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Abstract—Recently, Google’s Open Source team presented the
criticality score [1] a metric to assess “influence and importance”1

of a project in an ecosystem from project specific signals, e.g.,
number of dependents, commit frequency, etc. The community
showed mixed reactions towards the score doubting if it can
accurately identify critical projects. We share the community’s
doubts and we hypothesize, that a combination of PageRank
(PR) and Truck Factor (TF) can more accurately identify critical
projects than Google’s current Criticality Score (CS). To verify
our hypothesis, we conduct an experiment in which we compute
the PR of thousands of projects from various ecosystems, such as,
Maven (Java), NPM (JavaScript), PyPI (Python), etc., we com-
pute the TFs of the projects with the highest PR in the respective
ecosystems, and we compare these to the scores provided by
the Google project. Unlike Google’s CS, our approach identifies
projects, such as, six and idna from PyPI, com.typesafe:config from
Maven, or tap from NPM, as critical projects with high degree
of transitive dependents (highest PR) and low amount of core
developers (each of them possessing a TF of one).

I. INTRODUCTION

Our societies depend heavily on a multitude of open source
projects. For example, in 2014 two-thirds of all webservers
were running OpenSSL (today likely more). Back then, the
OpenSSL project was run by few volunteers with only one
full-time developer at a low income [2]. General public became
first aware of the wide-spread dependency on OpenSSL, when
the Heartbleed bug2 was discovered. The combination of many
direct or indirect (transitive) dependents in combination with
being maintained by only few persons rendered OpenSSL
a critical project. Here, OpenSSL is just one example of a
critical software project.

To identify critical projects and to provide “ways to connect
critical [. . . ] projects we all rely on, with organizations that
can provide them with adequate support”, recently, the Open
Source team at Google3 in collaboration with the Open Source
Security Foundation4 announced the Criticality Score project5.

The official project announcement defines criticality as the
“influence and importance of a project” and illustrates the role
of critical projects with their many transitive dependents via
Figure 1. For the CS project, Rob Pike defines: “A package
with higher criticality is one that is more important within
its packaging system (NPM, RubyGems etc.) and therefore
may deserve higher scrutiny and attention.” [1]. He also
provides a generic formula to compute a CS of a package
as a number between zero and one (higher values indicate
higher criticality) based on “signals”, e.g., number of package

downloads or number of dependents. However, in its current
implementation19, CSs are computed only for projects hosted
on Github –instead of packages as defined by Pike– relying
on ten signals, e.g., estimated number of dependents, commit
frequency, etc.

Community feedback to the proposed CS was mixed6. It was
criticized that the score ranks projects of low criticality high
(and vice versa) and that it favors popularity over criticality.

Our goal is to contribute to improving the current CS by
actually identifying critical projects, which we consider –
just as the community and as suggested by the CS project
announcement– as projects with high centrality (high amount
of transitive dependents) and low amount of developers as
illustrated in Figure 1. Inspired by community discussions7,
the call for community feedback1, the openness of the scoring
formula to other signals, and by the fact that the project comes
from Google –whose founders invented the PR algorithm [3]–,
we hypothesize that critical projects of an ecosystem can be
more accurately identified via PR and TF [4], [5] than with
the current CS. We believe so, since PR weighs “importance”
of a node in a network based on transitive link structures [3],
[6], [7] and TF describes the amount of developers that can
be removed from a project before it is endangered [4].

In this paper we describe an experiment (section III) in
which we: a) rank all packages of the dependency graphs
of the package managers Cargo, NPM, Maven, Packagist,
and PyPI with the PR algorithm, b) report PRs and TFs for
the highest ranked projects, c) identify critical projects from
multiple ecosystems, and d) compare these to their scores of
Google’s current CS, see section IV. We conclude, that the
projects that our approach identifies are really critical in the

Figure 1. Critical projects popularly illustrated (from https://xkcd.com/2347/).

https://xkcd.com/2347/


sense of being central to the respective ecosystem and lacking
resources in terms of developers (projects that are worth to
be supported). We discuss shortcomings of our approach in
section VI.

Combining PR and TF, we identify, e.g., the projects Six

and IDNA (PyPI packages six and idna), Config (Maven package
com.typesafe:config), or Node-Tap (NPM package tap) as critical
projects. Each of these has a low amount of core developers
(TF = 1) and ranks amongst the top PRs of the respective
ecosystem. Since none of these projects is identified as critical
by Google’s current CS implementation, we suggest to include
PR and TF as signals with high weight in the CS formula.
Note, a replication package including the experiment setup
and more results than can be presented in this short paper is
available online8.

II. BACKGROUND

Pike [1] describes a generic formula to calculate the CS of a
package (Cpkg) as a normalized weighed sum (αi) of the ratio
of the logarithm of signals (Si), the logarithm of the maximum
of signal value and corresponding thresholds (Ti):

Cpkg =
1∑
i αi

∑
i

αi
log(1 + Si)

log(1 + max(Si, Ti))
(1)

In his paper, Pike mentions the number of package down-
loads or the number of its dependents as possible signals. He
does not provide other signals, weights or thresholds. However,
the current implementation of the CS19 relies on ten signals,
e.g., time since last update, average number of comments
per issue, commit and release frequency, number of depen-
dents mentioned in commit messages etc., with corresponding
weights and thresholds9. For example, commit frequency is
currently implemented as the average number of commits per
week over the last 52 weeks and the dependents count is
implemented as a query to the Github API over all commits of
any repository mentioning the name of the project for which
the CS is computed10. The latter leads to false results, e.g., for
projects with common names, such as tasks11. The project does
not specify how given weights and thresholds are created.

Note, while Pike describes CS for packages in ecosystems
available via package managers the current implementation
computes it for projects hosted on Github, i.e., the terms
package and project are used interchangeably by Google’s CS
project. In this paper we call a Git repository a project, and an
entity that is registered on a package manager is called a pack-
age. Multiple packages may belong to a single project, e.g.,
org.scala-lang:scala-library, org.scala-lang:scala-reflect or org.scala-lang:scala-

compiler all belong to the Scala project12.
Based on Github’s popularity API, the CS project lists

Criticality Scores for the top 200 projects in the languages C,
C++, C#, Go, Java, JavaScript, PHP, Python, Ruby, Rust, and
Shell13. The computed Criticality Scores are biased towards
popularity since they are based on activity signals, such as,
average number of comments per issue and based on Github’s
popularity API.

III. METHOD

We download the libraries.io dataset [8]14, which contains
package metadata including project URL and dependency
links, from 15 ecosystems, such as, Cargo, NPM, Maven,
PyPI, etc., see experiment configuration15. More package
managers are present in the dataset but only for 15 of these it
contains dependency links.

After preprocessing the libraries.io dataset for import into a
Neo4j graph database [9] (we represent each package as a node
and each versioned dependency link as a separate relation)
we compute the PR for all packages of the 15 ecosystems
with the PR algorithm from the Neo4j Graph Data Science
plugin16 (with default values for maximum iterations 20 and
damping factor 0.85). Per package manager dependency graph,
we sort the packages by decreasing PR and export the 1,000
(configurable value) highest ranked packages17.

For comparability, we compute TFs for the projects corre-
sponding to the 100 (configurable value) packages with the
highest PR from the five package managers Cargo, Maven,
NPM, Packagist, and PyPI (these are present in both, the
results of Google’s CS project13 and the libraries.io dataset).
TFs are computed using the CLI tool truckfactor18, which was
originally developed for teaching concepts of mining software
repositories. It computes a TF for a given Git repository
by calculating knowledge ownership [10] per file. Knowledge
ownership of a file is assigned to the developer that added most
lines over the history of a file. Similar to Avelino et al. [11],
TF is set to the amount of developers possessing knowledge
ownership over most of the files and covering at least 50% of
all files of a project. Finally, we calculate a CS with all signals
of the current score for each project for which we calculate a
TF with the criticality_score tool19.

In the remainder we call the resulting dataset the results.
The results combine PRs, TFs, and CSs, they are available
online20, and they are the basis for the next section.

IV. RESULTS

The ecosystems are of different size. Ordered by number of
packages, sizes are: NPM (1,275,082), Packagist (313,278),
PyPI (231,690), Maven (184,871), Cargo (35,635). Not all
packages are actually connected to the respective dependency
graph. The amount of disconnected packages, i.e., packages
with no requirements and no dependents (in- and outdegree
= 0) is different across the ecosystems. In increasing order,
ca. 18% of NPM (224,718), 22% of Cargo (7,833), 40% of
Maven (74,647), 43% of Packagist (134,352) and ca. 79% of
PyPI (182,498) packages are disconnected.

An excerpt of the results20 is listed in Table I. It shows the
25 most central packages (ranked by PR) from the respective
ecosystems. PR values indicate centrality via transitive link
structures representing importance. The varying magnitudes
of PR values across ecosystems indirectly indicate the size
of an ecosystem. For example, NPM with most packages and
most links scores higher than Cargo with least packages and
links.



Table I
PACKAGES WITH HIGHEST PR BY ECOSYSTEM.

Platform Name PR TF CS

Cargo

rand 627.58 2 0.64
serde 603.13 1 0.66
serde derive 536.54 1 0.66
winapi 509.88 1 0.52
libc 452.96 2 0.72

Maven

junit:junit 2,972.38 3 0.59
org.hamcrest:hamcrest-core 2,487.32 2 0.47
org.hamcrest:hamcrest 2,114.50 2 0.47
org.scala-lang:scala-library 1,654.49 6 0.84
com.typesafe:config 1,428.11 1 0.55

NPM

tap 24,944.12 1 0.58
mocha 24,488.46 3 0.76
eslint 10,987.09 5 0.86
tape 9,946.41 2 0.65
mkdirp 7,084.05 1 0.29

Packagist

phpunit/phpunit 16,099.03 1 0.80
symfony/phpunit-bridge 1,659.07 3 0.62
phpunit/php-text-template 1,358.10 1 0.37
sebastian/exporter 1,299.93 1 0.43
symfony/yaml 1,232.69 1 0.61

PyPI

requests 664.90 1 0.72
six 582.92 1 0.57
numpy 288.01 6 0.86
setuptools 237.72 4 0.72
soupsieve 174.72 1 0.44

Table I also illustrates, that the kind of most central pack-
ages is different per ecosystem. For Maven, NPM, and Pack-
agist multiple testing packages (junit:junit, org.hamcrest:hamcrest-core,
phpunit/phpunit, tap, mocha, and tape) rank highest whereas in Cargo
libraries for random number generation and data serialization
(rand and serde which in other languages would likely be
part of a standard library) rank highest, and in PyPI tools
for HTTP (requests), language version compatibility (six), and
scientific computing (numpy) rank highest. In all ecosystems,
utility packages for data serialization or configuration (e.g.,
serde, sebastian/exporter, or com.typesafe:config) are most central.

Table II, lists the amount of direct (◦ → ◦) and (in)direct
dependents (◦−[1..2]→◦, ◦−[1..3]→◦) of the respective package.
The column headers for the two last columns shall illustrate
that the number of dependents up to depth two/three are given.
Values are provided in absolute and in relative numbers, where
relative numbers are with respect to the total amount of pack-
ages in the ecosystem. Tiny relative numbers in parenthesis
are with respect to only those packages that are connected in
the dependency graph (in- or outdegree > 0). The property
of PR to rank packages based on transitive link structures
instead of direct number of dependents is well illustrated by
that only 0.5% (1,038) of all Maven packages depend directly
on org.hamcrest:hamcrest-core. However, in total 18% (32,596) of
all Maven packages depend either directly or indirectly via
another package on it. Via up to two other packages over a
third of the Maven ecosystem depends on it. Also, the serde

package is so central to the Cargo ecosystem that almost two
thirds of all packages depend via up to two other packages
on it. Some values for NPM are not available in Table II,
since computation of transitive dependencies with Neo4j is
memory intensive (experiment DBMS is configured with 4GB

Table II
ABSOLUTE AND RELATIVE NUMBER OF DIRECT AND INDIRECT

DEPENDENTS OF PACKAGES (DEPTH TWO AND THREE) PER ECOSYSTEM.

Name ◦→◦ ◦−[1..2]→◦ ◦−[1..3]→◦
rand 3,398 10% (12%) 13,683 38% (49%) 22,646 64% (81%)

serde 6,427 18% (23%) 16,634 47% (59%) 23,221 65% (84%)

junit:junit 27,192 15% (25%) 61,126 33% (55%) 73,295 40% (66%)

org.hamcrest: hamcrest-core 1,038 0.5% (0.9%) 32,596 18% (30%) 63,041 34% (57%)

tap 8,725 0.7% (0.8%) 402,193 32% (38%) n/a
mocha 207,094 16% (20%) n/a n/a
phpunit/phpunit 77,341 25% (43%) 142,230 45% (79%) 157,398 50% (88%)

symfony/phpunit-bridge 2,262 0.7% (1%) 43,516 14% (24%) 132,043 42% (74%)

requests 10,644 5% (22%) 14,615 6% (30%) 15,700 7% (32%)

six 5,014 2% (10%) 16,846 7% (34%) 22,628 10% (46%)

heap memory) and querying NPM’s 1,275,082 packages with
154,387,701 dependency links exceeds the provided memory.

More than half of the 25 most central packages (Table I)
possess a TF = 1, i.e., a single person stands for the majority
of development in projects like serde, tap, or phpunit/phpunit.
Highly central packages with TF = 1 are critical since
large parts of the ecosystem depend on the work of a single
core developer. For example > 2

3 of Cargo packages depend
on serde, > 2

5 of NPM packages depend on tap, > 1
2 of

Packagist packages depend on phpunit/phpunit, see Table II. Only
org.scala-lang:scala-library and numpy from Table I spread knowledge
widely over six core developers (TF = 6). TFs are also
different across ecosystems. Projects in Cargo, Packagist,
or PyPI have more often a TF = 1 whereas knowledge
in Maven or NPM packages is usually spread over multi-
ple developers (TFavg(Cargo) = 1.74, TFavg(Maven) =
2.6, TFavg(NPM) = 2.75, TFavg(Packagist) = 1.3,
TFavg(Packagist) = 1.8)20.

In our results20, CS values are centered around moderate
criticality (avg ≈ 0.58, std ≈ 0.14, min ≈ 0.27, q1 ≈ 0.48,
q2 ≈ 0.57, q3 ≈ 0.68, max ≈ 0.93). However, the collection
of TypeScript types (NPM project @types/node) has the highest
CS (≈ 0.93 on rank 20) and sports simultaneously the highest
TF = 22. The Cargo serialization framework rustc-serialize

preceding serde has the lowest CS (≈ 0.27 on rank 16) and a
TF = 1. These two projects illustrate the community critique
of CS favoring popularity. By CS, @types/node is highly critical,
on Github it is certainly popular (31.7k stars and 23.6k forks)
but its TF suggests that it is of low criticality since knowledge
is spread over 22 developers. Contrary, rustc-serialize is of low
criticality according to CS, it is of low popularity on Github
(174 stars on Github and 102 forks) but it is developed mainly
by a single person. Other interesting examples of likely critical
projects with moderate CS can be found in the results. For
example, idna (rank 14 in PyPI, TF = 1, CS ≈ 0.48), is
so important that its inclusion into the standard library is
discussed21 or pytz (rank 10 in PyPI, TF = 1, CS ≈ 0.5),
is so important that it triggered enhanced standard library
functionality22.

To check whether the signals PR or TF are already encoded
in CS, we compute Spearman’s ρ to test for correlations
between PR and CS and between TF and CS of the results20



respectively. PR and CS are not correlated (ρ ≈ 0.0346, n =
92, p ≈ 0.7436) but we find a moderate positive monotonic
correlation between TF and CS ρ ≈ 0.5416, n = 92, p < 0.05.
The latter correlation is likely due to TF and CS being both
based on the number of contributors.

V. RELATED WORK & DISCUSSION

Besides for Google’s search engine, the PR algorithm
was previously applied to assess importance of files in code
repositories hosted on Maven [12], to identify influential
projects [13] and developers [13], [14] on Github, to iden-
tify important academic papers [15], to study architectural
smells within software [16], etc. Therefore, we consider PR
a suitable centrality index for this kind of work, even though
other centrality indices, such as, subtree centrality [17], or a
combination of such [18] may be applied instead.

The authors of CS state23 that the score does not use PR
as a signal yet, since package dependency information is
not readily available in the C/C++ realm. However, many C++

packages are in the NuGet dependency graph that is distributed
with this experiment’s setup. Alternatively, JFrog’s Conan24

or Microsoft’s Vcpkg25 are recent C/C++ package managers,
from which dependencies can be extracted to extend26 the
libraries.io dataset in future.

There is no generally agreed upon algorithm or tool to
compute TFs [19]. Previous work [20], [21] computes TFs
for SVN repositories. We cannot reuse these directly since the
majority of projects in the libraries.io dataset are stored in Git
repositories. We apply our truckfactor18 tool instead of other
available tools27,28 [11], [22], since it is readily installable
from PyPI and thereby directly integrable into our setup.

Decan et al. [23] study the topology of CRAN, NPM, and
PyPI and confirm that PyPI comprises the highest number of
disconnected packages compared to other package managers,
see Table II. They call ecosystems with many transitive
dependencies on few packages “fragile” [24]. Identification
of criticality of projects can be considered the inverse of
identification of fragility of an ecosystem.

We believe that the results in section IV, e.g., idna and pytz

with high PRs, low TFs but mediocre criticality according
to CS illustrate, that a combination of PR and TF can more
accurately identify critical projects than the current CS signals.
Consequently, we envision that PR can be included directly
into the CS formula and TF via its inverse, i.e., lower TF
with higher PR indicates higher criticality. Determination of
respective weights and thresholds for PR and TF remains
future work since according to Ricca et al. [21] more work
is needed to identify valid thresholds for TF and since the CS
project currently does not describe how weights and thresholds
are established.

Threats to validity: TF weighs initial contribution higher
than maintenance contributions, which are typically smaller
in size. For example, requests was initially developed mainly
by K. Reitz but is now maintained by a group of developers.
Still, due to the size of his initial contributions, TF algorithms
(ours18 as well as Avelino et al.27 [11]) assign knowledge

ownership of the majority of files to Reitz (TF = 1)
overshadowing the many smaller contributions by the many
active maintainers. It remains future work to better adapt TF
to projects in maintenance.

The quality of our results depend on the accuracy of
dependency link information in the libraries.io dataset, which
we trust to be accurate.

To identify critical projects, we compute PR globally per
ecosystem, which might underrate projects that are only criti-
cal in certain domains. Our experiment setup can be modified29

to compute personalized pagerank [3], a PR biased towards
certain packages.

Since the PR algorithm iteratively consumes in- and out-
degrees of nodes, our choice of representing dependencies
between different package versions as separate relations im-
pacts the calculated PR values. Potentially biased PR values
(towards release activity) could be mitigated by adjusting the
weight of the respective current CS signal.

We do not map Git user names to logical users before TF
computation as, e.g., Avelino et al. [11]. We observe Git user
name changes to be not directly automatically identifiable as
in [11] since their edit distance is usually longer than one. We
plan to extend truckfactor to be parameterizable with rename
mappings.

Limitations: In this work, we study only intra-ecosystem
dependencies. For example, all of PyPI packages depend on a
Python interpreter, which in turn depends on a C compiler and
other C libraries, e.g., OpenSSL, BZip2, SQLite. Our current
experiment setup cannot identify, e.g., OpenSSL as a critical
project for various ecosystems since the libraries.io dataset
does not include dependencies crossing technologies.

We present only a tiny subset of the top ranked projects
from five ecosystems due to constrained space. Our replication
package8 contains more results and we plan to continuously
expand the results there.

VI. CONCLUSIONS

In this paper, we demonstrate that critical projects, i.e.,
projects that are central in an ecosystem and that are de-
veloped by few persons, can be identified by PR and TF in
combination. Unlike the current CS, our approach can identify
projects, such as, serde (Cargo), com.typesafe:config (Maven), tap

(NPM), phpunit (PHP), or six or idna from PyPI as critical.
Each of these are amongst the most central in their respective
ecosystems, with a considerable amount (> 1

3 ) of packages
in the dependency graphs depending directly or indirectly on
them and each of these packages is developed mainly by a
single person often in her spare time30. Consequently, we
suggest to incorporate PR and TF as signals into the CS
formula with higher weights than the current signals.

With the dataset resulting from our experiment, we provide
the MSR community an alternative for selecting repositories
for research projects. Instead of selecting popular repositories
from Github, researchers can easily select central or critical
projects for future research from our dataset20.
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