When filling in $F(i,j)$, we record the traceback from (i,j) : The traceback points at the cell that led to the maximal score: $(i-1,j-1)$ or $(i-1,j)$ or $(i,j-1)$. When we are finished we find an optimal alignment just by following the traceback from (n,m) to $(0,0)$.	Whee The t Whee	$n = m^2 m^2$. For $n = 100$ and $m = 7$, that would be $6491922168400302104990847829084871669228062213140.Clearly infeasible to enumerate all possible alignments.$
Observation 2: The value $F(i,j)$ depends only on the values $F(i-1,j-1), F(i-1,j),$ and $F(i,j-1)$. This is because an optimal alignment between x_{1i} and y_{1j} consists of either • an optimal alignment between $x_{1(i-1)}$ and y_{1j} extended with a match between x_i and y_j ; or • an optimal alignment between x_{1i} and y_{1j} extended with a match between x_i and a gap; or • an optimal alignment between x_{1i} and y_{1j} extended with a match between x_i and a gap; or • an optimal alignment between x_{1i} and $y_{1(j-1)}$ extended with a match between a gap and y_j . So we can fill in the F table from left to right and top to bottom. This filling in the table' is called dynamic programming (Bellman 1955). Table F gives us the maximal score. How find a corresponding optimal alignment?	Obse This • a So w This	either by an and y_j is. and a gap i for a gap i for x and y : compute the compute t
Seminar on computational biology 1999-10-04	R ^L	overlap matches: a prefix or suffix of <i>x</i> : must be aligned with a prefix or suffix of <i>y</i> : GAWGHEE PAW-HEA Seminar on computational biology 1999-10-04 Page 1
Then, by definition, $F(n,m)$ is the maximal score for a global alignment between x and $y.$	Then	HEAGAWGHEE HEA.AW-HE.
$F(i,j)=$ the maximal score for an alignment between $x_{1\dots i}$ and $y_{1\dots j}$		$_{ m AW-HE}$ repeated matches: all of x must be aligned with some (possibly repeated) subsequences of y :
More precisely, we can build a table F in which	More	AWGHE
So an optimal alignment can be computed by scanning x and y from left to right, recording only the optimal alignments between prefixes of x and y , and forgetting all the non-optimal ones.	So ai aligni	-P-AW-HEAE local alignment: a subsequence of x must be aligned with a subsequence of y (Smith-Waterman):
is an optimal alignment between a prefix $x_{1\dots i}$ of x and a prefix $y_{1\dots j}$ of y .		global alignment: all of x must be aligned with all of y (Needleman-Wunsch): HEAGAWGHE-E
Observation 1:	Obse	Call them x and y , and denote their lengths by $n=10$ and $m=7$. Chapter 2 presents four different alignment problems:
		Consider two amino acid sequences HEAGAWGHEE and PAWHEAE.

ş

Algorithms for pairwise alignment

sestoft@dina.kvl.dk

010gy 1999-10-04

ş

BO = new Traceback2(n, m); The start BO of the traceback is cell (n,m) .		The traceback is recorded in a matrix B with the same shape as $F.$
<pre>if (val == F[i-1][j-1]+s) if (val == F[i-1][j-1]+s) B[i][j] = new Traceback2(i-1, j-1); else if (val == F[i-1][j]-d) B[i][j] = new Traceback2(i-1, j); B[i][j] = new Traceback2(i, j-1); </pre>		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<pre>The traceback B(i, j) points to the source of the maximal resulting score F(i, j). Thus: for (int i=1; i<=n; i++) for (int j=1; j<=m; j++) { int s = score[seq1.charAt(i-1)][seq2.charAt(j-1)]; int val = max(F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d); F[i1][i] = val;</pre>		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
• from $(i - 1, j - 1)$ with a match, adding $score[x_i][y_j]$ to the score; • from $(i - 1, j)$ with a gap in y , subtracting d from the score, or • from $(i, j - 1)$ with a gap in x , subtracting d from the score.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Implementing global alignment: Filling in the matrix Position (i,j) may be reached		natrix for global alignment of $x= extsf{HEAGAWGHEE}$ a
KVL Seminar on computational biology 1999-10-04	Page 5	KVL Seminar on computational biology 1989-10-04
} for (int j=1; j<=m; j++) { F[0][j] = -d * j; B[0][j] = new Traceback2(0, j-1); }		
<pre>for (int i=1; i<=n; i++) { F[i][0] = -d * i; B[i][0] = new Traceback2(i-1, 0); </pre>		
The left-hand border is similar. Hence we initialize the borders as follows:		$\frac{A}{W}$
With simple linear gap costs, the score is $-d\cdot i.$ The traceback pointer at $(i,0)$ points to $(i-1,0).$. <i>P</i>
Implementing global alignment: Initialization Upper border: position $(i, 0)$ represents the alignment of x_{1i} to the empty prefix of y . That is, the prefix x_{1i} has been matched with i gaps in y .		Filling in the F matrix for $x =$ HEAGAWGHEE and $y =$ PAWHEAE $x \setminus y$ H E A G A W G H E E

Page 7

Page 8

Page	KVL Seminar on computational biology 1999-10-04	Page 10	KVL Seminar on computational biology 1939-10-04	x 1
	<pre>Repeated matches of y = PAWHEAE in x = HEAGAWGHEE All of x must be aligned with some (possibly repeated) subsequences from y: HEAGAWGHEE HEA.AW-HE. A dash (-) indicates that the corresponding x_i is matched by a gap in a y subsequence. A dot (.) indicates that the corresponding x_i is matched by no subsequence of y. Every two matched subsequences of x are separated by one or more unmatched subsequences. Assume we are interested only in matches scoring higher than some threshold T, e.g. 20. Otherwise we might find many (low-score) random matches. New interpretation of F(i, j): F(i, 0) = the best sum of match scores up to x_{1i} provided i is in an unmatched region of x F(i, j) = the best sum of match scores up to x_{1i} provided i is in a matched region of x</pre>		Implementing local alignment: Initialization Upper border: position $(i, 0)$ represents the alignment of a suffix of x_{1i} to an empty sequence. An empty match, with score 0, is the best we can do (provided gaps have negative scores). Then $(i, 0)$ is the start of a new local alignment, and the traceback pointer at $(i, 0)$ points nowhere. The left-hand border is similar. Hence we initialize the border cells to 0 and the traceback to $mull$ (this requires no action in Java).	
Page .	KVL Seminar on computational biology 1999-10-04	Page 9	KVL Seminar on computational biology 1999-10-04	
	<pre>Implementing local alignment: Filling in the matrix Position (i, j) may be reached from nowhere, with score 0, because we can always start a new local alignment; from (i - 1, j - 1) with a gap in y, subtracting d from the score; or from (i, j - 1) with a gap in x, subtracting d from the score; or for (int i=1; i<=n; i++) for (int i=1; i<=nmax(0, F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d); fi (val i== F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d); for (int i=1; i=new Traceback2(i-1, j); for (val i== F[i][j-1]-d) for (int i=1; i=new Traceback2(i, j-1); for (int i=1; i=</pre>	ded to a	Local alignment of $x =$ HEAGAWGHEE and $y =$ PAWHEAE (Smith-Waterman) A subsequence of x must be aligned with a subsequence of y : AWGHE AW-HE Requirement: the expected score of a random match must be negative. If the score of a random match extension were positive, then any local alignment could be profitably extended to a better (but probably biologically meaningless) one. New interpretation of $F(i, j)$: $F(i, j) =$ the maximal score for an alignment between a suffix of x_{1i} and a suffix of y_{1j}	

KVL	Implementing repeated matches: Filling in the matrix Position $(i, 0)$ may be reached • from $(i - 1, 0)$ by letting x_i be unmatched by any part of y , kee • from $(i - 1, j)$ by completing a match whose score is at least j Position (i, j) for $j > 0$ may be reached • from $(i, 0)$, because we start a new local alignment, keeping the • from $(i - 1, j - 1)$ with a match, adding $score[x_i][y_j]$ to the • from $(i - 1, j)$ with a gap in y , subtracting d from the score; or • from $(i, j - 1)$ with a gap in x , subtracting d from the score. As always, the traceback $B(i, j)$ points to the source of the maxima	KYL	Implementing repeated matches: Initialization Left-hand border: Position $(0, j)$ represents the best alignment of a This must have score 0. The traceback pointer at $(0, j)$ points nowhere.
Seminar on computational biology 1999-10-04	Implementing repeated matches: Filling in the matrix Position $(i, 0)$ may be reached • from $(i - 1, 0)$ by letting x_i be unmatched by any part of y , keeping the old score; or • from $(i - 1, j)$ by completing a match whose score is at least T , subtracting T from that score. Position (i, j) for $j > 0$ may be reached • from $(i, -1, j - 1)$ with a match, adding $score[x_i][y_j]$ to the score; • from $(i - 1, j)$ with a gap in y , subtracting d from the score; • from $(i, j, -1)$ with a gap in x , subtracting d from the score. As always, the traceback $B(i, j)$ points to the source of the maximal resulting score $F(i, j)$.	Seminar on computational biology 1993-10-04	Implementing repeated matches: Initialization Left-hand border: Position $(0, j)$ represents the best alignment of an empty subsequence of x to a subsequence of y . This must have score 0. The traceback pointer at $(0, j)$ points nowhere.
Page 14		Page 13	
KVL		KVL	
Seminar on computational biology 1989-10-04	 Overlap matches between x = HEAGAWGHEE and y = PAWHEAE A prefix or suffix of x must be aligned with a prefix or suffix of y: GANGHEE PAW-HEA This is like local alignment, with the restrictions that an alignment must begin on the left-hand or top border; an alignment must end on the right-hand or bottom border. That is, an alignment cannot begin or end inside the <i>F</i> matrix. 	Seminar on computational biology 1999-10-04	Let max j(i-1) be $j > 0$ if $F(i - 1, j) - T$ is greater than $F(i - 1, 0)$ and maximal; otherwise 0. This gives: for (int i=1; i<=n; i++) { int max j = max j(i-1); p[i][0] = max yval(i-1; max j); b[i][0] = max yval(i-1; max j); for (int j=1; j<=n; j++) { int val = max (F[i][0]); p[i][j] = val; if (val == F[i][0]); b[i][j] = new Traceback2(i, 0); else if (val == F[i-1][j-1]+s; F[i-1][j]-d; F[i][j-1]-d); p[i][j] = new Traceback2(i-1, j-1); else if (val == F[i-1][j-1]+s; b[i][j] = new Traceback2(i-1, j); else if (val == F[i-1][j]-d; b[i][j] = new Traceback2(i-1, j); else if (val == F[i][j-1]-d; b[i][j] = new Traceback2(i-1, j); else if (val == F[i][j-1]-d; b[i][j] = new Traceback2(i, j-1); b[i][j] = new Traceback2(i, j-1); b[i] = new
Page 16		Page 15	

Page 16

Reducing the space consumption of global alignment All algorithms require time $O(nm)$ to fill in the tables and space $O(nm)$ to store the tables.
All algorithms require time $O(nm)$ to fill in the tables and space $O(nm)$ to store the tables.
However, column i of F depends only on column $i-1.$
So only two columns of F (and the traceback) need to be stored at the same time.
Hence we can compute the best score using only space $O(n+m).$
How reconstruct the optimal global alignment?
When $n \leq 1$ or $m \leq 1$, use the standard algorithm (in this case it uses little space anyway).
Otherwise, let $u=n/2$ and assume the optimal alignment passes through $(u,v).$
(We can determine v while filling in F).
Recursively determine
- the optimal global alignment z_1 between $x_{1\dots u}$ and $y_{1\dots v};$ and
- the optimal global alignment z_2 between $x_{(u+1)\dots n}$ and $y_{(v+1)\dots m}$
Then the optimal alignment between x and y is the concatenation of z_1 and z_2 .
KVL Seminar on computational biology 1939-10-04 Page 17
Reducing the space consumption of local alignment
Fill in F using only space $O(n+m)$ as above.
Keep track of the starting point (s_1,s_2) and the ending point (e_1,e_2) of the local alignment with highest score.
Compute the optimal global alignment between the subsequences $x_{s_1\ldots e_1}$ and $y_{s_2\ldots e_2}$ in space $O(n+m).$
The result is also the optimal <i>local</i> alignment between x and y .

Page 18

Seminar on computational biology 1999-10-04

KVL