Warming up: Similarity of two strings; substitution matrices
Consider two strings, e.g. £ = RLKAE and y = KNKGE of the same length n = m = 5.
In an ungapped alignment, an amino acid x; in & must be matched by an amino acid ¥; in y.

Algorithms for

The score of a match between amino acids x; and y; is score[x;][y;], given by a substitution matrix.
pairwise m__Q nment of U_O_OQ ical sequences It describes the likelihood that amino acid x; was replaced (substituted) by amino acid y; by an evolutionary event.

A high score means ‘likely’ and a low one means ‘unlikely’.
Peter Sestoft

sestoft@dina.kvl.dk An amino acid is likely to remain the same, so the diagonal of the substitution matrix has high numbers.
Department of Mathematics and Physics, KVL The similarity of the strings and ¥ is just the sum of the scores:
2000-04-05

sim(z,y) = score(x1,y1) + score(xa, y2) + score(xs, ys) + score(xa, ys) + score(xs, ys)

Various substitution matrices are used in alignment algorithms, e.g. BLOSUM50 and the PAM matrices.

Literature: So far so good. The fun begins when we allow gaps in either z or y.
Durbin et al: Biological Sequence Analysis, Cambridge University Press 1998, chapter 2

Altschul et al: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research 25 (1) 1997.

Dina Research School Workshop April 2000 Page 1 Dina Research School Workshop April 2000 Page 3

The BLOSUM5O0 substitution matrix
Algorithms for pairwise alignment

Consider two amino acid sequences HEAGAWEHEE and PAWHEAE. A R N D C Q E G H I L K M F P S T W Y V
Call them x and ¥, and denote their lengths by n. = 10 and m = 7. A2 14 -2 4 4 4 0 2 4 -2 1 1 3 1 1 0 3 -2 0
R | -2 7 -1 -2 -4 1 0o -3 0o -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3
N|1 -2 7 2 -2 0 0 O 1 3 4 0 -2 4 2 1 0 -4 -2 -3
We discuss two alignment problems: D|-2 -2 2 8 -4 0 2 1 1 4 4 -1 4 5 -1 o -1 5 3 -4
cl1 4 2 4 13 3 3 3 3 2 2 -3 2 2 4 -1 -1 5 -3 -1
e global alignment: all of x must be aligned with all of y (Needleman-Wunsch): Q| -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 4 -1 o -1 -1 -1 -3
HEAGAWGHE- E E|-1 0 O 2 -3 2 6 -3 o 4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3
G o 3 o0 -1 3 -2 -3 8 -2 4 4 2 -3 4 2 0 -2 -3 -3 -4
- - P- AW HEAE H|l2 o 1 414 3 1 0 =2 10 -4 3 0 -1 -1 =2 -1 -2 3 2 -4
o |ocal alignment: a subsequence of z must be aligned with a subsequence of y (Smith-Waterman): ry+ 4 3 4 -2 3 4 4 4 5 2 3 2 0 8 3 1 3 1 4
L|{2 3 -4 4 2 2 3 -4 3 2 5 -3 3 1 -4 -3 -1 -2 -1 1
AWGHE Kl1 3 o 1 -3 2 1 -2 o0 3 3 6 2 4 -1 0 -1 -3 -2 -3
AW HE M{-1 2 2 4 2 0 -2 3 -1 2 3 -2 7 0 3 2 -1 -1 0 1
F|3 3 4 5 2 4 3 4 -1 0 1 -4 0 8 -4 -3 2 1 4 4
Pl-1 3 2 1 4 -1 -1 2 -2 -3 -4 -1 3 -4 10 -1 -1 -4 -3 -3
As we can see, an alignment may contain gaps. We consider two kinds of gap costs: S i1 -1 1 0 -1 0 -1 0 -1 3 -3 0 -2 -3 -1 5 2 -4 -2 -2
T 0 -1 0o -1 101 -1 -2 2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0
e simple linear gap costs: a gap of length g has score —d - g w|3 3 4 5 5 1 3 3 3 3 -2 3 -1 1 -4 -4 -3 15 2 .3
) . Yy(2 -1 -2 3 3 -1 -2 -3 2 1 -1 -2 0 4 -3 -2 -2 2 8 -1

o affine gap costs: a gap of length g has score —d — e - g
v|io 3 3 4 1 3 3 4 4 4 1 3 1 -1 -3 2 0 -3 -1 5

Dina Research School Workshop April 2000 Page 2 Dina Research School Workshop April 2000 Page 4

Global alignment (Needleman-W unsc h 1970)

Consider two strings, e.g. £ =HEAGAWGHEE and y =PAWHEAE of lengths n = 10 and m = 7.

In a gapped alignment, an amino acid x; is matched either by an amino acid y;, or by a gap.

The score of a match between amino acids z; and y; is score[x;][y;], given by e.g. the BLOSUM50 matrix.
The score of a match between an amino acid and a gap is —d, where d may be 8.

We want to find an optimal global alignment of x and ¥: one that has the maximal sum of scores.

Naive attempt:
Enumerate all possible alignments of x and ¥y, compute their scores, then choose one with maximal score.
But ... the number of possible matches for two sequences is very large (may be Hopocv.

The naive approach would be much too slow on even the largest existing computers.

Useful obser vation 2:

The value F'(7, j) depends only on the values

F(i—1,j—1),F(i —1,7),and F(i,j — 1).

This is because an optimal alignment between 1 ; and y; . ; consists of either
® an optimal alignment between . (;—1) and y1...(;—1) extended with a match between z; and y;; or
® an optimal alignment between 1 _ ;1) and y1...; extended with a match between z; and a gap; or
® an optimal alignment between Z1...; and ¥ (;—1) extended with a match between a gap and y;.

So we can fill in the F table from left to right and top to bottom.

This ‘filling in the table’ is called dynamic programming (Bellman 1955).

Table F’ gives us the maximal score. How find a corresponding optimal alignment?
When filling in F'(7, 7), we record the traceback B(i, j) from (i, 7):
The traceback points at the cell that led to the maximal score: (i — 1,5 — 1) or (i — 1, 7) or (¢,5 — 1).

When we are finished we find an optimal alignment just by following the traceback from A:. 3& to Ao. 8.

Dina Research School Workshop April 2000

Page 5

Dina Research School

Workshop April 2000 Page 7

Useful obser vation 1:

Any prefix of the optimal alignment between = and y

is an optimal alignment between a prefix x1__; of x and a prefix y;

So an optimal alignment can be computed by scanning x and y from left to right, recording only the optimal

alignments between prefixes of x and y, and forgetting all the non-optimal ones.

More precisely, we can build a table F' in which

WQ. b = the maximal score for an alignment between ;.. ; and y1._;

Then, by definition, MA:, 3& is the maximal score for a global alignment between x and y.

(Because 1.y, is the entire string &, and y1..,,, is the entire string y).

Filling in the F' matrix for z = HEAGAWGHEE and y = PAWHEAE

z\y H E A G A w G H FEF FE

Dina Research School Workshop April 2000

Page 6

Dina Research School

Workshop April 2000 Page 8

The filled-in F' matrix for global alignment of x = HEAGAWGHEE and y = PAWHEAE

z\y H E A G A w G H E

0 -8 —-16 —24 —-32 —40 —48 —-56 —64 —72
r -8 -2 -9 17 -25 -33 —41 —-49 -—-57 —65
4 -16 -10 -3 -4 -12 -20 -—-28 —-36 —44 -52
v -24 -18 -11 -6 -7 —-15 -5 —-13 —-21 =29
" -32 -14 -18 -13 -8 -9 —-13 -7 =3 -1
g -40 -22 -8 -16 -16 -9 -12 —-15 =7 3
4 —48 -30 -16 -3 -—-11 -—-11 —-12 —-12 —-15 =5
g -5 —-38 —24 -11 -6 -12 -14 -15 —-12 -9

The traceback is recorded in a matrix B with the same shape as F'.

—-80
—73
—60
—37

-19

Dina Research School Workshop April 2000

Page 9

Implementing global alignment: ng in the matrix

Position (¢, j) may be reached

e from (i — 1,7 — 1) with a match, adding score[z;][y;] to the score;
e from (i — 1, j) with a gap in v, subtracting d from the score; or

e from (i, j — 1) with a gap in , subtracting d from the score.

The traceback B(%, j) points to the source of the maximal resulting score (7, 7). Thus:

for (int i=1; i<=n; i++)
for (int j=1; j<=m j++) {
int s = score[seql.charAt(i-1)][seq2.charAt(j-1)];
int val = max(F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d);
F[i]l[j] = val;

if (val == -11[j-1] +s)

B[i][j] = new Traceback2(i-1, j-1);
elseif (val == F[i-1][j]-d)

B[i][j] = new Traceback2(i-1, j);
else if (val == F[i][j-1]-d)

B[i][j] = new Traceback2(i, j-1);

}
BO = new Traceback2(n, m;

The start BO of the traceback is cell (n, m).

Dina Research School

Workshop April 2000 Page 11

Implementing global alignment: Initialization

Upper border: position Q 8 represents the alignment of x1__; to the empty prefix of y.
That is, the prefix 1 .. ; has been matched with ¢ gaps in y.

With simple linear gap costs, the score is —d - 7.

The traceback pointer at (i, 0) points to (i — 1,0).

The left-hand border is similar.

Hence we initialize the borders as follows:

for (int i=1; i<=n; i++) {
FLil[0] = -d * i;
B[i][0] new Traceback2(i-1, 0);

}
for (int j=1; j<=m j++) {
F[OI[j] = -d * |;
B[O][j] new Traceback2(0, j-1);

Local alignment of z = HEAGAWGHEE and y = PAWHEAE (Smith-W aterman 1981)
A subsequence of x must be aligned with a subsequence of y:

AWCHE
AW HE

Requirement: the expected score of a random match must be negative.

If the score of a random match extension were positive, then any local alignment could be profitably extended to a

‘better’ (but probably biologically meaningless) one.

New interpretation of F'(7, §):

F(i,j) = the maximal score for an alignment between a suffix of ;.. ; and a suffix of ;.

Dina Research School Workshop April 2000

Page 10

Dina Research School

Workshop April 2000 Page 12

Implementing local alignment:
Upper border: position G 8 represents the alignment of a suffix of 21 ; to an empty sequence.
An empty match, with score 0, is the best we can do (because gaps have negative scores).

Then (4, 0) is the start of a new local alignment, and the traceback pointer at (7, 0) points nowhere.
The left-hand border is similar.

Hence we initialize the border cells to 0 and the traceback to nul | (this is the default value in Java).

Reducing the space consumption of global alignment

All algorithms require time O(nm) to fill in the tables and space O(nm) in the computer to store the tables.
However, column ¢ of F' depends only on column ¢ — 1.

So only two columns of F' (and the traceback) need to be stored at the same time.

Hence we can compute the best score using only space 03 + 3&.

How reconstruct the optimal global alignment in this case?
Whenn < 1orm < 1, use the standard algorithm (in this case it uses little space anyway).

Otherwise, let u = /2 and assume the optimal alignment passes through (u, v).

(We can determine v while filling in F’).
Recursively determine
e the optimal global alignment z; between 1. ., and y1...,

e the optimal global alignment 23 between Z(y41)...n and Y(y+1)...m

Then the optimal alignment between x and ¥ is the concatenation of 2; and 2».

Dina Research School Workshop April 2000 Page 13

Implementing local alignment: Filling in the matrix
Position (1, j) may be reached

o from nowhere, with score 0, because we can always start a new local alignment;
e from (i — 1, j — 1) with a match, adding score[z;][y;] to the score;
e from Q -1, uv with a gap in y, subtracting d from the score; or

e from (i, j — 1) with a gap in z, subtracting d from the score.

The traceback B(%, j) points to the source of the maximal resulting score F'(4, §), if any. Thus:
for (int i=1; i<=n; i++)
for (int j=1; j<=m j++) {
int s = score[seql.charAt(i-1)][seq2.charAt(j-1)];
int val = max(0, F[i-1]1[j-1]1+s, FLi-11[j]-d, FLi][j-1]-d):

FLil[i] = val;
if (val == 0)
Bli][i] = null;
else if (val == F[i-1][]-1]+s)
B[i][j] = new Traceback2(i-1, j-1);
else if (val == F[i-1][j]-d)
B[i][j] = new Traceback2(i-1, j);
else if (val == F[i][j-1]-d)
B[i][j] = new Traceback2(i, j-1);

1

The start BO of the traceback must be set to some cell (¢, j) in F’ that has maximal score.

Dina Research School Workshop April 2000 Page 14

Dina Research School Workshop April 2000 Page 15
Reducing the space consumption of local alignment
Fillin F' using only space O(n + m) as above.
Keep track of the starting point (s1, S2) and the ending point (€1, e2) of the local alignment with highest score.
Compute the optimal global alignment between the subsequences Z's, .. ¢, and s, .. e, in space sz + Sv
The result is also the optimal local alignment between x and y.

Dina Research School Workshop April 2000 Page 16

Affine gap costs

Until now we used linear gap costs g(k) = —dk, where d = 8.

Thus a gap of length k = 4 has 4 times the cost of a gap of length 1.

This is unrealistic; too expensive, biologically speaking.
Database searches
A gap arises by an evolutionary event, and a long gap is nearly as likely to arise as a short one.
A sequence database contains a large number of sequences (e.g. 100.000).
Better use affine gap costs of the form g(k) = —d — ek whered = 12 and e = 2.
When searching a database we a given short query string, e.g. of length n = 500.
Hence it is expensive to open a gap (—12) but inexpensive to extend it (—2).
We then seek the best local, gapped alignment between the query string and each of the database sequences.

So we might use the Smith-Waterman algorithm for each sequence in the database. Too slow in practice.
Alignment with affine gap costs is done by dynamic programming using three matrices F1, F5, F} instead of one. g g q P

The matrices have the following meanings:
Database search programs (Blast and Fasta) do use dynamic programming, but only after some preliminary work.

Fy G., b = max score for alignment between x1__; and y; . ;j ending with a match between z; and y;
F Q b = max score for alignment between x__; and y; . ; ending with a match between z; and a gap in y
Fy Q, b = max score for alignment between ;1 ; and y;...; ending with a match between a gap in z and y;
Dina Research School Workshop April 2000 Page 17 Dina Research School Workshop April 2000 Page 19
The Blast 2 database search algorithm (Altsc hul et al. 1997)
Let a query string be given.
e Find hits between 3-letter substrings of the query string and 3-letter substrings of the database strings.
Obser vation about the F' matrix in dynamic programming A hit must have a score of at least 7', e.g. 7" = 11.
e When the strings = and y are identical, the traceback will follow the diagonal of the £’ matrix. © Find two non-overlapping hits on the same diagonal that are close to each other (distance less than A).
In that case, only the diagonal needs to be filled in (which takes much less time). Such neighbour hits are probably part of the same (ungapped) local alignment.
e When the strings = and y are very similar, the traceback will follow a band along the diagonal. e Extend a hit in both directions to get an ungapped local alignment (just add up scores).
In that case, only the elements of that band of /" need to be filled in. Stop the extension when the score of the alignment has fallen more than X below the maximum attained.
e We may speed up dynamic programming by filling in only a band along the diagonal of F'. e |f the resulting local alignment is good (score at least mmv then try to make a gapped alignment:
But this may overlook a good (high-scoring) alignment whose traceback would go outside the band. Extend the alignment in both directions, using dynamic programming.
Hence this gives only an approximation to the optimal alignment. Do not fill in F" matrix elements if their score would fall more than X below the maximum attained.

This will give a variable-width band along the diagonal.

Blast 2 is 100 times faster than Smith-Waterman on the computer, and nearly as sensitive and selective.

Dina Research School Workshop April 2000 Page 18 Dina Research School Workshop April 2000 Page 20

