
Prom. Nr. 2186

DIGITAL COMPUTERS

On encoding logical-mathematical formulas

using the machine itself

during program conception

Dissertation
presented to

The Federal Technical University in Zurich
for obtaining the

Degree of doctor of the sciences
by

CORRADO BÖHM, electrical engineer EPUL
from Milan (Italy)

Supervisor: Prof. Dr. E. Stiefel
Co-supervisor: Prof. Dr. P. Bernays

bologna

COOPERATIVA TIPOGRAFICA AZZOGUIDI
1954

English translation 2016 by Peter Sestoft • Version 1.0



2



3

Frontpage of the original.



4

Extract from the Annali di Matematica pure ed applicata
Series IV, Volume XXXVII (1954)



5

TO MY WIFE



6

Translator’s remarks Corrado Böhm (born 17 January 1923) completed his
PhD dissertation at ETH Zürich in late 1951 under the supervision of E. Stiefel
and P. Bernays. This translation from the French is based on the 1954 version
at http://e-collection.library.ethz.ch/eserv/eth:32719/eth-32719-02.pdf.

Böhm’s PhD dissertation was completed shortly after David Wheeler’s Au-
gust 1951 Cambridge dissertation and so is probably only the second one in com-
puter science. In addition to its historical interest, Böhm’s dissertation is a stel-
lar example of conceptual and notational economy. In just 46 pages, it presents
(a) an abstract machine, quite faithful to contemporary real stored-program
machines such as the IAS design from Princeton, the EDVAC in Philadelphia
and the EDSAC in Cambridge, but with index instructions like the Manchester
Mark 1; (b) a simple but complete programming language, including parenthe-
sized arithmetic expressions; (c) a loader program similar to Wilkes’s for the
EDSAC; and (d) a compiler from the language to the abstract machine’s in-
struction set, where — also a first — the compiler is written in the compiled
language itself. Contribution (a) is in chapter 1; (b) in chapters 2 and 3; (c) in
chapter 4; and (d) in chapters 5 through 7.

For historical context, the other doctoral students of Bernays are Julius
Büchi, Haskell Curry, Erwin Engeler, Gerhard Gentzen and Saunders Mac Lane.

Böhm’s programming language is very minimal; the only statement is as-
signment to a variable x (denoted e → x) or to the memory address stored in
variable x (denoted e → ↓ x). Since the program counter π is an assignable
variable, this suffices to express jumps and switches.

The left-to-right assignment notation e → x, which was customary until the
mid-1950es, allows for a particularly elegant form of literate programming, with
the (left-justified) natural language explanation to the left and the corresponding
(right-justified) program code to the right. This is used to excellent effect in
chapter 7 which consists of the entire commented compiler source code.

Böhm’s early work does not seem to have received the attention it deserves,
although it features prominently in Don Knuth’s survey The early development
of programming languages in Encyclopedia of Computer Science and Technology,
volume 7, 1977, 419-493.

It is my hope that this English translation will make Corrado Böhm’s dis-
sertation accessible to a wider audience. I have tried to translate it sentence
for sentence and to preserve connotations where possible. A more idiomatic
English translation would have shorter sentences and fewer Latinate words, but
I believe the present approach better preserves the original’s atmosphere.

Everything in these pages (except the present page and the appendices)
is Böhm’s work, including the chapter numbers starting at 0, the notation,
the footnotes and the terminology. However, I have translated exploration,
substitution and terme into the more recognizable terms load, store, and operand,
and fixed a few misprints.

Peter Sestoft
IT University of Copenhagen
4 May 2016



7

0. Introduction

0.1. Utility of automatic coding

Today one tends more and more to employ big digital computers because of the
following characteristics:

0.11. The ability to execute a sequence of computations by following a
program fixed beforehand.

0.12. A computation speed remarkably better (by several hundred times)
than preceding electromechanical or manual calculators.

These two properties allow one to establish an analogy, from an organiza-
tional and economical viewpoint, between one of these machines and a comput-
ing office. From the same viewpoints we could outline a classification into three
classes of work that one could submit to a programmable digital computer:

A) Computations having a character of extreme urgency and involving a very
large amount of data: e.g. meteorological forecasts or analysis of electoral
results.

B) Mass computations involving a very large number of operations that must
be repeated many times, such as inversion of high-dimensional matrices.

C ) Other computations not classifiable as neither A) nor B): e.g. integration
of a differential equation, solution of a transcendental equation, etc.

For categories A) and B) the difficulty of the program and the duration of its
preparation does not play a big role, because what is required of the program is
to allow one to profit maximally from the speed of computation. By contrast, for
category C ) the time spent by the people preparing and checking the program
may be much larger, by even another order of magnitude, than the time spent by
the machine executing the computations of that same program (e.g. it may have
the relation days/minutes). For category C ) it is property 0.11 that is essential,
i.e. the ease and flexibility of programming, as conceived in the machine design.

In the following we assume that the reader knows the principles of a digital
computer and especially those of recently constructed computers [1], [2] (1). The
work of programming may even have a direct influence on the overall duration
of the computation: if, by accident, when one submits a program to the ma-
chine for the first time, the results of the computation do not agree with those
predicted by a preceding control computation, and if one can exclude a machine
malfunction, one is obliged to admit at least one of the following disturbing
causes:

a) the program is erroneous from a logical-mathematical viewpoint.

b) the program has not been correctly recorded on the machine input media.

1The numbers in square brackets refer to the bibliography placed at the end of this study.



8

To pinpoint these errors, additional tests of the computation, often at reduced
speed, become necessary, with a relatively large accompanying loss of usable
machine time.

It would be better to try to avoid producing errors of any kind. An interest-
ing method is the one that consists in the auxiliary automation grouped under
the name “coding machines” (2). Another method that has given very good
results is that adopted by Mr. Wilkes [3], called “the method of subroutine
libraries”; according to this method one seeks to compose each new program by
opportune combinations of partial programs established in advance and of which
duplicates are conserved in a kind of library. The checking of a new program is
thus reduced to checking the instructions that connect the various subroutines.

On the subject of turning a mechanical computation into a program, one
must consider that the human work rests on a double knowledge: on the one
hand about the method to solve a given problem, and on the other hand about
the general organization (functioning and structure) of the machine used. The
human must thus transform each phase of the computation into a sequence of
operations that can be executed by the machine.

But, to what extent could the machine even compute that sequence for itself,
starting from certain formulas that express the method for solving the proposed
problem? The answer is the principal goal of the present report. Below, for
brevity we refer to this question as automatic programming.

The problem of automatic programming has been posed with a certain lati-
tude to avoid immediately falling into the difficulties attached to the notion of
a programmable computer. As also remarked by Mr. Von Neumann [4] we
do not yet possess, today, a satisfactory theory of automata and in particular
programmable calculating machines. To be able to formulate the question of
automatic programming more rigorously than we have done here, in a later
paragraph we shall use certain results due to Mr. Turing.

Similar question have by the way already been treated; here is a short survey
on the topic:

In 1949 Mr. Zuse [5] treated the formulation of the problem of recognizing
whether a sequence of signs involving variables and algebraic operator symbols
(see the examples in 4.2) do or do not possess a meaning (3). This question
constitutes a part of the more general problem of automatic programming of
a formula containing parentheses, and is the object of chapter 5 in the present
work. By coincidence Mr. Rutishauser has also been occupied by this latter
question [6] but the principles of our two solutions are entirely different (see
5.1); these kinds of problems admit numerous ways to attain the same goal.

Before concluding these general remarks it seems useful to emphasize those
of the results of our study that appear most susceptible to practical application:

0.13. The possibility of writing every program in the form of a sequence

2Such machines have been constructed by Mr. Aiken and Mr. Zuse.
3In the cited work Mr. Zuse expresses the opinion that one could construct a new kind of

machine that would be able to solve this problem among others. Since then we have succeeded
in solving the same problem using a punch card tabulator (System Bull). This success has
encouraged us to undertake the present attempt at synthesis on automatic programming.



9

of formulas adhering, as closely as possible, to the notational conventions fol-
lowed by mathematicians, while excluding instructions that concern primarily
the computer and its particularities.

0.14. The possibility of resolving the problem of automatic programming.

The coding is done exclusively with the use of the computer, in two consecu-
tive phases: During the first phase, the support medium on which the program
is recorded as a sequence of formulas is placed at the machine’s input device and
the computer executes a series of computations that produce the same program,
but recorded as coded instructions ready to be interpreted and automatically
executed later on. During the second phase the computer performs the compu-
tation, according to the coded instructions previously produced.

It is evident that the two possibilities mentioned facilitate the checking of
a program by reducing it to the checking of formulas, and by eliminating tran-
scription errors because no transcription takes place.

Furthermore, even if one abstracts away from any practical value of this
research, the mere existence of these possibilities appear to have, in our opinion,
a certain interest from the point of view of the theory of computing machines.

0.2. Specification of the category of digital machines con-
sidered

To avoid circular definitions of the terms: automatic computers, program, coded
instructions, automatic programming etc., let us briefly make precise to which
categories of machines these phrases refer.

0.21. Among the automatic digital computers we encounter first of all the
office machines (manual or electromechanical) that contain some fixed micropro-
gram; they can in effect automatically execute operation sequences to determine
e.g. the product or quotient of two given numbers.

0.22. Punched card installations consist essentially of digital computers that
may be deployed differently according to their previous programming. One
varies the program by changing the electrical circuits of the machine, thus
obtaining a corresponding variation in the sequence of arithmetic operations
executed.

0.23. The most evolved computers differ from the preceding ones, from the
programming point of view, first and foremost by the fact that the modification
of electrical circuits that determine the operations is not effectuated by hand
by the operator, but by means of conventional numbers or coded instructions
defined beforehand, and once and for all, by the machine. After this description
the reader easily recognizes that our study concerns only the latter category of
machines. In any case, the difference between 0.21, 0.22 and 0.23, so evident once
one thinks about the construction or use of a given machine, risks disappearing
when one must use, as we shall do, very general logical properties of mechanical
calculation. Thus the necessity of appealing to the notion of the next paragraph.



10

0.3. Using Turing’s theory

Since 1937 Mr. Turing has created a logical theory that has allowed him,
starting from a profound analysis of what a computation is, to define what is
today called mechanical calculation. His definition follows from the description
of a particular kind of automatic machine, suited for calculating sequences of
digits representing numbers known in advance or having known properties.

His study uses this definition to quickly obtain certain results in mathemat-
ical logic. Some of his conclusions — which we report further below — also
have a great interest for a possible future theory of computers, and they have
influenced the advances in computer programming over the last ten years.

Mr. Turing has shown how the notion of mechanical computability of a
number is fundamentally equivalent to the notion of existence of general methods
for determining that very number. He has furthermore shown, starting from the
hypothesis that one knows how to construct particular computers for calculating
particular number series, that there exists a so-called universal computer that
enjoys the following property: if one gives the universal computer the description
(conventionally formalized) of the functioning of any particular computer, the
former is able to simulate the behavior of the latter, i.e. compute in its place.

We would like to suppose — what seems quite plausible — that the most
advanced computers are universal, in the sense specified by Mr. Turing. That
allows us to formulate the following two working hypotheses, to which we will
appeal later on:

0.31. Programmable computers of category 0.23 are, from a logical-mathe-
matical viewpoint, mutually equivalent.

This hypothesis allows us to limit our study to a single type of computer,
e.g. a three address computer, without fearing loss of generality.

0.32. The “program” admits, in universal computers, a double interpreta-
tion. The first is: “Description of a behavior of the computer”. The second:
“Description of a numeric method of computing”.

This hypothesis is just a new wording of Turing’s idea and justifies the
search for a formalism apt to making this idea fully evident.

0.4. Summary

We shall first describe (chapter 1) the structure and organization of a computer
like those already constructed. We can thus define explicitly a fundamental
cyclic program that expresses the definition of “program” (see 0.32) in terms of
this machine, before even specifying what coded instructions there should be.
When this latter choice has been made, we demonstrate the universality of this
computer and introduce some supplementary instructions that will be useful
later. After having passed from the usual program notation to another notation
(chapter 2), we justify the symbolism introduced by the possibility of writing
any program in this formal language, building only on logical and algebraic no-
tions (chapter 3). Moreover, we demonstrate (chapter 4) that one can make this
formalism available to the computer using a teletypewriter as intermediary, by



11

establishing a two-way unambiguous correspondence between symbols and inte-
ger numbers. The formulas that represent a calculation program algebraically
may contain parentheses (chapter 5) or polynomials of multiple variables on
a normal form (chapter 6). In both cases we can make the computer itself,
thanks to a fixed program independent of the particular nature of the formulas
(chapter 7), execute the computations necessary to produce detailed coded in-
structions from the formulas expressing the intended numerical method. Finally
(chapter 8) we have put in relief the logical redundancy of certain operations
and recalled the arithmetization of propositional calculus.

1. Description of a three-address programmable

computer

1.0. The machine that we are going to describe in outline is a programmable
computer in principle. Consequently we leave aside all questions concerning the
number representation (binary or decimal or a mixture) used in the computer
and similarly all considerations concerning representation of fractions (point
placement) and negative numbers.

Without loss of generality we can assume below that every number used in
the computer is a non-negative integer of a fixed length (e.g. 14 digits), i.e.,
composed by a fixed number of decimal digits4.

The double meaning of the numbers used.
Each integer thus quantified in general possesses a second meaning: That of

a coded order fixed once and for all at the construction of the computer by a
table of coded operations, or instruction code (see 1.3). For instance, the number
zero, interpreted as an instruction, causes the computation to halt (stop).

The number-numbers and the instruction-numbers, while having no distin-
guishing features, undergo different treatment thanks to the structure of what
we call the computer’s fundamental cyclic program (see 1.2).

1.1 The computer’s organs (see figure 1)

I. An arithmetic unit UA where numbers originating from other machine organs
(figure 1 connection 3 and 7) are subject to arithmetic operations (addition,
subtraction, multiplication, etc.). From our point of view, it is convenient to
think of all operations in the UA as binary, i.e. as characterized by mapping
each ordered pair of numbers — called respectively the 1st and 2nd operand of
the operation — to a 3rd number, or result.

II. An internal memory M composed of approximately 1000 cells each of
which can hold a number of an instruction (of 14 decimal digits) for an arbitrary
duration. To each cell is attached an order number or address. The internal
memory enables at any time two categories of operations:

4For instance, the numbers 00000000000000 and 00000000000001 represent zero and one.



12

Figure 1: The computer’s organs.

1.11. The store or transfer to a particular address, i.e. the act of transferring
a number from a machine organ to the cell having a particular address, where
the number previously held in that cell will be forgotten, i.e., replaced by the
new one (see connections 1 and 8 in figure 1).

1.12. The load or transfer from a particular address, i.e. the act of transfer-
ring a copy of the number found in a given (but otherwise arbitrary) cell, to an
organ of the computer (see connections 2, 5, 6, 7 in figure 1).

III. A reader or input organ L that allows to put into M (connection 1) or
into UA (connection 3) numbers (or instructions) recorded on perforated paper
tape or on magnetic tape.

IV. A printer or output organ I that allows to perforate or magnetically reg-
ister on tape, at the machine’s output, numbers originating from M (connection
2) or from UA (connection 4).

V. A register π with a capacity of four decimal digits. Connections 6 and
9 (fig. 1) represent, respectively, the loading of the four rightmost digits of a
number contained at an arbitrary address of M, or contained in UA. The use of
this register will be explained in 1.2.

VI. An organ of automatic control, or pilot, P whose purpose is to coordi-
nate the action of all the organs previously mentioned, in such a way that the
instructions belonging to a calculation program get executed correctly and in
the right order. In particular, all the connections shown in fig. 1 representing
the transfer of numbers internally in the computer are activated by the control
at the appropriate moments. Overall, we can describe the action of the control
simply as the ability to first interpret the number contained in a certain address
obtained via a load operation (connection 5 in fig. 1) as a coded instruction,
and the ability to then effect its execution.

1.2 Stationary functioning

After having described the computer’s organs separately, we now seek to de-
scribe how a given computation runs in time, confining ourself to the stationary
phase, i.e. excluding the moments at which the machine begins or finishes a



13

computation5. We must characterize the computer’s degree of automation and
explain the mechanism by which the presence of certain numbers in a region of
the internal memory M leads to a corresponding course of computations. Thus
we assume that at a certain moment of the stationary phase, coded instructions
are stored in M in such a way that the majority of those that must be executed
consecutively are at consecutive addresses.

The computation takes place, independently of the specific nature of the
computations to perform, according to a fixed scheme with a periodic structure,
in which the π register and the control P play an essential role.

This scheme comprises the following three successive phases:

1.21. The control loads from the address in M specified by the number
contained in the π register.

1.22. The number contained in the π register is replaced by that obtained
by incrementing it by one.

1.23. The control P, after having interpreted the number loaded in phase
1.21 as an instruction, effects its execution.

The next phase of the computation is formally identical to 1.21, the one that
follows identical to 1.22, and so forth. The set 1.21, 1.22 and 1.23 constitute the
fundamental cyclic program. This calculation schema is formal in the sense that
it characterizes not just a programmable computer, but a class of programmable
computers. In fact, we have not yet specified, apart from this schema, the nature
of the arithmetic or logical operations described by the coded instructions. It
is only after one has chosen a class of coded instructions and joined it with
the fundamental cyclic program that the description of the principles of our
computer is unambiguous.

Our intention is to demonstrate that if one codifies only the operations that
we have mentioned in paragraph 1.1, that already defines a computer having
the same flexibility as computers of category 0.23, i.e. universal computers.

In summary, the operations of that paragraph were the following:

1.10. Arithmetic operations (addition, subtraction, etc.)

1.11 and 1.12. Store and load operations, i.e. transfer operations, including
exchanges with the external world (connections 1, 2, 3 and 4 of fig. 1), internal
connections (6, 7, 8 and 9) (6) and the stop operation.

To demonstrate this, we must first introduce some convenient notations re-
lated to all programs, i.e., define a code.

5The moment of starting a computation is chosen by the operator, who acts on the control
by means of organs that we have not described, limiting outselves to the essential ones.
Similarly, the moment at which the machine stops computing may depend — except in the
case where it is caused by the program — on multiple circumstances foreign to the normal
functioning of the machine.

6Connection 5 is not mentioned as it belongs to the fundamental cyclic program.



14

1.3. Three-address code

Every coded instruction is represented by a number N defined like this:

N = 1010 · c1 + 108 · cop + 104 · c2 + cr

where c1, c2, cr are integers < 1000 and cop an integer < 100; i.e. the decimal
structure of the number N is the following:

. . . .
︸ ︷︷ ︸

. .
︸︷︷︸

. . . .
︸ ︷︷ ︸

. . . .
︸ ︷︷ ︸

(in total 14 decimal digits)

0 c1 cop 0 c2 0 cr

The meanings of c1, cop, c2, cr are fixed by the following rules:

c1 is the address of the instruction’s first operand.
cop is the number of the instruction’s characteristic code.
c2 is the address of the instruction’s second operand.
cr is the address to which one must transfer the operation’s result.

The cop values are defined according to this table:

Symbol cop Result of the corresponding operation
+ 01 Sum (modulo 1014) of the 1st and 2nd operand.
.
− 03 Difference between 1st and 2nd operand, if positive; else 0 (7).
· 02 Product (modulo 1014) of 1st and 2nd operand.
: 04 The integer quotient 1st operand divided by 2nd operand.
÷ 06 The absolute difference between 1st and 2nd operand.

mod 07 The remainder of 1st operand divided by 2nd operand.
∪ 08 The greater of the two operands.
∩ 09 The smaller of the two operands.

Thus the instruction

N ′ = 0123 04 0567 0890

has the following meaning:
“The number held at address 123 should be divided by the number held at

address 567; the integer part of the quotient must be transferred to address
890.”

Repeating the general notation with letters instead of the numbered ad-
dresses, all transfer operations are represented by numbers having the following
decimal structure:

T = 0c1 05 0c2 0cr

where 05 is the code number for transfer instructions and c1, c2, cr have the same
meaning as before; the instruction coded as T thus has the following meaning:
“The number loaded from address c2 is transferred to address cr.” Note that

7These modifications of the usual subtraction and division operations are dictated by the
need to stay within the class of non-negative integers.



15

one can consider the transfer an operation with two operands, just neglecting
the first operand address c1; in reality it is an operation in one operand only.

Let us associate once and for all the address 000 with register π, and the
same address 001 with both organs L and I (see 1.1) so that we can interpret
the following three numbers:

J = 0c1 05 0c2 0000
L = 0c1 05 0001 0cr
I = 0c1 05 0c2 0001

as follows, respectively:

J) “The rightmost four digits of the number with address c2 must be trans-
ferred to register π”.

L) “The number on the input tape L must be transferred to address cr and
the input tape must advance to the next number written on it”.

I) “The number loaded from address c2 must be written to the output tape
I and the tape must advance to the next place”.

One recognizes in the three instructions J , L and I the preparation for an
unconditional jump [2, page 8], a read order, and a print order or output.

Finally, let us interpret the number

S = 0000 00 0000 0000

as stop. Below, we accept a further reason for stopping: when at a given
moment in time the contents of the π register is 0000 (8).

In summary, we have represented every coded machine instruction described
by an integer N having a fixed decimal structure: by specializing the numeric
value of certain decimal positions have defined multiple subclasses of operations
that we here name by the letters previously introduced in this paragraph: N ′

(as example of an instruction having an arithmetic character), T , J , L, I and
S (instructions having a logical character).

1.4 Universality of the described computer

To demonstrate that the machine described has a flexibility comparable to that
of computers recently constructed, it obviously suffices to show that every in-
struction coded for the latter can be expressed using instructions of the former.
We shall limit ourselves to the most interesting case, i.e. to that of conditional
commands9 (C.C.), saving the discussion of instructions related to the devices
called respectively “i-register” and “B -tube” for a later paragraph.

8If in the computer the digit zero is represented by the absence of a pulse, the second cause
is a consequence of the first one, as one can easily verify by following the mechanism of the
fundamental cyclic program.

9In English: conditional call (see also [2, page 45]).



16

The C.C. most often used is described as follows, assuming that it is placed
at address n:

C.C.1. “If the number stored at address a is positive, execute the instruction
whose address is x, otherwise execute the instruction at address n + 1.” With
the numbers a, x and n known in advance, the purpose of this instruction is
obviously to be able to automatically influence the succession of operations, or in
general the entire course of the computation from a given point, as a function of
the results obtained until that very point. We are going to show the possibility
of encoding a similar C.C., which is a slight generalization of C.C.1, namely:

C.C.2. “If the number contained at address a is positive, execute the instruc-
tion whose address is x, otherwise the one whose address is y.”

Proof. Suppose first that one can transfer to address c2 the number u defined
like this:

u =

{
x if (a) > 0
y if (a) = 0

where (a) represents the number held at address a.
Now the execution of a J instruction immediately brings us to the goal. Here

as elsewhere, we can calculate u by the following relation:

(1.41) u = [1 ∩ (a)] · x+ [1 .− (a)] · y

which completes the proof. (For ∩ and .−, see 1.3). As illustration, let us
write the complete sequence of coded instructions in a particular case. Let, for
example,

x = 301, y = 302, a = 002, u = 300

and let the number 1 be stored e.g. at address 007, whereas x and y are re-
spectively at addresses 025 and 026. Then the following sequence of instruction
codes

(1.42)

n1 = 0007 09 0002 0028 Compute 1 ∩ (a)
n2 = 0007 03 0002 0029 Compute 1 .− (a)
n3 = 0028 02 0025 0030 Compute [1 ∩ (a)] · x
n4 = 0029 02 0026 0031 Compute [1 .− (a)] · y
n5 = 0030 01 0031 0300 Compute u

J = 0000 05 0300 0000 Unconditional jump

is equivalent to C.C.2.

1.5 Role of the B-tube and the i -register

In [8] it is shown by examples how the devices called B -tube or i-register fa-
cilitate “address computations” thanks to supplementary instructions related to
them. Their superfluity from a purely logical point of view is likewise noted [8,
page 51]; but it is almost obvious that nothing prevents (even in the computer
we just described) the program execution from modifying the encoded instruc-
tions by adding, e.g. to an address that is part of an instruction, an integer (mod



17

1000), before the instruction itself gets executed. This is, roughly, the effect of
the B -tube.

1.6 Iterated store and load operations

If one reflects on the practical utility of these auxiliary instructions for address
calculations, one realizes that they play a certain role in the solution of the
problem of automatic coding by the method of subroutine libraries. In fact,
thanks to these auxiliary instructions, the instructions making up the subroutine
undergo only very weak modifications according to the zone of internal memory
(more precisely, the addresses) in which they are placed.

Since our ultimate intention is to express the coded instructions by formulas
that are invariant relative to the internal memory addresses, we shall add some
mechanisms to the machine that permit what we call, in brief:

1.61 “iterated stores” and
1.62 “iterated loads”, i.e.

(see again 1.11 and 1.12) operations defined like this:
1.61. Transfer of a number (placed in a particular organ of the computer) to

the address indicated by the three rightmost digits contained at a given address.
1.62. Transfer to a particular organ of the computer of a duplicate of the

number held at the address indicated by the three rightmost digits of the number
held at a given address.

The description of the mechanisms that perform these operations fall outside
the scope of this study; but it is useful to show how one could incorporate the
“iterated” operations in the three address numeric code previously described.

Recall that the decimal structure of any of the instructions described was:

N = 0c1 cop 0c2 0cr

and note that

1st The execution of this instruction implies, in general, two loads (at ad-
dresses c1 and c2) and one store (at address cr).

2nd The digit immediately to the left of the first digit of c1, c2 and cr is zero.

Let us distinguish the iterated load of c1 or c2 or the iterated store of cr from the
corresponding simple operations by replacing, respecticely, the 1st, 7th and 11th
digit from the left of N by unity, where these replacement may be simultaneous
or not, as the case may be.

Example: The instruction number

n′ = 1997 04 1996 1995

thus has the following meaning:



18

“The number contained at the address equal to the number (mod 1000) con-
tained at address 997 must be divided by the number contained at the address
equal to the number (mod 1000) contained at address 996; the integer part of
the quotient must be transferred to the address equal to the number (mod 1000)
contained at address 995.”

Obviously the number n′ is invariant relative to any change of the addresses
of the division’s three operands, whereas the number N ′ (see 1.3) is not; one
understands thus the interest that instructions such as n′ may have for the
automatic coding.

2. Changing the notation system

Our final goal is to demonstrate the possibility of solving the problems of auto-
matic coding with the help of a computer following the principles described in
the preceding chapter. To simplify this task we propose a purely formal change
of notation for the three-address instruction numbers.

Let us consider a completely arbitrary instruction among those that we have
previously introduced. It will have the following decimal structure:

ε1c1 cop ε2c2 εrcr

where c1, c2, cop and cr have the well-known meaning and each εi (i = 1, 2, r)
represents one of the digits 0 or 1. Now in the following let us:

2.1. Purely and simply delete εi if εi = 0, and replace every εi = 1 by the
symbol ↓.

2.2. Always interpose the transfer symbol → between c2 and cr (or ↓ cr).

2.3. Replace cop by the corresponding operation symbol (see the table in
1.3) but leaving out the nonessential part ε1c1cop when cop = 05.

2.4. Systematically replace the adresses 000 and 001 by the symbols π and
?, and the 52 addresses from 002 to 053 by the letters a, b, . . . , z, A,B, . . . , Z in
alphabetical order.

2.5. Use letters with indexes or non-Latin characters to indicate numeric
addresses > 053; in particular, Ω for an address that always contains the number
0 (stop), for instance address 998.

2.6. Interpret a number written in italics as indication of an address that
contains that number, for instance, 123 represents some address that contains
the number 123 (10).

Let us use these conventions to write in the new notation the instruction

10The corresponding traditional notation is 〈123〉 (see e.g. [6, page 4]).



19

numbers encountered in the preceding pages:

N ′ 123 : 567 → 890 (convention 2.2, 2.3)
T c2 → cr (convention 2.2, 2.3)
J c2 → π (convention 2.2, 2.3, 2.4)
L ? → cr (convention 2.2, 2.3, 2.4)
I c2 → ? (convention 2.2, 2.3, 2.4)

Instr. equiv. to S Ω → π (convention 2.2, 2.3, 2.4, 2.5)
Instr. equiv. to S 0 → π (convention 2.2, 2.3, 2.4, 2.6)

n′ ↓ 997 : ↓ 996 → ↓ 995 (convention 2.1, 2.2, 2.3)
N(11) c1 op c2 → cr (convention 2.1, 2.2, 2.3)

The short coded program equivalent to a C.C.2 (see (1.42)) now takes this form:

(2.7)

n1 1 ∩ a → A

n2 1 .− a → B

n3 A · x → C

n4 B · y → D

n5 C +D → u

J u → π

1st comment. The correspondence between the notational system we are
used to and the one we have just proposed is one-to-one. The inverse transfor-
mation is effectuated by deleting the symbol → (and inserting cop = 05 only
if the first operand and the operation symbol are missing) and replacing each
letter or operation symbol by the code number according to the established con-
ventions: one must write 1 or 0 before each address according as the symbol ↓
is present or absent. We have called → the transfer symbol because it replaces
operation 05; nevertheless the real function of this symbol is to make it evident
that in the execution of c1 op c2 → cr, the addresses c1 and c2 undergo a dif-
ferent treatment than does cr. In fact the two former are the objects of load
operations (for which we have not designated any symbol) whereas the latter is
the object of a store instruction.

2nd comment. The introduction of the “iterated store and load” operations
in the three address code could lead to be belief that double iteration of these
instructions would constitute a new problem and make a new coded instruction
or a new symbol necessary. But they do not, as we can show by a relatively
simple application of the proposed symbolism. In fact, the following “doubly
iterated store” operation: “Transfer a number from address x to the address
contained at the address contained at address A” is expressed in two lines by

↓ A → P

x → ↓ P

Similarly, the inverse operation which is a kind of “doubly iterated load”:

↓ A → P

↓ P → x

11Here and below, “op” stands for any operation symbol arbitrarily chosen among the coded
operations.



20

3. Justification of the symbolism introducted

3.1 Potential for an abstract program formulation

In chapter 1 we have demonstrated the universality of the computer described.
That is equivalent to a confirmation that every description of calculation meth-
ods can be expressed with the help of a suitable sequence of the symbols
a, b, . . . , z, A,B, . . . , Z,Ω, ?,→, ↓,+,

.
−, . . . ,∪,∩, where the meaning of the sym-

bols is that defined in the preceding chapter.
But our intention is to show that to use the symbols correctly, it is not

necessary to go back in each case to their operational meaning with respect to
the computer. The same symbols — and that is what constitutes the practical
advantage of the notation — may be subject to a second interpretation of an en-
tirely logical and algebraic nature (12). This interpretation is not directly linked
to any notion of a machine; rather it is associated with that of a “description
of a numeric method for the solution of a given problem”, a phrase that in the
following we shall replace with the shorter “description”.

What follows obviously has a heuristic character and could as well serve as
definition of what we understand, today, by “description”.

Every description implies that one must have numeric data and exhaustive
information about the arithmetic operations to be carried out on the data, so
as to obtain intermediate values and the final result of the computation.

Every description is formed by an alternation of formulas and phrases; the
former usually indicating the sequence of operations and the latter indicating
the variants, iterations, or in general the auxiliary conditions influencing the
actual course of the computation. For instance, there are descriptions that
use iterative methods where the number of iterations is unknown a priori, and
descriptions in which certain intermediate results necessary for the rest of the
computation must satisfy auxiliary conditions (being positive, numbers being
real, random choice, etc.).

We thus allow that for each description, one can state a priori the definitive
sequence of arithmetic operations, or at least the criteria of choice, i.e. the
conditions that must be tested at a later time, during the computation, to
uniquely determine the course of the computations.

As a consequence of abstaining from a higher order of complexity than that,
it is possible to decompose every description into a sequence of formulas — of
the logical-mathematical kind — by applying a system of conventions concerning
in particular:

3.2. The decomposition of every description into a certain number of similar
groups, each composed of three parts.

3.3. A further decomposition of the three parts of each group into formulas
whose operations are at most binary.

12One can already glimpse this result by comparing formula (1.41) with that obtained by
replacing, everywhere in the first five lines of the formulas (2.7), the sign → with =, and
eliminating A, B, C and D, considered as algebraic quantities, from the five equations thus
obtained.



21

3.2. Decomposition into groups. Graphical interpretation

Any description is decomposable into different groups having a similar struc-
ture. Let us call these groups A,B,C, . . . ,K, . . .. Any group K comprises the
following three parts:

• An indication that it belongs to group K.

• A chronological indication of arithmetic operations and the quantities on
which they operate.

• An indication of the next group to choose (the choice being in general
dependent on certain conditions).

It is convenient to call the first group A; similarly let us call Ω the group
characterized by the fact that it has no operations nor any indication of the next
group to choose; in this case it evidently is an indication that the description
is finished. The decomposition that we have just proposed has the advantage
that it makes the order of the groups inessential, so that they can be permuted
arbitrarily without affecting the intelligibility of the description.

Below we shall also make use of a graphical interpretation of such a decom-
position by means of a graph of a very general type [9]. This is a generalization
of the “structure diagram” [10] that we easily obtain in the following fashion: to
each group one has a corresponding point denoted by the same letter. Hence-
forth let K and L be two arbitrary points or groups. These are joined by the
oriented segment ~KL if and only if, in the third part of group K, L is included
among the next groups to choose from. The graph drawing is complete when
it contains all the links included in the description. Each iterative process is
represented in the graph by a circle or by a loop (see fig. 2, page 26). To each
group containing a choice among n alternatives correspond a point with at least
n branches in the graph (see fig. 5, page 42, point D where n = 11).

3.3. Conventions concerning formula writing

First recall that since the beginning of chapter 1 we have limited ourselves to
considering only integral non-negative numbers.

The given quantities and the intermediate or definitive results will be desig-
nated by letters chosen at will, but when possible in lowercase letters. Numeric
constants will be written in italics and the arithmetic operations will be repre-
sented by the usual symbols (see table in 1.3).

Quantities provided with indexes may also be represented directly as we shall
show, if one renounces (in general) the possibility of letting the indexes range
over the same set of values that they range over in the description. In any case,
this reservation is not too onerous because, in the worst case, it is a matter
of transforming the set of values assumed by each index by adding a constant
number, known a priori. The final conventions for the translation of phrases
into formulas can be condensed using the following “dictionary”:



22

Phrase Symbol
“Becomes” or “is made equal to . . . ” → (13)
“A known number” ?
“The group to choose next” π

“The quantity with index i” ↓ i

“The group that begins here” π′

“No group” Ω or 0.

The most important applications become:

Phrase or formula Formula Verbal translation
Let a and b be given num-
bers

? → a Make a equal to a given
number

? → b Make b equal to a given
number

x is a result x → ? x becomes a known number
The next group to choose is
C

C → π C becomes the next group
to choose

Do not choose any next
group

Ω → π No group is next

0 → π

Let r be the product of a

and b

a · b → r Make r equal to a · b

If m = 1 the next group is
S; if m = 0 there is no next
group

m · S → π m · S becomes the next
group to choose

Let the new number h be 1 1 → h h becomes 1
Henceforth let us call m

what was previously m+ 1.
Or, increment m by unity.

m+ 1 → m m becomes m+ 1

Here begins group K (14) π′ → K The group that begins here
is made equal to K

The dictionary and the sample of formulas that we have presented should suffice
to translate any description into formulas, if in addition one takes into account
these three rules of “syntax”:

3.31. Rule of explicitation. In a “well-formed” sequence of formulas each
letter (15) appearing to the left of the sign → has previously (16) appeared at

13Our definition of the sign → with respect to the computer (see 2.2) corresponds to Mr. Von

Neumann’s [10]. On the other hand, the logical definition given above comprises the meaning
given by Mr. Zuse [5] to the sign 〉= “ergibt” as well as that given by Mr. Rutishauser [6]
to the sign →֒. Rather than use three different symbols [6] to describe what in the machine is
achieved by a single operation (i.e. a store), we have preferred to slightly broaden the logical
definition of the sign →.

14We shall systematically translate the first part of each group like this.
15Certain letters are exceptions to this rule; notably Ω (trivially) and π′, and the letters

that represent groups of the description. These exceptions are the object of a discussion in
chapter 4.

16Here “previously” means “in a preceding formula of the same group or in a formula be-



23

least once to the right of the same sign; to the right of the sign → there is never
more than one letter.

3.32. Rule of index transformation. If in the description there is a quantity
indexed by i where i varies e.g. from 0 to n, one must replace i by the index
i + z where z ≥ 100 is a fixed number. If more than one quantity depends on
the same index i, the notation ↓ i (see above) cannot suffice: this advertises
the fact that one must in general introduce as many indices (differing from each
other by constants) as quantities; finally the sets of numbers traversed by the
different indices must have no element in common and each index must be an
integer number with three digits (which implies in any case that n < 900).

3.33. Rule of arithmetization of condition of choice of the following group.
The need for unambiguous execution over time requires us to assume that the
criteria for choosing among groups A,B, . . . ,K, . . . can be always expressed like
this: “If the condition CA is satisfied one must choose A as the next group,
if the condition CB is satisfied one must choose B as the next group, . . . , if
the condition CK is satisfied one must choose K . . . ”, where the conditions
CA, CB, . . . , CK , . . . constitute strict alternatives in the sense that one and only
one of them can be satisfied at the same time.

Suppose now that the groups A,B, . . . ,K, . . . are distinct positive integers
and that to each condition CK there is a corresponding nonnegative integer eK
such that for each group:

eK = 0 if and only if CK holds

If we denote by S the group to choose, it is easy to see that the rule we seek
can be expressed by the formula

S = (1 .− eA) · A+ (1 .− eB) · B + · · ·+ (1 .− eK) ·K + · · ·

One can consider S the scalar product of two vectors in an n-dimensional
space (n being the number of terms in alternative) where the vectors have
components (1 .− eA, 1

.− eB, . . . , 1
.− eK , . . .) and (A,B, . . . ,K, . . .) respectively.

In any case, since 1 .−e is 0 or 1 according as e > 0 or e = 0, it follows that the first
vector is a unity vector and belongs to a basis: thus one has S = A,B, . . . ,K, . . .

according as 0 = eA, eB, . . . , eK , . . .; QED (17).

3.4. Two examples of description

1) Euclid’s algorithm: Search for the greatest common divisor m of two
given numbers (see figure 2).

longing to a group such that a traversal of the graph starting from group A in the direction
of the arrows will encounter that group first”.

17In the case of an alternative with just two terms one finds a formula analogous to (1.41)
by using the identity 1

.
− (1

.
− e) = 1 ∩ e (e is integral and ≥ 0).



24

A Let a and b be two given num-
bers. Let M be the greatest and
m the least of these.

π′ → A

? → a

? → b

a ∪ b → M

a ∩ b → m

B → π

B Let r be the remainder of divi-
sion of M by m. If r = 0 con-
tinue at C, otherwise at D. (18)

π′ → B

M modm → r

{[(1 .− r) · C] + [(1 ∩ r) ·D]} → π

C m is the result. Stop. π′ → C

m → ?
Ω → π

D Rename m as M , and r as m;
continue at B.

π′ → D

m → M

r → m

B → π

2) Generalization to n numbers Computing the greatest common divisor
of n given numbers (see figure 3).

The description is much more complicated than the preceding one, not just
because n > 2 but especially because it must be valid for any value of n (in
practice we assume n ≤ 800). The envisaged method can be summarized in
few words: given a known n, let (an, an−1, . . . , ai, . . . , a2, a1) be the set of given
numbers. Now let m be the smallest of the ai and ri be the remainder of the
division of ai by m. Consider the set of h ≤ n numbers (r1, r2, . . . , rk, . . . , rh =
m) obtained from the ri while adding m and discarding all those remainders
that are zero. Continue the calculation while treating the rk as previously the
ai, and so on, until the moment when h = 1. Then m is the number sought.

We will now write the detailed description of the mechanical calculation.
One will note how much of the description just sketched is implicit, even from a
logical or algebraic point of view; furthermore one notes that the sets of numbers
traversed by the indices i and k cannot, in this particular case, be disjoint since
at a given instant the rk literally take the place of the ai. The number z (see
convention 3.32) has the value 100 below.

18The expression to the left of the → sign, while being comprehensible, does not obey
convention 3.3 on page 20. (One ought to write five lines as in (2.7)). Since the entire
chapter 5 is dedicated to demonstrating that an expression with parentheses can be given
directly to the computer, we hope the reader will pardon us this foresight for the benefit of
clarity.



25

A Let n be given and put
i = n+ 1.

π′ → A

? → n

n+ 101 → i

B → π

B Decrement i; let ai be
given. If i = 1 con-
tinue with C, else re-
peat B.

π′ → B

i− 1 → i

? → ↓ i

[(1 .− (i .− 101)) · C] + [(1 ∩ (i .− 101)) · B] → π

C h is initially equal to
n. Let m be ai.

π′ → C

100 + n → h

↓ i → m

D → π

D Increment i. Let m be
the smallest of ai and
m. If i = h continue
with E, else repeat D.

π′ → D

i+ 1 → i

↓ i ∩m → m

{[(1 .− (h .− i)) ·E] + [(1 ∩ (h .− i)) ·D]} → π

E Put i = 0 and k = 1. π′ → E

100 → i

101 → k

F → π

F Increment i. Compute
the remainder r of the
division of ai by m. If
r = 0 continue at G,
else at H .

π′ → F

i+ 1 → i

↓ imodm → r

{[(1 .− r) ·G] + [(1 ∩ r) ·H ]} → π

G If i = h continue at I,
else restart at F .

π′ → G

{[(1
.
− (h

.
− i)) · I] + [(1 ∩ (h

.
− i)) · F ]} → π

H Put the value of r at
index k. Increment k.
Restart at G.

π′ → H

r → ↓ k

k + 1 → k

G → π

I Make k equal to h.
Put m = rh. Put
i = 1 and make m

equal to r1. If h = 1
continue at L; else
at D and rename the
(a1, a2, . . . , ai, . . . , ah)
as
(r1, r2, . . . , rk, . . . , rh).

π′ → I

k → h

m → ↓ h

101 → i

↓ i → m

{[(1
.
− (h

.
− 101)) · L] + [(1 ∩ (h

.
− 101)) ·D]} → π

L m is the result. Stop. π′ → L

m → ?
Ω → π



26

Figure 2: Graph of program for Euclid’s algorithm (n = 2).

Figure 3: Graph of program for Euclid’s algorithm (arbitrary n).

4. Principle of automatic programming

4.1. Input program

Let us try to answer the following question:
After having expressed the description of a numerical method for solving

a given problem in the notation whose formal rules were established in the
preceding chapter, let us perform the inverse of the notational transformation
given in chapter 2. We thus obtain a sequence of instruction numbers.

By which procedure can this sequence of numbers be placed in the computer’s
internal memory so as to constitute the final calculation program for solving the
given problem?

Note that it is only if this procedure exists and is general that we can claim
to have solved (at least in principle) the problem of automatic programming. In
this case, effectively, every program would be expressible by formulas that obvi-
ously do not keep count of the memory addresses at which instruction numbers
must be stored.

Moreover, since the formulas can be established without reference to the
particular properties of the computer used, apart from it being three-address



27

(19) and universal, one would demonstrate at the same time the program’s
independence of the particular computer that must execute the computations.

But the reply to our question is relatively simple, if one fixes once and
for all, as we shall do, the role played by the address π′ and the addresses
A,B, . . . ,K, . . . etc. as used in instruction numbers of the type π′ → A etc.,
that we shall call “immediate instructions”. We shall represent π′ by a specific
address, e.g. the address 999.

Let us suppose that the input tape of the computer contains, one after the
other, N instruction numbers belonging to some program. Let 100 ≤ φ ≤ 970
be some address of the memory such that none of the N following addresses,
in increasing order, coincide with any value that the program’s indexes may
assume. To begin with the contents of address 999 must be φ+ 1.

We imagine that at addresses 970 and the following ones are written the
short input program described below, whose role is this:

Every instruction number that enters the machine is analysed: if it is an “im-
mediate instruction” it is executed instantly; otherwise the instruction numbers
are placed at consecutive addresses starting from φ+ 1.

α The next instruction number on the
tape is called a; if it is zero, stop; else
continue at β. (20)

π′′ → α

? → a

(1 .− a) · Ω + (1 ∩ a) · β → π

β Let b be the number formed by the 4
last digits of a. If the 5th–10th digits of
a are 050999 continue at γ, else at δ.

π′′ → β

amod 10000 → b

a
.
− b → c

c+ 9490010000 → f

f mod 10000000000 → d

(1
.
− d) · γ + (1 ∩ d) · δ → π

γ The number in π′ must be transferred
to the address designated by b; continue
at α.

π′′ → γ

π′ → ↓ b

α → π

δ The number a must be transferred to
the address designated by π′. Increment
π′. Restart at α.

π′′ → δ

a → ↓ π′

π′ + 1 → π′

α → π

By means of the device just described, the numbers written to addresses
A,B, . . . ,K, . . . before the start of the computation will be precisely the ad-
dresses where the first instruction of the corresponding group is stored: this
fact guarantees the correct execution of the program during unconditional jumps
(e.g. K → π) and even conditional ones.

19This restriction, however, is not indispensable for the developments that follow.
20For reasons of clarity, in this description we have written π′′ instead of π′ at the beginning

of all groups (which are named by Greek letters).



28

4.2. Realization of the principle of automatic programming

Since our goals for “wholesale” programming have been reasonably attained, let
us concentrate on the more restrained problem of making the formalism directly
accessible to the computer. It is about constructing a kind of coding machine.
In any case it suffices to have a teletypewriter with keys, each carrying one of
the following indications:

Variables a, b, . . . , z, A,B, . . . , Z, ↓a, (21) ↓b, . . . , ↓z, ↓A, ↓B, . . . , ↓Z, π, π′, ?,Ω.
Operations +, ·,

.
−, :,→,÷, mod ,∪,∩.

Parentheses (, ).

When pressing a key, the corresponding symbol is printed on a sheet of paper
and at the same time recorded on punched paper tape or magnetic tape. To
each key press corresponds a unique integral number fixed once and for all. Thus
for each program there is a corresponding sequence of numbers. We consider
this sequence the given data, and consider how to obtain another sequence of
numbers, namely the sequence of instruction numbers for the given program.
This is an arithmetic problem that can be solved by the computer itself, by
applying a program for “automatic programming”. On the other hand, since we
must in any case have a program for encoding a formula of type a op b → c, we
seek to extract the maximal profit from this circumstance. We shall demonstrate
in the following two chapters that one can automatically encode formulas of the
type

(((a + b) · d) : d) → x

i.e. formed by an arbitrary (but meaningful) sequence of symbols comprising
variables, operation signs, and parentheses. Similarly we shall automatically
encode formulas of the type

a
.
− b · c+ d : f · g → x where by d : f · g one understands d · f−1 · g

i.e. representing a polynomial of multiple variables, in normal form, each mono-
mial formed by a product of factors having an exponent equal to +1 or −1.

Moreover, we shall include in these programs the check that the symbol
sequence of each formula has a meaning (22), to be able to report automatically
whether, e.g., the two operation signs + : appear immediately after one another.

4.3. Correspondence between symbols and numbers

Between the symbol S and the number c that must be recorded on the input
tape by the teletypewriter, we choose the following correspondence:

c = 5 · k(S) + r

21To simplify the presentation, here and below we treat each ↓ a, ↓ b, etc., as if it were a
single symbol and not two grouped together.

22Regarding the balance of parentheses and the succession of two symbols, see also [5].



29

and put, as we did already in 2.4:

k= 0,1,2,3,. . . ,27,28,. . . ,52,53,998,999,1002,1003,. . . ,1026,1027,. . . ,1052,1053
if
S= π,?,a,b,. . . , z, A, . . . , Y, Z, Ω, π′, ↓a, ↓b, . . . , ↓z, ↓A, . . . , ↓Y, ↓Z

Furthermore,

k = cop = 1, 2, 3, 4, 5, 6, 7, 8, 9,

if respectively

S = +, ·, .−, :,→,÷, mod ,∪,∩,

and

k = 6 if S = (, ).

To obtain a one-to-one correspondence between c and S we encode the kind
r of a symbol in this manner:

r = 0, 1, 2, 3, 4
if
S = ), (, →, variable, operation

4.4. Automatic encoding of a sequence of binary operations

Let us undertake to automatically encode some arbitrary program, e.g. the
following sequence of symbols (see also 2.7):

h ∩ a → A h
.− a → B A · x → C B · y → D C +D → u u → π

so as to obtain the sequence of numbers denoted respectively in (1.42):

n1, n2, n3, n4, n5, J

To reduce this first example of automatic programming to the essentials, let
us abstract away the part of the program related to checking that the symbol
sequence has a meaning. Also assume once and for all that

m1 = 1010,m2 = 108,m3 = 104



30

α Examine the first sym-
bol c. If c = 0 stop, else
continue at β.

π′ → α

? → c

c : 5 → C

{(1 .− c) · Ω+ (1 ∩ c) · β} → π

β Examine the second
symbol d. If it is →,
continue at γ, else at δ.

π′ → β

? → d

d : 5 → D

[(1 .− (D ÷ 5)) · γ] + [(1 ∩ (D ÷ 5)) · δ] → π

γ Let f be the third
symbol. Calculate the
instruction number
(which is of type T , J ,
L or I) and start over
at α.

π′ → γ

? → f

f : 5 → F

5 ·m2 + C ·m3 + F → ?
α → π

δ Examine the third sym-
bol g and the fifth sym-
bol j. Calculate the
instruction number and
start over at α.

π′ → δ

? → g

? → j

? → j

g : 5 → G

j : 5 → J

C ·m1 +D ·m2 + F ·m3 + J → ?
α → π

5. Automatic encoding of formulas with parenthe-

ses

5.1. A first solution to the problem. Discussion

For this problem Mr. Rutishauser has already developed an iterative solution
method based on the successive lowering of the level of parentheses [6]. In his
formulas one distinguishes round parentheses as the innermost (level 1), square
brackets (parentheses level 2), curly braces (parentheses level 3), etc.

One obtains an iterative solution (from the program’s point of view) to the
problem if one encodes first the operations contained in round parentheses, re-
placing such a parenthesis by the address of its intermediate result and lowering
by 1 the level of the remaining parentheses. One repeats this process as many
times as indicated by the maximal level of parentheses.

The brevity and simplicity of the program constitute the principal advan-
tages of this method, which has nevertheless some drawbacks:

5.11. The necessity to input a complete formula to the computer before
the encoding work can begin. In other words, all the data of the problem fill
the internal memory at the same time, with corresponding reduction in the
computing capacity of the digital machine.



31

5.12. The necessity to fully explore the same formula multiple times just
to extract the few facts relevant to each iteration leads to a waste of time,
observable in particular on slower machines.

5.13. The necessity to use different symbols for parentheses at different
levels. Consequently, if one wants to use a keyboard to input the symbols,
it must have keys with opening and closing parentheses for each level until a
certain maximum, beyond which a formula cannot be input to the machine.

We have used, by contrast, a method for solving the problem in which the
symbols constituting the formula are input one after the other, in the order in
which they are written; following this method the computer begins the encoding
when the second symbol has been input.

The capacity of the internal memory necessary for the data may thus be
reduced to two consecutive symbols instead of the entire formula (23). The data
are used as one goes along and there is no waste of time for retrieving them.

Lastly, we have found a method with which it is unnecessary to input the
level of each parenthesis to the machine, the machine being able to automatically
deduce a hierarchy between the parentheses from the structure of the formulas
to which they belong.

5.2. Conventions to observe when writing formulas

5.21. All operations are binary operations.
5.22. From the point of view of introducing parentheses, the operations are

treated indiscriminately as non-associative operations; e.g. one writes:

((a+ b) + c) → x instead of a+ b+ c → x

((a · b) + c) → y instead of a · b+ c → y

(((a+ b) · (c+ d)) · (e .− f)) → z instead of (a+ b) · (c+ d) · (e .− f) → z

5.23. Every formula containing parentheses must begin with an opening
parenthesis (24).

It is evident that with these conventions the nature of the operations play
no role for the rules about placement of parentheses.

5.3. Solution principle

Given a formula of the form

(5.31) (((a op1 b) op2 (c op3 d)) op4 ((f0 op5 g) op6 h)) → x

we must construct a sequence of instruction numbers corresponding, in the order
shown below, to the formulas

23In the description that follows this possibility has not been exploited, because it implies
a change to the input program, which we do not want to revisit.

24The two conventions (5.23) and (6.11) together facilitate the fusion of programs corre-
sponding to the problems of chapters 5 and 6 into one.



32

(5.32)

f0 op5 g → x6

x6 op6 h → x5

c op3 d → x4

a op1 b → x3

x3 op2 x4 → x2

x2 op4 x5 → x1

x1 → x

These formulas are obtained by successively eliminating parentheses starting
from the innermost ones. The xf are intermediate results of the computation.
We note that the indices k, added to operations to distinguish them, are chosen
in (5.31) in increasing order from the left. On the other hand, the indices f ,
which serve only to distinguish the intermediate results, may be chosen arbitrar-
ily. However, we have chosen them so that they form a decreasing progression
when the formulas are written in their final order (5.32). This numbering is
justified by the fact that the f may be calculated by recurrence starting from
the left in any formula of type (5.31), as a function of the arrangement of paren-
theses, as we shall show later.

5.4. Parenthesis numbering by the function F (n)

Let n be the be level of a parenthesis and r(n) its “nature”, defined by

r(n) =

{
0 if the nth parenthesis is closing
1 if the nth parenthesis is opening

Now define a function F (n) by this recurrence:

(5.41) F (0) = 0 F (n) =

{

p+ 1 where p =
∑n−1

i=1 r(i) if r(n) = 1
F{Min[F−1(F (n− 1))]− 1} if r(n) = 0 (25)

In the chosen example (5.31) one would have

( ( ( ) ( ) ) ( ( ) ) )
n = 1 2 3 4 5 6 7 8 9 10 11 12

r(n) = 1 1 1 0 1 0 0 1 1 0 0 0
F (n) = 1 2 3 2 4 2 1 5 6 5 1 0

The function F (n) can furthermore be represented graphically as in figure 4
(still for the same example).

This figure is constructed from the parenthesis structure by linking with a
closed curve corresponding parentheses at the beginning and end of the same
expression. The successive numbering, from left to right, of the regions of the
plane delimited by these curves is realized precisely by the function F (0 corre-
sponds to the region containing the point at infinity).

25This formula reads as follows: if the nth parenthesis is closing, the value of F (n) is that
of F (h− 1) where h is the smallest argument such that F (h) has the same value as F (n− 1).



33

Figure 4: Parenthesis level nesting.

Now, if we want to automatically encode the formula (5.31) by exploring it
from left to right, we cannot avoid successively obtaining these formulas:

a op1 b → x3

x3 op2 x4 → x2

c op3 d → x4

x2 op4 x5 → x1

f0 op5 g → x6

x6 op6 h → x5

x1 → x

which coincide with those of (5.32), except for their order. The indices f (of the
xf ) thus constitute our principal unknowns. However, the relation between the
index f and the function F (n) is very simple, as shown by the following table.

First operand Second operand Result
)n op · · · f = F (n− 1) — — — —
) op (n — — f = F (n) f = F (n− 1)

· · · op · · ·)n — — — — f = F (n− 1)

The index n characterizes the last parenthesis input to the machine. The con-
tents of the table can be summarized like this:

The value of f is the level of the region (figure 4) where we find the operation
with this index.

5.5. Explicit calculation of F (n)

Since the second formula (5.41) is written in implicit form, let us transform it
suitably. Note that if one puts, when r(n) = 1,

X(n) = F (n) = p+ 1 and YX(n) = F (n− 1)

it follows easily from (5.41) for the case where r(n) = 0 that

X(n) = F (n) = YX(n−1)

The explicit calculation of F (n) thus becomes:



34

If r(n) = 1:
Increment p p+ 1 → p

Old F (n) is renamed F (n− 1) X → Y

New F (n) equals p (up to a constant m) m+ p → X

Put Y = F (n− 1) at index X = F (n) Y → ↓ X

(see group E
in chapter 7)

If r(n) = 0:
Old F (n) is renamed F (n− 1) X → Y

New F (n) is the quantity YX whose in-
dex is X = F (n− 1)

↓ X → X (see group F
in chapter 7)

5.6. The decision table

To allow for the automatic construction of a sequence similar to (5.32) from
a formula of type (5.31), the program that we are going to devise must be
flexible enough to account for any structure of the given symbol sequence. In
principle, the decision taken by the computer after reading the ith symbol could
depend on all the symbols read until that moment. But in fact, it turns out
that apart from decisions related to parentheses, the decisions to be made by the
computer depend directly only on the nature of the two last symbols read. This
much simplifies the program that becomes iterative, while however requiring
us to account for 25 possible variants, since each of the two symbols may be
independently one of the following: ), (, →, variable, operation. Many of these
variants constitute a check (26). In the table below, each absurd variant provokes
a stop. The others carry an indication of the group to choose next.

(5.61) Nature
s of the
second-last
symbol

Nature r of the last symbol
) ( → var. oper.

) G → π Ω → π J → π Ω → π T → π

( Ω → π C → π Ω → π P → π Ω → π

→ Ω → π Ω → π Ω → π Q → π Ω → π

var. H → π Ω → π Ω → π Ω → π W → π

oper. Ω → π I → π Ω → π R → π Ω → π

5.7. Auxiliary quantities

The complete description of the program consists of the groups A,B, . . . , T, U,W

of chapter 7. The ↓ t, ↓ t + 1, ↓ t + 2, . . . , ↓ t + 24 are addresses reserved for
containing the instructions corresponding to the elements (r, s) ≈ 5·r+s (r, s =
0, 1, . . . , 4) of the table (5.61).

26The check (see also [5]) concerns the immediate succession of two symbols, the balancing
of parentheses (F (n) = 0 only at the end of the formula) and the 5.2 conventions. In the
following we do all these checks except for check 5.22 whose realization would have considerably
complicated the program. However, this last check can be carried out automatically, thanks
to the following numerical interpretation: “The 5.22 convention is respected if the function
F (n) assumes the same value at most three times”.



35

For the temporary recording of the instruction numbers in the memory,
before their output in decreasing order (see group N), we have set aside the
addresses ↓ m, ↓ m+ 1, ↓ m+ 2, . . . etc., i.e. the same addresses that previously
served to record the F (n).

The groups A′, B′, . . . ,M ′, N ′, on the other hand, belong to the program for
automatic programming studied in the next chapter.

6. Automatic programming for polynomials in

normal form

The prohibition (5.22) against using the associate property of product and sum
when writing formulas containing parentheses, requires the use of more paren-
theses than usual. To reduce this inconvenience, we want to allow for a second
way to write the formulas, in addition to the (5.31) model. Although we limit
ourselves from now on to the four arithmetic operations, in principle nothing
prevents us from envisioning normalized formulas containing other elementary
operations. Let us make the convention, as in elementary algebra, to establish
priority levels between the four operations, taken two and two:

(+,
.−) < (·, :)

where the sign < here represents the expression “binds less than”.
Thus a formula such as

a+ b · c+ d : f · g → x

acquires a meaning and we are in a position to save some parentheses.

6.1. Conventions for writing formulas

6.11. If the first symbol is not an opening parenthesis (in which case one
would be back to the problem of chapter 5) one must not use any parenthesis
in the entire formula.

6.12. The only operations used are

→,+,
.−, ·, : i.e. k(op) ≤ 5

6.2. Solution principle

Let us examine four prototypical polynomial expressions and the corresponding
solutions. It is easy to see that it suffices to use an essentially iterative program
where only two letters are used to designate the intermediate results: the letter
X for the results of a multiplication or division (

.
:) and the letter S for the results

of an addition or subtraction (±).



36

(6.2)

Given formula Resulting instruction
numbers

Group
designation

a1
.
:1 b1

.
:2 c1 → d1 a1 → X | G′

X
.
:1 b1 → X | H ′

X
.
:2 c1 → X | H ′

S +X → S | I ′

S → d1 | N ′

a2 ±1 b2
.
:1 c2 → d2 a2 → S | F ′

b2 → X | M ′

X
.
:1 c2 → X | H ′

S ±1 X → S | I ′

S → d2 | N ′

a3 ±1 b3 ±2 c3 → d3 a3 → S | F ′

S ±1 b3 → S | J ′

S ±2 c3 → S | J ′

S → d3 | N ′

a4
.
:1 b4 ±1 c4 → d4 a4 → X | G′

X
.
:1 b4 → X | H ′

S +X → S | I ′

S ±1 c4 → S | J ′

S → d4 | N ′

The parts of the program related to the groups

F ′, G′, H ′, I ′, J ′,M ′, N ′

are iterative with respect to the sequence of two consecutive operation symbols
(separated by a variable, obviously), as indicated in the following table:

Second-last
symbol read

Last symbol read
.
: ± →

.
: H ′ H ′I ′ H ′I ′N ′

± M ′ J ′ J ′N ′

The first group of two symbols is treated separately according to this schema:

(The first symbol is
a variable)

Second symbol
→ ±

.
:

D′ F ′ G′

One will note that in each program (6.2) there are two or three instructions not
needed if the encoding was made by a human operator. Our method, however,
becomes more and more advantageous as the length of formulas grows, since
there is only roughly one superfluous instruction at the beginning and the end
of each polynomial and one in each monomial.



37

6.3. Checking and auxiliary quantities

For an sequence of symbols to have a meaning, operation symbols must alternate
with variable symbols.

In the following we shall use some auxiliary quantities called gi (i = 1, 2, . . . , 6)
that are incomplete instruction numbers, i.e. having zeroes instead of the sym-
bols in boldface:

g1 ≈ X op V → X g4 ≈ S op V → S

g2 ≈ S op X → S g5 ≈ S → V

g3 ≈ V → X g6 ≈ V → S

The part not in boldface is constant, independent of the variables and the op-
erations of the expression to encode. For instance, one has

g1 = m1 · k(X) + k(X) = 1010 · 51 + 51 = 0051 00 0000 0051

Remark: We do not need a special symbol to mark the end of a sequence
of formulas. It suffices to use the closing parenthesis symbol, thanks to group
A of the program which will automatically stop the computer.

7. Detailed automatic programming program

A Analyse the first sym-
bol c of a formula. If
it is a ) or a → or an
operator symbol then
stop. If it is a vari-
able, continue at A′; if
it is a ( continue at B.

π′ → A

? → c

cmod 5 → r

[(r + 1)mod 2] · Ω + [[1 .− (r ÷ 3)] · A′]+
+[[1

.
− (r ÷ 1)] · B] → π

B Put Y = 0 (up to
a constant m), p =
1 and compute F (1)
(see 5.4). Continue at
C.

π′ → B

m → Y

1 → p

m+ p → X

Y → ↓ X

C → π

C Analyse the next sym-
bol; let s be the nature
of the preceding sym-
bol and r that of the
current one. If it is a (
continue at E. If it is
a ) continue at F , else
at D.

π′ → C

r → s

? → c

c : 5 → k

cmod 5 → r

[1 ∩ (r .− 1)] ·D + (1 ∩ r) ·E + (1 .− r) · F → π



38

D The nature of the
two last symbols con-
tribute to determin-
ing the next group
to choose (see table
(5.61)).

π′ → D

5 · r + s+ t → π

E Determine the value
of function F (n) for
an opening parenthe-
sis (see explanation in
5.5). Continue at D.

π′ → E

p+ 1 → p

X → Y

m+ p → X

Y → ↓ X

D → π

F Determine the value
of function F (n) for
a closing parenthe-
sis (see explanation in
5.5). Continue at D.

π′ → F

X → Y

↓ X → X

D → π

G If the number of
closing parentheses
already counted ex-
ceeds that of opening
parentheses then
stop, else continue at
C.

π′ → G

[[1 .− (Y ÷m)] · Ω] + [[1 ∩ (Y ÷m)] · C] → π

H Determine the last 4
digits (11th–14th) of
the instruction num-
ber and save it at
an address computed
from the level of the
last parentheses anal-
ysed. Continue at C.

π′ → H

n+ Y → ↓ Y

C → π

I Determine the last 8
digits (7th–14th) of
the instruction num-
ber and save it as un-
der H . Continue at C.

π′ → I

m3 ·X + Y + n → ↓ Y

C → π



39

J If the number of clos-
ing parentheses is not
equal to that of open-
ing parentheses then
stop, else continue at
M .

π′ → J

[1 ∩ (X ÷m)] · Ω + [1 .− (X ÷m)] ·M → π

M The formula’s last
instruction number
(which is a store)
is calculated up to
the 11th digit, inclu-
sive. The temporary
address of last in-
struction number is
called L. Continue at
N .

π′ → M

5 ·m2 +m3 · Y → n

m+ p → L

N → π

N The number at ad-
dress L is recorded
on the output tape.
Decrement L. Restart
at N until all the cal-
culated numbers have
been output (L = 0 =
p up to the constant
m). Continue at C.

π′ → N

↓ L → ?
L

.− 1 → L

[1 .− (L .−m)] · C + [1 ∩ (L .−m)] ·N → π

P Determine the 4 first
digits of the instruc-
tion number; continue
at C.

π′ → P

k ·m1 → n

C → π

Q The last instruction
number of the for-
mula with parenthe-
ses is completed un-
til its 14th digit and
recorded on the out-
put tape. Continue at
A.

π′ → Q

k + n → ?
A → π

R Determine the 7th–
11th digits of the
instruction number.
Continue at C.

π′ → R

k ·m3 + n → n

C → π



40

T Check the balancing
of parentheses as un-
der G. If the balance
is correct, continue at
U .

π′ → T

[[1 .− (Y ÷m)] · Ω] + [[1 ∩ (Y ÷m)] · U ] → π

U Determine the first 6
digits of the instruc-
tion number. Con-
tinue at C.

π′ → U

Y ·m1 + k ·m2 → n

C → π

A′ The second symbol
of a formula without
parentheses is anal-
ysed. If it is a
variable, a parenthesis
or an operation other
than +,

.−, ·, :,→ then
stop. If it is → con-
tinue at D′; if it is +
or .− continue at F ′; if
it is · or : continue at
G′.

π′ → A′

c : 5 → h

? → c

c : 5 → k

cmod 5 → r

[[1 ∩ (k .− 5)] + (1 .− (k .− 5)) · (1 .− (r ÷ 3))]·
·Ω + [1 .− (r ÷ 2)] ·D′ + [1 .− (r ÷ 4)]·

·[kmod 2] · F ′ + [1 .− (r ÷ 4)]·
·[(k + 1)mod 2] ·G′ → π

B′ Another symbol is
analysed. If it is not
a variable then stop.
If the second last
symbol analysed is →
then continue at N ′,
else at C′.

π′ → B′

k → j

r → q

? → c

c : 5 → k

cmod 5 → r

[1 ∩ (r ÷ 3)] · Ω+ [1 .− (r ÷ 3)]·
·{[1

.
− (q ÷ 2)] ·N ′ + [1 ∩ (q ÷ 2)] · C′} → π

C′ Another symbol is
analysed. If it is a
parenthesis or a vari-
able or an operation
other than +,

.
−, ·, :,→

then stop. If the sec-
ond last symbol is ·
or : continue at H ′. If
the second last is +
or .

− continue at M ′,
else at J ′.

π′ → C′

k → h

? → c

c : 5 → k

cmod 5 → r

{[1 ∩ (k .− 5)] + [1 .− (k .− 5)] · [1 .− (r ÷ 3)]}·
·Ω+ [(1 + j)mod 2] ·H ′ + (jmod 2)·

·{[(k + 1)mod 2] ·M ′ + (kmod 2) · J ′} → π



41

D′ The third symbol is
analysed. If it is not
a variable then stop,
else continue at E′.

π′ → D′

? → c

c : 5 → k

cmod 5 → r

[1 ∩ (r ÷ 3)] · Ω+ [1 .− (r ÷ 3)] · E′ → π

E′ Computing the in-
struction number
for a processed for-
mula that is a store.
Continue at A.

π′ → E′

h ·m3 + k → ?
A → π

F ′ Determination and
output of the first
instruction number of
type g6. Continue at
B′.

π′ → F ′

h ·m2 + g6 → ?
B′ → π

G′ Determination and
output of the first
instruction number
which is 0 → S and of
the second instruction
number which is of
type g3. Continue at
B′.

π′ → G′

998 ·m3 + g6 → ?
h ·m3 + g3 → ?

1 → g

B′ → π

H ′ Determination and
output of an instruc-
tion number of type
g1. If the last symbol
analysed is · or :
continue at B′; else at
I ′.

π′ → H ′

g1 + j ·m2 + h ·m3 → ?
(kmod 2) · I ′ + [(k + 1)mod 2] · B′ → π

I ′ Determination and
output of an instruc-
tion number of type
g2. Continue at B′.

π′ → I ′

g ·m2 + g2 → ?
B′ → π

J ′ Determination and
output of an instruc-
tion number of type
g4. Continue at B′.

π′ → J ′

j ·m2 + h ·m3 + g4 → ?
B′ → π



42

M ′ Determination and
output of an instruc-
tion number of type
g3. Continue at B′.

π′ → M ′

h ·m3 + g3 → ?
B′ → π

N ′ Determination and
output of the last
instruction number of
the formula without
parentheses (which is
a store of type g5).
Continue at A.

π′ → N ′

k + g5 → ?
A → π

Figure 5: Graph of the program for automatic programming.



43

8. Relations to logic

Among the instructions that we have chosen in 1.3, there is a certain logi-
cal redundancy. For instance, each of the four operations .

−,÷,∪,∩ could be
expressed in terms of a single one of these and addition, as shown by these
reductions:

a÷ b ≡ (a
.
− b) + (b

.
− a)

a ∩ b ≡ a
.− (a .− b)

a ∪ b ≡ b+ (a
.
− b)

Likewise, the operations · and : could easily be realized by subroutines compris-
ing only the operations + and .−. On the other hand, negative and fractional
numbers could also be represented, in multiple ways even, by pairs of non-
negative integers, so the fact that we have limited ourselves to the latter does
not cause any loss of generality.

In the program treated in the preceding chapter, and in particular at the end
of groups A′, B′ and C′, the choice criteria are quite complicated. To facilitate
the writing of formulas we have often appealed to certain one-to-one correspon-
dences that one can establish between the fundamental logical operations of
negation, conjunction and disjunction on the one hand, and the operations .−,
+ and · on the other.

In fact, if one designates by P and Q some propositions, by p and q non-
negative integer values, and by r′ and s numbers that can have only the values
0 and 1, we can establish the following table (where the logical notations are
those of [11]):

P,Q true p, q = 0 r′, s = 1
P,Q false p, q 6= 0 r′, s = 0

P 1
.
− p 1

.
− r′

P 1 .− (1 .− p) = p r′ = 1 ∩ p

P&Q p+ q r′ · s
P ∨Q p · q 1 ∩ (r′ + s)

To demonstrate an application of the correspondence between the first and third
column of the preceding table, let us consider, e.g. the choice criteria at the end
of group B′, chapter 7.

Let us name the coefficients of Ω, N ′ and C′ respectively ω, n′ and c′.
The first criterion requires that ω = 1 if and only if r 6= 3, from which we

get:

ω = 1 ∩ (r ÷ 3)

The second criterion requires that n′ = 1 if not r 6= 3 and at the same time
not q 6= 2, from which we get:

n′ = [1 .− (r ÷ 3)] · [1 .− (q ÷ 2)]



44

The third criterion requires that c′ = 1 if not r 6= 3 and at the same time
q 6= 2, from which we get:

c′ = [1
.
− (r ÷ 3)] · [1 ∩ (q ÷ 2)]



Bibliography

[1] E. C. Berkeley, Giant Brains or Machines that Think, John Wiley & Sons,
New York, (1949).

[2] H. Rutishauser, A. Speiser, E. Stiefel, Programmgesteuerte digitale
Rechengeräte (elektronische Rechenmaschinen), Mitt. Nr. 2, Inst. f. ang. Math.,
ETH Zurich, (1951).

[3] M. V. Wilkes, Report on the Preparation of Programmes for EDSAC and the
use of library of sub-routines, University Math Laboratory Cambridge, (Sept.
1950).

[4] J. Von Neumann, The general and logical theory of automata, p. 1–41 of:
Cerebral Mechanisms in Behavior. The Hixon Symposium, John Wiley & Sons,
New York, (1951).

[5] K. Zuse, Über den allgemeinen Plankalkül als Mittel zur Formulierung
schematisch-kombinativer Aufgaben, Arch. Math., 1, 441–449, (1948-49).

[6] H. Rutishauser, Über automatische Rechenplanfertigung bei
Programmgesteurten Rechenmaschinen, Mitt. Nr. 3, Inst. f. ang. Math., ETH
Zurich, (1952).

[7] A. M. Turing, Computable numbers, with an application to the
Entscheidungsproblem, Proc. London Math. Soc., 2, s. 42, (1937), p. 230–265.

[8] A. P. Speiser, Entwurf eines elektronischen Rechengerätes, Mitt. Nr. 1, Inst. f.
ang. Math., ETH Zurich, (1950).

[9] D. Koenig, Theorie der endlichen und unendlichen Graphen, Leipzig, (1936).

[10] H. H. Goldstine, J. Von Neumann, Planning and Coding for an Electronic
Computing Instrument, 3 vol., Institute for Advanced Study, Princeton, N. Y.,
(1947-48).

[11] D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik, Springer-V.,
Berlin, (1949).

45



46

Summaries in Italian, English and German

(The original’s summaries in Italian, English and German have been left out).

Curriculum vitae

Corrado Böhm, Italian citizen, born 17 January 1923. In 1941 he obtained
his secondary school degree from the scientific high school “Vittorio Veneto” in
Milan.

Having entered the École Polytechnique de l’Université de Lausanne (Switzer-
land) in 1942 he left it in 1946 with a degree in electrical engineering.

He got employed in 1947 at the École Polytechnique Federale de Zurich as
assistant to Mr. R. Dubs (professor in hydraulics and hydraulic machines) for
three semesters and for three more as assistant to Mr. E. Stiefel (professor of
geometry and head of the department of applied mathematics).

During this period, while deepening his knowledge of mathematics, he fol-
lowed a specialization course at IBM on punched card machines. Subsequently,
he familiarized himself with the similar Bull machines.

In 1949 he was sent to Neukirchen (Germany) to study on location the relay
machine constructed by Mr. Zuse, a machine that was adopted by the École
Polytechnique itself.

Using these machines he solved also various mathematical problems: Tabu-
lation of functions, computations of differences, computations of residues, mul-
tiplication of the elements of finite groups, etc.



47

Translator’s appendices

A.1. Notes on Böhm’s compiler

A program to be compiled is structured as a set of labelled groups (section 3.2),
each consisting of a sequence of assignment formulas. The last instruction of a
group is always an assignment to the program counter π (and an assignment
to π can appear only as the last formula in a group). A “group” is what is
today called a basic block: it can be entered only at its beginning and can be
exited only at the end. The first formula in a group K is an assignment of the
form K → π′, which serves only to name the group at load-time, thus called an
“immediate instruction” (see below); it is not executed at run-time. The group
labels S and V are not used in the chapter 7 compiler since they are used in
the translation of polynomials (chapter 6). Similarly, X and Y are used in the
tabulation of F (section 5.5).

The compiler translates one assignment formula at a time, and works in a
single pass without backpatching of jumps to those labels (group names) not
yet encountered. This is possible because all jumps in the generated code are
indirect, via the code addresses stored under group labels A,B, . . . during run-
time. Defining these variables at load-time is one of the loader’s jobs; see the
next section and Figure 6.

The compiler in chapter 7 does not handle the operations ÷,∪,∩ because
they can be encoded using the other operations as shown in chapter 8.

The machine and the language do not support numeric constants, so all con-
stants must be loaded from a “constants prefix” of the input tape into suitable
memory addresses before the program is run; see below. Also, a symbolic pro-
gram to be compiled must be preprocessed to replace each pseudo-constant such
as 1 (written in italics as per section 3.3) by a memory address such as 997.

A.2. Notes on Böhm’s loader

The group labels used in the compiler’s (symbolic) input code and its (numeric)
output code become defined only at load-time, when the loader’s group β in
section 4.1 recognizes a group header K → π′: the condition “If the 5th–10th
digits of a are 050999” is a numerical test for the instruction in a being a group
header, that is, having form π′ → K for some K, since 05 is the instruction
code for assignment and π′ is at address 999. Subsequently the loader’s group
γ stores the next instruction address in the variable at address K.

The loader or “input program” in section 4.1 serves the same purpose as
Wilkes’s “initial orders” for the Cambridge EDSAC, but does not have to perform
jump address patching because all jumps are indirect.

The pseudo-code for the loader uses the constants 1, 10000, 9490010000 and
10000000000 so these must be allocated to memory addresses, for instance 997
through 994. They must be read from a constants prefix of the input tape,
before the numeric program instructions to be loaded. To read the constants
prefix the loader code should start with a loop that reads pairs (a, n) from the



48

input tape and stores constant n at address a, until it reads the address a = 0.
Using label ρ for this constant prefix reading loop it can be written like this,
(ab)using the Ω location 998 to store the address a:

π′′ → ρ

? → Ω
? → ↓ Ω
ρ → π

When Ω = a = 0 the second-last statement becomes a jump to n, since the
program counter π is in memory address 0. If we let the constants prefix end
with two lines containing 0 and α, the loop will terminate with a jump to the
loader’s first group α as desired. Also, this will leave 0 in Ω as per Böhm’s
conventions.

The pseudo-code for the loader given by Böhm in section 4.1 uses label
variables α, β, γ, δ, the variable π′′ and the ↓ π′ combination, none of which
can be represented in Böhm’s section 4.3 character encoding. But in any case,
the loader must exist in absolute numeric code form; relying on the loader to
load itself would lead to infinite regress. We may decide to store the values of
α, β, γ, δ and ρ (which are group code addresses) in memory addresses 993
through 989 and read their absolute values from the constants prefix using the
ρ constant reader already given above.

To accommodate the loader’s constant prefix reader and make room for the
constants, the loader’s first instruction (at address ρ) must go into address 966,
with α in 969. This is akin to Böhm’s suggestion (section 4.1) that α is at
address 970, but he may have had a different detailed arrangement in mind.

B. An implementation of Böhm’s compiler and loader

We have made a simple implementation in Java of Böhm’s machine, and his
compiler and loader, as well as a separate program to convert a source program
in Unicode into a stream of the character codes (section 4.3) accepted by Böhm’s
compiler. See Figure 6.

It will be made available at http://www.itu.dk/people/sestoft/boehmthesis/
We distinguish these types of text files:

• *.cb: Böhm absolute numeric code file, one decimal instruction number
per line. The first line contains the memory address of the first instruction;
each following line contains a 14-digit instruction number. This is the raw
format read and executed by the Machine.java simulator.

• *.cbs: Böhm symbolic code file, in Unicode, using the conventions of the
dissertation. This format is input to the Converter.java preprocessor.

• *.cbc: Böhm symbolic character file, one character code per line, using
the character encoding described in section 4.3. This format is output by
the Converter.java preprocessor, and input by the compiler (chapter 7).



49

program.in

program.cbs

Converter

compilerconsts.in

Machine

Machine

loaderconsts.in

program.out

compiler.cb

program.cbc program.cst

loader.cb

program.cbo

Figure 6: A source program program.cbs (in symbolic relative code) is first
converted to a sequence of character encodings program.cbc (according to the
conventions of section 4.3) and also a “constants prefix” tape program.cst con-
taining the program’s constants. Then the character sequence is compiled, using
Böhm’s compiler in chapter 7, into a sequence of relative numeric instruction
codes in program.cbo. Then this program is loaded into memory, using Böhm’s
loader program in section 4.1, and finally the loaded program is executed. The
compilerconsts.in and loaderconsts.in files contain all numeric constants needed
by the programs; these are loaded into memory cells (by suitable header code,
see Section ) before the program proper executes. All file names used here are
inventions of the translator; when Böhm wrote his dissertation there were no
file systems and no file names, only input and output tapes.



50

• *.cbo: Böhm relative numeric code file, one instruction or “immediate
instruction” (group header) per line, using the conventions of the disser-
tation. This is the format output by the Boehm compiler and input by
the Boehm loader.

• *.cst: Constant prefix file containing pairs (a, n) of a numeric constant
n and its address a in memory.

• *.in: Input file, possibly prefixed by the program’s constant prefix file.


