4 Error Handling . 42

6.5 RTD Wrapper . 44

6.6 Funsheet Functions . 46

6.6.1 Excel-DNA usage . 46

6.6.2 Define . 47

6.6.2.1 Step 1: Obtaining cell formula and references from a cell
formula . 48

6.6.2.2 Step 2: Creating Funcalc representation and registering
the SDF . 49

6.6.2.3 Step 3: Creating a default closure 51

6.6.2.4 Step 4: Promoting to a function sheet 52

6.6.2.5 Step 5: Returning an RTD wrapper 52

6.6.2.6 Un-registering an SDF 53

6.6.2.7 Using built-in Excel functions in SDFs 53

6.6.2.8 Re-opening a saved workbook 56

Contents iv

6.6.3 Closure . 58

6.6.4 Specialize . 60

6.6.5 Apply . 61

6.6.6 Benchmark UDF . 61

6.7 UI . 62

6.8 Evaluation . 63

7 Test 65

7.1 Organization of Tests . 65

7.2 Tests . 66

7.2.1 Test 1: Define SDF . 66

7.2.1.1 Purpose . 66

7.2.1.2 Implementation . 66

7.2.1.3 Acceptance Criteria . 67

7.2.1.4 Results . 67

7.2.1.5 Evaluation of Test 1 . 68

7.2.2 Test 2: Define SDFs with a variable amounts of input argument . 68

7.2.2.1 Purpose . 68

7.2.2.2 Equivalence Partitioning and Boundary-value analysis . . 69

7.2.2.3 Implementation . 69

7.2.2.4 Acceptance Criteria . 69

7.2.2.5 Results . 70

7.2.2.6 Evaluation of Test 2 . 70

7.2.3 Test 3: Delete SDF when cell containing SDF definition is cleared. 71

7.2.3.1 Purpose . 71

7.2.3.2 Implementation . 71

7.2.3.3 Acceptance Criteria . 71

7.2.3.4 Results . 71

7.2.3.5 Evaluation of Test 3 . 71

7.2.4 Test 4: Creating Closures . 72

7.2.4.1 Purpose . 72

7.2.4.2 Implementation . 72

7.2.4.3 Acceptance Criteria . 73

7.2.4.4 Results . 73

7.2.4.5 Evaluation of Test 4 . 74

7.2.5 Test 5: Specialize Closures. 74

7.2.5.1 Purpose . 74

7.2.5.2 Implementation . 74

7.2.5.3 Acceptance Criteria . 74

7.2.5.4 Results . 74

7.2.5.5 Evaluation of Test 5 . 75

7.2.6 Test 6: Calling built-in Excel functions when function is not present
in Funcalc. 75

7.2.6.1 Purpose . 75

7.2.6.2 Implementation . 75

7.2.6.3 Acceptance Criteria . 76

7.2.6.4 Results . 77

Contents v

7.2.6.5 Evaluation of Test 6 . 77

7.2.7 Test 7: Define Recursive SDF . 77

7.2.7.1 Purpose . 77

7.2.7.2 Implementation . 77

7.2.7.3 Acceptance Criteria . 78

7.2.7.4 Results . 78

7.2.7.5 Evaluation of Test 7 . 78

7.2.8 Test 8: Goal Seek . 78

7.2.8.1 Purpose . 78

7.2.8.2 Implementation . 79

7.2.8.3 Acceptance Criteria . 80

7.2.8.4 Results . 80

7.2.8.5 Evaluation of Test 8 . 80

7.2.9 Test 9: Performance . 81

7.2.9.1 Purpose . 81

7.2.9.2 Implementation . 81

7.2.9.3 Acceptance Criteria . 82

7.2.9.4 Results . 82

7.2.9.5 Evaluation of Test 9 . 82

7.3 Evaluation . 83

8 Future Work 84

8.1 Editing of existing SDF definitions . 84

8.2 Funsheet user study . 84

8.3 Funsheet production environment study 85

8.4 Distributed computing with Funsheet . 85

8.5 The cause of higher execution times of benchmarks in Funsheet compared
to Funcalc . 85

9 Conclusion 86

9.1 Initial Experiments . 86

9.2 Design . 87

9.3 Implementation . 87

9.4 Test . 88

A Source Code Documentation 89

A.1 Excelcalc.ApplyFunction Class Reference 89

A.2 Excelcalc.BenchmarkFunction Class Reference 90

A.3 Excelcalc.ClosureFunction Class Reference 91

A.4 Excelcalc.Closures.Closure Class Reference 92

A.5 Excelcalc.Closures.ClosureContext Class Reference 95

A.6 Excelcalc.CorecalcRegistration.CorecalcDynamicCellVisitor Class Refer-
ence . 98

A.7 Excelcalc.CorecalcRegistration.CorecalcDynamicExprVisitor Class Refer-
ence . 102

A.8 Excelcalc.CorecalcRegistration.CorecalcRegistrator Class Reference 106

Contents vi

A.9 Excelcalc.DefineFunction Class Reference 108

A.10 Excelcalc.ExcelRegistration.ExcelCellHandle Class Reference 112

A.11 Excelcalc.ExcelRegistration.ExcelFunCall Class Reference 115

A.12 Excelcalc.ExcelRegistration.ExcelFunCallContext Class Reference 117

A.13 Excelcalc.ExcelcalcInitializer Class Reference 120

A.14 Excelcalc.RegisteredSdf Class Reference 122

A.15 Excelcalc.RegisteredSdfContext Class Reference 123

A.16 Excelcalc.ExcelRegistration.ExcelRegistrator Class Reference 125

A.17 Excelcalc.Util.ExtensionMethods Class Reference 128

A.18 Excelcalc.Util.HelperMethods Class Reference 129

A.19 Excelcalc.SpecializeFunction Class Reference 131

A.20 Excelcalc.UI.ExcelcalcRibbon Class Reference 132

A.21 Excelcalc.Util.ErrorConverter Class Reference 135

A.22 Excelcalc.Util.ExtensionMethods Class Reference 137

A.23 Excelcalc.Util.HelperMethods Class Reference 140

B Funcalc Changelog 143

B.1 Primer . 143

B.2 Changes . 143

C Funsheet Installation Guide 146

C.1 Pre-requisites . 146

C.2 Install Funsheet . 146

C.3 Uninstall Funsheet . 147

Bibliography 148

Abbreviations

UDF User Defined Function

SDF Sheet Defined Function

VBA Visual Basic for Applications

COM Component Object Model

TG Technical Goal

QG Quality Goal

vii

Chapter 1

Introduction

1.1 Foreword

This Master’s thesis is written by Jonas Druedahl Rask and Simon Eikeland Timmermann

in the period from January 2014 to June 2014. With this thesis, we finish our Master

degree in software development at the IT University of Copenhagen.

This paper describes a framework for conducting performance benchmark experiments

in Microsoft Excel. It also describes how we used different technologies to implement

simple, user-defined functions (UDF) to identify the technology currently yielding the

best performance. Finally, we describe the process of designing and implementing the

required Excel UDFs to support the concept of sheet-defined functions (SDF) using

parts of the Funcalc[1] project. The original working title of our solution was Excelcalc,

but was later changed to Funsheet.

To read and understand this thesis the reader should be familiar with how spreadsheets

work. It also requires knowledge of the programming language Microsoft C# and a basic

understanding of computer science.

1.2 Motivation

Spreadsheets offer an array of functionality and are widely used today. Peter Sestoft is

a professor at the IT University of Copenhagen, and has been researching the area for

1

Chapter 1. Introduction 2

some time. He developed and implemented Funcalc[1], a research prototype that im-

plements core spreadsheet functionality and sheet-defined functions (SDF)[2]. Through

experiments with prototypes, we explored possibilities of integrating the SDF imple-

mentation from Funcalc into Microsoft Excel. This would allow users to introduce more

advanced and programming functionality to their spreadsheets, while still maintaining

the familiar interface and declarative syntax of Excel.

1.3 Results

We used exploratory prototyping as our method to find the most suitable technology to

base Funsheet upon. In chapter 4 we describe the development of a series of user-defined

functions where each UDF or prototype is evaluated based on their performance.

In chapter 5 we establish that Funsheet should be implemented using Excel-DNA[3].

We have been through a lot of iterations, perfecting the design and implementation.

The result is a complete implementation of an Excel add-in supporting sheet-defined

functions, higher order functions and recursive function definitions. This proves that it

is possible to transfer the concept of SDFs from Funcalc to Microsoft Excel and thereby

enable end-users to exploit SDFs while still keeping all the complex functions and tools

present in Excel.

1.4 Thesis Organization

This thesis is organized into chapters. Chapter 2 facilitates the background knowledge

required to read and understand this paper. In chapter 3 we present related work,

relevant to this thesis. In chapter 4 we present a process for conducting experiments

along with a series of experiments. We benchmark these experiments and evaluate the

results. Chapter 5 describes the rationale behind the chosen solution along with the

design goals and actual design of Funsheet. Chapter 6 describes the implementation

of the solution. Chapter 7 describes our testing efforts to verify the realization of our

design goals. In chapter 8 we propose ideas for future work. In chapter 9 we state the

final conclusions and discuss how our solution align with our initial goals.

Chapter 1. Introduction 3

1.5 Deliverables

Besides this thesis report, we have handed in the following:

• Funsheet source code

• Technology Experiments source code

• The Funsheet add-in

• Latex source code

Chapter 2

Background

In this chapter we will cover the core technologies used in this thesis.

2.1 Spreadsheet Technology

Spreadsheet applications are used daily by millions of people all over the world. It

enables users to organize and analyse data in a tabular format. The applications enable

users to transform data in different ways by applying built-in and customized functions.

A spreadsheet is organized as a two-dimensional grid in which the horizontal axis is

labelled with letters and the vertical axis with numbers, both starting from the upper

left corner. Every combination of a letter and number is called a cell, where the address

of the cell is represented by the unique combination of the letter and number eg. B17.

Cells can contain text, numbers, functions or a combination of these. A collection of

cells is called a range and is referenced by a start cell and an end cell, eg. A3:C7, which

denotes a range containing the cells A3-A7, B3-B7 and C3-C7.

If the user demands functionality that is not present in the spreadsheet application, most

common applications contain ways to extend the functionality by writing user-defined

functions. Often, the creation of user-defined functions requires the user to have some

knowledge of programming.

Some well-known spreadsheet applications are Microsoft Office Excel, Gnumeric and

OpenOffice Calc.

4

Chapter 2. Background 5

2.2 Sheet-Defined Functions

Most ordinary spreadsheet users do not have any programming experience which makes

it difficult for them to extend spreadsheet applications. The article “A User-Centred

Approach to Functions in Excel” Peyton Jones, Blackwell and Burnett introduces a

concept called sheet-defined functions (SDF)[2]. Basically SDFs is a way to integrate

user-defined functions (UDF) into the grid of the spreadsheet application. This enables

users to extend spreadsheet applications using knowledge they already possess. It further

enables users to compose SDFs and built-in functions into new SDFs, avoiding the need

to rewrite functions, thus lowering the margin of error.

The idea is illustrated in figure 2.1 in which the top sheet shows how the SDF F2C is

called. The bottom sheet shows the definition of the F2C. It consists of a cell defining

an input field, a cell containing an intermediate result, and a cell combining the former

two to act as the function. Besides being easy to understand for non-programmers, it

allows for splitting complex functions up into many intermediate results which makes it

perform better, makes it easier to maintain and less error prone.

Figure 2.1: Invocation and definition of a SDF[2].

Chapter 2. Background 6

2.3 Corecalc and Funcalc

Corecalc is an implementation of core spreadsheet functionality in C#. Corecalc is a

research project developed by Peter Sestoft[1]. It was developed to provide research-

ers with a platform for carrying out experiments and trying out new ideas in an open

spreadsheet implementation. Besides being open-source, one of the advantages of Core-

calc is that it comes with extensive documentation, which is in direct contrast to the

mainstream spreadsheet applications.

Funcalc[1] is an extension of Corecalc. It introduces the concept of sheet-defined func-

tions(SDFs), while retaining the familiar spreadsheet user interface. It works by trans-

lating SDFs at runtime to bytecode and caching this representation for future calls to

the SDF.

In this thesis the term Funcalc corresponds to Corecalc with the Funcalc extension.

2.4 VBA

Visual Basic for Applications (VBA) is an implementation of Microsoft’s programming

language Visual Basic 6. It is built into most Microsoft Office applications along with an

integrated editor for writing VBA code. It can be used to build user-defined functions

(UDFs) in Excel and control many other aspects of the host application.

VBA is an interpreted language and therefore VBA code is never compiled. Naturally,

this affects performance. Another limitation of VBA is the lack of multi-threading

capabilities. Regardless of the limitations, VBA is still widespread and commonly used

to extend Microsoft Office applications.

2.5 COM

Component Object Model (COM) is a binary-interface standard for software components

introduced by Microsoft in 1993. COM defines a standard for compiling assemblies so

they match a specific structure. This provides a way for sharing binary code across

different applications and languages.

Chapter 2. Background 7

COM Interoperability, also called COM Interop, is a technology found in the .NET

Common Language Runtime, that enables COM objects and .NET objects to interact.

Microsoft Excel has the ability to consume COM objects. In this thesis we use COM

and COM Interop to expose user-defined functions written in C# to Microsoft Excel.

When COM Interop is used, some performance overhead will occur, due to marshalling

between processes.

2.6 XLL

XLL is used to create add-ins for Excel. XLL add-ins are written using the Excel C

API, which offers the possibility to develop high-performance add-ins compared to using

the COM approach. A downside of using the Excel C API is that the learning curve is

quite steep compared to using COM.

2.7 Excel-DNA

Excel-DNA is an independent open-source project that aims to integrate .NET and

Excel. It allows building native (.xll) add-ins for Excel using the .NET framework.

Excel-DNA can take advantage of the COM Interop features from .NET, the native

C XLL API, or a combination of both. The add-ins created with Excel-DNA can be

compiled as a DLL file or an XLL file.

Excel-DNA works by hosting the .NET framework inside an XLL add-in. The .NET

code is then injected into the hosted .NET framework and can thus run inside the add-in.

Excel-DNA includes a .NET object model, resembling the C XLL API types to make it

possible to bridge the gap between the C and the .NET border.

There is not a significant marshalling overhead when using Excel-DNA.

Figure 2.2: How .NET code interacts with Excel through Excel-DNA.

Chapter 3

Related Work

3.1 Introduction

In this chapter we present some research and related work that has acted as a foundation

for our implementation of Funsheet. The related work has also greatly influenced our

decisions and rationales.

3.2 The inception of sheet-defined functions

In 2003, Peyton Jones et al. first described the concept of sheet-defined functions[2].

They envisioned an extension to Excel allowing users to define functions directly in

the sheets. Users should be able to do this by leveraging their existing knowledge of

how spreadsheet applications work. By applying this user-centric approach to language

design, Peyton Jones et al. managed to design a declarative and easy to use programming

interface that integrates nicely with the existing concepts of Excel. However, this concept

was never implemented by Peyton Jones et al.

Peyton Jones et al. describe the benefits of sheet-defined functions. Sheet-defined func-

tions can be used to avoid tedious repetitions of complex and hard to read expressions by

encapsulating these expressions in a sheet-defined function. Not only does this promote

readability, but is also beneficial for maintainability. Instead of copying expressions,

which introduces a maintenance burden if the expression needs to change, it is pos-

sible to only change the definition of the sheet-defined function. This way of achieving

8

Chapter 3. Related Work 9

centralized maintenance by encapsulation is very similar to the way software is built

using imperative languages. It also enables the creation of dedicated SDF libraries that

can be used to promote re-use across an organization and minimize the risk of errors.

Peyton Jones et al. also pointed out that there is a potential for performance benefits

by representing SDFs using an abstract syntax or even compiling SDFs into bytecode.

3.3 Corecalc and Funcalc: The realization

In 2006 Peter Sestoft started researching in the area of sheet-defined functions(SDF)[1].

He began the development of Corecalc, a spreadsheet implementation written in C#.

The project aimed to provide an experimental platform to test different aspects of im-

plementing a spreadsheet application. Later, Funcalc was developed by Peter Sestoft[4].

Funcalc is an extension to Corecalc, supporting the concept of sheet-defined functions.

Funcalc enabled the definition of SDFs and runtime generation of bytecode to allow high

performance when executed. Corecalc and Funcalc is a great platform for experiment-

ing, but lacks most functions and tools found in Microsoft Excel. It is therefore not a

viable alternative to Excel for users.

3.4 Excel-DNA

Excel-DNA is an open-source project aimed to ease the development of user-defined func-

tions in Excel[3]. Excel-DNA was started by Govert van Drimmelen, who has developed

and supported the framework from the project’s beginning. Excel-DNA has evolved over

time and has a large array of use cases including development of user-defined functions,

custom user interfaces and macros. One interesting feature of Excel-DNA is the recent

addition of runtime registration of delegates as user-defined functions in Excel.

The Excel-DNA project has a large and active community in which the author of Excel-

DNA, Govert, actively participates and constructively helps developers answer their

questions.

Chapter 4

Experiments

We aimed to conduct experiments on the efficiency of using user-defined functions (UDF)

in Excel. The UDFs are based on prototypes implemented through three different tech-

nologies: COM Interop, VBA and Excel-DNA. We assess how big a performance penalty

can be attributed to the data transfer from Excel to the UDFs versus the overhead of

function calling. In some experiments we included the function in Microsoft Excel cor-

responding to the current UDF.

4.1 Hypotheses

Here we present some hypotheses regarding the performance of the three technologies:

1. We expect COM Interop to be slower in all cases in which we transfer great amounts

of data back and forth between Excel and the .NET assembly. This is due to the

heavy marshalling of objects between processes when using COM Interop[5].

2. We expect UDFs defined in VBA to have a larger overhead for function calling

than COM Interop and Excel-DNA. We assume this is because of VBA being an

interpreted language[6].

3. We expect UDFs defined in VBA to perform better than COM Interop and Excel-

DNA in situations where much data is passed as arguments (eg. the Average

function that takes large number of cells). We propose that this advantage is

10

Chapter 4. Experiments 11

due to the fact that VBA is being executed in-process and therefore avoids the

overhead of marshalling data between processes[7].

4. We expect Excel-DNA to have a lower overhead with regard to calling functions

and transferring data than COM Interop, because the data is passed through the

native Excel C API[3]. Some marshalling will be required when the data is passed

to managed C#.

5. We expect Microsoft Excel to have the best performance by avoiding the overhead

that comes with the other technologies.

4.2 Experimental Setup

We define three user-defined functions (UDF). Each UDF will be implemented in each of

the three technologies, resulting in a total of nine UDFs. There is an experiment for each

UDF with different volumes of data. Each experiment consists of an individual Excel

sheet, in order to minimize the risk of influences from other sheets. Each experiment

is manually executed one hundred times by a human being and the results/running

times are written down. The execution is carried out using Excel’s “Workbook Forced

Recalculation” function (CTRL-SHIFT-ALT-F9). The UDFs and the experiments have

been designed with gauging overhead of function calls and data transfer in mind, as we

believe these to be the main performance defining factors. Details of the setup of each

UDF are described in the following sections.

4.2.1 UDF 1 Setup - Generate Random Number

The first UDF generates and returns a single random number between 0 and 1. We will

use this UDF to measure the overhead of executing UDFs with each technology. This

UDF was chosen because it is relatively simple while being naturally volatile. It is also

easy to verify its volatility, by checking if the randomly generated numbers change. For

the first UDF, we have created three experiments for each technology. One experiment

executes the UDF 10,000 times, the next executes 100,000 times and the last 1 million

times.

Chapter 4. Experiments 12

To setup the experiment for UDF 1, we start out by adding the actual add-in to the

Excel sheet instance. For measuring start time, we insert the Excel built-in function

NOW into a cell. NOW returns the current date and time, including milliseconds. Then a

number of cells corresponding to the desired execution count are populated with calls

to UDF 1. To make sure the start time is calculated before anything else, we make the

cells calling UDF 1 depend on the start time, by adding the start time to the result of

UDF 1. An end time cell is then defined using another call to Excel’s NOW function. To

ensure this cell is evaluated last, we create another dependency by having a new cell

calculate the sum of all the UDF 1 calls using Excel’s SUM function. After that we are

able to insert a logical statement into the end time cell, evaluating the sum cell. These

dependencies are depicted in figure 4.1.

Figure 4.1: The EXCELINTEROPRANDOM is implemented using COM Interop. All the
calls to EXCELINTEROPRANDOM depend on the start time. This ensures that the start
time is calculated first. The end time depends on the sum of the EXCELINTEROPRANDOM

function calls, which ensures that the end time is calculated last.

4.2.2 UDF 2 Setup - Calculate Square Root

The second UDF accepts a double as an argument, calculates and returns the square

root of the argument. Like UDF 1, UDF 2 was also created to measure the overhead

of executing UDFs with each technology. During the experiment process we realized,

that random number generators could be implemented differently in C# and VBA. So

to minimize the error margin on the benchmark results revolving function call overhead,

we implemented UDF 2. This decision is further elaborated on in 4.3.4. For UDF

2, we created three experiments for each technology and one in which we use Excel’s

built-in square root function. One experiment executes the UDF 10,000 times, the next

executes 100,000 times and the last 1 million times. The setup is similar to the one in

UDF 1, except for the fact that it is calling a different UDF and is using Excel’s square

Chapter 4. Experiments 13

root function. We decided on including Excel’s built-in square root function to further

visualize the overhead that exists. This decision is also further elaborated on in 4.3.4.

4.2.3 UDF 3 Setup - Calculate Average of Cell Range

The third UDF accepts a cell range as an argument, calculates and returns the average

of the cells in the range. We will use this UDF to measure the performance penalty

associated with transferring data as parameters with each technology. For the third

UDF, we have created three experiments for each technology and one where we use

Excel’s built-in average function. One experiment where the UDF is called a single time

with a cell range of 100,000, one with a cell range of 500,000 and finally one with a

cell range of 1 million. The decision to include Excel’s built-in function is to further

visualize the overhead of data transfer. This is further elaborated on in 4.3.4.

The setup of UDF 3 varies a bit from the others. In this case there is only a single call

to the UDF, but many cells acting as parameters. The order of calculation is enforced

using the same technique as in UDF 1 and UDF 2, which is depicted in figure 4.2.

Figure 4.2: The EXCELDNAAVERAGE is implemented using Excel-DNA. The call to
EXCELDNAAVERAGE is dependent on the start time. This ensures that the start time is
calculated first. To ensure that the end time is calculated last, it is made dependant

on the result of the EXCELDNAAVERAGE.

4.3 Results and Evaluation

This section presents the results and our reflections of the experiments conducted with

the three UDFs.

Chapter 4. Experiments 14

4.3.1 UDF 1

The measured performance results for this UDF was, from the on average slowest to the

on average fastest: VBA, COM Interop and Excel-DNA. This is depicted in figure 4.3.

UDF 1 was created in order to measure some of the overhead that exists when calling

functions from the different technologies. We therefore aimed to create functions that

are as simple as possible while calling them many times, in order to isolate the overhead

as much as possible. In hypothesis 4 we expect Excel-DNA to perform better than COM

Interop, due to its utilization the native C Api. This claim is supported by the results,

where we can see that Excel-DNA on average performs each function call 2000 ns faster

than COM Interop does.

Figure 4.3: Random benchmark: Excel-DNA is the best performer of the three add-
ins. Detailed data can be found in table 4.1.

4.3.2 UDF 2

The measured performance results for this UDF were from the on average slowest to

the on average fastest: VBA, COM Interop, Excel-DNA, Excel. This is depicted in

figure 4.4 Similar to UDF 1, UDF 2’s purpose is to gauge the overhead when calling

functions using COM Interop, VBA, Excel-DNA and Microsoft Excel. In hypothesis

2 we expect VBA, as an interpreted language, to have a larger overhead that COM

Chapter 4. Experiments 15

Interop and Excel-DNA. This hypothesis is supported by our results, where we see VBA

having the slowest average performance in both the UDF 1 and UDF 2 experiments.

Microsoft Excel’s square root function with 1 million cells is 78 times faster than its

VBA equivalent. We attribute the performance gap to the overhead of calling functions

outside of Excel.

Figure 4.4: Square root benchmark: Excel-DNA is the best performer of the three
add-ins. Detailed data can be found in table 4.2.

4.3.3 UDF 3

The measured performance results from this UDF was from the on average slowest to

the on average fastest: Excel VBA, Excel-DNA and COM Interop. This is also depicted

in figure 4.5 In hypothesis 1, we expect COM Interop to be slower when great amounts

of data are transferred. This hypothesis is supported by the benchmark results which

show that COM Interop is less efficient than VBA and Excel-DNA, when much data

is transferred. Excel-DNA remains the most efficient throughout this experiment. We

expect the reason that VBA retains some of its performance is due to it being in-process

as opposed to COM Interop and Excel-DNA. In hypothesis 3 we state that we expect

VBA to outperform the two other technologies when working with great amounts of

data. This has clearly proven to be a faulty assumption, since Excel-DNA considerably

Chapter 4. Experiments 16

outperforms the two others, with COM Interop being the slowest performer. Microsoft

Excel has the best performance in this experiment.

Figure 4.5: Average-benchmark: Excel-DNA is the best performer of the three add-
ins. Detailed data can be found in table 4.3.

4.3.4 Evaluation

These experiments were designed to provide us with insight in how UDFs implemented

using different technologies perform in regards to overhead of function calls and data

transfer. We initially implemented UDF 1 and UDF 3, thinking they would suffice to

gauge overhead of function calls and data transfer. In later iterations it occurred to

us that the built-in random number generators in C# and VBA, might be of vastly

different implementations. We feared that this could affect the benchmarking results in

a negative way. We therefore created and benchmarked UDF 2, the square root function,

which uses C#’s and VBA’s square root method. It is fair to assume that square root is

implemented on a hardware level, with a minimal amount of overhead in executing the

function. It also helps us validate the results of UDF 1 (random number); if the results

of the two UDF benchmarks are similar or close to, the overhead of generating a random

number might not be that high, which means we can trust and use the UDF 1 results

when deciding on what technology to choose. We also chose to include benchmarks for

Microsoft Excel’s built-in square root function, to further distinguish the overhead. In

Chapter 4. Experiments 17

the results of UDF 2, depicted in 4.4 it is very clear that some overhead in function

calling exists. The results of 1,000,000 calls to the square root function, Microsoft Excel

is 30 times faster than Excel-DNA, 51 times faster than COM Interop and 77 times

faster than VBA. The benchmark results of UDF 1 and UDF 2 look very similar, which

leads us to conclude that the potentially different implementations of a random number

generator in C# and VBA had no noteworthy effect on the results.

In the experiments involving UDF 3, we tried to identify the overhead of data transfer

when using UDFs in Microsoft Excel. Here we had some interesting benchmark results:

Excel-DNA seem to start out with an overhead and gradually moves closer and closer to

the mean performance of Microsoft Excel, as seen in 4.5. This is consistent with the idea

that the main reason that the add-ins are losing performance, is the initial overhead of

calling a function outside Microsoft Excel.

Table 4.1: UDF 1: Results for the random function

Technology and # of calls Mean (ms) St. dev. Per call (ns)

Excel-DNA 10K 65.10 8.70 6510

Excel-DNA 100K 579.80 26.70 5798

Excel-DNA 500K 2470.90 94.92 4942

Excel-DNA 1 mio. 5318.80 23.63 5319

Excel COM Interop 10K 95.50 8.69 9550

Excel COM Interop 100K 775.10 13.89 7751

Excel COM Interop 500K 3939.30 103.85 7879

Excel COM Interop 1 mio. 7639.20 28.98 7639

Excel VBA 10K 130.60 18.30 13060

Excel VBA 100K 1106.60 41.69 11066

Excel VBA 500K 6510.60 691.66 13021

Excel VBA 1 mio. 10586.00 158.80 10586

Chapter 4. Experiments 18

Table 4.2: UDF 2: Results for the Sqrt function

Technology and # of calls Mean (ms) St. dev. Per call (ns)

Excel 10K N/A N/A N/A

Excel 100K 14.30 4.98 143

Excel 500K 72.70 13.47 145

Excel 1 mio. 160.20 30.32 160

Excel-DNA 10K 72.80 15.05 7280

Excel-DNA 100K 505.50 12.66 5055

Excel-DNA 500K 2473.60 12.35 4947

Excel-DNA 1 mio. 4936.40 37.30 4936

Excel COM Interop 10K 107.10 14.58 10710

Excel COM Interop 100K 848.20 10.38 8482

Excel COM Interop 500K 4162.10 34.21 8324

Excel COM Interop 1 mio. 8395.29 211.35 8395

Excel VBA 10K 141.40 17.12 14140

Excel VBA 100K 1129.50 57.09 11295

Excel VBA 500K 5733.30 301.12 11467

Excel VBA 1 mio. 12553.80 640.82 12554

Chapter 4. Experiments 19

Table 4.3: UDF 3: Results for the average function

Technology and # of cells Mean (ms) St. dev.

Excel 100K N/A N/A

Excel 500K 24.20 7.94

Excel 1 mio. 37.70 12.05

Excel-DNA 100K 10.80 6.46

Excel-DNA 500K 44.60 8.22

Excel-DNA 1 mio. 49.00 8.59

Excel COM Interop 100K 56.40 13.52

Excel COM Interop 500K 148.00 10.44

Excel COM Interop 1 mio. 293.10 17.10

Excel VBA 100K 35.30 10.96

Excel VBA 500K 81.10 9.94

Excel VBA 1 mio. 119.00 11.06

Chapter 5

Design

In this chapter we will define our technical and quality design goals. Based on these

goals we will decide on which technology to use for developing Funsheet. Lastly, we

elaborate on the system design of Funsheet in regard to our design goals.

5.1 Design Goals

We divide our design goals into technical and quality goals. We will measure the realiz-

ation of the design goals in the Test chapter to verify their implementation.

5.1.1 Technical Goals

TG1 Support for creating and calling SDFs in Funcalc from Excel.

It should be possible to initiate the SDF creation process in Funcalc from the Excel

instance. Funcalc supports a maximum of 9 arguments. Our implementation

should reflect this and therefore allow the user to specify 0-9 arguments when

defining an SDF. It should further be possible to call an SDF registered in Funcalc

from Excel. Finally, it should be possible to use previously defined SDFs in a new

SDF.

TG2 Support for editing previously defined SDFs.

It should be possible for a user to alter an SDF definition to update an existing

20

Chapter 5. Design 21

SDF. Note that this goal has not been implemented, but a possible solution is

discussed in section 8.1 in chapter 8 concerning Future Work.

TG3 Support for defining and calling closures.

Closures are higher order functions in Funcalc allowing users to pass functions

around as values. It should be possible to create and apply closures from Excel.

It should be be possible to create a closure either from an SDF definition or from

an existing closure. When creating closures it should be possible to make a subset

of the arguments fixed.

TG4 Support for calling built-in Microsoft Excel functions from Funsheet

SDFs.

In Microsoft Excel, users will most likely assume that the built-in functions will

be available, when defining SDFs. Funcalc relies on the ability to access any

function reachable from an SDF definition, but Excel provides an array of built-in

functions that might not exist in Funcalc, eg. ARABIC (a specific Excel built-in

function capable of converting a roman numeral to an arabic number). Therefore,

the solution should include a mechanism to allow Funcalc to reach Excel built-in

functions when they are used in the definition of an SDF.

TG5 Support deletion of SDFs.

If a cell containing an SDF is cleared or the formula is rendered invalid, the original

SDF should be deleted. This deletion should be effective both in Funcalc and in

Excel, meaning that SDF registrations in Funcalc should be removed and the

possibility of calling the SDF from Excel should be removed.

TG6 Support for specialization of closures.

This provides performance gains in most situations, due to partial evaluation. This

will, for example, allow a user to define a specialized closure, where some of the

arguments are pre-compiled, so the system only has to evaluate the remaining

arguments supplied at runtime.

TG7 Support for defining recursive SDFs.

As Funcalc already supports recursive SDFs, Funsheet should also implement sup-

port for this.

Chapter 5. Design 22

TG8 It must be possible to save and reload SDFs.

It should be possible to open a previously saved workbook in Excel containing

SDF definitions. The SDFs should work even if they are mutually recursive.

TG9 Support benchmarking of closures and specializations.

There should exist a way to benchmark closures and specializations. It should

be possible to select a closure or specialization and supply a desired number of

calls. The benchmark feature should apply the closure or specialization the desired

number of calls and present the average execution time. This should yield an

accurate result that with a statistical significance depending on the number of

executions.

5.1.2 Quality Goals

These goals cover all non-functional aspects of the system. The section is divided into

four sections: Performance goals, maintainability goals, portability goals and usability

goals.

5.1.2.1 Performance Goals

QG1 Execution of SDFs should take at most 20% longer than execution of

similar SDFs in Funcalc.

The execution of SDFs from Excel that do not call any built-in Excel functions,

should not suffer on performance.

5.1.2.2 Maintainability Goals

QG2 Low coupling between Funsheet and Funcalc.

This will ensure more seamless future development, for both solutions. We will

strive to alter the Funcalc source code only when it is strictly necessary.

5.1.2.3 Portability Goals

QG3 Funsheet should have a high degree of portability.

Funsheet should be easy to distribute and install for end users. It should also

Chapter 5. Design 23

be fairly easy to distribute SDF libraries among users eg. distribution of specific

SDFs within an organization.

5.1.2.4 Usability Goals

QG4 Funsheet should add visual guidance to aid its use.

It should be possible to view created SDFs and the generated bytecode for each.

It should be possible to list the created closures. It should also be possible to get

a list of the Excel functions that are currently in use through SDFs. Excel should

use visual clues in order to clarify when sheets are containing SDF Definitions

(function sheets). Lastly, the user interface should include support when debugging

or tracing errors in the solution.

QG5 Error handling should support the user.

Errors should be shown in a meaningful way to the user. When possible, errors

should conform to the Excel conventions for showing error, eg. if a function is

called with incorrect argument types the #NAME? error should be propagated

back to the user, because this is the expected behaviour of Excel. This relates to

QG6, concerning conforming to Microsoft Excel.

QG6 The solution should conform to Microsoft Excel’s standards and con-

ventions.

All new features introduced by Funsheet, should conform to the existing user inter-

face of Microsoft Excel and not introduce any fundamental changes. This should

help flatten the learning curve of Funsheet for existing Excel users.

QG7 All the usual Excel facilities must be available.

Even though SDFs have been defined in a sheet, all Excel facilities should be

available to the user as usual. With facilities we mean charts, tools, formula

auditing, cell colors, etc.

5.2 Technology Choice

In this section we elaborate on technology options in regard to our design goals. In the

end of this section we conclude on which technology we choose.

Chapter 5. Design 24

Our initial research and benchmarking indicated that we have three reasonable tech-

nology choices to base Funsheet on: VBA, COM Interop and Excel-DNA. Each comes

with a set of advantages and disadvantages relating to our design goals.

Design goal QG1 states that performance is a key requirement. In the evaluation section

4.3 of the benchmark chapter, it is clear that Excel-DNA yields the best performance

of the three technologies. In the results of the experiment concerning 500,000 calls of

the random UDF in table 4.1, Excel-DNA is 1.6 times faster than COM Interop and 2.6

times faster than VBA. In the results of the experiment regarding 500,000 calls of the

square root UDF in table 4.2, Excel-DNA is 1.7 times faster than COM Interop and 2.3

times faster than VBA. In the results of the last experiment with the Average UDF in

table 4.3, Excel-DNA is 3.3 times faster than COM Interop and 1.8 times faster than

VBA.

Design goal QG2 states that maintainability and low coupling is a key factor. Excel-DNA

and COM Interop can both be easily used from C# (the same programming language

that Funcalc is developed in). In contrast, VBA is unable to communicate directly

with C#. VBA actually needs to employ COM Interop to communicate with a piece of

C# code [8]. Using the same programming language across components enables a more

seamless integration, since no translation or marshalling is required. Maintainability and

future development might also be eased by enabling developers to use their existing skills

and knowledge about C# to maintain and extend Funsheet. The fact that VBA needs

to use COM Interop to integrate with Funcalc means there has to be an intermediate

tier for the interface between VBA and Funcalc. This increases maintainability as it

introduces an extra layer. In the portability design goal QG3 dealing with the ease

of distribution and installation, a possible advantage of VBA compared to the COM

Interop and Excel-DNA can be found. VBA is embedded into the Excel spreadsheet

file and not contained in any external file. This can be seen as an advantage since

the user simply has to open the spreadsheet and not be concerned about having the

correct add-ins. We could argue that this should be seen as an advangtage, but not in

Funsheet’s case. The fact that Funsheet relies on Funcalc means that we at a minimum

need to reference one external component (Funcalc) from the VBA code. So the idea of

an encapsulated spreadsheet containing everything is not possible. Keeping the code in

each spreadsheet can also turn out to be a mess in regards to maintainability (Quality

goal QG2), because all released spreadsheets containing the Funsheet VBA code needs

Chapter 5. Design 25

to be changed individually or overwritten by the spreadsheet containing the updated

VBA code. In contrast to this approach, COM Interop and Excel-DNA provides the

option of maintaining and distributing a single add-in file from a centralized repository.

This option does add a minor overhead since the user has to reference the add-in the

first time Microsoft Excel is launched.

According to usability design goals QG4 and QG6, Funsheet should provide an intuitive

and coherent user experience, while adding visual guidance for the features introduced

in Funsheet. To achieve these goals, Funsheet need to be able to manipulate the user

interface of Excel to some extent. VBA, COM Interop and Excel-DNA all offer the

ability to manipulate Microsoft Excel’s user interface. Excel-DNA encapsulates a lot of

the user interface features from the COM Interop API to make it more available and

easier to use.

Taking all the above points into consideration, we have decided to use Excel-DNA for

the forthcoming implementation of Funsheet. It is the best performing technology of

the three technologies, and it has the best architecture for enabling easy maintainability,

portability and error handling, while still allowing for user interface manipulation.

5.3 Funsheet Design

This section covers the design of Funsheet, starting with an overview of the whole system

on a component level and narrowing in and elaborating on the different components of

the solution.

5.3.1 Design overview

We have identified six concerns or areas required to realize our design goals: Closures,

Excel Registration, Funsheet Functions, Funcalc registration, Mapping and Conversion

and User Interface, all illustrated in figure 5.1. We chose this separation to ensure a

low coupling between the different concerns and a high cohesion among the compon-

ents within each concern of the solution. This addresses our maintainability goal QG2

regarding future development.

Chapter 5. Design 26

The Excel Registration is concerned with the functionality responsible for SDF regis-

tration. We have collected all the functions necessary for implementing Funsheet in the

Functions area. These functions are illustrated in figure 5.1 and their individual design

is elaborated in section 5.3.5. We have encapsulated the functionality regarding closures

in the Closures area. The Funsheet registration part is concerned with the registration

of SDFs in Funcalc. The mapping and conversion area will handle the conversion of

errors and values between Excel and Funcalc.

Figure 5.1: Overall design of Funsheet and how it integrates with Excel-DNA and
Funcalc.

5.3.2 User Interface

In this section we will elaborate on our UI design.

To address design decision QG4 regarding visual guidance for Funsheet users, we will

add a custom Funsheet ribbon menu in Microsoft Excel. A mockup of the ribbon user

interface is shown in figure 5.2. This menu will allow the user to view the defined SDFs

along with the generated bytecode. This feature already exists in Funcalc, so we believe

it would be natural to include it in Funsheet. From the ribbon menu users should be able

to list closures and specializations. It should also allow users to see the built-in Excel

functions that are currently used by the SDFs in the workbook. Apart from providing

Chapter 5. Design 27

a sense of familiarity to former Funcalc users, this will also provide them with a general

overview of the current state of the workbook.

Figure 5.2: Mockup of the Funsheet ribbon menu.

To aid former Funsheet users and in general help users troubleshoot errors, we introduce

another feature in the ribbon menu, which allows users to toggle Funcalc errors and .NET

exceptions on and off. These will not be mutually exclusive, but exceptions will take

precedence over Funcalc errors. This is useful in cases where the wrong type of arguments

is used when calling an SDF. Microsoft Excel would give the #NAME? error, indicating

that no such function exists. Funcalc would return the “#ERR: ArgType”, which is

more indicative of the source of the issue. Besides this scenario, the extended error

handling is a positive addition to Funsheet when used as a platform for experiments,

because developers and researchers can choose to have Funsheet display exceptions or

the slightly more descriptive Funcalc errors when debugging or tracing problems in

Funsheet.

We will refer to Excel sheets containing SDF definitions as function sheets. We assist

users to identify function sheets, by pre-pending the sheet name with an @.

5.3.3 Monitor Cell Changes

This section addresses the system design aspects of the functionality goals that requires

Funsheet to keep track of the state of specific cells. We need to keep track of cells where

SDFs are defined, to be able to respond if such a cell is altered or cleared. The natural

Microsoft Excel behaviour in a case where a cell is cleared, is that whatever content was

there is now removed completely. So in the case where a cell contains an SDF definition

that has been registered in both Funsheet and Microsoft Excel is cleared, the SDF needs

to be unregistered in Funcalc and the possibility to call the SDF from Excel should

Chapter 5. Design 28

be removed. To achieve this, we considered several approaches. Here we present three

alternatives, A, B and C.

5.3.3.1 Alternative A

First, we considered a polling component that is responsible for scanning through the

current Microsoft Excel workbook at fixed time intervals. The polling component should

have an internal representation of the workbook stored, which can be used on each scan to

determine changes. This solution requires that the inner representation of the workbook

is updated very frequently, which will add a performance overhead due to the excessive

scanning of the workbook. A timer induced approach can also be confusing to users.

Because the scans are executed asynchronously sudden changes may happen when a user

is idle, or worse, when a user is in the process of editing a formula.

5.3.3.2 Alternative B

Another possible solution, also using an internal representation of the workbook, is to

use Excel’s C API. The API allows developers to wire a piece of code to certain events,

such as key presses. Our first perception was, that cell editing in Microsoft Excel always

ends with a press from the keyboard. A solution could therefore be to bind specific

key presses to execute a workbook scan. This solution would avoid most futile, timer

induced scans. However, this solution would require a very thorough check on many

different keys, while most likely also adding many unnecessary scans. To further detract

from this option, we learned that Microsoft Excel actually provides a button in the user

interface for committing a cell, which is illustrated in figure 5.3.

Figure 5.3: Microsoft Excel allows users to commit cell changes without using key-
board presses.

Chapter 5. Design 29

5.3.3.3 Alternative C

The last design option, which we ended up accepting, is to create a wrapper for Microsoft

Excel’s Real time Data(RTD) features. RTD is basically an implementation of the

publish-subscribe pattern designed to enable cells to subscribe to an outside data source.

Cells are then updated when new data is available through the publisher. A minor

feature of RTD is the ability for a cell to unsubscribe from the publisher. This happens

when an RTD cell is altered or cleared. Using the RTD approach will allow us to monitor

cell changes with a minimum overhead, as no internal representation or thorough scans

would be required.

The Cell Handle component in figure 5.1 represents this wrapper. We have chosen the

term “handle” to avoid confusion as we do not use the RTD features for publish-subscribe

in a traditional sense.

5.3.4 Error Handling

In this section we illustrate the design of the error handling in Funsheet. First we will

review the different error values found in Funcalc and Microsoft Excel and describe where

and how they are used. We then elaborate on how we design the conversion between

errors in Funcalc and Microsoft Excel.

Microsoft Excel is equipped to show appropriate errors if formulas fail to evaluate. We

need a strategy for handling errors originating from Funcalc, e.g. when Funcalc evaluates

an SDF call to a Funcalc error. These errors should then be converted to an appropriate

Microsoft Excel error.

Our first step was to research the various kind of errors in Funcalc and Microsoft Excel.

We learned that Funcalc has errors corresponding to all Microsoft Excel errors except

#NULL! and #DIV/0. An overview of all Microsoft Excel errors is shown in table 5.2

and Funcalc errors can be found in table 5.1. Funcalc introduces three new errors not

found in Microsoft Excel: argument count error, argument type error and too many ar-

guments error. Given this, our first notion was to research the possibility of creating

custom errors, which would allow us to support both Funcalc errors together with Mi-

crosoft Excel errors. Unfortunately we discovered that this is not possible, as Microsoft

Excel only provides a fixed collection of errors without any option for customization.

Chapter 5. Design 30

During our research we realized that Microsoft Excel perceives its own errors as error

types as opposed to plain strings. This is important, because returning a string error

message from Funcalc instead of an error, will lead to unforeseen consequences. A string

error message would propagate to dependant cells as a string type in Excel instead of an

error type which is the normal behaviour of Excel. Microsoft Excel also has a built-in

function called IsError, which returns a boolean describing whether the input is an error

or not. Using strings as errors would defeat the purpose of this function in the context of

Funsheet. To conclude, returning custom errors in Excel is not supported and returning

strings as errors would be extremely bad practice and interfere with Excel’s calculation

process.

We therefore thought of an alternative, which included returning a built-in Microsoft

Excel error (#NAME?, #REF!, etc.) and then linking a comment to the cell containing

the custom error message. In this way, we could support the error type convention of

Microsoft Excel, while still conveying the custom error message as a comment. The

downside of this is the fact that users are not used to having comments in their cells,

unless they have inserted them themselves. Nor are they used to having errors displayed

as comments. We must remember that Funsheet’s objective is to bring new functionality

to Microsoft Excel, so one can assume that potential users will be familiar with Microsoft

Excel before using Funsheet. Thus, we think it would be wise to stick strictly to the

conventions of Microsoft Excel. We believe there is a risk of confusing the user, if we

start introducing new ways of showing errors.

We therefore decided on mapping the Funcalc errors to Microsoft Excel errors. Our

decision on how to map the errors are shown in table 5.2 and table 5.1. Comparing table

5.2 containing the Microsoft Excel errors and table 5.1 containing the Funcalc errors,

it is clear that there does not exists a one-to-one mapping between most errors. For

example, errors such as the #ERR: Too many arguments error, the #ERR: ArgCount

and the #ERR: ArgType error needs to be mapped to a more general Microsoft Excel

error. This decision results in the loss of some information about the original Funcalc

error, but we believe this to be a reasonable trade-off, e.g. we decided to map the Funcalc

ArgCount, ArgType and Too many arguments errors to the Microsoft Excel #NAME?

error. The rationale behind this is that when a function is called with the wrong amount

of arguments and/or wrong types of arguments in Microsoft Excel, a #NAME? error is

shown. This is because Excel either does not recognize the name of the function or the

Chapter 5. Design 31

types of arguments supplied to the function[9]. The complete mapping between Funcalc

and Microsoft Excel errors is illustrated in figure 5.4.

As mentioned in section 5.3.2 regarding the User Interface, we implement a menu item

that enables users to view the original Funcalc errors as well as .NET exceptions if the

need for this should arise. This feature should only be used in troubleshooting with the

aforementioned side effects in mind.

Funcalc Error Description

#ERR: NumError Returned in cases where a conversion to a number
in Funcalc fails.

#ERR: ArgCount Returned if a wrong number of arguments is sup-
plied for an SDF.

#ERR: ArgType Returned if a wrong type of argument is supplied
for an SDF.

#ERR: Name Returned if the requested SDF is not found.

#REF! Returned if a reference is invalid.

#VALUE! Returned if values are used the wrong way in a
function.

#N/A Returned if an indexing in a cell area is out of
bounds. The #N/A error value is also used as a
place holder for arguments in closures.

#ERR: Too many arguments Returned if an SDF is called with too many argu-
ments.

Table 5.1: Values and descriptions of all errors available in Funcalc.

MS Excel Error Description

#DIV/0! When attempting to divide by 0.

#N/A! Missing data or either #N/A or NA() has been entered.

#NAME? Text in a formula is not recognized.

#NULL! Incorrect range operator used or ranges do not intersect.

#NUM! A formula has invalid numeric data for the requested operation.

#REF! A reference is invalid

#VALUE! Wrong type of operand or function argument is used.

Table 5.2: Values and descriptions of all errors available in Microsoft Excel[10].

5.3.5 Funsheet Functions

This section explains the design of the user-defined functions which are the key enablers

for integrating Funcalc in Excel. We have designed 5 UDFs to support the design

goals: Define, Closure, Specialize, Apply and Benchmark. All these functions have a

counterpart in Funcalc and our UDFs will serve as integration points between Excel

Chapter 5. Design 32

Figure 5.4: Mapping of Microsoft Excel errors and Funcalc errors.

and Funcalc. The Define function allows users to define new SDFs through Excel. The

Closure function enables users to define new closures with the option to fix a subset of

the arguments. Specialize will be able to compile a closure to obtain better performance

through partial evaluation. Apply will be used to apply a closure or specialization.

When using apply users will be able supply the missing arguments, if any. Benchmark

will be used to benchmark closures or specializations. Benchmark accepts a reference to

a closure or specialization taking no arguments (all arguments are fixed) and a number

specifying the number of executions. Benchmark will then return the average execution

time in nanoseconds.

5.3.5.1 Define Function

In this section we will elaborate on the design of the Define function of Funsheet. We

will explain its purpose, constraints and functionality flow.

Chapter 5. Design 33

The Define function will require a minimum of two arguments: A string representing

the desired SDF name and the cell reference to an output cell. In addition it will

take zero to nine cell references representing arguments to the SDF. The SDF name

will be subject to two constraints: It cannot be identical to any built-in Microsoft

Excel functions and the name must not contain numbers. The reason is, that it is not

possible to overwrite existing Microsoft Excel functions and if a function name contains

numbers, e.g. LOG10, Microsoft Excel would misinterpret the function as a cell reference

(intersection of column LOG and row 10).

The Define function will be responsible for wiring up functionality in Microsoft Excel

concerning the definition of SDFs. The function will be the foundation for the rest of the

Funsheet functions, since they will all rely on defined SDFs. As illustrated in the design

overview figure 5.1, the Define function will draw on several areas of Funsheet; Funcalc

Registration, Excel Registration and Closures, in that order. When a user will attempt

to call the Define function, Funsheet will use the visitors in the Funcalc registration

area to build an internal representation of all direct or transitive dependencies from the

output cell of the define formula. At this point, the Excel Bult-in Function Adapter

component will handle cases where it is necessary for the SDF to call built-in Microsoft

Excel functions. After building an internal representation of the dependant cells, the

SDF will be registered in Funcalc. The next step will be to register the SDF in Microsoft

Excel, using the Excel Registration area. This will enable the user to access the newly

created functions in Microsoft Excel. Our first design draft actually defined this as the

last step of the process, but during later design iterations and during the first steps of

implementation, we realized that we also needed to register a closure from the newly

created SDF, as the last part of the process. The rationale for this is to enable the cell

containing the SDF definition to act as a closure. We will elaborate further on this in

section 5.3.5.2 regarding the closure function. The Define function flow is illustrated in

figure 5.5.

5.3.5.2 Closure Function

The Closure Function will allow the creation of new closures. A closure will consist of a

reference to another closure, specialization or SDF. It will further consist of a collection

of arguments. These arguments can be either fixed or open. Open arguments will be

Chapter 5. Design 34

Figure 5.5: The flow inside Funsheet when the Define function is called.

declared by using the Excel #N/A error. This choice was made to reflect the closure

function in Funcalc where the #N/A Funcalc error is used. It is important to note that

although #N/A is an error, it is not used or perceived as an error in this context, but

rather as an open argument. The Closure function uses the Closure Context component

to create and save a new closure for later use.

In Funcalc, a closure can be created by supplying the SDF name as a string to the

function. We have made a design decision to deviate from this convention and instead

force users to supply a cell reference to the actual SDF. This decision was made because

we do not have control of the dependency tree used for calculation in Excel. When a

closure is defined using a string, Excel does not see any dependency from the closure

to the SDF. This does not introduce problems as long as the SDF is defined before

the closure is created. The problem arises when a workbook is saved, closed and re-

opened. Excel will not catch the closure’s required dependency on the SDF and will

try to create the closure before the SDF is defined. This happens because the closure

seems totally autonomous without actually being so. This problem does not exist in

Funcalc because both the underlying dependencies and the calculation process can be

controlled, as it is a pure C# implementation. Besides eliminating the problem we think

that this design decision better aligns with the Microsoft Excel user experience where

dependencies always are created using references.

To illustrate the design described above, consider a simple SDF called TwoSum, capable

of adding two numbers and returning the result. The SDF is defined in the cell A1 and

Chapter 5. Design 35

accepts two arguments, both numbers. We can then use the following formula to create

a closure from the SDF, where the first argument is fixed(5) and the second argument

is open.

=CLOSURE(A1;5;NA())

To execute a closure, the Apply function (see 5.3.5.4) should be used.

5.3.5.3 Specialize Function

The Specialize function is used to compile a closure to yield better performance. The

following formula shows how to specialize a closure if the closure is created in the cell

A1:

=SPECIALIZE(A1)

When a closure is specialized, a new SDF will be created in Funcalc, but the SDF will

not be registered as a callable function in Excel, which is the case when using the Define

function. To execute a specialization, the Apply function (see 5.3.5.4) should be used.

The Closure Context component will be responsible for registering the specialization

and instructing Funcalc to compile the closure to an SDF.

5.3.5.4 Apply Function

The Apply function will accept a cell reference to an SDF, closure or specialization along

with a collection of arguments to apply to the execution of the respective SDF, closure

or specialization.

The Apply function will use the Closure Context component to obtain a closure or

specialization. In the case where a cell reference to an SDF definition is supplied, the

Closure Context component will be able to find a matching closure, because of the design

decision to create a default closure when using the Define function as explained in section

5.3.5.1.

We will then delegate to the Apply function implemented by Funcalc, obtain the result

from the Funcalc Apply function and present it to the user.

Chapter 5. Design 36

The Apply function will be designed and marked as thread-safe to allow Excel to use

multiple processors in the calculation of formulas containing the Apply function.

5.3.5.5 Benchmark Function

The Benchmark function will take two arguments, the first of which is a closure, spe-

cialization or SDF cell reference. The second which is a number. It is important to note

that the first argument needs to reference a function where all arguments have been

fixed. This means that if the supplied argument references an SDF, the SDF must not

accept any input (must be defined with zero input arguments). If the first argument to

the Benchmark function is a closure or specialization all argument must be fixed to some

value (no open arguments using #N/A). The number indicates the number of times the

Benchmark function should execute the SDF, closure or specialization. The Benchmark

function will return the average execution time in nanoseconds.

The Benchmark function will use the Closure Context to obtain a closure or specializ-

ation. It will then delegate to the Benchmark function of Funcalc, which will run the

actual benchmark routine and return the average execution time. The result will be

displayed to the user in Excel.

The Benchmark function is designed to disallow simultaneous calculations of the func-

tions in Excel. This does not prevent Excel from doing other calculations parallel to the

Benchmark function, but prevents more than one benchmark to run at a single point in

time, which wouldn’t be desirable. This is not fool-proof but, if it is important to reduce

the “noise” created by other calculations, Excel can be configured to only do calculations

on a single thread. To enable single-threaded calculation of formulas in Excel 2013, go

to File and select Options. Select the Advanced tab. Uncheck the option Enable

multi-threaded calculation as shown in figure 5.6.

5.4 Design Evaluation

In this section we evaluate the design of Funsheet in regards to the design goals stated in

section 5.1. Starting out, we had several options for choosing a technology: VBA, COM

Interop and Excel-DNA. We discussed their advantages and disadvantages in regards to

Chapter 5. Design 37

Figure 5.6: Enable or disable multi-threaded calculation in Excel 2013.

our design goals, and ended up choosing Excel-DNA as the technology to base Funsheet

upon. From experimenting with the different technologies in chapter 4, we knew Excel-

DNA was the best performing technology of the three. Hence choosing Excel-DNA was

a high level design decisions we believe will lay the foundation for achieving design QG1

regarding performance.

All technical design goals except TG4, are aiming on using existing functionality from

Funcalc. During the design process, we learned that different constraints apply when

using Microsoft Excel as a frontend as opposed to the frontend of Funcalc. Funcalc has

full control over its frontend, whereas Funsheet’s control over Microsoft Excel is limited

to the functionality of the Excel C API (and in some cases the COM Interop API). We

strove to adapt the design of Funsheet to take these differences into account. An example

of this is the design of the closure function, which was changed to comply with Excel’s

way of enforcing the dependency tree. We elaborate on the closure function in section

5.3.5.2. Design goal TG4: Support for calling built-in Microsoft Excel functions from

Funsheet SDFs was an addition to the functionality provided by Funcalc that allows

users to use built-in Excel functions in SDFs and it allows the users to substitute built-

in Funcalc functions with their Excel counterpart, e.g. using SUM from Excel instead of

the SUM from Funcalc.

We strove to address the technology agnostic design goal of maintainability, by separating

concerns in the high level design and making it an explicit part of a goal (QG2) to alter

as little of the source code of Funcalc as possible.

Chapter 5. Design 38

Our usability goals were all defined with a desire to conform to Microsoft Excel’s stand-

ards and conventions. Funcalc error values without an obvious Excel counterpart were

mapped to the most suitable existing Excel error and visual guidance was designed in

the form of a ribbon menu in Excel, to maintain the Excel user experience.

Chapter 6

Implementation

In this section we describe our implementation of Funsheet. We start with an overview

and general explanation of the solution. Then we go through our implementation in

regards to achieving high portability and low coupling. Here we cover how Excel-DNA

helps us to achieve a high degree of portability and maintainability and how we have

minimized the number of changes to the Funcalc source code to allow the same code

base to be used, both as a stand-alone application and as a Funsheet dependency. Then

we will explain how we have implemented the conversion of values and errors between

Funcalc and Excel. Next we explain how we have implemented the Real Time Data

(RTD) wrapper, capable of acting when an associated cell is cleared. Finally, we explain

how we implemented each of the user-defined functions of Funsheet.

6.1 System overview

This section gives an overview of the system at implementation level. All classes and their

mutual relationships are illustrated in figure 6.1. A unidirectional association is depicted

using a line ending in an arrow. A bidirectional association is depicted using a line with

arrows in both ends. An aggregation is depicted using a line with a diamond in one end

and an arrow in the opposite. Note that not all relationships are illustrated in figure 6.1,

to avoid bloating the diagram. For example, the HelperMethods, ErrorConverter and

ExtensionMethods classes are used excessively throughout the implementation. Also,

39

Chapter 6. Implementation 40

the user interface forms are shown as a single class, although we have implemented 4

forms to support the user interface.

The ExcelCalcInitializer class is used to initialize the workbook when a saved work-

book is opened in Excel. The RegisteredSdfContext and RegisteredSdf classes are

used to keep track of SDFs defined through Funsheet. All other classes within the Func-

tions area contain the implementations of the Funsheet UDFs. We elaborate on each

of these implementations later in this chapter. The ExcelRegistrator handles regis-

tration of SDFs as callable UDFs in Excel, at runtime. The ExcelFunCallContext

and the ExcelFunCall are used to integrate built-in Excel functions into Funcalc,

to make them available when defining SDFs. The ExcelCellHandle is our imple-

mentation of an Real Time Data (RTD) wrapper. The CorecalcRegistrator is re-

sponsible for registering SDFs in Funcalc and the CorecalcDynamicCellVisitor and

CorecalcDynamicExprVisitor are used to traverse the dependency tree of an SDF

definition in Excel and create a Funcalc representation from this. The ClosureContext

and Closure classes are responsible for creating and registering closures. The HelperMethods,

ExtensionMethods and ErrorConverter are utility classes that provide static methods

used in all parts of Funsheet. ExcelcalcRibbon and Forms classes are used to provide

a user interface for the user in Microsoft Excel. We elaborate on the specific forms in

section 6.7.

6.2 Portability, Maintainability and Coupling Considera-

tions

In this section we will cover some of the more important decisions that we made in

regards to portability, maintainability and coupling, during implementation.

Excel-DNA is contributing to an increased portability as it contains a tool called ExcelDNAPack[11],

which allows developers to pack resources directly related to an Excel-DNA plugin, into a

single file. In our case this means that all Excel-DNA related references and resources are

packed into one file. We have chosen to supply the Funcalc binary and the DLLs respons-

ible for reverse engineer methods into bytecode. This decision was made to allow de-

velopers to update Funcalc and the bytecode generation assemblies without having to re-

distribute Funsheet. Besides that we also include the Microsoft.Office.Interop.Excel

Chapter 6. Implementation 41

Figure 6.1: Class diagram of Funsheet.

DLL to be capable of responding to COM Interop events, as described in 6.6.2.8. This

makes the Funsheet add-in highly portable. To install Funsheet refer to the installation

guide in Appendix C.

We started implementing Funsheet with a desire to alter as little of the Funcalc source

code as possible. After becoming acquainted with the Funcalc source code during the

initial steps of this project, it occurred to us that we required looser access modifiers on

the Funcalc members to achieve our goals of integrating Funcalc with Microsoft Excel

without making major changes to the Funcalc source. So instead of identifying and

changing all the necessary access modifiers inside the Funcalc source code, we decided

to add the InternalsVisibleTo-attribute to the AssemblyInfo.cs-file of Funcalc, as

illustrated in listing 6.1. By adding this attribute, all Funcalc members with the internal

access modifier are exposed to Funsheet. This will allow better maintainability and

further development of both Funsheet and Funcalc. A couple of small code changes

were made to the Funcalc Function and FunctionInfo classes to allow overwriting of a

built-in Funcalc function, e.g. if a user wishes to use the Excel built-in SUM instead of the

one from Funcalc. These changes does not break Funcalc. A minor change to the existing

Chapter 6. Implementation 42

Funcalc grammar (described in section B.2.3) was implemented, to support punctuations

in function names. All changes made to Funcalc including the aforementioned can be

found in the change log in Appendix B.

1 [assembly: InternalsVisibleTo("ExcelCalc")]

Listing 6.1: InternalsVisibleTo attribute added to the AssemblyInfo file of Funcalc to
expose internals to Funsheet.

6.3 Value Conversion

In this section we will describe the implementation of value conversion and error con-

version in Funsheet. We will describe the data types that are converted from Funcalc

types and returned to Microsoft Excel as Excel Types. Data received in Funsheet from

Microsoft Excel needs to be type cast and converted at runtime. To achieve this, we have

implemented a helper method ObjectToValue that takes the ultimate base class object

as an argument, type casts it and creates and returns its corresponding Funcalc value.

We know what data we possible can receive from Microsoft Excel[12] in Excel-DNA

and have designed the method accordingly. The helper method returns corresponding

Funcalc values for the following C# data types: double, string, object[,] (a two

dimensional object array), ExcelReference and the following Excel-DNA ExcelError

enumerations: ExcelError, ExcelMissing and ExcelEmpty. The reverse conversion is

implemented as an extension method that converts Value types and returns the corres-

ponding Microsoft Excel types. An overview of the two-way conversion is illustrated in

figure 6.2. There exists a bidirectional conversion relationships between all types, except

for ExcelEmpty and null, which is a one-way conversion. This is because there are now

null like Value types in Funcalc. Thus we are assuming to always receive a non-null

Value type which can be converted and returned as a C# type.

6.4 Error Handling

In this section we will elaborate on the implementation of error handling in Funsheet,

which is based on the error mapping conventions described in section 5.3.4 of the design

chapter. Our initial implementation of the error handling consisted of two conversion

Chapter 6. Implementation 43

Figure 6.2: Value conversion in Funsheet between Microsoft Excel and Funcalc types.

methods located inside the HelperMethods-class (cf. figure 6.1). One method to con-

vert from Microsoft Excel errors to Funcalc errors and another method for the reverse

conversion. Each of the methods consisted of a series of conditionals, each conditional

concerned with one type of error. This led to some very bloated methods. We decided

to re-factor it into the separate class ErrorConverter, which is only concerned with

error conversion. This class contains two dictionaries that are responsible for mapping

from Microsoft Excel errors to Funcalc errors and vice versa. It is dependant on the

Funcalc ErrorValue class, which is a subclass of Value. The ErrorValue class provides

a public static ErrorValue property for each of the errors listed in table 5.1. The convert

mechanic is implemented with two overloaded methods, one for each type of conversion.

In section 5.3.2 of the design chapter we stated that we wanted to add the opportunity

for users to swap between errors being shown as Microsoft Excel errors, Funcalc errors

and .NET exceptions. This has been implemented in the value converter extension

method of the Value type (described in section 6.3). Funsheet’s value conversion method

ToExcelObject will use the default setting of the ribbon menu for determining which

Chapter 6. Implementation 44

error to show. If the ribbon menu is toggled to showing Funcalc errors, the Funcalc error

will be converted into a string representation instead of a corresponding Microsoft Excel

error. This logic is illustrated in listing 6.2. The ribbon menu also allows the display

of .NET exceptions. The handling of this particular setting is distributed to Excel-

DNA’s RegisterUnhandledExceptionHandler method, to which we pass a delegate

that returns the unhandled exceptions a string.

1 if (value is ErrorValue)

2 {

3 if (ExcelcalcRibbon.ShowFuncalcErrors)

4 {

5 return value.ToString ();

6 }

7 else

8 {

9 return ErrorConverter.Convert ((ErrorValue)value);

10 }

11 }

Listing 6.2: Snippet from the value converter extension method of the Value type,
showing how Funsheet determines what errors to show, based on the state of the ribbon

menu in Microsoft Excel.

6.5 RTD Wrapper

The Real Time Data (RTD) wrapper (design explained in section 5.3.3.3) is used to

handle the case where a user clears a cell containing a DEFINE-, CLOSURE- or SPECIALIZE-

formula. When such a cell is cleared it is picked up by Funsheet and suitable actions are

carried out, e.g. when a DEFINE-formula is removed, the SDF registration in Funcalc

is deleted and the ability to call the SDF from Excel is removed.

The RTD wrapper is implemented in the class ExcelCellHandle. It implements the

IExcelObservable interface from the Excel-DNA assembly. To create an RTD wrapper

the static method CreateHandle is used. The CreateHandle method is shown in listing

6.3. The method returns a handle based on a function name, e.g. DEFINE and the

parameters used to call it. We chose to only use the SDF name, closure name or

specialization name as parameter. It further needs an ExcelFunc which is a delegate

that returns an object. This delegate is used to produce the string that the user

should see in Excel, e.g. FUN GOALSEEK AT #1 for an SDF called GOALSEEK. Finally

it accepts an IDisposable which is the most interesting part of the RTD wrapper. The

Chapter 6. Implementation 45

Dispose method of this object is called when the cell containing the RTD wrapper is

cleared.

1 public static object CreateHandle(string callerFunctionName , object

callerParameters , ExcelFunc getReturnValue , ExcelAction onDispose)

2 {

3 return ExcelAsyncUtil.Observe(callerFunctionName , callerParameters , () =>

new ExcelCellHandle(getReturnValue (), onDispose));

4 }

Listing 6.3: Static method used to generate a cell handle to return from a UDF.

When the RTD wrapper is returned to Excel from a user-defined function (UDF), Excel

invokes the Subscribe method of the RTD wrapper, as shown in listing 6.4. This method

calls the OnNext method of the underlying observable to provide the string that should

be shown in Excel. When using the publish-subscribe pattern, the OnNext method could

be called on a regular basis to update the value of the associated cell, but in our case

we are only interested in providing a string value to the cell once. Finally the subscribe

method returns a delegate wrapped in an IDisposable. This delegate is called when

the cell is cleared.

1 public IDisposable Subscribe(IExcelObserver observer)

2 {

3 observer.OnNext(_returnValue);

4 return new SdfDisposer (() =>_disposeAction ());

5 }

Listing 6.4: The Subscribe method is called from Excel when the RTD wrapper is
written to a cell.

Listing 6.5 shows how the RTD wrapper is created in the Define UDF and returned

to Excel. Note that because we use delegates to provide the return value and the

dispose action, the respective functions are able to provide their own values and actions

depending on their inputs and responsibilities.

1 private static object CreateCellObserver(string sdfName)

2 {

3 var cellText = RegisteredSdfContext.Sdfs[sdfName]. SdfCellText;

4 return ExcelCellHandle.CreateHandle("DEFINE", sdfName , () => cellText , () =>

UnregisterSdf(sdfName));

5 }

Listing 6.5: Creating and returning an RTD wrapper from the Define UDF.

Chapter 6. Implementation 46

6.6 Funsheet Functions

In the following sections we will describe the implementation details of the Funsheet

UDFs. We start by explained how we use Excel-DNA to expose C# code to Excel.

Next we explain the key parts of the implemented UDFs. For readers who want even

more details on the implementation, refer to the source code documentation in Appendix

A.

6.6.1 Excel-DNA usage

Excel-DNA makes it very easy to expose user-defined functions (UDF) written in C# to

Excel, but a few rules must be followed. The class containing the methods representing

the UDFs must be static. The methods representing UDFs must also be declared

static themselves. Further a return type should be defined in the method signature,

otherwise the method will be perceived as a command by Excel-DNA.

To mark a method as an UDF all that is needed is to decorate the method with the

custom attribute ExcelFunction as shown in listing 6.6.

1 public static class SpecializeFunction

2 {

3 [ExcelFunction(Name = "SPECIALIZE", IsMacroType = false)]

4 public static object Specialize(string closureName)

5 {...

Listing 6.6: Exposing a method as an UDF using the ExcelFunction custom attribute

In listing 6.6 some named parameters have been supplied to the custom attribute. The

following list describes the named parameters of the ExcelFunction-attribute and their

influence on the resulting Excel UDF.

• Name is used to specify the name of the UDF when used from Excel.

• IsVolatile is used to specify whether the UDF should be registered as volatile in

Microsoft Excel.

• IsMacroType should be true if the UDF requires to read or manipulate data in

Excel, other than what is returned from the UDF call. E.g. if some cells should

be coloured.

Chapter 6. Implementation 47

• IsThreadSafe is used to avoid race conditions from happening in this UDF. When

set to false only one thread can operate inside this UDF at a time.

An option when defining input parameters for a method representing an UDF is to

use the ExcelArgument-attribute with its named parameter AllowReference set to

true. This will let Excel-DNA pass an ExcelReference to the method which is a more

versatile approach than just getting e.g. a string. An instance of ExcelReference

contains information about the row, column, the value of the cell and more. An example

of how to use the ExcelArgument-attribute is shown in listing 6.7

1 [ExcelFunction(Name = "DEFINE", IsMacroType = true)]

2 public static object Define(

3 string sdfName ,

4 [ExcelArgument(AllowReference = true)]object output ,

5 ...

Listing 6.7: Using the ExcelArgument.

One important thing to note is that if a method is marked as a macro type and have at

least one input parameter declared with the ExcelArgument’s AllowReference set to

true, the UDF will be registered as volatile in Excel. This is an unfortunate side-effect

that will be mentioned in section 6.6.2.

6.6.2 Define

The Define method of the DefineFunction class is used when the Define UDF is called

from Excel. It is responsible for registering SDFs in Funcalc and in Microsoft Excel. It

accepts a string containing the name of the SDF as the first argument, then an output

cell and hereafter zero to nine input cells. The Define method has the IsMacroType

attribute set to true, to allow it to access data in the Excel sheets. The IsVolatile is set

to false, because the Define UDF should only be recalculated when one of its precedents

is changed. The IsThreadSafe attribute is set to false, because we expect the user to

define SDFs sequential and we need the UDF to be sequentially called if it happens

when opening a workbook. This is discussed in section 6.6.2.8. The Define UDF will

be used differently depending on the circumstances. We basically have two scenarios.

One where the DEFINE-formula is typed in by a user and committed to Excel and one

where an existing workbook containing DEFINE-formulas is opened. In the first part of

Chapter 6. Implementation 48

this section we will assume the first scenario. The latter scenario will be described in

subsection 6.6.2.8.

The following sections describe how the Define UDF work. We describe the steps the

UDF performs. These are: obtaining the formula of the cell from where the Define UDF

was typed in and creating ExcelReference instances representing the output cell and

the input cells; The population of a Funcalc representation of the workbook using the

output cell ExcelReference; The registration of the SDF in Funcalc; The registering

the SDF as a callable UDF in Excel; The creation of a Closure from the SDF; The

promotion of a sheet to a function sheet; Returning an instance of our RTD wrapper to

Microsoft Excel.

We then explain how the Define UDF deals with built-in Excel functions, and finally, we

explain how we managed to respond to users, re-opening a previously saved workbook.

Why this scenario needs explaining is not clear at first, but imagine a user, defining

two SDFs, one dependent on the other. When saving the workbook and re-opening it,

which SDF should be processed first? Because the dependencies among these live in

Funsheet, there are no guarantees that Excel will build our desired dependency tree,

but we explain how we overcame this.

6.6.2.1 Step 1: Obtaining cell formula and references from a cell formula

This section describes how we use Excel-DNA to obtain the formula of the cell in which

the DEFINE UDF is typed in. Then, it describes how we parse the formula to a Funcalc

Cell. Next, we explain how we create ExcelReference instances for the output cell

and each of the input cells.

To obtain the cell formula we use the Excel C API through Excel-DNA. Excel-DNA

exposes a method, Excel, on the XlCall class. This method accepts an integer, repres-

enting a function in the Excel C API, and an array of arguments. The XlCall class has

static members for each function in the C API to make it easier to read and use. To

obtain the formula the we first obtain an ExcelReference, representing the calling the

UDF, using XlCall.xlfCaller(see listing 6.8). This returns an ExcelReference to the

calling cell. From this we obtain the formula by using XlCall.xlfGetFormula and pass

the ExcelReference instance as the second argument. We then use the Parser class

Chapter 6. Implementation 49

from Funcalc to produce a Funcalc Formula instance. The Formula class is a type of

cell in Funcalc. The Formula contains all the arguments passed to the UDF in Excel

as CellRef instances, which is another Funcalc type. From the information stored in

each CellRef(output and inputs) of the Formula instance, we create ExcelReference

instances as illustrated in listing 6.9.

Our first implementation did not rely on the Funcalc cell parser to create ExcelReference

instances from the output and input cells. Instead the input parameters in the Define

method were decorated with the ExcelArgument attribute and its AllowReference set

to true. This turned the input arguments into ExcelReference instances before en-

tering the method. During implementation we learned that the combination of using

the ExcelFunction attribute with IsMacroType set to true and decorating at least one

parameter with the ExcelArgument with the AllowReference set to true, will result in

the UDF to become volatile. We resolved this by implementing the solution as described

above, retrieving ExcelReference instances using the Funcalc parser.

1 var callingCell = XlCall.Excel(XlCall.xlfCaller) as ExcelReference;

2 var fullFormula = XlCall.Excel(XlCall.xlfGetFormula , callingCell) as string;

Listing 6.8: Snippet from the Define function showing how an ExcelReference of the
calling cell is created and then used to retrieve the formula of the cell. The xlfCaller

and xlfGetFormula are integers indicating what function to call in the Excel C API.

1 var cellRef = expr.es[1] as CellRef;

2 int row = cellRef.raref.rowAbs ? cellRef.raref.rowRef : callingCell.RowFirst +

cellRef.raref.rowRef;

3 int col = cellRef.raref.colAbs ? cellRef.raref.colRef : callingCell.ColumnFirst

+ cellRef.raref.colRef;

4
5 var outputRef = new ExcelReference(row , col);

Listing 6.9: Snippet from the Define function showing how an ExcelReference of
the output cell is constructed. cellRef refers to the second argument of the Funcalc
Formula. The rows and columns are determined based on either absolute or relative

references.

6.6.2.2 Step 2: Creating Funcalc representation and registering the SDF

In this section we describe how we visit all cells directly or transitively dependant on the

output cell using the CorecalcDynamicCellVisitor and CorecalcDynamicExprVisitor

classes. The two visitor classes are illustrated in a class diagram in figure 6.3. We also

describe how the registration of the SDF in Funcalc is implemented.

Chapter 6. Implementation 50

Figure 6.3: Design Class diagram illustrating the two visitors, the
CorecalyDynamicCellVisitor and the CorecalcDynamicExprVisitor.

Define method calls the RegisterSdf on the CorecalcRegistrator passing the SDF

name, reference to the output cell, references to the input cells and a reference to the call-

ing cell. In the RegisterSdf the CorecalcDynamicCellVisitor’s VisitOutput method

is invoked passing in the ExcelReference of the output cell. The visitor recursively

builds a representation of the Excel workbook, containing only cells directly or transit-

ively reachable from the output cell. The representation is stored in a Funcalc Workbook

instance. The general process of the visitor is to recursively retrieve cell content, parse

cell content and then visit precedents. The cell content is obtained and parsed the

same way as described in section 6.6.2.1. We have implemented memoization using a

HashSet containing the cell addresses of all visited cells to avoid exponential running

times when visiting the cells. To determine which overloaded Visit method to use,

our first implementation consisted of a series of conditionals. This was very prone to

becoming bloated and one can imagine that if more Cell-types are added in the future,

maintainability drops. To avoid this, we refactored the solution to use C#’s dynamic

keyword for achieving runtime binding. An example of this is illustrated in listing 6.10.

The late binding adds a small performance overhead, but enables for a more elegant

and maintainable solution. When the CorecalcDynamicCellVisitor encounters either

Chapter 6. Implementation 51

a NumberCell or a TextCell it adds the cell to the internal workbook representation.

If a cell is visited and parsed into a Funcalc Formula type, each expression in Formula

is visited using the CorecalcDynamicExprVisitor.

After all relevant cells have been visited, the CorecalcRegistrator passes the Funcalc

Workbook to the SdfManager in Funcalc. The SdfManager creates the new SDF based

on information in the Workbook. Hereafter, the Define method calls the RegisterSdf

on the ExcelRegistrator class, passing the SDF name, output ExcelReference and

the list of input ExcelReferences as parameters. The RegisterSdf method then dy-

namically builds a delegate from the parameters, using the LINQ Expression API, which

is used for runtime code generation. In our case, we use it to assemble the delegate dy-

namically to support a variable amounts of arguments for defining SDFs. The generated

delegate is then registered in Microsoft Excel using the RegisterDelegates method of

the ExcelIntegration class in Excel-DNA. This method accepts a list of delegates

and a list of ExcelFunctionAttribute instances which contain the meta-data for each

delegate(name, volatility, etc.).

1 internal void Visit(Cell cell , ExcelReference reference)

2 {

3 //Set current sheet

4 _currentSheet = _sheetLookup[reference.SheetId.ToString ()];

5
6 // Dynamic redirect

7 Visit((dynamic)cell , reference);

8 }

9
10 internal void Visit(NumberCell numberCell , ExcelReference reference)

11 {

12 _currentSheet.SetCell(numberCell , reference.ColumnFirst , reference.RowFirst);

13 numberCell.MarkDirty ();

14 }

Listing 6.10: The top Visit method for visiting the abstract Funcalc class Cell uses
the dynamic keyword to determine cell type at runtime. If the cell has been resolved
to a NumberCell (inheriting from Cell) the bottom Visit method will automatically

be called.

6.6.2.3 Step 3: Creating a default closure

After registering the SDF we chose to create a default closure where all arguments

are open. The rationale of this decision is discussed in section 5.3.5.1. We imple-

mented using the RegisterClosure method of the ClosureContext class and provid-

ing an ExcelErrorNA for each input, as shown in listing 6.11. The implementation of

ClosureContext is explained in section 6.6.3.

Chapter 6. Implementation 52

1 // Register default closure for the SDF.

2 var closureNaInputs = Enumerable.Repeat ((object)ExcelError.ExcelErrorNA ,

inputs.Count).ToArray ();

3 ClosureContext.RegisterClosure(sdfCellText , closureNaInputs , false);

Listing 6.11: Creation of a default closure for the new SDF.

6.6.2.4 Step 4: Promoting to a function sheet

When an SDF is defined the sheet from which it is defined should be promoted to a

function sheet, if this has not been done already. To indicate that a sheet is a function

sheet we prepend the sheet name with an @. To accomplish this we execute an asyn-

chronous macro from the Define method. We use an extension method on the calling

cell’s ExcelReference to obtain the sheet name. Then we execute a call to the Excel C

API to rename the respective sheet, as shown in listing 6.12. We use an asynchronous

macro because the xlcWorkbookName function cannot be called from an UDF, although

the IsMacroType is set to true. The call must be executed from a true macro.

1 private static void PromoteToFunctionSheet(ExcelReference caller)

2 {

3 var sheet = caller.GetSheetName ();

4
5 if (!sheet.StartsWith("@"))

6 {

7 ExcelAsyncUtil.QueueAsMacro(delegate

8 {

9 XlCall.Excel(XlCall.xlcWorkbookName , sheet , "@" + sheet);

10 });

11 }

12 }

Listing 6.12: Promoting a sheet to a function sheet

6.6.2.5 Step 5: Returning an RTD wrapper

Last, an RTD wrapper is created using the static CreateHandle method of the ExcelCellHandle

class. The SDF is passed as a parameter for identification. This ensures that a new wrap-

per is not created if the same SDF is defined in several cells (this is more relevant for

closures). The text that should be shown in the cell is passed into the method and a

delegate capable of executing the Unregister method is passed in. The UnregisterSdf

method will be called when the last cell containing this wrapper is cleared.

Chapter 6. Implementation 53

6.6.2.6 Un-registering an SDF

When the RTD wrapper triggers the UnregisterSdf method of the DefineFunction

class the following actions are carried out: removal of the SDF in Funcalc, un-registering

of the SDF in Excel and removal of the closures associated with the SDF.

Complete removal of the SDF, as a callable UDF, in Excel is not entirely possible, but we

have a routine that almost accomplishes a complete removal. The SDF can be removed

from Excel by calling xlfUnregister from the C API and passing in the registration

id of the SDF. The registration id is an internal id issued by Excel. To obtain this

id we call the xlfEvaluate function of the C API and passing in the SDF name as a

parameter. The problem with this approach is that the SDF is still callable from Excel,

but always return the #VALUE Excel error. To overcome this we re-register a hidden

macro with the same name as the SDF and afterwards un-registers this. The SDF will

still be visible to VBA code (although unusable), but is otherwise un-registered. Listing

6.13 shows the implementation of this.

1 internal static void UnregisterSdf(string sdfName)

2 {

3 ExcelAsyncUtil.QueueAsMacro (() =>

4 {

5 //Get XLL path

6 var xllName = XlCall.Excel(XlCall.xlGetName);

7
8 //Get SDF reg id and unregister

9 var regId = XlCall.Excel(XlCall.xlfEvaluate , sdfName);

10 XlCall.Excel(XlCall.xlfSetName , sdfName);

11 XlCall.Excel(XlCall.xlfUnregister , regId);

12
13 // Reregister SDF as hidden and unregister to clear the function wizard

14 var reregId = XlCall.Excel(XlCall.xlfRegister , xllName , "xlAutoRemove",

"I", sdfName , ExcelMissing.Value , 2);

15 XlCall.Excel(XlCall.xlfSetName , sdfName);

16 XlCall.Excel(XlCall.xlfUnregister , reregId);

17 });

18 }

Listing 6.13: Un-registering an SDF as a callable UDF in Microsoft Excel.

6.6.2.7 Using built-in Excel functions in SDFs

In Funsheet it is possible to use selected Excel built-in functions in SDF definitions. The

list of supported Excel functions is configured through the Funsheet configuration file.

An example of such a configuration file is shown in listing 6.14.

1 <configuration >

2 <appSettings >

Chapter 6. Implementation 54

3 <add key="SupportedExcelFunctions" value="ARABIC , SUM , QUARTILE.INC ,

DEC2BIN , BIN2DEC" />

4 </appSettings >

5 </configuration >

Listing 6.14: An example of a configuration file for Funsheet, with several supported
Excel functions listed.

Each supported Excel function from the configuration file is registered in the ExcelFunCallContext

class. When the visitors, mentioned in the previous section, are visiting cells and ex-

pressions they check whether a formula contains a supported Excel function. Listing

6.15 shows how the supported Excel functions are identified in the visitors.

1 internal void Visit(Formula formula , ExcelReference reference)

2 {

3 if (formula.Expr is FunCall)

4 {

5 var funCall = formula.Expr as FunCall;

6 if

(ExcelFunCallContext.SupportedFunctions.Contains(funCall.function.name) &&

7
!ExcelFunCallContext.RegisteredFunctions.Contains(funCall.function.name))

8 {

9 Function.Remove(funCall.function.name);

10 ExcelFunCallContext.Register(funCall.function.name);

11
12 //Make a new Formula the first time

13 formula = Formula.Make(_workbook ,

FunCall.Make(funCall.function.name , funCall.es));

14 }

15 }

16 ...

Listing 6.15: Registration of a supported Excel built-in function.

When a supported Excel function is encountered in a visitor for the first time, the

Register method of the ExcelFunCallContext is called and the Excel function name

is passed to it. The ExcelFunCallContext class has a static constructor that creates a

transient, dynamic assembly, as shown in listing 6.16.

1 static ExcelFunCallContext ()

2 {

3 // Register supported Excel functions

4 RegisterSupportedFunctions ();

5
6 var domain = AppDomain.CurrentDomain;

7 var assemblyName = new AssemblyName("ExcelFunctionCalls");

8 var assemBuilder = domain.DefineDynamicAssembly(assemblyName ,

AssemblyBuilderAccess.Run);

9 _moduleBuilder = assemBuilder.DefineDynamicModule("ExcelFunCalls");

10 }

Listing 6.16: Static constructor of the ExcelFunCallContext class

Chapter 6. Implementation 55

When an Excel built-in function is registered, we create a delegate capable of calling

back into Excel using the Excel C API and wrap the result in a Funcalc Value type.

The delegate is registered as a Funcalc Function to allow SDFs to invoke the delegate.

In our first attempt to create a delegate capable of calling into Excel we encountered a

limitation in the .NET framework, in which we could not use a string closure in a delegate

inside a delegate. It seems numerous people have encountered this inconsistency or bug

in the .NET framework, but no fix has been provided by Microsoft. Because of this

we needed another approach. We implemented code generation using LINQ expression

trees to create the necessary delegates. Although this solution is working it is not very

readable and hard to debug. Listing 6.17 shows our solution to the delegate problem. It

shows how we are generating code by using the LINQ Expression API. Line 9-15 show

how we compile the LINQ expression tree to a method which we save in the dynamic

assembly for later use.

1 public static Func <Value[], Value > GenerateExcelCall(string function , out

MethodInfo methodInfo)

2 {

3 var parameter = Expression.Parameter(typeof(Value []), "values");

4 var functionName = Expression.Constant(function , typeof(string));

5 var excelFunCallInstance =

Expression.New(typeof(ExcelFunCall).GetConstructor(new[] { typeof(string)

}), functionName);

6 var excelFunCall = Expression.Call(excelFunCallInstance ,

ExcelFunCall.ExcelCallMethodInfo , parameter);

7 var expression = Expression.Lambda <Func <Value[], Value >>(excelFunCall ,

parameter);

8
9 var typeBuilder = _moduleBuilder.DefineType(function + "Delegate",

TypeAttributes.Public);

10 MethodBuilder methodBuilder = typeBuilder.DefineMethod(function ,

MethodAttributes.Public | MethodAttributes.Static ,

CallingConventions.Standard);

11 methodBuilder.SetReturnType(typeof(Value));

12 methodBuilder.SetParameters(typeof(Value []));

13 expression.CompileToMethod(methodBuilder);

14 var dynamicType = typeBuilder.CreateType ();

15 methodInfo = dynamicType.GetMethod(function);

16
17 return (Func <Value[],

Value >) dynamicType.GetMethod(function).CreateDelegate(typeof(Func <Value[],

Value >));

18 }

Listing 6.17: The process of generating a delegate the LINQ Expression API.

In line 5 of listing 6.17 we make expressions to construct a new ExcelFunCall instance

in which the Excel function name is injected (this was our initial problem when using

delegates). Then in line 6 we make an expression to call the ExcelCall method of

the ExcelFunCall instance. We have encapsulated as much logic as possible in the

ExcelCall method to ease the debugging process and make the code more maintainable

Chapter 6. Implementation 56

and readable. The ExcelCall method is shown in listing 6.18. The method is building

a string from the Excel function name and the Funcalc Value array elements supplied

to the method. In line 27, this string is fed to the xlfEvaluate function from the Excel

C API. The xlfEvaluate evaluates a string as if it was a formula written in Excel. The

result from calling xlfEvaluate is converted to a Funcalc Value and returned.

1 public Value ExcelCall(Value[] values)

2 {

3 var sb = new StringBuilder ();

4 foreach (var value in values.Select(s => s.ToExcelObject ()))

5 {

6 if (value is string)

7 {

8 sb.AppendFormat("\"{0}\";", value.ToString ());

9 }

10 else if(value is double [,])

11 {

12 sb.Append("{");

13 foreach (var val in (double [,])value)

14 {

15 sb.Append(val.ToString () + ";");

16 }

17 // removes the last ;

18 sb.Remove(sb.Length - 1, 1);

19 sb.Append("};");

20 }

21 else

22 {

23 sb.Append(value.ToString () + ";");

24 }

25 }

26 var excelFormula = string.Format("{0}({1})", FunctionName , values.Length !=

0 ? sb.Remove(sb.Length - 1, 1).ToString () : string.Empty);

27 var result = XlCall.Excel(XlCall.xlfEvaluate , excelFormula);

28 return HelperMethods.ObjectToValue(result);

29 }

Listing 6.18: The ExcelCall method is using the Excel C API to call into Excel.

6.6.2.8 Re-opening a saved workbook

Funsheet needs to be able to handle the scenario where a workbook containing DEFINE-

formulas, is saved and later re-opened. This requirement raised several problems in the

implementation of Funsheet. We needed a way to execute some initialization code in

between the opening of a workbook and the execution of the first DEFINE-formula, to

pre-register the defined SDFs in the workbook. This requirement arose for two reasons.

Firstly SDFs can be defined to be recursive or mutually dependent. The second reason

is the fact that we cannot trust Excel’s order of calculation[13].

First we turned to the Excel C API documentation[14] hoping to discover an event that

is fired during the initialization of an Microsoft Excel sheet. It turned out to be a dead

Chapter 6. Implementation 57

end. Next we started to investigate the COM Interop API, which is a much richer API

than the Excel C API, but does not perform as well. The performance is not a concern

to us in this particular situation as the initialization code will only run once at the

opening of a workbook.

The COM Interop exposes many events, including a WorkbookOpen-event which is triggered

every time a workbook is opened, either from an existing Excel instance or by double-

clicking a saved workbook file. After some experimentation with the WorkbookOpen-

event it turned out that when opening a workbook, Excel first executes all the DEFINE-

formulas and afterwards triggers the WorkbookOpen-event. This led us to the final im-

plementation where we use thread synchronization to direct the flow of execution. We

added a private bool IsInitialized and a private object lock (acting as a lock) to the

DefineFunction-class. In the case where a workbook is opened the IsInitialized has

the value false. Each DEFINE-formula will execute sequential because they all start

out by trying to acquire the lock. Because the IsInitialized is false, the Define UDF

saves the information necessary to create the SDF at a later point in time. Further a

placeholder for the SDF is registered as shown in listing 6.19.

1 lock(_lock)

2 {

3 if (! IsInitialized)

4 {

5 DefineQueue.Add(sdfName , new Tuple <ExcelReference , ExcelReference ,

List <ExcelReference >, string >(callingCell , outputRef , inputs , fullFormula));

6 var sdfCellText = CorecalcRegistrator.RegisterPlaceholder(sdfName ,

callingCell);

7 RegisteredSdfContext.AddToRegisteredSdfs(sdfName ,

callingCell.ColumnFirst , callingCell.RowFirst , fullFormula , sdfCellText);

8 ...

Listing 6.19: When a workbook is opened information about SDFs are saved and a
placeholder is created for each.

When all DEFINE-formulas have been executed, the WorkbookOpen-event is triggered.

From the handler of this event we execute an asynchronous macro that fully registers all

the SDFs based on the information saved in the previous steps as shown in listing 6.20.

It is necessary to use a macro because we need access to the sheets of the workbook

while creating the SDFs. Finally IsInitialized is set to true, to return to normal

operation.

1 void app_WorkbookOpen(Workbook Wb)

2 {

3 ExcelAsyncUtil.QueueAsMacro(delegate

4 {

5 DefineFunction.RegisterSdfsInQueue ();

Chapter 6. Implementation 58

6 });

7 }

Listing 6.20: Register all SDFs using a macro.

One problem introduced by this solution was that if a new workbook is created the

WorkbookOpen-event is never triggered, which resulted in IsInitialized never would

be set to true. To overcome this we experimented with the other events of the COM

Interop API, hoping to find an event that is called both when a new workbook is created

and when a saved workbook is opened. Further it should be called consistently after the

WorkbookOpen-event. After a lot of trial and error we found that the WindowActivate-

event is always called and always after the WorkbookOpen-event. In the event handler

of this event we implemented a small piece of code to set the IsInitialized to true.

6.6.3 Closure

The Closure UDF accepts a string value containing the name of the SDF, closure or

specialization on which to base the new closure upon. It further accepts a collection of

arguments to the new closure. Arguments can be open or fixed. Open arguments can

be supplied in Excel using the NA()-function. Fixed arguments is supplied like regular

arguments.

The Closure UDF passes all the arguments to the RegisterClosure method of the

ClosureContext class. The Closurecontext class will determine whether an identical

closure already have been created. It will determine whether it should reference an SDF

or an existing closure or specialization. Listing 6.21 shows part of the RegisterClosure

method. We are wrapping the closure name and all inputs to the closure inside an appro-

priate sub-class of the Funcalc Expression class instance, because we need to delegate

all these to the Closure function in Funcalc afterwards. The Funcalc Closure function

returns a FunctionValue which we save in the ClosureContext. The FunctionValue

can be used later by the other UDFs.

Finally we return an RTD wrapper to monitor the cell containing the CLOSURE-

formula.

1 internal static object RegisterClosure(string function , object [] inputs , bool

returnObserver)

2 {

3 var closure = new Closure

Chapter 6. Implementation 59

4 {

5 ReferenceTo = function ,

6 Inputs = inputs ,

7 IsCompiled = false

8 };

9
10 var expressions = new List <Expr >();

11 if (Contains(function))

12 {

13 closure.Name = Closures[function].Fv.ToString ();

14 expressions.Add(ValueConst.Make(Closures[function].Fv));

15 }

16 else

17 {

18 if (SdfInfos.ContainsKey(function.ToUpper ()))

19 {

20 var sdfInfo = SdfInfos[function.ToUpper ()];

21
expressions.Add(TextConst.Make(HelperMethods.ObjectToValue(sdfInfo.name)));

22 }

23 }

24
25 for (int i = 0; i < inputs.Length; i++)

26 {

27 var input = inputs[i];

28 if (input is ExcelReference)

29 {

30 input = (input as ExcelReference).GetValue ();

31 }

32
33 if (input is string)

34 {

35 expressions.Add(TextConst.Make(HelperMethods.ObjectToValue(input)));

36 }

37 else if (input is double)

38 {

39
expressions.Add(NumberConst.Make(HelperMethods.ObjectToValue(input)));

40 }

41 else if (input is object [,])

42 {

43 expressions.Add(ValueConst.Make(HelperMethods.ObjectToValue(input)));

44 }

45 else if (input is ExcelError && (ExcelError)input ==

ExcelError.ExcelErrorNA)

46 {

47 expressions.Add(Error.Make(ErrorValue.naError));

48 }

49 else

50 {

51 return ExcelError.ExcelErrorValue;

52 }

53 }

54
55 var value = _closureFunc(null , expressions.ToArray (), 0, 0);

56 ...

Listing 6.21: Part of the RegisterClosure method

It is possible to create the same closure in multiple cells. Note that the dispose method

of the RTD wrapper will only be invoked when the last cell containing the closure is

cleared.

Chapter 6. Implementation 60

6.6.4 Specialize

The Specialize UDF is used to compile closures to make them perform better. UDF

accepts a single string value. This should always reference an existing closure. We

have decided to perceive the specializations as a kind of closure, therefore they are also

managed through the ClosureContext class.

When using the UDF it calls the RegisterCompiledClosure method of the ClosureContext.

Here we first check if all the arguments of the referenced closure are open. If this is the

case the specialization would not yield any performance benefits because there is nothing

to compile up front. Therefore we return the referenced closure instead, as shown in

listing 6.22.

1 ...

2 if (closure.Fv.args.All(v => v == ErrorValue.naError))

3 {

4 // return observer to closure.

5 return ExcelCellHandle.CreateHandle("CLOSURE", closure.Name , () =>

closure.Name , () => UnregisterClosure(closure.Name));

6 }

7 ...

Listing 6.22: Return the referenced closure if all arguments are open.

If the closure should be compiled we use the SpecializeAndCompile method of the

SdfManager in Funcalc. To this method we supply the FunctionValue of the ref-

erenced closure. The SpecializeAndCompile method registers a new SDF and re-

turns an SdfInfo. From the SdfInfo we create a FunctionValue. The newly created

FunctionValue is then saved to be used by the other UDFs (See listing 6.23). Finally

the Specialize UDF returns an RTD wrapper to the associated cell.

1 ...

2 var compiledClosure = new Closure ();

3 compiledClosure.ReferenceTo = closureName;

4 compiledClosure.Inputs = closure.Inputs;

5 compiledClosure.IsCompiled = true;

6
7 compiledClosure.Fv = new

FunctionValue(SdfManager.SpecializeAndCompile(closure.Fv), null);

8 compiledClosure.Name = compiledClosure.Fv.ToString ();

9 Closures[compiledClosure.Name] = compiledClosure;

10
11 return ExcelCellHandle.CreateHandle("SPECIALIZE", compiledClosure.Name , () =>

compiledClosure.Name , () => UnregisterClosure(compiledClosure.Name));

12 ...

Listing 6.23: Creating a specialization from an existing closure.

Chapter 6. Implementation 61

When the last cell containing a SPECIALIZE-formula to a specific closure is cleared,

the specialization is deleted from Funcalc and its FunctionValue is removed from the

ClosureContext.

6.6.5 Apply

The APPLY UDF is very simple in its implementation. It is marked as thread-safe because

it is a pure function, which means it does not change the state of Funsheet. Because it

is pure it is safe to allow parallel executions of this UDF. APPLY could potentially call a

closure depending on an external function introducing state changes in Funsheet. But

this is a hypothetical scenario and not very likely.

The UDF accepts a reference to a closure or specializtion along with a list of arguments.

Listing 6.24 shows the core implementation of the APPLY UDF. First a closure is obtained

from the ClosureContext class and the closure’s FunctionValue is extracted. Then all

the input arguments are converted from the Excel types to an array of the Funcalc Value

type. Next we invoke the APPLY method of the FunctionValue. Finally we convert the

resulting Funcalc Value to and Excel value and return this.

1 var fv = ClosureContext.GetClosure(closureName).Fv;

2 var vs = HelperMethods.ToValueArray(inputs);

3
4 if (fv == null)

5 {

6 return ErrorValue.argTypeError.ToExcelObject ();

7 }

8
9 return fv.Apply(vs).ToExcelObject ();

Listing 6.24: Implementation of the Apply UDF.

6.6.6 Benchmark UDF

The benchmark UDF was the simplest of all to implement. It has been marked as not

thread-safe to ensure that only one BENCHMARK-formula is executing at a time. This was

discussed in section 5.3.5.5 in the Design chapter.

Listing 6.25 shows the complete implementation. We have implemented a couple of

checks that the closure or specialization exists. Then we simply delegate to the Funcalc

implementation of Benchmark found in the Function class. The FunctionValue from

Chapter 6. Implementation 62

the closure or specialization is provided to the method and the double is wrapped in a

NumberValue instance. Finally the return value from the Benchmark method is converted

to a double using the extension method ToExcelObject.

1 [ExcelFunction(Name = "BENCHMARK", IsMacroType = false , IsThreadSafe = false)]

2 public static object Benchmark(string closureName , double iterations)

3 {

4 var closure = ClosureContext.GetClosure(closureName);

5 if(closure == null || closure.Fv == null)

6 {

7 return ErrorValue.argTypeError.ToExcelObject ();

8 }

9 var result = Function.Benchmark(closure.Fv, NumberValue.Make(iterations));

10 return result.ToExcelObject ();

11 }

Listing 6.25: Implementation of the Benchmark UDF

6.7 UI

In this section we cover the implementation of the UI enhancements to Microsoft Ex-

cel, introduced by Funsheet. This covers the implementation of design goal QG4 and

QG6. Addressing design goal QG6: The solution should conform to Microsoft Excel’s

standards and conventions, we decided to implement the UI changes using the ribbon

menu support in Excel-DNA. The first step was to make the ExcelCalcRibbon class

(illustrated in class diagram in figure 6.1) and inherit from ExcelRibbon[15]. The class

overrides the method GetCustomUI, which is inherited from the ExcelRibbon-class. This

method lets us specify an XML file containing the ribbon specifications, such as text,

images and actions triggered by the Funsheet ribbon. Ribbon menu customization using

XML is supported by Microsoft[16]. In our case, Excel-DNA is acting as a wrapper for

the existing extensibility. The actions specified in the XML file refer to methods in-

side the ExcelCalcRibbon-class. For example, the XML specification of the Registered

Closures button illustrated in the Funsheet ribbon menu depicted in figure 6.5, is illus-

trated in listing 6.26. The action onAction=\ShowClosures onAction" points to the

ShowClosures onAction method of the ExcelcalcRibbon-class. The methods creates

a form containing a list of closures currently available in the current Excel workbook.

To achieve better portability, we have included the XML file as an embedded resource

in Funsheet as illustrated in figure 6.4 as opposed to keeping the file separate to the

project.

Chapter 6. Implementation 63

Figure 6.4: The XML file specifying the Funsheet ribbon is configured as an embedded
resource in the Funsheet assembly.

The custom error handling that allow users to toggle between built-in Microsoft Excel

errors, Funcalc errors and .NET exception (discussed in section 6.4), is controlled by

the Funsheet ribbon. The decision on whether to show Funcalc errors is controlled

by a public boolean value in the ExcelCalcRibbon-class, which is used by the value

converter extension method to determine what error handling mechanism to use. This

is illustrated in listing 6.2. When Funcalc errors are toggled on as illustrated in figure

6.6, the user will receive Funcalc errors as strings.

<box boxStyle="vertical" id="ExcelFunctions">

<button

description="Registered Closures"

enabled="true"

id="ShowClosures"

imageMso="ViewVisualBasicCode"

label="Registered Closures"

onAction="ShowClosures_onAction"

size="normal" />

Listing 6.26: XML specifying text content, image and action for the Registered Clos-

ures button of the Funsheet ribbon.

Figure 6.5: The ribbon menu of Microsoft Excel 2013 customized with the Funsheet
ribbon.

6.8 Evaluation

This chapter described the implementation of Funsheet. The implementation was based

on the design and design goals, described in chapter 5. All design goals except TG2:

Chapter 6. Implementation 64

Figure 6.6: Funcalc errors has been toggled on in the Funsheet ribbon This enables
the user to override the error mapping between Funcalc errors and Microsoft Excel

errors introduced by Funsheet.

Support for editing previously defined SDFs, have been implemented. A possible imple-

mentation of TG2 is elaborated on in chapter 8, Future Work.

To achieve a maintainable implementation of Funsheet, we have used language features

of C# and the .NET framework. For example, we used the dynamic keyword for runtime

binding and used the The LINQ Expression API to avoid a bug in the .NET framework,

which we discovered when we attempted to create delegates as described in section

6.6.2.7.

Section 6.6 explain how we implemented each of the functions of Funsheet. By imple-

menting these, we have realized the technical design goals. Chapter 6: Test, confirms

that all technical goals have been successfully implemented.

Lastly, we found the choice to use Excel-DNA (5.2) even better than we first realized. It

helped us tremendously in the implementation of the Funsheet ribbon user interface. It

also made it quite easy to implement the RTD wrapper by letting the wrapper inherit

from the interface IExcelObservable.

Chapter 7

Test

This chapter describes how we defined and executed a series of tests. The purpose of the

tests was to verify the implementation of the design goals we set out to realize have been

achieved. We will cover each technical goal, except goal TG2, in test 1 through 7. TG2

was never implemented and is elaborated on in section 8.1 in chapter 8 concerning Future

Work. In Test 8 we implemented three inter-connected SDFs to create and execute a

Goal Seek function. This acts as a final test to verify the technical design goals. Quality

goal QG1, regarding performance, is verified in Test 9. We have refrained from testing

usability goals, as we believe a user study will be the optimal approach for testing this.

We mention this in section 8.2 of chapter 8, Future Work. We indirectly tested parts of

design goal QG4, concerning the display of an SDF’s underlying bytecode to the user, in

Test 1, 2, 4 and 5. Here we compared bytecode generated in Funsheet and Funcalc. All

tests in this chapter were implemented in a Microsoft Excel sheet. A part of the tests

was also implemented in Funcalc, for the purpose of comparing the generated byte code

from each solution. All test cases was executed on a Dell XPS 13 laptop computer, with

an Intel i7-3557U CPU @ 2.00GHz and 8GB of RAM running Windows 8 64 bit.

7.1 Organization of Tests

Each of the test cases we have defined are structured as follows:

65

Chapter 7. Test 66

• Purpose. A description of the test along with the purpose of executing the it.

Will also contain references to the design goals being tested. Each design goal is

covered by at least one test.

• Implementation. A detailed description of the steps necessary to implement and

run the test.

• Acceptance Criteria. A list of criteria that should be met to pass the test

execution.

• Results. The results of the test execution.

• Evaluation. Evaluation of the test execution and whether the specified acceptance

criteria were met.

7.2 Tests

7.2.1 Test 1: Define SDF

7.2.1.1 Purpose

This test is concerned with Design Goal TG1: Support for creating and calling SDFs in

Funcalc from Excel.

The purpose of this test is to verify the ability of Funsheet to correctly create and register

SDFs in Microsoft Excel and that the generated bytecode in Funsheet is equal to the

bytecode generated in Funcalc based on the same functions.

7.2.1.2 Implementation

We start out with defining three SDFs in Microsoft Excel as illustrated in figure 7.1.

The defined SDFs are, INCREMENT, which increments a single input number parameter by

one; MYCONCAT, which concatinates “Hello” with a single string input parameter; MYMIN,

which returns the smallest number of the input range of numbers.

We define equivalent SDFs in Funcalc to compare the generated bytecode with the

bytecode generated in Funsheet.

Chapter 7. Test 67

Figure 7.1: All three SDFs for Test 1. Note that when defining SDFs with ranges,
Funcalc does not allow to reference ranges from the same functions sheet as the SDF

definition.

7.2.1.3 Acceptance Criteria

All the SDFs mentioned in the Implementation section must be defined and called

without errors. They should yield the correct values based on the test vectors from

table 7.1 in the results section.

Lastly, the Funsheet and Funcalc implementations bytecode should not differ. Note:

the display of generated byte code is specified in design goal QG4, which is discussed in

chapter 5.

7.2.1.4 Results

In table 7.1 the input values and their corresponding output values are illustrated. The

generated bytecode from Funsheet and Funcalc is a match on all three SDFs. The

bytecode for each of the three SDFs are illustrated in figure 7.2, figure 7.3 and in figure

7.4.

SDF Input Output

INCREMENT 10 11

MYCONCAT “World” “Hello World”

MYMIN 3873, 55, 250, 4, 95293 4

Table 7.1: Table showing the input and output from test 1.

IL_0000: ldarg V_0

IL_0004: call Double ToDoubleOrNan(Corecalc.Value)/Corecalc.Value

IL_0009: ldc.r8 1

IL_0012: add

IL_0013: call Corecalc.Value Make(Double)/Corecalc.NumberValue

IL_0018: ret

Figure 7.2: The generated bytecode code from the INCREMENT function is the same
in both Funsheet and Funcalc.

Chapter 7. Test 68

IL_0000: ldc.i4 2

IL_0005: call Corecalc.TextValue FromIndex(Int32)/Corecalc.TextValue

IL_000a: ldarg V_0

IL_000e: call Corecalc.Value ExcelConcat(Corecalc.Value , Corecalc.Value)/

Corecalc.Function

IL_0013: ret

Figure 7.3: The generated bytecode code from the MYCONCAT function is the same in
both Funsheet and Funcalc.

IL_0000: ldc.i4 1

IL_0005: newarr Corecalc.Value

IL_000a: dup

IL_000b: ldc.i4 0

IL_0010: ldc.i4 0

IL_0015: call Corecalc.ArrayView GetArrayView(Int32)/Corecalc.Funcalc.

CGNormalCellArea

IL_001a: stelem.ref

IL_001b: call Double Min(Corecalc.Value [])/Corecalc.Function

IL_0020: call Corecalc.Value Make(Double)/Corecalc.NumberValue

IL_0025: ret

Figure 7.4: The generated bytecode code from the MYMIN function is the same in both
Funsheet and Funcalc.

7.2.1.5 Evaluation of Test 1

The results show that test 1 passed. The SDFs were successfully created and produced

the expected results. The generated bytecode code from Funsheet proved to be equal to

the bytecode generated in Funcalc. The test is passed.

7.2.2 Test 2: Define SDFs with a variable amounts of input argument

7.2.2.1 Purpose

This test addresses design goal TG1: Support for creating and calling SDFs in Funcalc

from Excel. The purpose of this test is to ensure the support for creation of SDFs with

an input argument count ranging from zero to nine. To maximize the testing effort, we

have decided to carry out an equivalence partitioning and a boundary-value analysis to

identify which partitions we should focus this test on. The equivalence partitioning and

the boundary-value analysis are specified in subsection 7.2.2.2.

Chapter 7. Test 69

7.2.2.2 Equivalence Partitioning and Boundary-value analysis

We have identified three partitions that we assume the system handles: One partition

that is impossible, which is less than zero arguments, one partition that covers the count

from zero to nine input arguments and lastly one partition for ten or more arguments.

We expect the last to return an error. These partitions are illustrated in figure 7.5.

The boundary values in this case are 0, 1, 8, 9, 10 arguments. Based on that, we have

decided to implement six test cases; one for each boundary value and we have also added

an extra for the case of five arguments. Five is in the middle of the spectrum and we

believe its is worth testing to give us a higher test coverage.

Figure 7.5: Three partitions on the test vectors of zero to nine arguments: One invalid
partition, since it is not possible to input less than zero arguments, one that covers zero
to nine arguments and is valid and one invalid partition which accounts for cases with

ten or more arguments.

7.2.2.3 Implementation

The test implements six test cases, based on our boundary-value analysis illustrated in

figure 7.5:

The SDFs in this test case will be simple. They will all do a simple addition operation

that returns the sum of the input argument(s). The setup of the six SDFs is illustrated

in figure 7.6.

We will implement the same SDFs in Funcalc to allow the comparison of bytecode.

7.2.2.4 Acceptance Criteria

All the SDFs mentioned in the Implementation section must be defined and called

without error, except the last SDF with ten arguments. We expect that to return

an error.

The SDFs should yield the correct values based on the test vectors from the table in the

results section.

Chapter 7. Test 70

Figure 7.6: Illustration of the SDF setup in Test 2. All the function calls in the
D column are valid and were executed without errors. Notice that the SDF “Ten” is
not called. This is because it never gets created because of the number of argument

specified in its definition.

The Funsheet and Funcalc implementations byte code should not differ.

7.2.2.5 Results

In this section we present the result for test 2. In table 7.2 the input values and their

corresponding output values are illustrated. The bytecode generated in Funsheet and

Funcalc was equal.

Argument Count Expected Result Result

0 SDF Created SDF Created

1 SDF Created SDF Created

5 SDF Created SDF Created

8 SDF Created SDF Created

9 SDF Created SDF Created

10 Excel error shown Excel error shown

Table 7.2: Table showing the number of arguments an SDF is attempted defined with
and whether it is accepted by the system. Test cases where the argument count is less

than ten result in successfully created SDFs.

7.2.2.6 Evaluation of Test 2

The input partitions were processed as expected. SDF definitions with an argument

count of between zero and nine were created successfully. An argument count of ten was

rejected by Excel, as expected. The generated bytecode matched. The test passed.

Chapter 7. Test 71

7.2.3 Test 3: Delete SDF when cell containing SDF definition is

cleared.

7.2.3.1 Purpose

This test is concerning the design goal TG5: Support deletion of SDFs.

The purpose of this test is to ensure that an SDF will be unregistered from Excel if the

cell containing its definition is cleared.

7.2.3.2 Implementation

This test implements a single test case. One SDF Increment, which takes one number

argument and adds 1 to it. The test setup is illustrated in figure 7.7.

Figure 7.7: Setup of the INCREMENT SDF in Test 3.

7.2.3.3 Acceptance Criteria

The SDF mentioned in the Implementation section must be defined and called without

error. Then we empty the cell containing the SDF definition. Hereafter the SDF should

not be callable from Excel.

7.2.3.4 Results

After the SDF had been defined it was callable and worked as expected. After the SDF

definition cell had been cleared, Microsoft Excel would would show a #NAME? error when

the SDF was called, indicating that the function was unknown. This is illustrated in

7.10. The function auto suggestion in Excel was also missing the SDF name after the

deletion. Microsoft Excel before deletion is illustrated in figure 7.8 and after deletion is

illustrated in figure 7.9.

7.2.3.5 Evaluation of Test 3

The test executed as expected. The SDF was successfully deleted when the cell contain-

ing its definition was cleared. The test passed.

Chapter 7. Test 72

Figure 7.8: Before deletion. Microsoft Excel’s auto suggestion for functions recognizes
the recently defined SDF.

Figure 7.9: After deletion. Microsoft Excel’s auto suggestion for functions no longer
recognizes the deleted SDF.

Figure 7.10: After deletion. Microsoft Excel gives the #NAME? error when the recently
deleted SDF is attempted to be called. This error indicates that the function is not

recognized by Microsoft Excel.

7.2.4 Test 4: Creating Closures

7.2.4.1 Purpose

This test addresses design goal TG3: Support for defining and calling closures.

The purpose of this test is to verify that closures can be created and registered in

Microsoft Excel and afterwards called using the Apply UDF introduced by Funsheet.

7.2.4.2 Implementation

We will implement two closures based on the pre-defined SDF INCREMENT. This SDF

accepts one number as an argument and returns the number incremented by one. One

Closure will be created with #N/A! as a pre-defined argument, meaning that the Closure

accepts one argument. The Excel implementation is shown in figure 7.11. The other

Chapter 7. Test 73

Closure will be created with 1 as a pre-defined argument, resulting in a Closure that

takes zero arguments. The Excel implementation is shown in figure 7.12.

We will implement both Closures in both Funsheet and Funcalc to compare the generated

bytecode.

Figure 7.11: Closure defined with #N/A! as a pre-defined argument. Result is a
Closure that accepts one argument.

Figure 7.12: Closure defined with 1 as a pre-defined argument. Result is a closure
that accepts zero arguments.

7.2.4.3 Acceptance Criteria

We assume the SDF from which the closure is created, has been created and registered

successfully beforehand. Both Closures should be created and registered successfully.

They should also produce the expected results when called.

No bytecode comparisons will be included in this test, as no bytecode is generated for

Closures.

7.2.4.4 Results

Both Closures were successfully created. They both produced the expect results as

illustrated in table 7.3. The generated bytecode in Funsheet and Funcalc matched.

Closure Pre-defined Argument Input Output Expected Output

#1 #N/A! 5 6 6

#2 1 None 2 2

Table 7.3: The input and output from test 4. Output and expected output are
matching. Closure #1 has been defined with #N/A! as a pre-defined argument resulting
in a Closure that accepts one argument. Closure #2 has been defined with 1 as a

pre-defined argument resulting in a Closure that accepts zero arguments.

Chapter 7. Test 74

7.2.4.5 Evaluation of Test 4

Both Closures were created successfully and returned the expected results. The gener-

ated byecode also matched. The test passed.

7.2.5 Test 5: Specialize Closures.

7.2.5.1 Purpose

This test is regarding design goal TG6: Support for specialization of closures. In this

test we will verify the specialization of closures. We will also verify that the produce the

expected result, when executing them using the APPLY UDF.

7.2.5.2 Implementation

We will specialize the two closures defined in Test 4. One closure that takes a single

number argument and another closure that takes no arguments. Both closures are based

on the INCREMENT SDF, which accepts a number as an argument and returns the number

increment by one.

We will implement two equal specializations in both Funcalc and Funsheet to compare

the generated bytecode.

7.2.5.3 Acceptance Criteria

We assume that the closure and the SDF from which the closure is made, both have

been created successfully beforehand. Both specializations should produce the expected

results.

7.2.5.4 Results

Both specializations were successfully created. They both produces the expected results

as illustrated in table 7.4.

The generated bytecode in Funsheet is equal to that of Funcalc. The bytecode for #1

specialization is shown in listing 7.13. The bytecode for #2 specialization is shown in

listing 7.14.

IL_0000: ldarg V_0

IL_0004: call Double ToDoubleOrNan(Corecalc.Value)/Corecalc.Value

IL_0009: ldc.r8 1

IL_0012: add

IL_0013: call Corecalc.Value Make(Double)/Corecalc.NumberValue

Chapter 7. Test 75

Specialization Pre-defined Argument Input Output Expected Output

#1 #N/A! 10 11 11

#2 5 None 6 6

Table 7.4: The input and output from test 5. Output and expected output are
matching. Specialization #1 has been defined from a closure that accepts one argument.

Specialization #2 has been defined from a Closure that accepts zero arguments.

IL_0018: ret

Figure 7.13: The generated bytecode code from the specialized closure which takes a
single argument. The bytecode is identical in Funsheet and Funcalc.

IL_0000: ldc.r8 2

IL_0009: call Corecalc.Value Make(Double)/Corecalc.NumberValue

IL_000e: ret

Figure 7.14: The generated bytecode code from the specialized closure which is pre-
defined with a 1 as its only argument. The bytecode is equal in Funsheet and Funcalc.

7.2.5.5 Evaluation of Test 5

Both specializations were both created successfully and returned the expected results.

The bytecode also matched. The test passed.

7.2.6 Test 6: Calling built-in Excel functions when function is not

present in Funcalc.

7.2.6.1 Purpose

This test addresses design goal TG4: Support for calling built-in Microsoft Excel func-

tions from Funsheet SDFs and design goal QG5: Error handling should support the

user.

The goal of this test is to ensure that SDFs defined in Funsheet can use built-in Mi-

crosoft Excel functions and that the correct Excel error is shown, when a function is not

available.

7.2.6.2 Implementation

This test will implement two SDFs that respectively will be using the ARABIC and

QUARTILE functions from Microsoft Excel. None of these functions are, at the time

of writing, supported by Funcalc. Hence Funsheet has to call the functions from Excel,

Chapter 7. Test 76

but only if the functions are specified on the Supported Excel Functions-list in Funsheet.

This function list is explained in section 6.6.2.7. The ARABIC function converts a Roman

number to an Arabic number. It accepts a string as input. The QUARTILE function re-

turns a chosen quartile from a dataset. It accepts two inputs, the dataset and an integer

from 0 to 4. 0 is the minimum value, 1 is the first median, 2 is the median value, 3 is

the third quartile, 4 is the maximum value. We will start out by implementing an SDF

called MYARABIC. It will take two string arguments and pass them to Excel’s ARABIC

function and add the results. The second SDF MYMIN will have its input parameter

use the QUARTILE function with a hardcoded 0 as its second parameter. This way the

minimum is always returned.

We will execute two test cases, one for each SDF. Before executing the test cases, we will

ensure that only the ARABIC function exists on the Supported Excel Functions-list. This

indicates, that the SDF relying on the QUARTILE function should show an Excel error

when it is called from Excel. The implementation of the MYARABIC SDF is illustrated in

figure 7.15. The implementation of the MYMIN SDF is illustrated in figure 7.16.

Figure 7.15: The implementation of the MYARABIC SDF which uses the built-in Excel
function ARABIC.

Figure 7.16: The implementation of the MYMIN SDF which uses the built-in Excel
function QUARTILE to return the minimum value.

7.2.6.3 Acceptance Criteria

We expect that calling an SDF where the output cell either is directly or transitive

dependant on a function that is not present in Funcalc nor is present on the Support

Excel Functions list in Funsheet, will fail. If the function exists on the function list and

is available from Excel, the SDF call should succeed.

Furthermore should the valid SDF (MYARABIC) return the expected output when ex-

ecuted.

Chapter 7. Test 77

7.2.6.4 Results

The MYARABIC SDF executed successfully and returned the correct result. The MYMIN

resolved in a #NAME? error, which was expected.

SDF Excel Function Funsheet Support Input Expected Result Result

MYARABIC ARABIC YES “X”;“M” 1010 1010

MYMIN QUARTILE NO 4, 3, 200, 2, 77 #NAME? #NAME?

Table 7.5: Inputs, outputs and expected outputs from test case 6. When an SDF
relies on a function not available in Funcalc and not on the supported function list in

Funsheet, Excel shows an error.

7.2.6.5 Evaluation of Test 6

As expected, Excel showed an error when the MYMIN SDF was called, due to the Excel

function QUARTILE not being noted on the Support Excel Functions list in Funsheet.

On the other hand, the MYARABIC SDF was executed successfully, returning the correct

output. The test passed.

7.2.7 Test 7: Define Recursive SDF

7.2.7.1 Purpose

This test addresses design goal TG7: Support for defning recursive SDFs.

The purpose of this test is to recursively defining a recursive SDF.

7.2.7.2 Implementation

We wish to implement the MYGCD SDF for identifying the greatest common divisor (GCD)

of two numbers. The implementation of the SDF relies on the MOD function which is

supported by Funcalc. The SDF also relies on itself. This is illustrated in figure 7.17.

Figure 7.17: The implementation of the GCD SDF for finding the greatest common
divisor between two numbers.

Chapter 7. Test 78

7.2.7.3 Acceptance Criteria

The SDF should be successfully created and registered. Furthermore it should produce

the correct results.

7.2.7.4 Results

The initial creation of the SDF resulted in a #NAME? error in the output cell in Excel

(Cell A2 in figure 7.17). This is because the SDF is non-existent on the time of creation.

When the output cell is refreshed, after the SDF has been defined, the error disappears.

This is working as intended. The SDF also returns the correct result, as illustrated in

table 7.6.

SDF First input Second input Expected Result Result

MYGCD 12 90 6 6

MYGCD -77 91 7 7

Table 7.6: Inputs, outputs and expected outputs from test case 7 using the global
common divisor SDF MYGCD.

7.2.7.5 Evaluation of Test 7

The output cell of MYGCD relies on the SDF itself and was therefore resolved to an Excel

error before the SDF had been defined. This was working as intended. The result section

shows that the SDF returns the correct results. The test passed.

7.2.8 Test 8: Goal Seek

7.2.8.1 Purpose

This test will implement a realistic use case for an SDF, by defining a Goal Seek function.

The implementation includes an auxiliary SDF and is much more complex that the

SDFs defined in the previous tests. Conducting this might help uncover edge cases and

scenarios untouched by the more simple tests. The Goal Seek function seeks to find a

solution x to the equation f(x) = r if one exists. The input to the Goal Seek function is

a continuous function f (a closure), a target value r and an initial guess a at the value

of x. The first few steps of the Microsoft Excel implementation are illustrated in figure

7.18.

Chapter 7. Test 79

Besides implementing the Goal Seek function, we wish to use it to determine x for the

function INCREMENT, for a target value r of 100. The INCREMENT function accepts a

number and increments it by one.

Lastly, we will also use this test for verifying design goal TG8: It must be possible to

save and reload SDFs, which states that it should be possible to open saved workbooks

containing mutual recursive SDFs.

Figure 7.18: First couple of iterations of the Goal Seek function.

7.2.8.2 Implementation

The Goal Seek function accepts the following arguments: a function value (a1), a target

value (a2) and a start value (a3). The Goal Seek function’s objective is to determine

what input is needed for a1 to return the desired result a2. It relies the auxiliary

function FINDEND to search for an x for which f(x) has the opposite sign of f(a). The

implementation of Findend is illustrated in figure 7.19.

We also implement the function INCREMENT as illustrated in column A in figure 7.1.

Our implementation uses a maximum of thirty iterations for finding the target value.

Figure 7.19: The Microsoft Excel implementation of the Goal Seek function’s auxili-
ary funciton FINDEND.

Chapter 7. Test 80

7.2.8.3 Acceptance Criteria

The Goal Seek SDF must not take more than five seconds to execute. It should be

verified against the Goal Seek function of Microsoft Excel, assuming the iteration count

is set to thirty in Excel.

7.2.8.4 Results

The Goal Seek function was successfully implemented using SDFs. Using it to find the

correct input value for the INCREMENT function yielded the same result, using both the

Microsoft Excel implementation and the SDF implementation, which is illustrated in

table 7.7.

To verify design goal TG8 regarding the opening of saved workbooks containing SDFs,

we were able to successfully save, close and re-open the workbook containing the Goal

Seek SDF implementation.

Goal Seek impl. function f target value x Initial guess a Result

Microsoft Excel SDF INCREMENT 100 1 99

Funsheet SDF INCREMENT 100 1 99

Table 7.7: Function f, target value x, initial guess a and result of using two different
Goal Seek implementations running thirty iterations. Results were equal in both cases.

7.2.8.5 Evaluation of Test 8

When we began implementing the Goal Seek function using SDFs, we discovered that

the definition of the GOALSEEK SDF had exponential running time. We were able to

define the SDF in a couple of seconds, when limiting the iterations (illustrated in figure

7.18) to four. This gave us the notion that similar cells were covered multiple times in the

cell visitors, used by the DEFINE function. To achieve linear running time with the cell

visitors, we implemented memoization as described in section 6.6.2.2. Another challenge

emerged, after we were able to define the GOALSEEK SDF in linear time. By saving

the workbook containing the SDF definitions required for implementing the GOALSEEK

function and opening it at later time, we discovered that Excel was not adhering to the

implicit calculation order we had dictated when initially defining the SDFs one step at a

time. this lead us to explicitly define TG8: It must be possible to save and reload SDFs

as a design goal. The implementation of TG8 is discussed in section 6.6.2.8.

Chapter 7. Test 81

This test was by far the most complex and demanding in this chapter. It successfully

verified that the implementation of our design goals can work in union and that the

concept of sheet-defined functions has been integrating into Excel. The test passed.

7.2.9 Test 9: Performance

7.2.9.1 Purpose

This test case is addressing design goal DG8: Execution of SDFs should take at most

20% longer than execution of similar SDFs in Funcalc.

7.2.9.2 Implementation

We will implement an SDF TRIAREA that calculates the area of a triangle with side

lengths A1, B1 and C1. The Microsoft Excel SDF implementation is illustrated in figure

7.20. We then create a closure from the SDF with A1, B1 and C1 sat to 30, 40 and 50.

We then pass the closure and the value 10,000,000 to the Funsheet UDF BENCHMARK

(discussed in section 5.3.5.5). The BENCHMARK UDF will the return the average running

time of 10,000,000 executions of the SDF in nanoseconds.

We will also use the GOALSEEK SDF implementation from section 7.2.8. As function

value f we will provide a closure of the INCREMENT SDF with #NA! as a placeholder

argument. Target value x will be 100 and the inital guess a will be 1. We will run the

SDF 1,000,000 times using the BENCHMARK UDF.

We will implement the both SDFs in Funcalc and call them with BENCHMARK UDF.

The TRIAREA SDF will be executed 10,000,000 and the GOALSEEK SDF will be executed

1,000,000.

Figure 7.20: The implementation of the TRIAREA SDF for calculating the area of a
triangle with side lengths A1, B1 and C1.

Chapter 7. Test 82

7.2.9.3 Acceptance Criteria

As stated in design goal DG8: Execution of SDFs should take at most 20% longer than

execution of similar SDFs in Funcalc, the result of the BENCHMARK UDF in Funsheet

should maximally be 20% higher than the equivalent benchmarking in Funcalc.

7.2.9.4 Results

The results shows that TRIAREA SDF defined in Funcalc is benchmarked to be 1.3 times

slower than equivalent SDFs in Funsheet. The GOALSEEK SDF is only 1.09 times slower

than its Funcalc equivalent. The results are illustrated in table 7.8.

Application SDF Iterations Benchmark result (ns)

Funsheet TRIAREA 10,000,000 48

Funcalc TRIAREA 10,000,000 36

Funsheet GOALSEEK 1,000,000 4545

Funcalc GOALSEEK 1,000,000 4135

Table 7.8: The benchmark results in nanoseconds for the TRIAREA SDF and the
GOALSEEK SDF.

7.2.9.5 Evaluation of Test 9

We stated in design goal QG1 that the execution of SDFs in Funsheet should take at

most 20% longer than the execution of similar SDFs in Funcalc. From the results found

in table 7.8, we show that the execution of the TRIAREA SDF in Funsheet takes 33% (1.3

times) longer than the equivalent SDF in Funcalc. However, the GOALSEEK SDF takes

9.9%(1.09 times) longer than the equivalent SDF in Funcalc. We therefore achieve our

performance goal of not exceeding 20% execution time in regards to the GOALSEEK SDF,

but fall short of achieving the goal in regards to the TRIAREA SDF.

The BENCHMARK UDF of Funsheet is implemented to solely rely on Funcalc to perform

the benchmarking. The stopwatch that calculates the result in the BENCHMARK UDF,

is initiated and stopped inside Funcalc. Funsheet has no control over this and is only

responsible for passing the closure and iteration details to Funcalc. The BENCHMARK UDF

is discussed in more detail in 5.3.5.5. We therefore speculate that Microsoft Excel has an

impact on the increased execution time, since Excel is controlling the process in which

the benchmarking is executed. In spite of the TRIAREA SDF exceeding the execution

Chapter 7. Test 83

limit of 20%, we evaluate this test as passed, due to the much more satisfactory result

of the SDF GOALSEEK.

7.3 Evaluation

Concluding on our testing effort, we believe we have achieved a functional add-in that

fulfills all our technical goals, except TG2, which is discussed in section 8.1 in Future

Work. Test 9 concerning performance goal QG1, lead to conflicting results. One test case

exceeded our SDF execution time limit of being, at most 20% slower, another test case

was well within the time limits. In section 7.2.9.5, we discuss that the increased execution

time might be due to Microsoft Excel controlling the process in which the benchmarking

is executed. Hence we believe that further performance testing and research should

be conducted to clarify the reasons behind these results. This is mentioned in section

8.5. We believe that Funsheet should be subject to more testing before being used in

production. In section 8.2 and section 8.3 of chapter 8 Future Work, we discuss how

a user study and a a real world case should be carried out to test Funsheet in a more

realistic environment.

Chapter 8

Future Work

In this section we will discuss the possibilities for future work on Funsheet.

8.1 Editing of existing SDF definitions

In Funsheet the design goal TG2 Support for editing previously defined SDFs was not

implemented. At the moment of writing, the only solution to changing the output or

input of an existing SDF is to delete it and create a new one. This is not consistent

with Microsoft Excel, where a formula automatically updates if its precedent cells are

changed. A candidate solution to support editing of existing SDFs, could be to use

hashing to identify changes in an SDF definition. The cell visitors (described in 6.6.2.2)

would be responsible for building a hash from all the cells visited throughout the creation

of an SDF. The hash would then be linked to the SDF name and every time the DEFINE

function is called with an SDF definition containing a name of an existing SDF, the cell

visitors would construct a hash and compare it to the existing hash. If the hashes are

identical, nothing has been changed. If not, Funsheet should update the SDF.

8.2 Funsheet user study

In chapter 7 we validated the technical and performance design goals of Funsheet. We

believe that conducting a user study with real world Excel users could verify that the

usability goals of Funsheet has been realized. Besides, we could use it identify areas in

need of improvement and uncover bugs. In section 8.3 we elaborate on a user study in

a professional environment.

84

Chapter 8. Future Work 85

8.3 Funsheet production environment study

Funsheet and the concept of SDFs especially caters to professional Microsoft Excel users.

Conducting a user study addressing this user segment would evaluate the Funsheet

implementation in a real production environment, such as using Funsheet in banking. It

could contribute to the future development of Funsheet and uncover use cases we have

overlooked during the implementation and the testing of Funsheet. It would also help

to determine the maturity of Funsheet.

8.4 Distributed computing with Funsheet

At the moment, the computational power of Funsheet is limited to the computer it is

running on. We imagine a potential future extension to Funsheet, that allows it to

interface with a distributed backend, such as a cloud platform. Concretely, it could be

the introduction of a define cloud function that instead of creating the SDF in Funsheet

locally, would redirect to a cloud provider running the distributed version of Funsheet.

This could be an advantage in situations where more computing power is required. Using

a cloud backend would introduce a transmission overhead, which could turn out to be

negligible if the calculations are big enough.

8.5 The cause of higher execution times of benchmarks in

Funsheet compared to Funcalc

It would be very interesting to investigate why Funsheet has a larger overhead on the

benchmarking of functions compared to Funcalc. This is likely because Excel somehow

is interfering the execution of the actual benchmarking. If it is possible to uncover why

this overhead occurs, it could potentially be possible to avoid or reduce this overhead.

Chapter 9

Conclusion

In this thesis we described the development of Funsheet, a Microsoft Excel add-in,

integrating the concepts from Funcalc into Excel.

We set out to introduce the concept of sheet-defined functions (SDF) in Microsoft Excel,

in a functional and a user-friendly manner. We believe we have succeeded in this. We

started experimenting with different technologies to identify the best performing ones

for implementing user-defined functions (UDF) in Excel. From our experiment results,

we conclude that UDFs built with Excel-DNA provides the highest performance. We

analysed the features of Funcalc and the user experience of Microsoft Excel. From this

analysis we formed a specification as a series of design goals. We developed a design to

fulfill the design goals. We think we succeeded in creating a design in which all design

goals were taken into account. We implemented a functioning and user-friendly Excel

add-in to realize the design, while keeping it portable and maintainable. We succeeded

in keeping the implementation true to the design. We developed a series of tests to verify

that all design goals were satisfied. We succeeded in achieving all of our design goals,

except one. We partly succeeded in realizing design goal QG1 concerning performance.

This is discussed in section 9.4.

In the following sections we discuss the experiments, design, implementation and test

more specifically.

9.1 Initial Experiments

We started out researching different technologies for implementing UDFs in Excel, to

discover the ones currently available. From our research we found three alternatives:

86

Chapter 9. Conclusion 87

VBA, COM Interop and Excel-DNA. We conducted a series of experiments to measure

the different technologies for overhead of calling a UDF and performance when mar-

shalling large amounts of data. Based on our results, we concluded that Excel-DNA

performs far better than the other technologies, as stated in section 4.3.4.

9.2 Design

We analysed Funcalc to uncover the workings of the DEFINE, CLOSURE, SPECIALIZE,

APPLY and BENCHMARK functions, to form our technical design goals. We examined the

Microsoft Excel user interface and considered how to integrate and show information

from Funcalc in Excel, while maintaining the Excel user experience. From our exper-

iences we defined a series of usability goals. We formed a collection of quality goals

to address our desire of creating a maintainable and portable solution. We think our

design goals provided a strong foundation for a solid design, as discussed in the design

evaluation 5.4.

Taking the results of the experiments and the design goals into consideration, we dis-

cussed the feasibility of each of the technology options. Based on our rationales in the

discussion, we showed that Excel-DNA was the obvious choice to use in the development

of Funsheet (see section 5.2).

Based on our design goals, we designed a solution. We used the separation of concerns

principle to achieve a design with a high degree of maintainability and low coupling. We

strove to make a minimum amount of changes to the original Funcalc source, in which

we succeeded (see all changes in Appendix A). We ensured that all design goals were

reflected in the design, and are thus confident of our design.

9.3 Implementation

We implemented the DEFINE, CLOSURE, SPECIALIZE, APPLY and BENCHMARK functions

according to the design. All functional goals were fulfilled through the implementation

of these functions, except one. The design goal TG2 concerning the ability to edit an

existing SDF was not achieved. We discuss a possible implementation of this in section

8.1 of the Future Work chapter. Apart from this, we believe that we achieved a highly

functional and complete realization of the functions.

Chapter 9. Conclusion 88

To assist the functions in Funsheet, we implemented a consistent method of converting

values and error values between Funcalc and Microsoft Excel. We succeeded in creating

a versatile conversion system conforming to the design.

We have integrated a custom Excel ribbon into Excel to achieve a consistent user ex-

perience, while still providing the desired information from Funcalc. Through the im-

plementation of the ribbon we realized our design goals concerning usability.

9.4 Test

We developed 9 tests to verify the implementation of the technical goals and the per-

formance goal. We designed the tests such that the implementation of each technical

goal was covered by at least one test, with the exception of TG2: Support for editing

previously defined SDFs. The tests helped us to uncover bugs and poorly performing

implementations. We think our tests of the technical goals has contributed to a higher

quality of Funsheet by exposing errors that we were not initially aware of, as stated in

section 7.3. We developed two test cases to verify design goal QG1 concerning perform-

ance. The test showed that Funsheet is slightly slower than our design goal allowed when

benchmarking TRIAREA. The benchmarking of the more complex GOALSEEK, proved to

be performining within the margins of our design goal, but still slower than Funcalc.

We came to the conclusion that the reduction in performance was out of our control, as

discussed in section 7.2.9.5 and section 7.3.

In section 7.3 we state that the Funsheet add-in is not ready to be used in production,

but should undergo tests in a real world setting, e.g. be used in SDFs specific to banking,

etc., and a user study should be conducted to see how the average Excel user reponds

to the solution.

Appendix A

Source Code Documentation

A.1 Excelcalc.ApplyFunction Class Reference

This class contains the entry point for calling closures and specializations.

Static Public Member Functions

• static object Apply (string closureName, object input1, object input2, object

input3, object input4, object input5, object input6, object input7, object input8,

object input9)

Applies the specified arguments to a closure or specialization.

A.1.1 Detailed Description

This class contains the entry point for calling closures and specializations.

A.1.2 Member Function Documentation

A.1.2.1 static object Excelcalc.ApplyFunction.Apply (string

closureName, object input1, object input2, object input3,

object input4, object input5, object input6, object input7,

object input8, object input9) [static]

Applies the specified arguments to a closure or specialization.

89

Appendix A. Source Code Documentation 90

Parameters

closureName Name of the closure or specialization.

input1 The input1.

input2 The input2.

input3 The input3.

input4 The input4.

input5 The input5.

input6 The input6.

input7 The input7.

input8 The input8.

input9 The input9.

Returns

Result of executing the closure or specialization.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ApplyFunction.cs

A.2 Excelcalc.BenchmarkFunction Class Reference

This class contains the entry point for benchmarking SDFs in Excel.

Static Public Member Functions

• static object Benchmark (string closureName, double iterations)

Benchmarks the specified closure.

A.2.1 Detailed Description

This class contains the entry point for benchmarking SDFs in Excel.

A.2.2 Member Function Documentation

A.2.2.1 static object Excelcalc.BenchmarkFunction.Benchmark (string

closureName, double iterations) [static]

Benchmarks the specified closure.

Appendix A. Source Code Documentation 91

Parameters

closureName Name of the closure.

iterations Number of iterations. Used to get a more statistically significant result.

Returns

An integer of the time spent on each iteration in nano seconds.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/BenchmarkFunction.cs

A.3 Excelcalc.ClosureFunction Class Reference

This class contains the entry point for defining closures (higher order functions) in Excel.

Static Public Member Functions

• static object Closure (string function, object input1, object input2, object input3,

object input4, object input5, object input6, object input7, object input8, object

input9)

Registers a closure with the specified arguments.

A.3.1 Detailed Description

This class contains the entry point for defining closures (higher order functions) in Excel.

A.3.2 Member Function Documentation

A.3.2.1 static object Excelcalc.ClosureFunction.Closure (string function,

object input1, object input2, object input3, object input4,

object input5, object input6, object input7, object input8,

object input9) [static]

Registers a closure with the specified arguments.

Appendix A. Source Code Documentation 92

Parameters

function The SDF or closure to base the new closure on.

input1 The input1.

input2 The input2.

input3 The input3.

input4 The input4.

input5 The input5.

input6 The input6.

input7 The input7.

input8 The input8.

input9 The input9.

Returns

Returns a string representing the closure.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ClosureFunction.cs

A.4 Excelcalc.Closures.Closure Class Reference

Represents a closure or compiled closure entity.

Inheritance diagram for Excelcalc.Closures.Closure:

Public Member Functions

• bool Equals (Closure other)

Returns a bool indicating if two closures are equal. It compares the name of the SDF

and the inuput from which the closure is based on.

Properties

• string Name [get, set]

Gets or sets the name of the closure.

• bool IsCompiled [get, set]

Appendix A. Source Code Documentation 93

Gets or sets a value indicating whether this instance is compiled.

• FunctionValue Fv [get, set]

Gets or sets the FunctionValue that the closure is referencing. This will be autonomous

if the closure is compiled.

• string ReferenceTo [get, set]

A string indicating which SDF or closure the instance is referencing.

• object[] Inputs [get, set]

Gets or sets the inputs to the closure.

• string Details [get]

Gets the closure details to display in the Closure UI dialog.

Private Member Functions

• string BuildDetails ()

Formats the closure details as a string in order to show it in the GUI

Private Attributes

• string details

A.4.1 Detailed Description

Represents a closure or compiled closure entity.

A.4.2 Member Function Documentation

A.4.2.1 string Excelcalc.Closures.Closure.BuildDetails () [private]

Formats the closure details as a string in order to show it in the GUI

Returns

A string containing the closure details.

A.4.2.2 bool Excelcalc.Closures.Closure.Equals (Closure other)

Returns a bool indicating if two closures are equal. It compares the name of the SDF

and the inuput from which the closure is based on.

Appendix A. Source Code Documentation 94

Parameters

other An object to compare with this object.

Returns

True if the instances are equal. False otherwise.

A.4.3 Member Data Documentation

A.4.3.1 string Excelcalc.Closures.Closure. details [private]

A.4.4 Property Documentation

A.4.4.1 string Excelcalc.Closures.Closure.Details [get]

Gets the closure details to display in the Closure UI dialog.

A.4.4.2 FunctionValue Excelcalc.Closures.Closure.Fv [get], [set]

Gets or sets the FunctionValue that the closure is referencing. This will be autonomous

if the closure is compiled.

A.4.4.3 object [] Excelcalc.Closures.Closure.Inputs [get], [set]

Gets or sets the inputs to the closure.

A.4.4.4 bool Excelcalc.Closures.Closure.IsCompiled [get], [set]

Gets or sets a value indicating whether this instance is compiled.

A.4.4.5 string Excelcalc.Closures.Closure.Name [get], [set]

Gets or sets the name of the closure.

A.4.4.6 string Excelcalc.Closures.Closure.ReferenceTo [get], [set]

A string indicating which SDF or closure the instance is referencing.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Closures/Closure.cs

Appendix A. Source Code Documentation 95

A.5 Excelcalc.Closures.ClosureContext Class Reference

Used to register and manage closures and specializations (compiled closures).

Static Package Functions

• static object RegisterClosure (string function, object[] inputs, bool return-

Observer)

Registers a closure in ExcelCalc and Corecalc.

• static object RegisterCompiledClosure (string closureName)

Registers and compiles an already registered closure in Corecalc. It can then be used

from Excelcalc.

• static bool Contains (string closureName)

Has the closure been registered?

• static Closure GetClosure (string closureName)

Retrieves the closure. Returns null if not found.

Properties

• static IDictionary< string,

Closure > Closures [get, set]

• static IDictionary< string,

SdfInfo > SdfInfos [get, set]

Static Private Member Functions

• static ClosureContext ()

Initializes the ClosureContext (p. 95) class.

• static void UnregisterClosure (string closureName)

Unregisters the closure from ExcelCalc and Corecalc.

Static Private Attributes

• static readonly Applier closureFunc

A.5.1 Detailed Description

Used to register and manage closures and specializations (compiled closures).

Appendix A. Source Code Documentation 96

A.5.2 Constructor & Destructor Documentation

A.5.2.1 static Excelcalc.Closures.ClosureContext.ClosureContext ()

[static], [private]

Initializes the ClosureContext (p. 95) class.

A.5.3 Member Function Documentation

A.5.3.1 static bool Excelcalc.Closures.ClosureContext.Contains (string

closureName) [static], [package]

Has the closure been registered?

Parameters

closureName

Returns

boole

A.5.3.2 static Closure Excelcalc.Closures.ClosureContext.GetClosure (

string closureName) [static], [package]

Retrieves the closure. Returns null if not found.

Parameters

closureName Name of the closure.

Returns

Closure (p. 92)

A.5.3.3 static object Excelcalc.Closures.ClosureContext.RegisterClosure

(string function, object[] inputs, bool returnObserver)

[static], [package]

Registers a closure in ExcelCalc and Corecalc.

Appendix A. Source Code Documentation 97

Parameters

function The function to reference in the closure.

inputs The inputs.

Returns

An Excel cell observer representing the closure.

A.5.3.4 static object Excelcalc.Closures.ClosureContext.Register-

CompiledClosure (string closureName) [static],

[package]

Registers and compiles an already registered closure in Corecalc. It can then be used

from Excelcalc.

Parameters

closureName

Appendix A. Source Code Documentation 98

Returns

Excel cell observer representing the compiled closure.

A.5.3.5 static void Excelcalc.Closures.ClosureContext.UnregisterClosure (

string closureName) [static], [private]

Unregisters the closure from ExcelCalc and Corecalc.

Parameters

closureName

A.5.4 Member Data Documentation

A.5.4.1 readonly Applier Excelcalc.Closures.ClosureContext. closureFunc

[static], [private]

A.5.5 Property Documentation

A.5.5.1 IDictionary<string, Closure> Excelcalc.Closures.-

ClosureContext.Closures [static], [get], [set],

[package]

A.5.5.2 IDictionary<string, SdfInfo> Excelcalc.Closures.-

ClosureContext.SdfInfos [static], [get], [set],

[package]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Closures/ClosureContext.cs

A.6 Excelcalc.CorecalcRegistration.CorecalcDynamic-

CellVisitor Class Reference

A cell visitor used to visit the Corecalc cell types and build up the workbook based on

input from Excel.

Package Functions

• CorecalcDynamicCellVisitor (Workbook workbook, IDictionary< string,

Sheet > sheetLookup)

Appendix A. Source Code Documentation 99

Initializes a new instance of the CorecalcDynamicCellVisitor (p. 98) class.

• void VisitOutput (ExcelReference output)

Visits the output cell. Called from CorecalcRegistrator (p. 106)

• void Visit (Cell cell, ExcelReference reference)

Sets the current sheet based on the current Excel reference. Redirects the cell to the

correct cell visitor method.

• void Visit (Formula formula, ExcelReference reference)

Visits the specified formula cell. This method is also able to detect Excel functions and

create/register these as needed.

• void Visit (NumberCell numberCell, ExcelReference reference)

Visits the specified number cell.

• void Visit (TextCell textCell, ExcelReference reference)

Visits the specified text cell.

Private Attributes

• readonly CorecalcDynamicExprVisitor exprVisitor

• readonly Workbook workbook

• readonly IDictionary< string,

Sheet > sheetLookup

• Sheet currentSheet

• HashSet< FullCellAddr > cellsVisited

A.6.1 Detailed Description

A cell visitor used to visit the Corecalc cell types and build up the workbook based on

input from Excel.

A.6.2 Constructor & Destructor Documentation

A.6.2.1 Excelcalc.CorecalcRegistration.CorecalcDynamicCellVisitor.-

CorecalcDynamicCellVisitor (Workbook workbook, IDictionary<

string, Sheet > sheetLookup) [package]

Initializes a new instance of the CorecalcDynamicCellVisitor (p. 98) class.

Appendix A. Source Code Documentation 100

Parameters

workbook The workbook.

sheetLookup A dictionary of the sheet names and sheets used by the SDF to be

registered.

A.6.3 Member Function Documentation

A.6.3.1 void Excelcalc.CorecalcRegistration.CorecalcDynamicCell-

Visitor.Visit (Cell cell, ExcelReference reference)

[package]

Sets the current sheet based on the current Excel reference. Redirects the cell to the

correct cell visitor method.

Parameters

cell The cell.

reference The Excel reference.

A.6.3.2 void Excelcalc.CorecalcRegistration.CorecalcDynamicCell-

Visitor.Visit (Formula formula, ExcelReference reference)

[package]

Visits the specified formula cell. This method is also able to detect Excel functions and

create/register these as needed.

Parameters

formula The formula cell.

reference The Excel reference.

A.6.3.3 void Excelcalc.CorecalcRegistration.CorecalcDynamicCellVisitor.-

Visit (NumberCell numberCell, ExcelReference reference)

[package]

Visits the specified number cell.

Appendix A. Source Code Documentation 101

Parameters

numberCell The number cell.

reference The Excel reference.

A.6.3.4 void Excelcalc.CorecalcRegistration.CorecalcDynamicCell-

Visitor.Visit (TextCell textCell, ExcelReference reference)

[package]

Visits the specified text cell.

Parameters

textCell The text cell.

reference The Excel reference.

A.6.3.5 void Excelcalc.CorecalcRegistration.CorecalcDynamic-

CellVisitor.VisitOutput (ExcelReference output)

[package]

Visits the output cell. Called from CorecalcRegistrator (p. 106)

Parameters

output The output.

Appendix A. Source Code Documentation 102

A.6.4 Member Data Documentation

A.6.4.1 HashSet<FullCellAddr> Excelcalc.CorecalcRegistration.Corecalc-

DynamicCellVisitor. cellsVisited [private]

A.6.4.2 Sheet Excelcalc.CorecalcRegistration.CorecalcDynamicCell-

Visitor. currentSheet [private]

A.6.4.3 readonly CorecalcDynamicExprVisitor Excelcalc.Corecalc-

Registration.CorecalcDynamicCellVisitor. exprVisitor

[private]

A.6.4.4 readonly IDictionary<string, Sheet> Excelcalc.Corecalc-

Registration.CorecalcDynamicCellVisitor. sheetLookup

[private]

A.6.4.5 readonly Workbook Excelcalc.CorecalcRegistration.Corecalc-

DynamicCellVisitor. workbook [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/CorecalcRegistration/Corecalc-

DynamicCellVisitor.cs

A.7 Excelcalc.CorecalcRegistration.CorecalcDynamic-

ExprVisitor Class Reference

An expression visitor used to visit the Corecalc expression types and build up the work-

book based on input from Excel.

Package Functions

• CorecalcDynamicExprVisitor (CorecalcDynamicCellVisitor cellVisitor, I-

Dictionary< string, Sheet > sheetLookup)

Initializes a new instance of the CorecalcDynamicExprVisitor (p. 102) class.

• void Visit (Expr expr, ExcelReference reference)

Redirects to the correct expression visitor method.

• void Visit (CellRef cellRef, ExcelReference reference)

Visits the specified cell reference expression.

Appendix A. Source Code Documentation 103

• void Visit (FunCall funCall, ExcelReference reference)

Visits the specified funtion call expression.

• void Visit (CellArea cellArea, ExcelReference reference)

Visits the specified cell area expression.

• void Visit (NumberConst numberConst, ExcelReference reference)

Visits the specified number constant expression.

• void Visit (TextConst numberConst, ExcelReference reference)

Visits the specified number constant expression.

Private Attributes

• readonly CorecalcDynamicCellVisitor cellVisitor

• readonly IDictionary< string,

Sheet > sheetLookup

A.7.1 Detailed Description

An expression visitor used to visit the Corecalc expression types and build up the work-

book based on input from Excel.

A.7.2 Constructor & Destructor Documentation

A.7.2.1 Excelcalc.CorecalcRegistration.CorecalcDynamicExprVisitor.-

CorecalcDynamicExprVisitor (CorecalcDynamicCellVisitor

cellVisitor, IDictionary< string, Sheet > sheetLookup)

[package]

Initializes a new instance of the CorecalcDynamicExprVisitor (p. 102) class.

Parameters

cellVisitor The cell visitor.

sheetLookup A dictionary of the sheet names and sheets used by the SDF to be

registered.

Appendix A. Source Code Documentation 104

A.7.3 Member Function Documentation

A.7.3.1 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (Expr expr, ExcelReference reference)

[package]

Redirects to the correct expression visitor method.

Appendix A. Source Code Documentation 105

Parameters

expr The expression

reference The Excel reference.

A.7.3.2 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (CellRef cellRef, ExcelReference reference)

[package]

Visits the specified cell reference expression.

Parameters

cellRef The cell reference expression.

reference The Excel reference.

A.7.3.3 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (FunCall funCall, ExcelReference reference)

[package]

Visits the specified funtion call expression.

Parameters

funCall The function call expression.

reference The Excel reference.

A.7.3.4 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (CellArea cellArea, ExcelReference reference)

[package]

Visits the specified cell area expression.

Parameters

cellArea The cell area expression.

reference The Excel reference.

A.7.3.5 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (NumberConst numberConst, ExcelReference

reference) [package]

Visits the specified number constant expression.

Appendix A. Source Code Documentation 106

Parameters

number-

Const

The number constant expression.

reference The Excel reference.

A.7.3.6 void Excelcalc.CorecalcRegistration.CorecalcDynamicExpr-

Visitor.Visit (TextConst numberConst, ExcelReference

reference) [package]

Visits the specified number constant expression.

Parameters

number-

Const

The number constant expression.

reference The Excel reference.

A.7.4 Member Data Documentation

A.7.4.1 readonly CorecalcDynamicCellVisitor Excelcalc.Corecalc-

Registration.CorecalcDynamicExprVisitor. cellVisitor

[private]

A.7.4.2 readonly IDictionary<string, Sheet> Excelcalc.Corecalc-

Registration.CorecalcDynamicExprVisitor. sheetLookup

[private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/CorecalcRegistration/Corecalc-

DynamicExprVisitor.cs

A.8 Excelcalc.CorecalcRegistration.CorecalcRegistrator

Class Reference

This class is the entry point for registering and unregistering SDFs from Excel in Core-

calc.

Appendix A. Source Code Documentation 107

Static Package Functions

• static string RegisterSdf (string sdfName, ExcelReference output, List< Excel-

Reference > inputs, ExcelReference callingCell)

Registers the SDF in Corecalc.

• static void UnregisterSdf (string sdfName)

Unregisters the SDF in Corecalc.

• static string RegisterPlaceholder (string sdfName, ExcelReference callingCell)

Properties

• static Workbook Workbook [get]

The Workbook is made static as the Workbook constructor removes all SDFs.

Static Private Attributes

• static Workbook workbook

A.8.1 Detailed Description

This class is the entry point for registering and unregistering SDFs from Excel in Core-

calc.

A.8.2 Member Function Documentation

A.8.2.1 static string Excelcalc.CorecalcRegistration.CorecalcRegistrator.-

RegisterPlaceholder (string sdfName, ExcelReference

callingCell) [static], [package]

A.8.2.2 static string Excelcalc.CorecalcRegistration.CorecalcRegistrator.-

RegisterSdf (string sdfName, ExcelReference output, List<

ExcelReference > inputs, ExcelReference callingCell) [static],

[package]

Registers the SDF in Corecalc.

Appendix A. Source Code Documentation 108

Parameters

sdfName Name of the SDF.

output The output cell reference.

inputs The input cell references.

callingCell The calling cell reference.

Returns

The string to show in the cell of the defined SDF

A.8.2.3 static void Excelcalc.CorecalcRegistration.Corecalc-

Registrator.UnregisterSdf (string sdfName) [static],

[package]

Unregisters the SDF in Corecalc.

Parameters

sdfName Name of the SDF.

A.8.3 Member Data Documentation

A.8.3.1 Workbook Excelcalc.CorecalcRegistration.CorecalcRegistrator. -

workbook [static], [private]

A.8.4 Property Documentation

A.8.4.1 Workbook Excelcalc.CorecalcRegistration.CorecalcRegistrator.-

Workbook [static], [get], [package]

The Workbook is made static as the Workbook constructor removes all SDFs.

The workbook.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/CorecalcRegistration/Corecalc-

Registrator.cs

A.9 Excelcalc.DefineFunction Class Reference

This class contains the entry point for defining SDFs in Excel using Excel-DNA.

Appendix A. Source Code Documentation 109

Static Public Member Functions

• static object Define (string sdfName, object output, object input1, object input2,

object input3, object input4, object input5, object input6, object input7, object

input8, object input9)

Creates the specified SDF. The Define method is automatically registered as an UDF

in Excel at startup.

Static Package Functions

• static void RegisterSdfsInQueue ()

• static void SetIsInitialized (bool value)

Sets the is initialized while holding the exclusive lock.

Static Private Member Functions

• static DefineFunction ()

Initializes the DefineFunction (p. 108) class.

• static void PromoteToFunctionSheet (ExcelReference caller)

Promotes the sheet of the calling cell to a function sheet by prepending the sheet name

with the ’@’ symbol. The action of changing the name is executed asynchroniously as

a macro.

• static object CreateCellObserver (string sdfName)

Creates the cell observer. The cell observer is used to monitor the cell calling the

DEFINE UDF for deletion.

• static void UnregisterSdf (string sdfName)

Unregisters the SDF.

Static Private Attributes

• static bool IsInitialized = false

• static object lock = new object()

• static Dictionary< string,

Tuple< ExcelReference,

ExcelReference, List

< ExcelReference >, string > > DefineQueue

Appendix A. Source Code Documentation 110

A.9.1 Detailed Description

This class contains the entry point for defining SDFs in Excel using Excel-DNA.

A.9.2 Constructor & Destructor Documentation

A.9.2.1 static Excelcalc.DefineFunction.DefineFunction () [static],

[private]

Initializes the DefineFunction (p. 108) class.

A.9.3 Member Function Documentation

A.9.3.1 static object Excelcalc.DefineFunction.CreateCellObserver (

string sdfName) [static], [private]

Creates the cell observer. The cell observer is used to monitor the cell calling the DEF-

INE UDF for deletion.

Parameters

sdfName Name of the SDF.

Returns

Returns an instance of Excelcalc.ExcelRegistration.ExcelCellHandle

(p. 112) that implements IExcelObservable

A.9.3.2 static object Excelcalc.DefineFunction.Define (string sdfName,

object output, object input1, object input2, object input3,

object input4, object input5, object input6, object input7,

object input8, object input9) [static]

Creates the specified SDF. The Define method is automatically registered as an UDF in

Excel at startup.

Parameters

sdfName Name of the SDF to be created.

Appendix A. Source Code Documentation 111

output Content of the output cell.

input1 Content of the input cell 1. Optional.

input2 Content of the input cell 1. Optional.

input3 Content of the input cell 1. Optional.

input4 Content of the input cell 1. Optional.

input5 Content of the input cell 1. Optional.

input6 Content of the input cell 1. Optional.

input7 Content of the input cell 1. Optional.

input8 Content of the input cell 1. Optional.

input9 Content of the input cell 1. Optional.

Returns

Returns an object which can be any of the types that Excel is able to interpret.

Exceptions

System.Argument-

Exception

A.9.3.3 static void Excelcalc.DefineFunction.PromoteToFunctionSheet (

ExcelReference caller) [static], [private]

Promotes the sheet of the calling cell to a function sheet by prepending the sheet name

with the ’@’ symbol. The action of changing the name is executed asynchroniously as a

macro.

Parameters

caller The calling cell.

A.9.3.4 static void Excelcalc.DefineFunction.RegisterSdfsInQueue ()

[static], [package]

A.9.3.5 static void Excelcalc.DefineFunction.SetIsInitialized (bool value

) [static], [package]

Sets the is initialized while holding the exclusive lock.

Appendix A. Source Code Documentation 112

Parameters

value if set to true [value].

A.9.3.6 static void Excelcalc.DefineFunction.UnregisterSdf (string

sdfName) [static], [private]

Unregisters the SDF.

Parameters

sdfName Name of the SDF.

A.9.4 Member Data Documentation

A.9.4.1 object Excelcalc.DefineFunction. lock = new object() [static],

[private]

A.9.4.2 Dictionary<string, Tuple<ExcelReference, ExcelReference,

List<ExcelReference>, string> > Excelcalc.DefineFunction.-

DefineQueue [static], [private]

Initial value:

=

new Dictionary<string, Tuple<ExcelReference, ExcelReference, List<ExcelReference>, string>>()

A.9.4.3 bool Excelcalc.DefineFunction.IsInitialized = false [static],

[private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/DefineFunction.cs

A.10 Excelcalc.ExcelRegistration.ExcelCellHandle Class

Reference

This class implements a custom cell observer that is disposed when the cell is deleted

from Excel.

Inheritance diagram for Excelcalc.ExcelRegistration.ExcelCellHandle:

Appendix A. Source Code Documentation 113

Classes

• class SdfDisposer

Private inner class used to wrap the dispose action.

Public Member Functions

• ExcelCellHandle (object returnValue, ExcelAction onDispose)

Initializes a new instance of the ExcelCellHandle class.

• IDisposable Subscribe (IExcelObserver observer)

Subscribes the specified observer.

Static Public Member Functions

• static object CreateHandle (string callerFunctionName, object callerParameters,

ExcelFunc getReturnValue, ExcelAction onDispose)

Creates the handle.

Private Attributes

• readonly ExcelAction disposeAction

• readonly object returnValue

A.10.1 Detailed Description

This class implements a custom cell observer that is disposed when the cell is deleted

from Excel.

A.10.2 Constructor & Destructor Documentation

A.10.2.1 Excelcalc.ExcelRegistration.ExcelCellHandle.ExcelCellHandle (

object returnValue, ExcelAction onDispose)

Initializes a new instance of the ExcelCellHandle class.

Parameters

Appendix A. Source Code Documentation 114

returnValue The return value.

onDispose The on dispose.

A.10.3 Member Function Documentation

A.10.3.1 static object Excelcalc.ExcelRegistration.ExcelCellHandle.-

CreateHandle (string callerFunctionName, object

callerParameters, ExcelFunc getReturnValue, ExcelAction

onDispose) [static]

Creates the handle.

Parameters

caller-

Function-

Name

Name of the caller function.

caller-

Parameters

The caller parameters.

getReturn-

Value

The get return value.

onDispose The on dispose.

Returns

A.10.3.2 IDisposable Excelcalc.ExcelRegistration.Excel-

CellHandle.Subscribe (IExcelObserver observer

)

Subscribes the specified observer.

Parameters

observer The observer.

Appendix A. Source Code Documentation 115

Returns

A.10.4 Member Data Documentation

A.10.4.1 readonly ExcelAction Excelcalc.ExcelRegistration.ExcelCell-

Handle. disposeAction [private]

A.10.4.2 readonly object Excelcalc.ExcelRegistration.ExcelCellHandle. -

returnValue [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ExcelRegistration/ExcelCell-

Handle.cs

A.11 Excelcalc.ExcelRegistration.ExcelFunCall Class Ref-

erence

Used to contain calls from an SDF into Excel.

Public Member Functions

• ExcelFunCall (string function)

Initializes a new instance of the ExcelFunCall (p. 115) class.

• Value ExcelCall (Value[] values)

Calls the Excel function with the FunctionName (p. 116) and returns the result.

Static Public Attributes

• static MethodInfo ExcelCallMethodInfo = typeof(ExcelFunCall).Get-

Method(”ExcelCall”)

Properties

• string FunctionName [get, set]

Gets or sets the name of the Excel function to be called from this instance.

Appendix A. Source Code Documentation 116

A.11.1 Detailed Description

Used to contain calls from an SDF into Excel.

A.11.2 Constructor & Destructor Documentation

A.11.2.1 Excelcalc.ExcelRegistration.ExcelFunCall.ExcelFunCall (string

function)

Initializes a new instance of the ExcelFunCall (p. 115) class.

Parameters

function The name of the Excel function to be called.

A.11.3 Member Function Documentation

A.11.3.1 Value Excelcalc.ExcelRegistration.ExcelFunCall.ExcelCall (

Value[] values)

Calls the Excel function with the FunctionName (p. 116) and returns the result.

Parameters

values The Corecalc values to use for the call.

Returns

A value representing the result of the call to the Excel function

A.11.4 Member Data Documentation

A.11.4.1 MethodInfo Excelcalc.ExcelRegistration.ExcelFunCall.ExcelCall-

MethodInfo = typeof(ExcelFunCall).GetMethod(”ExcelCall”)

[static]

A.11.5 Property Documentation

A.11.5.1 string Excelcalc.ExcelRegistration.ExcelFunCall.FunctionName

[get], [set]

Gets or sets the name of the Excel function to be called from this instance.

The name of the function.

The documentation for this class was generated from the following file:

Appendix A. Source Code Documentation 117

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ExcelRegistration/ExcelFun-

Call.cs

A.12 Excelcalc.ExcelRegistration.ExcelFunCallContext

Class Reference

Used to keep track of which Excel functions are supported and which have been used

from the registered SDFs.

Static Public Member Functions

• static Func< Value[], Value > GenerateExcelCall (string function, out Method-

Info methodInfo)

Generates the Excel call delegate using the Linq.Expressions API. The delegate is cre-

ating an instance of ExcelFunCall (p. 115) and invoking the ExcelCall method of that

instance.

Static Package Functions

• static void Register (string function)

Creates a delegate for calling the Excel function. Registers the specified Excel function

call delegate in Corecalc using the Function and FunctionInfo classes.

Static Package Attributes

• static ISet< string > RegisteredFunctions = new HashSet<string>()

The supported Excel functions where a delegate for calling the function have been cre-

ated.

• static ISet< string > SupportedFunctions

The supported Excel functions.

Static Private Member Functions

• static ExcelFunCallContext ()

Initializes the ExcelFunCallContext (p. 117) class. A transient module is created in

this assembly to contain all the Excel call delegates currently used in this run.

• static void RegisterSupportedFunctions ()

Appendix A. Source Code Documentation 118

Static Private Attributes

• static readonly ModuleBuilder moduleBuilder

A.12.1 Detailed Description

Used to keep track of which Excel functions are supported and which have been used

from the registered SDFs.

A.12.2 Constructor & Destructor Documentation

A.12.2.1 static Excelcalc.ExcelRegistration.ExcelFunCall-

Context.ExcelFunCallContext () [static],

[private]

Initializes the ExcelFunCallContext (p. 117) class. A transient module is created in

this assembly to contain all the Excel call delegates currently used in this run.

A.12.3 Member Function Documentation

A.12.3.1 static Func<Value[], Value> Excelcalc.ExcelRegistration.Excel-

FunCallContext.GenerateExcelCall (string function, out

MethodInfo methodInfo) [static]

Generates the Excel call delegate using the Linq.Expressions API. The delegate is cre-

ating an instance of ExcelFunCall (p. 115) and invoking the ExcelCall method of that

instance.

Parameters

function The name of the supported Excel function.

methodInfo The method information as an out parameter.

Appendix A. Source Code Documentation 119

Returns

A.12.3.2 static void Excelcalc.ExcelRegistration.ExcelFun-

CallContext.Register (string function) [static],

[package]

Creates a delegate for calling the Excel function. Registers the specified Excel function

call delegate in Corecalc using the Function and FunctionInfo classes.

Appendix A. Source Code Documentation 120

Parameters

function The function.

A.12.3.3 static void Excelcalc.ExcelRegistration.ExcelFunCall-

Context.RegisterSupportedFunctions () [static],

[private]

A.12.4 Member Data Documentation

A.12.4.1 readonly ModuleBuilder Excelcalc.ExcelRegistration.-

ExcelFunCallContext. moduleBuilder [static],

[private]

A.12.4.2 ISet<string> Excelcalc.ExcelRegistration.ExcelFunCallContext.-

RegisteredFunctions = new HashSet<string>() [static],

[package]

The supported Excel functions where a delegate for calling the function have been cre-

ated.

A.12.4.3 ISet<string> Excelcalc.ExcelRegistration.Excel-

FunCallContext.SupportedFunctions [static],

[package]

The supported Excel functions.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ExcelRegistration/ExcelFun-

CallContext.cs

A.13 Excelcalc.ExcelcalcInitializer Class Reference

This class is used to enable Excelcalc to open saved workbooks.

Inheritance diagram for Excelcalc.ExcelcalcInitializer:

Public Member Functions

• void AutoClose ()

Appendix A. Source Code Documentation 121

• void AutoOpen ()

This method is fired when Excelcalc is discovered by Excel at startup. It hooks up

delegates to the window activate event and to the workbook open event. These are used

to preload SDFs from a previously saved workbook.

Private Member Functions

• void app WindowActivate (Workbook Wb, Window Wn)

Signals the DefineFunction (p. 108) class to set the IsInitialized to true. This is to

ensure that a new empty workbook is ready to register SDFs.

• void app WorkbookOpen (Workbook Wb)

Executes a macro to register all SDF placeholders in the workbook. This is to ensure

that a user can re-open a saved workbook.

Private Attributes

• Application app = ExcelDnaUtil.Application as Application

A.13.1 Detailed Description

This class is used to enable Excelcalc to open saved workbooks.

A.13.2 Member Function Documentation

A.13.2.1 void Excelcalc.ExcelcalcInitializer.app WindowActivate (

Workbook Wb, Window Wn) [private]

Signals the DefineFunction (p. 108) class to set the IsInitialized to true. This is to

ensure that a new empty workbook is ready to register SDFs.

Parameters

Wb The wb.

Wn The wn.

A.13.2.2 void Excelcalc.ExcelcalcInitializer.app WorkbookOpen (

Workbook Wb) [private]

Executes a macro to register all SDF placeholders in the workbook. This is to ensure

that a user can re-open a saved workbook.

Appendix A. Source Code Documentation 122

Parameters

Wb The wb.

A.13.2.3 void Excelcalc.ExcelcalcInitializer.AutoClose ()

A.13.2.4 void Excelcalc.ExcelcalcInitializer.AutoOpen ()

This method is fired when Excelcalc is discovered by Excel at startup. It hooks up

delegates to the window activate event and to the workbook open event. These are used

to preload SDFs from a previously saved workbook.

A.13.3 Member Data Documentation

A.13.3.1 Application Excelcalc.ExcelcalcInitializer.app =

ExcelDnaUtil.Application as Application [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ExcelcalcInitializer.cs

A.14 Excelcalc.RegisteredSdf Class Reference

Entity class to hold the information of a specific SDF registered in Excel.

Properties

• int Col [get, set]

Gets or sets the column number.

• int Row [get, set]

Gets or sets the row number.

• string FullFormula [get, set]

Gets or sets the full formula.

• string SdfCellText [get, set]

Gets or sets the SDF cell text generated from Corecalc.

A.14.1 Detailed Description

Entity class to hold the information of a specific SDF registered in Excel.

Appendix A. Source Code Documentation 123

A.14.2 Property Documentation

A.14.2.1 int Excelcalc.RegisteredSdf.Col [get], [set]

Gets or sets the column number.

The col.

A.14.2.2 string Excelcalc.RegisteredSdf.FullFormula [get], [set]

Gets or sets the full formula.

The full formula.

A.14.2.3 int Excelcalc.RegisteredSdf.Row [get], [set]

Gets or sets the row number.

The row.

A.14.2.4 string Excelcalc.RegisteredSdf.SdfCellText [get], [set]

Gets or sets the SDF cell text generated from Corecalc.

The SDF cell text.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/RegisteredSdf.cs

A.15 Excelcalc.RegisteredSdfContext Class Reference

This class is used to keep track of all registered SDFs in Excel.

Static Package Functions

• static void AddToRegisteredSdfs (string sdfName, int column, int row, string

fullFormula, string sdfCellText)

Adds a RegisteredSdf (p. 122) to the Sdfs dictionary.

• static bool SdfAlreadyExists (string sdfName, int column, int row, string full-

Formula)

Check if the SDF already exists. If the formula or coordinates are different, it will

return false.

Appendix A. Source Code Documentation 124

Static Package Attributes

• static readonly Dictionary

< string, RegisteredSdf > Sdfs = new Dictionary<string, RegisteredSdf>()

A.15.1 Detailed Description

This class is used to keep track of all registered SDFs in Excel.

A.15.2 Member Function Documentation

A.15.2.1 static void Excelcalc.RegisteredSdfContext.AddToRegisteredSdfs

(string sdfName, int column, int row, string fullFormula,

string sdfCellText) [static], [package]

Adds a RegisteredSdf (p. 122) to the Sdfs dictionary.

Parameters

sdfName Name of the SDF.

column The column number.

row The row number.

fullFormula The full formula.

sdfCellText The SDF cell text.

A.15.2.2 static bool Excelcalc.RegisteredSdfContext.SdfAlreadyExists (

string sdfName, int column, int row, string fullFormula)

[static], [package]

Check if the SDF already exists. If the formula or coordinates are different, it will return

false.

Parameters

sdfName Name of the SDF.

column The column.

row The row.

Appendix A. Source Code Documentation 125

fullFormula The full formula.

Returns

Returns a boolean indicating whether the SDF exists.

A.15.3 Member Data Documentation

A.15.3.1 readonly Dictionary<string, RegisteredSdf> Excelcalc.-

RegisteredSdfContext.Sdfs = new Dictionary<string,

RegisteredSdf>() [static], [package]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/RegisteredSdfContext.cs

A.16 Excelcalc.ExcelRegistration.ExcelRegistrator Class

Reference

This class is the entry point for doing all registration of SDFs in Excel. This includes

setting up a function name in Excel on-the-fly, register a cell observer to monitor the

definition and unregistering the function again.

Static Package Functions

• static void RegisterSdf (string sdfName, ExcelReference output, List< Excel-

Reference > inputs)

Registers the SDF in Excel as an Excel UDF.

• static void UnregisterSdf (string sdfName)

Unegisters the SDF asynchroniously from a macro.

Static Private Member Functions

• static Delegate GenerateSdfCallDelegate (string sdfName, int numberOf-

Arguments)

Generates the SDF call delegate to be fired each time the registered SDF is called from

Excel.

Appendix A. Source Code Documentation 126

Static Private Attributes

• static readonly MethodInfo toExcelObjectMethodInfo = typeof(Extension-

Methods).GetMethod(”ToExcelObject”, new[]{typeof(Value)})

• static readonly MethodInfo toValueArrayMethodInfo = typeof(Helper-

Methods).GetMethod(”ToValueArray”, new[] { typeof(object[]) })

• static readonly MethodInfo applyMethodInfo = typeof(SdfInfo).Get-

Method(”Apply”, new[] { typeof(Value[]) })

A.16.1 Detailed Description

This class is the entry point for doing all registration of SDFs in Excel. This includes

setting up a function name in Excel on-the-fly, register a cell observer to monitor the

definition and unregistering the function again.

A.16.2 Member Function Documentation

A.16.2.1 static Delegate Excelcalc.ExcelRegistration.Excel-

Registrator.GenerateSdfCallDelegate (string sdfName, int

numberOfArguments) [static], [private]

Generates the SDF call delegate to be fired each time the registered SDF is called from

Excel.

Parameters

sdfName Name of the SDF.

numberOf-

Arguments

The number of arguments.

Returns

A delegate representing the call to the SDF.

A.16.2.2 static void Excelcalc.ExcelRegistration.ExcelRegistrator.-

RegisterSdf (string sdfName, ExcelReference output, List<

ExcelReference > inputs) [static], [package]

Registers the SDF in Excel as an Excel UDF.

Appendix A. Source Code Documentation 127

Parameters

sdfName Name of the SDF.

output The output cell reference.

inputs The input cel references.

A.16.2.3 static void Excelcalc.ExcelRegistration.ExcelRegistrator.-

UnregisterSdf (string sdfName) [static],

[package]

Unegisters the SDF asynchroniously from a macro.

The SDF is not completely deleted but is converted to a hidden macro. It is still possible

to call the macro from VBA. This doesn’t prevent recreation of the SDF later on in any

way.

Parameters

sdfName Name of the SDF.

A.16.3 Member Data Documentation

A.16.3.1 readonly MethodInfo Excelcalc.ExcelRegistration.Excel-

Registrator. applyMethodInfo = typeof(SdfInfo).Get-

Method(”Apply”, new[] { typeof(Value[]) }) [static],

[private]

A.16.3.2 readonly MethodInfo Excelcalc.ExcelRegistration.-

ExcelRegistrator. toExcelObjectMethodInfo =

typeof(ExtensionMethods).GetMethod(”ToExcelObject”,

new[]{typeof(Value)}) [static], [private]

A.16.3.3 readonly MethodInfo Excelcalc.ExcelRegistration.-

ExcelRegistrator. toValueArrayMethodInfo =

typeof(HelperMethods).GetMethod(”ToValueArray”, new[] {

typeof(object[]) }) [static], [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/ExcelRegistration/Excel-

Registrator.cs

Appendix A. Source Code Documentation 128

A.17 Excelcalc.Util.ExtensionMethods Class Reference

Extension methods used to support Excelcalc.

Static Public Member Functions

• static string GetSheetName (this ExcelReference reference)

Gets the name of the sheet from the current ExcelReference instance.

• static string GetSheetName (this string workBookAndSheet)

Exstracts the sheet name from a string consisting of the Workbook name and Sheet

name.

• static object ToExcelObject (this Value value)

Converts a Corecalc Value to an Excel object.

Private Attributes

• const string Pattern = @”\[\w+\.?\w∗\](@?\w+)”

A.17.1 Detailed Description

Extension methods used to support Excelcalc.

A.17.2 Member Function Documentation

A.17.2.1 static string Excelcalc.Util.ExtensionMethods.GetSheetName (

this ExcelReference reference) [static]

Gets the name of the sheet from the current ExcelReference instance.

Parameters

reference The reference.

Returns

The sheet name.

A.17.2.2 static string Excelcalc.Util.ExtensionMethods.GetSheetName (

this string workBookAndSheet) [static]

Exstracts the sheet name from a string consisting of the Workbook name and Sheet

name.

Appendix A. Source Code Documentation 129

Parameters

workBook-

AndSheet

The work book and sheet.

Returns

A.17.2.3 static object Excelcalc.Util.ExtensionMethods.ToExcelObject (

this Value value) [static]

Converts a Corecalc Value to an Excel object.

Parameters

value The value.

Returns

A.17.3 Member Data Documentation

A.17.3.1 const string Excelcalc.Util.ExtensionMethods.Pattern =

@”\[\w+\.?\w∗\](@?\w+)” [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Util/ExtensionMethods.cs

A.18 Excelcalc.Util.HelperMethods Class Reference

Contains a collection of helper methods used by Excelcalc.

Static Public Member Functions

• static Value[] ToValueArray (params object[] args)

Converts an array of argument objects to a Value array.

• static Value ObjectToValue (object value)

Converts an object from Excel to a Corecalc Value.

Appendix A. Source Code Documentation 130

Static Package Functions

• static Cell Parse (string cellContent, int col, int row)

Parses the specified cell content.

A.18.1 Detailed Description

Contains a collection of helper methods used by Excelcalc.

A.18.2 Member Function Documentation

A.18.2.1 static Value Excelcalc.Util.HelperMethods.ObjectToValue (

object value) [static]

Converts an object from Excel to a Corecalc Value.

Parameters

value The value.

Returns

A Corecalc Value.

A.18.2.2 static Cell Excelcalc.Util.HelperMethods.Parse (string

cellContent, int col, int row) [static], [package]

Parses the specified cell content.

Parameters

cellContent Content of the cell.

col The col.

row The row.

Returns

Returns a specific cell class derived from the Corecalc Cell type. Returns null if

the parsing fails.

A.18.2.3 static Value [] Excelcalc.Util.HelperMethods.ToValueArray (

params object[] args) [static]

Converts an array of argument objects to a Value array.

Appendix A. Source Code Documentation 131

Parameters

args The arguments.

Returns

A Value array.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Util/HelperMethods.cs

A.19 Excelcalc.SpecializeFunction Class Reference

This class contains the entry point for compiling closures into compiled closures called

specializations.

Static Public Member Functions

• static object Specialize (string closureName)

Compiles the closure with the specified name.

A.19.1 Detailed Description

This class contains the entry point for compiling closures into compiled closures called

specializations.

A.19.2 Member Function Documentation

A.19.2.1 static object Excelcalc.SpecializeFunction.Specialize (string

closureName) [static]

Compiles the closure with the specified name.

Parameters

closureName Name of the closure.

Returns

A string representing the compiled closure.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/SpecializeFunction.cs

Appendix A. Source Code Documentation 132

A.20 Excelcalc.UI.ExcelcalcRibbon Class Reference

Contains callback methods used by the Excelcalc Ribbon UI.

Inheritance diagram for Excelcalc.UI.ExcelcalcRibbon:

Public Member Functions

• void ShowSDFs onAction (IRibbonControl control)

Shows the SDF bytecode dialog.

• void ShowClosures onAction (IRibbonControl control)

Shows the dialog listing the closures and specializations.

• void AboutFuncalc onAction (IRibbonControl control)

Shows the About Funcalc dialog.

• void SupportedExcelFunctions onAction (IRibbonControl control)

Shows the supported excel functions dialog.

• void RegisteredExcelFunctions onAction (IRibbonControl control)

Shows the registered excel functions dialog.

• void AboutExcelcalc onAction (IRibbonControl control)

Shows the About Excelcalc dialog.

• void ToggleExceptions onAction (IRibbonControl control, bool isActive)

Toggles the exceptions on and off. Exceptions have the highest precedence if enabled.

• void ToggleFuncalcErrors onAction (IRibbonControl control, bool isActive)

Toggles the Funcalc errors on and off. Funcalc errors have lower precedence than ex-

ceptions if both are enabled.

• override string GetCustomUI (string RibbonID)

Gets the custom UI from an embedded XML resource.

Static Public Attributes

• static bool ShowFuncalcErrors

Appendix A. Source Code Documentation 133

Private Attributes

• readonly UnhandledExceptionHandler exceptionHandler

The exception delegate that will be run on exceptions when the showing of exceptions

is enabled.

A.20.1 Detailed Description

Contains callback methods used by the Excelcalc Ribbon UI.

A.20.2 Member Function Documentation

A.20.2.1 void Excelcalc.UI.ExcelcalcRibbon.AboutExcelcalc onAction (

IRibbonControl control)

Shows the About Excelcalc dialog.

A.20.2.2 void Excelcalc.UI.ExcelcalcRibbon.AboutFuncalc onAction (

IRibbonControl control)

Shows the About Funcalc dialog.

A.20.2.3 override string Excelcalc.UI.ExcelcalcRibbon.GetCustomUI (

string RibbonID)

Gets the custom UI from an embedded XML resource.

Returns

An XML string describing the Excelcalc Ribbon UI.

A.20.2.4 void Excelcalc.UI.ExcelcalcRibbon.RegisteredExcel-

Functions onAction (IRibbonControl control

)

Shows the registered excel functions dialog.

A.20.2.5 void Excelcalc.UI.ExcelcalcRibbon.ShowClosures onAction (

IRibbonControl control)

Shows the dialog listing the closures and specializations.

Appendix A. Source Code Documentation 134

A.20.2.6 void Excelcalc.UI.ExcelcalcRibbon.ShowSDFs onAction (

IRibbonControl control)

Shows the SDF bytecode dialog.

A.20.2.7 void Excelcalc.UI.ExcelcalcRibbon.SupportedExcel-

Functions onAction (IRibbonControl control

)

Shows the supported excel functions dialog.

A.20.2.8 void Excelcalc.UI.ExcelcalcRibbon.ToggleExceptions onAction (

IRibbonControl control, bool isActive)

Toggles the exceptions on and off. Exceptions have the highest precedence if enabled.

A.20.2.9 void Excelcalc.UI.ExcelcalcRibbon.ToggleFuncalcErrors-

onAction (IRibbonControl control, bool isActive

)

Toggles the Funcalc errors on and off. Funcalc errors have lower precedence than excep-

tions if both are enabled.

A.20.3 Member Data Documentation

A.20.3.1 readonly UnhandledExceptionHandler Excelcalc.UI.Excelcalc-

Ribbon. exceptionHandler [private]

Initial value:

= ex =>

{

var exc = ex as Exception;

var sb = new StringBuilder();

sb.AppendLine("Exception: ");

sb.Append(exc.ToString());

Exception inner = exc.InnerException;

while (inner != null)

{

sb.AppendLine("Inner Exception: ");

sb.Append(inner.ToString());

inner = inner.InnerException;

}

Appendix A. Source Code Documentation 135

return sb.ToString();

}

The exception delegate that will be run on exceptions when the showing of exceptions

is enabled.

A.20.3.2 bool Excelcalc.UI.ExcelcalcRibbon.ShowFuncalcErrors [static]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/UI/ExcelcalcRibbon.cs

A.21 Excelcalc.Util.ErrorConverter Class Reference

Static Package Functions

• static ErrorValue Convert (ExcelError error)

Converts an Excel error to its equivalent Corecalc error.

• static ExcelError Convert (ErrorValue error)

Converts a Corecalc error to its equivalent Excel error.

Static Private Member Functions

• static ErrorConverter ()

Contains mappings between Corecalc errors and Excel errors and vice versa.

Static Private Attributes

• static readonly Dictionary

< ExcelError, ErrorValue > toErrorValue

• static readonly Dictionary

< ErrorValue, ExcelError > toExcelError

A.21.1 Constructor & Destructor Documentation

A.21.1.1 static Excelcalc.Util.ErrorConverter.ErrorConverter ()

[static], [private]

Contains mappings between Corecalc errors and Excel errors and vice versa.

Appendix A. Source Code Documentation 136

A.21.2 Member Function Documentation

A.21.2.1 static ErrorValue Excelcalc.Util.ErrorConverter.Convert (

ExcelError error) [static], [package]

Converts an Excel error to its equivalent Corecalc error.

Appendix A. Source Code Documentation 137

Parameters

error The error.

Returns

A.21.2.2 static ExcelError Excelcalc.Util.ErrorConverter.Convert (

ErrorValue error) [static], [package]

Converts a Corecalc error to its equivalent Excel error.

Parameters

error The error.

Returns

A.21.3 Member Data Documentation

A.21.3.1 readonly Dictionary<ExcelError, ErrorValue>

Excelcalc.Util.ErrorConverter. toErrorValue [static], [private]

A.21.3.2 readonly Dictionary<ErrorValue, ExcelError>

Excelcalc.Util.ErrorConverter. toExcelError [static], [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Util/ErrorConverter.cs

A.22 Excelcalc.Util.ExtensionMethods Class Reference

Extension methods used to support Excelcalc.

Static Public Member Functions

• static string GetSheetName (this ExcelReference reference)

Gets the name of the sheet from the current ExcelReference instance.

• static string GetSheetName (this string workBookAndSheet)

Appendix A. Source Code Documentation 138

Exstracts the sheet name from a string consisting of the Workbook name and Sheet

name.

• static object ToExcelObject (this Value value)

Converts a Corecalc Value to an Excel object.

Private Attributes

• const string Pattern = @”\[\w+\.?\w∗\](@?\w+)”

A.22.1 Detailed Description

Extension methods used to support Excelcalc.

A.22.2 Member Function Documentation

A.22.2.1 static string Excelcalc.Util.ExtensionMethods.GetSheetName (

this ExcelReference reference) [static]

Gets the name of the sheet from the current ExcelReference instance.

Parameters

reference The reference.

Returns

The sheet name.

A.22.2.2 static string Excelcalc.Util.ExtensionMethods.GetSheetName (

this string workBookAndSheet) [static]

Exstracts the sheet name from a string consisting of the Workbook name and Sheet

name.

Parameters

workBook-

AndSheet

The work book and sheet.

Returns

Appendix A. Source Code Documentation 139

A.22.2.3 static object Excelcalc.Util.ExtensionMethods.ToExcelObject (

this Value value) [static]

Converts a Corecalc Value to an Excel object.

Appendix A. Source Code Documentation 140

Parameters

value The value.

Returns

A.22.3 Member Data Documentation

A.22.3.1 const string Excelcalc.Util.ExtensionMethods.Pattern =

@”\[\w+\.?\w∗\](@?\w+)” [private]

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Util/ExtensionMethods.cs

A.23 Excelcalc.Util.HelperMethods Class Reference

Contains a collection of helper methods used by Excelcalc.

Static Public Member Functions

• static Value[] ToValueArray (params object[] args)

Converts an array of argument objects to a Value array.

• static Value ObjectToValue (object value)

Converts an object from Excel to a Corecalc Value.

Static Package Functions

• static Cell Parse (string cellContent, int col, int row)

Parses the specified cell content.

A.23.1 Detailed Description

Contains a collection of helper methods used by Excelcalc.

Appendix A. Source Code Documentation 141

A.23.2 Member Function Documentation

A.23.2.1 static Value Excelcalc.Util.HelperMethods.ObjectToValue (

object value) [static]

Converts an object from Excel to a Corecalc Value.

Appendix A. Source Code Documentation 142

Parameters

value The value.

Returns

A Corecalc Value.

A.23.2.2 static Cell Excelcalc.Util.HelperMethods.Parse (string

cellContent, int col, int row) [static], [package]

Parses the specified cell content.

Parameters

cellContent Content of the cell.

col The col.

row The row.

Returns

Returns a specific cell class derived from the Corecalc Cell type. Returns null if

the parsing fails.

A.23.2.3 static Value [] Excelcalc.Util.HelperMethods.ToValueArray (

params object[] args) [static]

Converts an array of argument objects to a Value array.

Parameters

args The arguments.

Returns

A Value array.

The documentation for this class was generated from the following file:

• C:/Projects/MasterThesis/Excelcalc/Excelcalc/Util/HelperMethods.cs

Appendix B

Funcalc Changelog

B.1 Primer

Changes to the Funcalc code base have been made to enable the integration Funcalc

into Funsheet.

It is important to note that all changes made to the Funcalc assembly are non-breaking

changes. This means that the changes does not affect the functionality or behavior of

the stand-alone Funcalc application.

B.2 Changes

B.2.1 Exposing Funcalc internals to Funsheet

To allow Funsheet to reach Funcalc methods and members marked with the internal

access modifier, the following line have been appended to the AssemblyInfo.cs file in

Funcalc:

Figure B.1: Changes made to AssemblyInfo.cs.

B.2.2 Allow Funsheet to override pre-defined Funcalc functions

To allow Funsheet to substitute pre-defined functions in Funcalc with calls to a comple-

mentary built-in function in Excel a couple of changes have been made to the Funcalc

source code.

143

Appendix B. Funcalc Changelog 144

In the constructor of the Function class the registration of a function have been allowed

to overwrite an existing function. See figure B.3.

Figure B.2: Changes made to the constructor of the Function class.

In the constructor of the FunctionInfo class the registration of a function definition have

been allowed to overwrite an existing function definition. See figure B.2.

Figure B.3: Changes made to the constructor of the FunctionInfo class.

B.2.3 Grammar change to support newer Excel functions

Newer Excel functions contain a punctuation ex. QUARTILE.INC. To support these,

changes have been made to the grammar stored in the file Spreadsheet.ATG. Figure B.4

shows the specific change.

Figure B.4: Changes made to the grammar.

Using the Coco/R compiler generator, a new Scanner.cs file have been generated to

reflect the changes in the grammar.

Appendix B. Funcalc Changelog 145

B.2.4 Ensuring deletion of deprecated specializations

In Funcalc the specializations are not removed completely when deleted from a sheet.

This leads to an error if a user creates a specialization, deletes it and tries to recreate the

specialization again. The following code shows the change made to the Funcalc source

code to fix this small bug.

1 private static void Unregister(SdfInfo info)

2 {

3 sdfNameToInfo.Remove(info.name);

4 sdfDelegates[info.index] = sdfDeleted[info.arity];

5 sdfInfos[info.index] = null;

6 // Workaround to restore deleted specializations without getting #FUNERR:

Function deleted.

7 var compiledClosure = specializations.FirstOrDefault(kvp => kvp.Value ==

info);

8 if(compiledClosure.Key != null)

9 {

10 specializations.Remove(compiledClosure.Key);

11 }

12 }

Listing B.1: Line 7-11 added to ensure correct deletion of specializations

Appendix C

Funsheet Installation Guide

This chapter covers everything needed to run Funsheet. The guide has been created for

the English version of Excel. Version with other languages might have different names

for the visual elements referred to during this guide.

Note: The Funsheet had its name changed during implementation from Excelcalc. This

is the reason many of the files have the Excelcalc pre-fix.

C.1 Pre-requisites

Microsoft Excel 2013 32-bit is required to run Funsheet.

Funsheet requires the following files to be located in the same folder to run:

Microsoft.Office.Interop.Excel.dll, ClrTest.Reflection.ILReader.dll,

ClrTest.Reflection.ILVisualizer.dll, Excelcalc-AddIn.xll.config,

Excelcalc-AddIn-packed.xll, Funcalc.exe.

C.2 Install Funsheet

This section covers the installation of Funsheet. It is divided into 9 steps.

Step 1 Click the File tab in the ribbon menu of Microsoft Excel. The File menu appears.

Step 2 Click the Options button in the menu. The Excel Options window appears.

Step 3 Click the Add-Ins tab in the left side of the Excel Options window. The content

of the window changes.

Step 4 Ensure that Excel Add-ins has been chosen in the dropdown menu in the bottom

of the window.

146

Appendix X. Funsheet Installation Guide 147

Step 5 Click the Go... button. The current window is replaced with the Add-Ins window.

Step 6 Click the Browse... button. A file explorer appears.

Step 7 Browse to the folder where Excelcalc-AddIn-packed.xll is located.

Step 8 Choose Excelcalc-AddIn-packed.xll and click the OK button in the file explorer.

The file explorer closes and you return to the Add-Ins window.

Step 9 Click the OK button of the Add-Ins window. You return to the Excel sheet.

Notice the new EXCELCALC tab in the ribbon menu.

C.3 Uninstall Funsheet

This section covers the uninstallation of Funsheet. It is divided into 7 steps.

Step 1 Click the File tab in the ribbon menu of Microsoft Excel. The File menu appears.

Step 2 Click the Options button in the menu. The Excel Options window appears.

Step 3 Click the Add-Ins tab in the left side of the Excel Options window. The content

of the window changes.

Step 4 Ensure that Excel Add-ins has been chosen in the dropdown menu in the bottom

of the window.

Step 5 Click the Go... button. The current window is replaced with the Add-Ins window.

Step 6 Remove the check mark from the Excelcalc Add-In entry in the list.

Step 7 Click the OK button in the Add-Ins window. You return to the Excel sheet.

Notice the EXCELCALC tab in the ribbon menu has disappeared.

Bibliography

[1] Peter Sestoft. Spreadsheet Implementation Technology. Basics and Extensions.

2014. ISBN 978-0-262-52664-7.

[2] Simon L. Peyton Jones, Alan F. Blackwell, and Margaret M. Burnett. A user-

centred approach to functions in Excel. SIGPLAN Notices, 38(9):165–176, 2003.

[3] Excel-DNA. Excel-dna home page. http://excel-dna.net/. [Online; accessed

02-February-2014].

[4] Peter Sestoft and Jens Zeilund. Sheet-defined functions: implementation and initial

evaluation version 1.1 of 2013-01-16. 2013. IT-University of Copenhagen.

[5] Microsoft. Interop Marshaling Overview. http://msdn.microsoft.com/en-us/

library/eaw10et3(v=vs.90).aspx, . [Online; accessed 02-February-2014].

[6] Stephen Bullen Rob Bovey, Dennis Wallentin and John Green. Professional Excel

Development. Addison-Wesley Professional, 2009. ISBN 978-0-321-50879-9.

[7] Scott Driza. Word 2007 Document Automation With VBA And VSTO. Wordware

Publishing, 2007. ISBN 978-1598220476.

[8] Microsoft. How to: Expose code to vba in a visual c# project. http://msdn.

microsoft.com/en-us/library/bb608604.aspx, . [Online; accessed 12-May-

2014].

[9] Microsoft. Correct a #name? error. http://office.microsoft.com/en-us/

excel-help/correct-a-name-error-HA104049851.aspx, . [Online; accessed 21-

May-2014].

[10] Microsoft. Office support. http://office.microsoft.com/en-gb/excel-help/,

. [Online; accessed 21-May-2014].

148

http://excel-dna.net/
http://msdn.microsoft.com/en-us/library/eaw10et3(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/eaw10et3(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ bb608604.aspx
http://msdn.microsoft.com/en-us/library/ bb608604.aspx
http://office.microsoft.com/en-us/excel-help/correct-a-name-error-HA104049851.aspx
http://office.microsoft.com/en-us/excel-help/correct-a-name-error-HA104049851.aspx
http://office.microsoft.com/en-gb/excel-help/

Bibliography 149

[11] Excel-Dna. Excel-dna packing tool. https://exceldna.codeplex.com/wikipage?

title=Excel-DNA%20Packing%20Tool. [Online; accessed 23-May-2014].

[12] Excel-DNA. Excel-dna data type marshaling. https://exceldna.codeplex.com/

wikipage?title=Reference. [Online; accessed 18-May-2014].

[13] Decision Models. Excel calculation secrets: User-defined functions. http://www.

decisionmodels.com/calcsecretsj.htm. [Online; accessed 27-May-2014].

[14] Microsoft. Macrofun.exe file available on online services. http://support.

microsoft.com/kb/128185, . [Online; accessed 17-March-2014].

[15] Excel-Dna.

[16] Microsoft. How to: Customize the office fluent ribbon by using an open xml formats

file. http://msdn.microsoft.com/en-us/library/office/ff861787(v=office.

15).aspx, . [Online; accessed 24-May-2014].

https://exceldna.codeplex.com/wikipage?title=Excel-DNA%20Packing%20Tool
https://exceldna.codeplex.com/wikipage?title=Excel-DNA%20Packing%20Tool
https://exceldna.codeplex.com/wikipage?title=Reference
https://exceldna.codeplex.com/wikipage?title=Reference
http://www.decisionmodels.com/calcsecretsj.htm
http://www.decisionmodels.com/calcsecretsj.htm
http://support.microsoft.com/kb/128185
http://support.microsoft.com/kb/128185
http://msdn.microsoft.com/en-us/library/office/ff861787(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/office/ff861787(v=office.15).aspx

	Abstract
	Contents
	Abbreviations
	1 Introduction
	1.1 Foreword
	1.2 Motivation
	1.3 Results
	1.4 Thesis Organization
	1.5 Deliverables

	2 Background
	2.1 Spreadsheet Technology
	2.2 Sheet-Defined Functions
	2.3 Corecalc and Funcalc
	2.4 VBA
	2.5 COM
	2.6 XLL
	2.7 Excel-DNA

	3 Related Work
	3.1 Introduction
	3.2 The inception of sheet-defined functions
	3.3 Corecalc and Funcalc: The realization
	3.4 Excel-DNA

	4 Experiments
	4.1 Hypotheses
	4.2 Experimental Setup
	4.3 Results and Evaluation

	5 Design
	5.1 Design Goals
	5.2 Technology Choice
	5.3 Funsheet Design
	5.4 Design Evaluation

	6 Implementation
	6.1 System overview
	6.2 Portability, Maintainability and Coupling Considerations
	6.3 Value Conversion
	6.4 Error Handling
	6.5 RTD Wrapper
	6.6 Funsheet Functions
	6.7 UI
	6.8 Evaluation

	7 Test
	7.1 Organization of Tests
	7.2 Tests
	7.3 Evaluation

	8 Future Work
	8.1 Editing of existing SDF definitions
	8.2 Funsheet user study
	8.3 Funsheet production environment study
	8.4 Distributed computing with Funsheet
	8.5 The cause of higher execution times of benchmarks in Funsheet compared to Funcalc

	9 Conclusion
	9.1 Initial Experiments
	9.2 Design
	9.3 Implementation
	9.4 Test

	A Source Code Documentation
	A.1 Excelcalc.ApplyFunction Class Reference
	A.2 Excelcalc.BenchmarkFunction Class Reference
	A.3 Excelcalc.ClosureFunction Class Reference
	A.4 Excelcalc.Closures.Closure Class Reference
	A.5 Excelcalc.Closures.ClosureContext Class Reference
	A.6 Excelcalc.CorecalcRegistration.CorecalcDynamicCellVisitor Class Reference
	A.7 Excelcalc.CorecalcRegistration.CorecalcDynamicExprVisitor Class Reference
	A.8 Excelcalc.CorecalcRegistration.CorecalcRegistrator Class Reference
	A.9 Excelcalc.DefineFunction Class Reference
	A.10 Excelcalc.ExcelRegistration.ExcelCellHandle Class Reference
	A.11 Excelcalc.ExcelRegistration.ExcelFunCall Class Reference
	A.12 Excelcalc.ExcelRegistration.ExcelFunCallContext Class Reference
	A.13 Excelcalc.ExcelcalcInitializer Class Reference
	A.14 Excelcalc.RegisteredSdf Class Reference
	A.15 Excelcalc.RegisteredSdfContext Class Reference
	A.16 Excelcalc.ExcelRegistration.ExcelRegistrator Class Reference
	A.17 Excelcalc.Util.ExtensionMethods Class Reference
	A.18 Excelcalc.Util.HelperMethods Class Reference
	A.19 Excelcalc.SpecializeFunction Class Reference
	A.20 Excelcalc.UI.ExcelcalcRibbon Class Reference
	A.21 Excelcalc.Util.ErrorConverter Class Reference
	A.22 Excelcalc.Util.ExtensionMethods Class Reference
	A.23 Excelcalc.Util.HelperMethods Class Reference

	B Funcalc Changelog
	B.1 Primer
	B.2 Changes

	C Funsheet Installation Guide
	C.1 Pre-requisites
	C.2 Install Funsheet
	C.3 Uninstall Funsheet

	Bibliography

