sestoft@dina.kvl.dk
Algorithms for pairwise alignment
Consider two amino acid sequences HEAGAWEHEE and PAWHEAE.
Call them x and ¥, and denote their lengths by » = 10 and m = 7.
Chapter 2 presents four different alignment problems:
o global alignment: all of 2 must be aligned with all of y (Needleman-Wunsch):
HEAGAWGHE- E
- - P- AW HEAE
e |ocal alignment: a subsequence of x must be aligned with a subsequence of ¢ (Smith-Waterman):
AVGHE
AW HE
e repeated matches: all of z must be aligned with some (possibly repeated) subsequences of y:
HEAGAWGHEE
HEA. AW HE.
e overlap matches: a prefix or suffix of z must be aligned with a prefix or suffix of ¥:

GAWGHEE
PAW HEA

Observation 1:

Any prefix of the optimal alignment between z and y

is an optimal alignment between a prefix ;. ; of x and a prefix y; .. ; of y.

So an optimal alignment can be computed by scanning & and ¥ from left to right, recording only the optimal

alignments between prefixes of & and y, and forgetting all the non-optimal ones.

More precisely, we can build a table F' in which
WQ. b = the maximal score for an alignment between z1_; and Y. _;

Then, by definition, m‘ﬁ:, 3& is the maximal score for a global alignment between x and y.

KVL

Seminar on computational biology 1999-10-04 Page 1

KVL

Seminar on computational biology 1999-10-04

Page 3

Global alignment (Needleman-W unsc h)

In an alignment, an amino acid z; is matched either by an amino acid y;, or by a gap.

The score of a match between amino acids x; and y; is score[x;][y;], given by e.g. the BLOSUM50 matrix.
The score of a match between an amino acid and a gap is —d, where d may be 8.

We want to find an optimal global alignment of x and ¥: one that has the maximal sum of scores.

Naive attempt:
Enumerate all possible alignments of x and ¥, compute their scores, then choose one with maximal score.

But ... the number of possible matches for two sequences of length n = 10 and m = 7'is

n+m (n+m)!

" = o 19448

Forn = 100 and m = 7, that would be 6491922168400302104990847829084871669228062213140.

Clearly infeasible to enumerate all possible alignments.

Observation 2:

The value F (7, j) depends only on the values

F(i—1,j—1),F(i —1,7),and F(i,j — 1).

This is because an optimal alignment between 1. ; and Y. ; consists of either
® an optimal alignment between 1. (;—1) and y1...(;—1) extended with a match between z; and y;; or
® an optimal alignment between 1 (;—1) and y1...; extended with a match between z; and a gap; or
® an optimal alignment between x1...; and Y1 ;1) extended with a match between a gap and y;.

So we can fill in the F’ table from left to right and top to bottom.

This

g in the table’ is called dynamic programming (Bellman 1955).

Table F’ gives us the maximal score. How find a corresponding optimal alignment?
When filling in F'(7, j), we record the traceback from (i, 7):
The traceback points at the cell that led to the maximal score: (i — 1,5 — 1) or (i — 1, j) or (i, j — 1).

When we are finished we find an optimal alignment just by following the traceback from A:, ‘Sv to Ac, S.

Seminar on computational biology 1999-10-04 Page 2

Seminar on computational biology 1999-10-04

Page 4

Filling in the F' matrix for z = HEAGAWGHEE and y = PAWHEAE

z\y H F A G A w G H F E

Implementing global alignment: Initialization

Upper border: position C 8 represents the alignment of 1. _; to the empty prefix of ¥.
That is, the prefix 1 ; has been matched with ¢ gaps in y.

With simple linear gap costs, the score is —d - 4.

The traceback pointer at (7, 0) points to (¢ — 1,0).

The left-hand border is similar.

Hence we initialize the borders as follows:

for (int i=1; i<=n; i++) {
F[i][0] = -d * i;
B[i][0] = new Traceback2(i-1, 0);

}
for (int j=1; j<=m j++) {
F[OI[j] = -d * |;
B[O][j] = new Traceback2(0, j-1);

KvVL Seminar on computational biology 1999-10-04
The filled-in F" matrix for global alignment of x = HEAGAWGHEE and y = PAWHEAE
z\y H E A G A w G H E E
0 -8 —-16 —24 -32 —-40 —-48 —-56 —64 —-72 —-80
P
-8 -2 -9 -—-17 —-25 —-33 —41 —-49 -—-57 —-65 -—T73
A
-6 -10 -3 -4 -12 -20 -28 —-36 —44 —-52 —60
w
-24 -18 -1 -6 -7 —-15 -5 -—-13 —-21 -—-29 =37
H
-32 -14 -18 -13 -8 -9 -13 -7 -3 —-11 -19
E
-40 -22 -8 -16 -16 -9 -—-12 —-15 —7 3 -5
A
-48 -30 -16 -3 -11 -11 -12 —-12 —-15 —5 2
FE
-56 —-38 —-24 -1 -6 -12 -—-14 -15 —-12 -9 1
The traceback is recorded in a matrix B with the same shape as F'.
KVL Seminar on computational biology 1999-10-04

Seminar on computational biology 1999-10-04 Page 7
Implementing global alignment: ng in the matrix
Position (4, j) may be reached
e from (i — 1,7 — 1) with a match, adding score[z;][y;] to the score;
e from (i — 1, j) with a gap in y, subtracting d from the score; or
e from (4, j — 1) with a gap in z, subtracting d from the score.
The traceback B(%, j) points to the source of the maximal resulting score F(7, 7). Thus:
for (int i=1; i<=n; i++)
for (int j=1; j<=m j++) {
int s = score[seql.charAt(i-1)][seq2.charAt(j-1)];
int val = max(F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d);
FLil[il = val;
if (val == -11[j-1] +s)
B[i][j] = new Traceback2(i-1, j-1);
elseif (val == F[i-1][j]-d)
B[i][j] = new Traceback2(i-1, j);
elseif (val == F[i][j-1]-d)
B[i][j] = new Traceback2(i, j-1);
}
BO = new Traceback2(n, m;
The start BO of the traceback is cell (r, m).
Seminar on computational biology 1999-10-04 Page 8

Local alignment of z = HEAGAWGHEE and y = PAVWHEAE (Smith-W aterman)
A subsequence of x must be aligned with a subsequence of y:

AWGHE
AW HE

Requirement: the expected score of a random match must be negative.

If the score of a random match extension were positive, then any local alignment could be profitably extended to a

‘better’ (but probably biologically meaningless) one.

New interpretation of F'(7, §):

ﬁQ, b = the maximal score for an alignment between a suffix of £1__; and a suffix of y1.__;

KvVL Seminar on computational biology 1999-10-04 Page 9

Implementing local alignment:
Upper border: position C 8 represents the alignment of a suffix of ;.. ; to an empty sequence.
An empty match, with score 0, is the best we can do (provided gaps have negative scores).

Then (7, 0) is the start of a new local alignment, and the traceback pointer at (¢, 0) points nowhere.

The left-hand border is similar.

alize the border cells to 0 and the traceback to nul | (this requires no action in Java).

Implementing local alignment: Filling in the matrix
Position (¢, j) may be reached

e from nowhere, with score 0, because we can always start a new local alignment;
e from (i — 1,7 — 1) with a match, adding score[z;][y;] to the score;
e from (i — 1,) with a gap in y, subtracting d from the score; or
e from (i, j — 1) with a gap in , subtracting d from the score.
The traceback B(%, j) points to the source of the maximal resulting score F'(4, j), if any. Thus:
for (int i=1; i<=n; i++)
for (int j=1; j<=m j++) {

int s = score[seql.charAt(i-1)][seq2.charAt(j-1)];
int val = max(0, F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d);

FLil[j] = val;
if (val == 0)
Bli][i] = null;
else if (val == F[i-1][]j-1]+s)
B[i][j] = new Traceback2(i-1, j-1);
else if (val == F[i-1][j]-d)
B[i][j] = new Traceback2(i-1, j);
else if (val == F[i][j-1]-d)
B[i][j] = new Traceback2(i, j-1);

1}

The start BO of the traceback must be set some cell (¢, j) in F' with maximal score.

KVL

Seminar on computational biology 1999-10-04 Page 11

Repeated matches of y = PAWHEAE in z = HEAGAWGHEE
All of x must be aligned with some (possibly repeated) subsequences from y:

HEAGAWGHEE
HEA. AW HE.

A dash (-) indicates that the corresponding x; is matched by a gap in a y subsequence.
A dot (.) indicates that the corresponding x; is matched by no subsequence of y.

Every two matched subsequences of & are separated by one or more unmatched subsequences.

Assume we are interested only in matches scoring higher than some threshold 7', e.g. 20.
Otherwise we might find many (low-score) random matches.

New interpretation of F'(i, j):

the best sum of match scores up to &1 . ; provided ¢ is in an unmatched region of x

|
= =
= =
= (=]}
= =
(I

the best sum of match scores up to 1. ; provided is in a matched region of

KVL Seminar on computational biology 1999-10-04 Page 10

Seminar on computational biology 1999-10-04 Page 12

Implementing repeated matches: Initialization

Left-hand border:

Position Aci represents the best alignment of an empty subsequence of x to a subsequence of .
This must have score 0.

The traceback pointer at (0, j) points nowhere.

Seminar on computational biology 1999-10-04 Page 13

Implementing repeated matc hes: ing in the matrix

Position (¢, 0) may be reached
e from (i — 1, 0) by letting z; be unmatched by any part of y, keeping the old score; or

e from A -1, 3 by completing a match whose score is at least 7', subtracting 7" from that score.

Position (i, j) for j > 0 may be reached

e from Q 8. because we start a new local alignment, keeping the old score;
e from (i — 1,7 — 1) with a match, adding score[z;][y;] to the score;
o:oBQIH,b<<=sm@mu_:MFmcc:mo::@&zoaﬁsmmooﬂm“oﬂ

e from (7,j — C with a gap in z, subtracting d from the score.

As always, the traceback mWQ,E points to the source of the maximal resulting score m‘o b_

Letmaxj (i-1) bej > 0if F(i — 1,7) — T is greater than F'(— 1,0) and maximal; otherwise 0.

This gives:

for (int i=1; i<=n; i++) {

int maxj = maxj (i-1);

F[i][0] = maxjval (i-1, maxj);

B[i][0] = new Traceback2(i-1, nmaxj);

for (int j=1; j<=m j++) {
score[seql. charAt(i-1)][seq2.charAt(j-1)];
u:m_vzm___o_. Fli-1][j-1]+s, Fli-11[j]-d, F[i][j-1]-d);
= va
val == F[i][0]) _

[i] = new Traceback2(i, 0);
if (val == F[i-1][j-1]+s)

] = new Traceback2(i-1, j-1);
(val == F[i-1][j]-d)
il
(
]

= new Traceback2(i-1, j);
val == F[i][j-1]-d)
= new Traceback2(i, j-1);

The start BO of the traceback is (n, maxj (n)).

Thatis, (n, j) if there is a last match with score > T'; otherwise (7, 0), if some suffix of z is unmatched.

Seminar on computational biology 1999-10-04 Page 15

Overlap matches between x = HEAGAWGHEE and y = PAWHEAE
A prefix or suffix of x must be aligned with a prefix or suffix of y:

GAWGHEE
PAW HEA

This is like local alignment, with the restrictions that
e an alignment must begin on the left-hand or top border;
e an alignment must end on the right-hand or bottom border.

That is, an alignment cannot begin or end inside the F’ matrix.

Seminar on computational biology 1999-10-04 Page 14

Seminar on computational biology 1999-10-04 Page 16

Reducing the space consumption of global alignment

Al algorithms require time O(nm) to fill in the tables and space O(nm) to store the tables.
However, column ¢ of F' depends only on column ¢ — 1.

So only two columns of F' (and the traceback) need to be stored at the same time.

Hence we can compute the best score using only space OA: + \Sv.

How reconstruct the optimal global alignment?
Whenn < 1orm < 1, use the standard algorithm (in this case it uses little space anyway).

Otherwise, let u = :\w and assume the optimal alignment passes through A:, V).

(We can determine v while filling in F’).
Recursively determine
e the optimal global alignment z; between x_ ,, and ¥y, ,;and
e the optimal global alignment 23 between Z(y41)...n and Y(y+1)...m

Then the optimal alignment between x and y is the concatenation of z; and z».

KVL

Seminar on computational biology 1999-10-04 Page 17

Reducing the space consumption of local alignment

n F' using only space O(n + m) as above.
Keep track of the starting point (s1, S2) and the ending point (€1, e2) of the local alignment with highest score.
Compute the optimal global alignment between the subsequences Ty, .. ¢, and Y, .., in space sz + Sv

The result is also the optimal local alignment between x and y.

Seminar on computational biology 1999-10-04 Page 18

