
What constitutes Software?
An Empirical, Descriptive Study of Artifacts

Rolf-Helge Pfeiffer
ropf@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

ABSTRACT
The term software is ubiquitous, however, it does not seem as if we as
a community have a clear understanding of what software actually
is. Imprecise definitions of software do not help other professions, in
particular those acquiring and sourcing software from third-parties,
when deciding what precisely are potential deliverables. In this pa-
per we investigate which artifacts constitute software by analyzing
23 715 repositories from Github, we categorize the found artifacts
into high-level categories, such as, code, data, and documentation
(and into 19more concrete categories) andwe can confirm the notion
of others that software is more than just source code or programs,
for which the term is often used synonymously. With this work we
provide an empirical study of more than 13 million artifacts, we
provide a taxonomy of artifact categories, and we can conclude that
software most often consists of variously distributed amounts of
code in different forms, such as source code, binary code, scripts,
etc., data, such as configuration files, images, databases, etc., and
documentation, such as user documentation, licenses, etc.

KEYWORDS
empirical study, software, artifacts

1 INTRODUCTION
Dowe really have to write an article that tries to understand what
software actually is in 2020? Is not the term and concept of software
well understood? For two reasons, we believe it is not: a) There does
not seem to be a standard definition that most people refer to, see
Sec. 2.4 and b) our initial study of the Danish and British standard
contracts for software sourcing, see Sec. 2.2, reveals that none of
these contracts provides a practical definition of software. Addition-
ally, different versions of the Danish standard contract have varying
concepts of what precisely constitutes software, i.e., which artifacts
are fundamental to software.

Stakeholders negotiating and signing software sourcing contracts
are often generalists, i.e., often they are neither software engineers
nor developers by education. Still, the contracts that they sign have
to specify what is a deliverable and what is not. This is where the
question arises: “What shall be considered software, i.e., what pre-
cisely are the artifacts to be delivered?”1. Definitions from standard
dictionaries, such as the Oxford Dictionary of English which states
that software are “the programs and other operating information used
by a computer.” [30] are not too helpful as they are too generic and
do not provide a list of potential artifacts. On the other hand, the

1Forexample,weknowofcaseswherecustomersgotdeliveredasystems’ sourcecodebut
neither a complete build specification nor the built executable. Since source code alone is
unusable, build codeaswell as executables shouldbeconsideredconstituentsof software.

definitions that are provided by the software engineering (SE) com-
munity, for example from the IEEE Software and Systems Engineering
Vocabulary (SEVOCAB) [28] and the Software Engineering Body of
Knowledge (SWEBOK) [7], share similar shortcomings. They are ei-
ther too generic, different in scope, contradictory, or they provide
only incomplete examples of artifacts that constitute software, see
Sec. 2.2. Similarly, definitions meant for educating software engi-
neers provide only incomplete exemplary lists of artifacts. For ex-
ample, for Sommerville [29] – likely one of the most used textbooks
in SE education – software is more than just computer programs,
“but also all associated documentation and configuration data that is
required to make these programs operate correctly. [. . .] It may include
system documentation, [. . .] user documentation, [. . .] and websites
for users to download recent product information.”.

Consequently,we– likeothers [24]–believe that the term software
even thoughwidely used is still not well understood in 2020. Further-
more,weagreewithOsterweil in that: “It seemsodd [. . .] that therehas
been hardly any discussion of [. . .] the term [. . .] “software”.” [24] and
especially with an updated version of the article [25] that states that
the nature of software is likely best understood empirically. There-
fore, we investigate empirically in this paper the research question:

RQ: What are the constituents of software and how are they dis-
tributed?

For real objects like for example bread, one can easily say that:
Bread is the result of baking a variously treated melange of mainly
flour, fewer liquids (mostly water), and small amounts of extra ingre-
dients like salt or yeast. We aim to construct a similar understanding
of software. In this paper we present –to the best of our knowledge–
the first empirical study of artifacts constituting software. Like nat-
ural scientists, we set out to study a large amount of software that
is stored in repositories on Github, we automatically analyze all
the collected artifacts (Sec. 3), we categorize them into a taxonomy
(Sec. 3.2), we analyze and discuss the found artifacts and their dis-
tributions2 (Sec. 4), and finally we present a definition of software
that is constructed out of the findings of this study (Sec. 5). With the
presented taxonomy and definition we hope to help the community
and practitioners to better understand what software actually is.

2 MOTIVATION&RELATEDWORK
The first two sections of this related work section form the motiva-
tion for the study in this paper. In Sec. 2.2we showthat thedefinitions
of the term software in industrial standards in our field are vague and

2A repository with dataset and results for replication is available under DOI:
10.5281/zenodo.3701443

https://doi.org/10.5281/zenodo.3701443
https://doi.org/10.5281/zenodo.3701443

Rolf-Helge Pfeiffer

contradictory when describing which artifacts precisely form soft-
ware. In Sec. 2.3 we show that standard contracts used in software
sourcing are similarly vague and as inhomogeneous as the standards.

2.1 Definition of terms
In this paper we rely on the term artifact. Generally, artifacts are
considered to be objects that are “an intentional product of human
activity” [14] or more generally: “artifacts are objects made inten-
tionally, in order to accomplish some purpose” [12]. In this paper, we
follow the definition of ISO/IEC 19506:2012 [15], which says that
an artifact “is a tangible machine-readable document created during
software development. Examples are requirement specification docu-
ments, designdocuments, source code and executables.”. Thepurposeof
these artifacts is to implement, build, execute, understand, maintain,
evolve, etc., software systems or to aid with any of these activities.
Note, as the title of the MSR conference suggests, we consider all
artifacts appearing in software repositories as software artifacts and
thereby constituents of software.

2.2 Industrial Standards
To search definitions of the term software in standards, we used the
SEVOCAB [28] and the SWEBOK [7]. The search results suggest
that software is:
D.1 “computer programs, procedures, and possibly associated doc-

umentation and data pertaining to the operation of a computer
system [...]” section 2.1 in [13] “EXAMPLE: command files, job
control language, both executable and non-executable software,
such as fonts, graphics, audio and video recordings, templates,
dictionaries, and documents” section 3.3783 in [21]

D.2 “all or a part of the programs, procedures, rules, and associated
documentation of an information processing system. Note [. . .]:
There are multiple definitions of software in use. [. . .] it is typ-
ically important to include both executable and non-executable
software, such as fonts, graphics, audio and video recordings,
templates, dictionaries, documents and information structures
such as database records.” section 3.34 [17]

D.3 “program or set of programs used to run a computer [. . .] For
the purposes of this International Standard, the term "software"
does not include on-screen documentation.” section 4.46 [20]

D.4 “all or part of the programs which process or support the pro-
cessing of digital information [. . .]: For the purposes of this
definition, software excludes information per se, such as the
content of documents, audio and video recordings, graphics, and
databases. [. . .]: There is both executable and non-executable
software. The purpose of non-executable software is to control
or support executable software, and includes, for example, con-
figuration information, fonts, and spell-checker dictionaries.
Digital information which is managed by executable software
(e.g. the content of documents and databases) is not considered
software . . . , even though program execution may depend on
data values.” section 3.49 [16]

D.5 “part of a product that is the computer program or the set of
computer programs Note: Software excludes information per se,
such as the content of documents, audio and video recordings,
graphics, and databases. Digital information which is man-
aged by executable software (e.g. the content of documents and

databases) is not considered software, even though program
execution may depend on data values.” section 3.34 [19]

D.6 “[. . .] all or part of the programs, procedures, rules, and associ-
ated documentation of an information processing system [. . .]:
Software is an intellectual creation that is independent of the
medium on which it is recorded.” [18]

All definitions above seem to agree that, programs are fundamen-
tal to software and that software consists of other artifacts too, such
as documentation, graphics, databases, etc. The condensed list of
all artifacts mentioned in the definitions above is: programs, docu-
mentation, data, documents, audio, video, graphics, databases, fonts,
templates, and dictionaries. We call non-executable software “data”
and executable software “programs” or just “code”.

The definitions seem to disagree on which artifacts precisely con-
stitute software. For example, are graphics or databases software or
not? DefinitionD.4 andD.5 suggest they are not, whereas, e.g.,D.1
suggests they are. Interestingly, none of the definitions (D.1–D.6)
mentions code in various forms such as source code or binary code
neither do they describewhat for example databases are. It is unclear
if they are, e.g., CSV files, binary files or the entire DBMS. That is,
from reading the various standards it is not completely clear what
precisely software is and what artifacts constitute software.

2.3 Standard Contracts
Standard contracts exist is some countries, which public institutions
use when sourcing software. In this section we report the results
of studying the Danish standard contracts (K01 [2], K02 [3], and
K03 [4]) and the British Model Services Contract [5] and associated
documents. We study these contracts as we expect to find a crisp
definition of software, the productmainly concerned by the contract.
We collect all artifacts that are mentioned in the contracts as poten-
tial deliverables and categorize them below into three high-level
categories code, data, and documentation that are common to all
contracts, see Tab. 1. We selected the contracts from Denmark and
Great Britain as both countries range under the top five European na-
tions with the highest Digital Economy and Society Index (DESI) [1],
an index expressing the degree of digitization of various aspects of
societies and we have not found such contracts from the other three
top-five nations Finland, Sweden, and the Netherlands.

Currently, there are threeDanish standard contracts. One each for
short-term, long-term, and agile projects (K01, K02, and K03) respec-
tively. Short-term projects are mostly for sourcing standard off-the-
shelf software, long-termandagile projects are for sourcing software,
which is either adapted to or exclusively developed for a customer.

In K01 [2] we cannot find an explicit definition of software. How-
ever, it mentions the artifacts listed in Tab. 1. Documentation is
always mentioned aside of software. It appears that for the authors
it is not directly software.

Unlike K01, K02 [3] provides a definition for software. Unfortu-
nately, the definition is recursive and inconclusive. In K02 software
is either standard software, which is software that is not specified
as customer specific, customer specific software, which is software
that is adapted, or developed by the contractors specially for the
customer, and open source software, which is provided in form of
source code and machine code based on an open-source license. See
Tab. 1 for the artifacts listed in K02.

What constitutes Software?
An Empirical, Descriptive Study of Artifacts

Contract Category Artifacts

K01
Code Code/program, tests
Data Data, test data
Docu. Requirements specification, on-line

documentation

K02
Code Source code, object code/machine code,

scripts, tests
Data Data, user interface templates
Docu. Licenses, documentation*, requirements

specification

K03
Code Source code, scripts, tests
Data Production data and test data, user

interface templates
Docu. Licenses, documentation*, requirements

specification

MSC
Code Source code, object code, scripts, tests,

test scripts, build scripts (linking instruc-
tions/compilation instructions), macros

Data Databases, configuration details
Docu. Licenses, test instructions, documenta-

tion*, technical specifications
Table 1: Categorized artifacts mentioned in standard
contracts (Docu. abbreviates documentation).

K03 [4] provides a definition for software. The definition is dif-
ferent than the one of K02 but it is still recursive and inconclusive.
Translated fromDanish it says: “Software consists of customer-specific
software and standard off-the-shelf software, and it includes user inter-
faces.”. The artifacts which are mentioned in K03 are different than
those of K02, see Tab. 1.

The Model Services Contract (MSC) does not seem to define soft-
ware as such. However, it names more artifacts than the Danish
contracts and it associates some of themdirectlywith software: “Any
software (including database software, linking instructions, test scripts,
compilation instructions and test instructions)” [5].

In Tab. 1wemarked the documentation entry of K02, K03 andMSC
with an asterisk. The reason is, that these standard contracts provide
detailed lists of which type of documentation is required. For exam-
ple, K02 lists more than 25 types of documentation (plus many more
sub-types) such as system documentation, architecture description,
component diagram, operations manual, etc. K03 lists 20 types of
documentation, which are slightly different compared to K02, such
asUML, E/R diagrams,maintenance and support documentation, etc.
Similarly, MSC lists five types of documentation, such as test docu-
mentation, technical architecture documentation, etc. Interestingly,
the lists of documentation artifacts types seem to be more precise
than other potential artifacts, which are mentioned only briefly. In
a future study, see Sec. 6, we plan to provide a more detailed list and
categorization of all documentation artifacts named in the contracts.

Consequently,we believe that the definitions of software provided
in the standard contracts are similarly inconclusive as their coun-
terparts in the standards and that the lists of artifacts appear to be
incidental, especially when compared to each other. The standards
provide no rationale for the in–/exclusion of a certain artifact type.

2.4 Historical & Software EngineeringWork
Shapiro [26] finds and attributes the first occurrence of the term
software to Tukey who wrote in 1958 that software “[comprises] the
carefully planned interpretive routines, compilers, and other aspects
of automative programming” [32].

We started searching for definitions of the term software in soft-
ware engineering (SE) literature since we expected software engi-
neers to have a good understanding of what software actually is. To
our surprise –if defined at all– the notions of software are similar to
those in the standards and contracts. For example, the fundamental
and often cited report on the 1968 NATO conference on SE discusses
widely the challenges of SE without explicitly defining the term soft-
ware. At the time, software was mainly considered to be source code
(machine language/assembly, Fortran, Cobol, and Algol), which was
used synonymously for programs: “The present report is concerned
with a problem crucial to the use of computers, viz. the so-called soft-
ware, or programs, developed to control their action.” [23]. However,
the lack of a suitable definition of software was already realized
back then: “the central concept in all software is that of a program,
and a generally satisfactory definition of program is still needed. The
most frequently used definition — that a program is a sequence of
instructions — forces one to ignore the role of data in the program.” [23]
Implicitly, the report mentions a set of artifacts, such as source code,
compiled (binary/executable) code, data, and other artifacts, such
as documentation in text and various visual notations.

Current works in SE either still avoid defining the term [9], con-
tinue using it synonymously for program [8], or provide exemplary
lists of artifacts that constitute software: “software [. . .] usually con-
sists of a number of separate programs, configuration files [. . .], system
documentation [. . .], user documentation [. . .], web sites for users to
download recent product information.” [29]

2.5 MetaphysicalWork
We find two articles that have the literal title “What is software?”3,
see [24, 31]. Suber [31] defines software metaphysically as “software
is pattern per se, or syntactical form [. . .] Hardware, in short, is also
software, but only because everything is.” [31]4. Unfortunately, the
definition is so generic that it is not useful in practice, which is also
criticized by Irmak [14] who seems to use software synonymously
for program and who defines software as an abstract artifact similar
tomusic. It is abstract since as long as somebody can remember a cer-
tain algorithm and can reimplement it, the corresponding software
does not cease to exist. Since metaphysical, Irmak does not/can-
not provide a list of constituting artifacts as they would only be
representations of software but not the software itself. Similarly,
Wang et al. [33] provide an initial ontology of software in which
they characterize software via its relation to other concepts, such
as, requirements and specifications.

The other article under the title “What is software?” [24] does not
study constituting artifacts of software either. Likely that is even

3We searched https://dl.acm.org/, https://link.springer.com/, with the
search query “What is software” on the title. Even though the search returned five
results on ACMDL and on Springer Link respectively, and ca. 3 730 results on Google
Scholar, after manual inspection we find only the mentioned two articles with that title.
4Similar to Def. D.4, which excludes data from being software, Suber distinguishes
between data and software. For example, he states that a word processor text document
is not software but data.

https://dl.acm.org/
https://link.springer.com/

Rolf-Helge Pfeiffer

impossible as for Osterweil software is intangible and non-physical.
Instead, the author describes typical characteristics such as compo-
sitional structure, interconnected components, etc.

Even though highly inspiring, the metaphysical work is not di-
rectly applicable, when one has to knowwhat artifact to include in
a contract as deliverable.

2.6 EmpiricalWork
Bigliardi et al. [6] study 35 open-source projects and they toowonder
what – other than source code – constitutes software. They call “[. . .]
artifacts other than code, such as documentation and examples, build
system and configurations, or graphics and translations.” non-code
artifacts. Theyfind that on average almost 50%of the artifacts in each
project are non-code artifacts. Our results, see Sec. 4 do not confirm
this high amount. Bigliardi et al. [6] provide no explicit taxonomy
but an exemplary list of artifacts, such as, documentation, images,
multimedia, etc. which makes it hard to understand what precisely
non-code artifacts are. We collect all mentioned artifacts in Tab. 2 in
the same way as we did for the contracts. Furthermore, it seems as if
they consider source code to be code only. A possible classification of
executables (binary code) as non-code artifacts appears possible but
counter-intuitive. Lastly, they consider build files, such as Makefiles
non-code artifacts. We do not agree on that, as they are code files
that are interpreted to perform a certain task.

Robles et al. [27] study non-code artifacts in KDE, which at the
time was stored in a mono-repository. That is, one repository con-
taining awide rangeof software systems, such as the actualKDEGUI,
an office suite, a file explorer, and many more. Robles et al. study the
artifacts of all the sub-software uniformly and mention the artifacts
that are listed in Tab. 2. They find that source code accounts for only
24.4% of the total amount of artifacts, even fewer than in Bigliardi
et al. [6] and fewer than in our results Fig. 3.

Ma et al. [22] studywhich types of artifacts appear in open-source
software repositories. They suggest a technique based onMachine
Learning to identify various artifact types and present a correspond-
ing taxonomy. They identify the artifacts given in Tab. 2. The main
focus of their study is to investigate various techniques to classify
artifacts, which is not a simple task. For example,Ma et al. categorize
manifest files, Makefiles, configuration files, and version require-
ment files as setup files, where we would consider them either data,
such as configuration files, or code since for example Makefiles are
meant to be executed with a corresponding interpreter (make).

To allow for automatic requirements tracing, Dekhtyar et al. [10]
suggest that “Text is Software Too” [10] and that text documents
should be part of software repositories. They name requirements
specifications, design specifications, user manuals and comments
in the code; as examples for natural language documents of interest,
see Tab. 2. Additionally, they mention source code and code in gen-
eral but it remains unclear what precisely they mean there. They do
not investigate other kinds of data. Our results suggest, that textual
documentation is actually stored in repositories.

Previous studies [6, 27] usually identify different artifact types via
regular expressions targeting mainly file extensions. We find that ca.
5% (707 012) of the artifacts in our dataset do not contain file exten-
sions (often the interesting ones, such as Makefiles, configuration,

Paper Category Artifacts

[6]
Code Source code, binaries
Docu. documentation and examples
Data Configurations, graphics, translations,

build files

[22]
Code Source code, testing code, application (a

mix of script and binary code)
Data Font, image, archive, audio, disk image,

project
Docu. contributors’ guide, design documents,

license, list of contributors, release notes,
requirement documents, setup files

Other Non-readable, non-english, empty or too
small files.

[10]
Code Source code, code
Docu. requirements specifications, design

specifications, user manuals

[27]

Code Source code, build code,
Docu. Documentation, devel-doc
Data Images, translation, user interface,

multimedia
Other Unknown

Table 2: Categorized artifacts mentioned in the empirical
studies (Docu. abbreviates documentation).

licenses, etc.). Therefore, we suggest an artifact categorization tech-
nique similar to [22] but more lightweight (no machine learning),
which relies in essence on a set of heuristics on file contents and
file naming conventions in combination, which is explained in the
following section.

3 THE EXPERIMENT
3.1 Research Questions
To investigate our research question (What are the constituents of
software and how are they distributed?) we formulate the following
more concrete research questions, which are studied in Sec. 4:
RQ1: To which degree is software more than code?
RQ2: Is documentation an integral constituent of software?
RQ3: Does software without data artifacts exist?
RQ4: Does software without code exist?
RQ5: Does a characteristic distribution of frequencies of artifact

categories exist?
RQ6: Does the ratio between frequencies of artifact categories

depend on the size of software?
To study these research questions, we have to collect and prepare

data. The following section describes the experimental setup.

3.2 Experimental Setup
To study software from different domains and application areas, we
query the Github searchAPI5 for popular6 repositories of the follow-
ing 25 languages respectively: ABAP, Ada, Assembler, C, COBOL,

5https://developer.github.com/v3/search/
6By popularity we mean the starred criteria with which Github users express liking
similar to likes in social networks.

https://developer.github.com/v3/search/

What constitutes Software?
An Empirical, Descriptive Study of Artifacts

for each

Collect most

popular

repositories

Deduplicate

and download

most popular

repositories

reposi-

tories.zip
uncompress

analyse all files

with file

analyse all files

with DROID

results_

magic.csv

results_

droid.csv

reops_per

_lang.csv

combine

and

clean

all_results.

csv

categorize

artifacts

categoriz

ed.csv

*

Figure 1: The analysis engine pipeline. Development of artifact categorization (*) is explained underMethod 3.3.

C++, C#, D, Erlang, Fortran, F#, Go, Groovy, Java, JavaScript, Kotlin,
Lua, Objective-C, OCaml, Perl, PHP, Python, Ruby, Scala, and Swift.

A priori, we chose 25 separate languages as we know that the
API returns 1 020 repositories per language qualifier, resulting in
more than 25 thousand repositories for analysis. Without language
qualifier, the API returns only 1 020 repositories in total, which we
decided is not enough for our study. The 25 languages were selected
– out of the more than 370 programming languages that Github
recognizes7 – to be exemplar for different software domains from
system-level (in C, D, etc.) to high-level (e.g., Java, C#, etc.) software
and ranging from scientific software over mobile-, web-applications
and operating systems to games.

Thus, querying the search API results in 25 500 repositories. We
collect all of themwithout applying a threshold.After deduplication8
we download 23 718 unique repositories. For each of the repositories,
we download a recent snapshot as ZIP file. To save space on the
analysis machine9 we do not download the entire history of the Git
repositories.

Fig. 1 illustrates thedataflowinouranalysis engine (a setofPython
andBash scripts), which follows a pipeline architecture10. Our analy-
sisenginereliesontworeadilyavailable tools forclassificationoffiles.
These are the Fine Free File Command (file)11 and theDigital Record
and Object Identification (DROID)12 from the UK National Archive.
Both tools automatically detect the kind of a given file, itsmedia type
(mime type), encoding, etc., by searchingheuristically formagicnum-
bers13 or similar patterns. Amagic number is a combination of bytes,
i.e., patterns of content in files, which are unique to a certain file type.

After download, the analysis engine uncompresses each single
repository. Each filewithin each repository is analyzed separately by
the file tool and by the DROID tool. Per repository, the engines store
aCSVfilewith the identification results. Lst. 1 illustrates abbreviated
output of this analysis step.

After a complete analysis (which takes ca. five days on a machine
with eight processor cores, on which the analysis is executed in par-
allel on all cores), results per repository are combined into a single
CSV file containing more than 13M rows, one row per artifact.

The last step that the analysis engine executes is categorization
of each artifact based on the information generated by the two tools.

7https://github.com/github/linguist/blob/master/lib/linguist/
languages.yml many of the languages are esoteric or niche languages, such as
NetLogo,Moocode,Wollok, Redcode, etc., whichwe decided not to include in this study.
8The Github API can return repositories containing a mix of languages as most starred
for more than one language.
9The entire dataset in compressed format (ZIP) is bigger than 208GB,which corresponds
to more than 648GB uncompressed data.
10Note, the entire experimental setupwith all scripts and necessary data can be accessed
and downloaded for replication DOI: 10.5281/zenodo.3701443
11http://www.darwinsys.com/file/
12https://digital-preservation.github.io/droid/
13https://en.wikipedia.org/wiki/File_format#Magic_number

path,kind,mime_type,encoding,ext

llvm/.arcconfig,ASCII text,text/plain,charset=us-ascii,

llvm/polly/CREDITS.txt,ASCII text,text/plain,charset=us-ascii,.txt

llvm/README.md,ASCII text,text/plain,charset=us-ascii,.md

llvm/polly/test/update_check.py,"a /usr/bin/env

↪→ python3 script, ASCII text executable",text/plain,charset=us-ascii,.py

llvm/polly/test/create_ll.sh,"POSIX shell

↪→ script, ASCII text executable",text/x-shellscript,charset=us-ascii,.sh

Listing 1: Abbreviated output of the file tool’s analysis

The following section (Sec. 3.3) explains in detail how we developed
the categorization logic, which is marked by an asterisk in Fig. 1.
After categorization, each artifact is associated with one of the four
high-level categories programming, data, documentation, or other
and one of the 19 concrete categories, from our taxonomy in List 1.

Code: source code, specific source code, script, binary code, build
code, infrastructure code

Data: image, video, music, configuration, database, font, archive,
markup, document, app data

Documentation: prose, legalese
Other: other

List 1: Taxonomy of high-level categories (in bold) and
concrete sub-categories for artifacts.

In the followingwe explain the concrete categories: Specific source
code is source code forwhich the tools file and DROID providemore
detail about its kind, such as Maple, Matlab, Qt C code, etc. Script
code is source code in languages, such as, Ruby, Bash, etc., which
are executed by an interpreter and often contain a corresponding
header line specifying the interpreter. By binary codewemean every-
thing that is compiled machine code no matter if for a real machine
architecture or for virtual machines. Build code is code meant to
build source code or to bundle packages, such asMakefiles, Rakefiles,
Gradle scripts, etc. Infrastructure code is meta-code to create certain
environments, such as Dockerfiles, Vagrantfiles, etc. Asmusic, we
classify any audio artifact also just sound effects or other recordings.
Configuration are plain text files with file endings, such as, ini, cfg,
config, etc. As databasewe categorize binary files storing data from
DBMS like SQLite, MySQL, Redis, etc.App data are files that store
data for specific applications, such as diff output, Ctags tag files,
Git indexes, etc. As archives we categorize all archives no matter if
compressed or not, such as TAR, ZIP, or RAR archives.We categorize
markup as data since these artifacts are most often XML or HTML
files storing data for certain applications or they serve as templates
to be filled with more data at runtime. Documents are all artifacts,
which aremeant to be used via/generated by a particular application,
such as Excel spreadsheets, FrameMaker documents, CAD files, etc.
Documents are no documentation since, e.g., CAD files and Excel

https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://doi.org/10.5281/zenodo.3701443
http://www.darwinsys.com/file/
https://digital-preservation.github.io/droid/
https://en.wikipedia.org/wiki/File_format#Magic_number

Rolf-Helge Pfeiffer

mask = (((DF.kind.str.startswith('PDF␣document')) |

(DF.kind.str.contains('Postscript')) |

(DF.kind.str.contains('WordPerfect')) |

(DF.kind.str.contains('Microsoft␣Word␣2007+')) |

(DF.kind == 'OpenDocument␣Text') |

(DF.name == 'README') | (DF.name == 'NOTICE') |

(DF.name == 'TODO') |

(DF.ext == '.rst') | (DF.ext == '.txt') |

(DF.ext == '.md')))

DF['concrete'][mask] = 'prose'

DF['high_lvl'][mask] = 'documentation'

Listing 2: Illustration of categorization constraints.

spreadsheets usually are artifacts not documenting software but that
are more meant to store certain information, i.e., data.

Legalese are all text artifacts that are concerned with licenses,
copyright notes, or patents, which are identified by respective file
names, such as LICENSE, LICENCE COPYRIGHT, or PATENTS. Prose are
all artifacts, which are either plain text files with a file extension,
such as txt, md, adoc, etc. or, a representative name such as README,
NOTICE, CHANGELOG, etc. Additionally, we categorize all word pro-
cessor files and Postscript and PDF files as prose. We think they are
most often used to store natural language documents.Other is the
category for all artifacts that appear so rarely in the dataset that we
did not develop a categorization rule, such as GKS metafiles, Java
JCE KeyStore, FoxPro FPT files, etc., see Sec. 3.3.

Even though all the contracts discussed in Sec. 2.3 mention tests
under the category code and test data under the category data, see
Tab. 1, our taxonomy in List 1 does not contain a category for tests or
test data. The reason is that we consider tests as source code and test
data just as data. We do not consider tests to be a proper category
for an artifact. Instead, it is a role that an artifact plays. Roles form
another dimension. In this paper we do not address this issue but
will consider it in future work, see Sec. 6. Similarly, we do not search
for certain kinds of documentation as that would require an even
deeper inspection of the corresponding artifacts and association of
heuristics that assign potential roles to artifacts. In this paper we are
studying artifacts by their syntactic appearance but not by semantics,
which could be inferred out of them.

3.3 Method
This section describes how we developed the artifact categorization,
i.e., the taxonomy in List 1 and the programmarked with an asterisk
in Fig. 1.

The four high-level categories code, data, documentation, other are
inspired by a) our work on the contracts for which we tried to find a
suitable high-level categorization and b) Linguist14 an open-source
programming language identification tool. The only difference to
Linguist’s high-level categories15 is that we decided to categorize
mark-up artifacts as a subcategory of data and not as a separate
high-level category.

From the relatedwork, we had an initial set of concrete categories,
such as, font, image, configuration, etc. Via an iterative and greedy
process over artifacts of ca. 2 400 repositories (ca. 10%) we develop
a set of boolean constraints over kind,mime_type, file name and
extension fields of the data generated by file and DROID. We sort
14https://github.com/github/linguist
15field type in https://github.com/github/linguist/blob/master/lib/
linguist/languages.yml

mask = ((DF.kind.str.contains('.*␣script,', regex=True)) |

(DF.kind.str.contains('batch')))

DF['concrete'][mask] = 'script'

DF['high_lvl'][mask] = 'code'

Listing 3: Illustration of categorization constraints.

all uncategorized artifacts by the most frequent occurrence of data
that the tools report and create a suitable boolean constraint as illus-
trated in Lst. 3.Wemanually verify that the vast majority of artifacts
that are nowmatched by this constraint actually are of the assigned
artifact category.We repeat this process until all but 10 414 (0.07%) of
the more than 13M artifacts are categorized into the three high-level
categories code, data, documentation, and 18 concrete categories (ex-
cept other). The remaining 0.07% artifacts are categorized as other,
i.e., as artifacts which either appear so rarely in the dataset that we
did not develop a categorization rule or for which we do not know
how to categorize them, e.g., lif files, Micro Focus Index files, etc.

Due to space limitation, the complete list of categorization rules
is only available online as part of the analysis engine16. For the 19
concrete categories we have in total 340 atomic patterns, 134 for
code, 117 for data, 88 for documentation and 1 for other. For example,
84 atomic patterns form by disjunction one large rule to categorize
prose, see an excerpt in Lst. 2 listing 11 of the 84 atomic patterns.
Lst. 3 illustrates the smallest categorization rule that identifies script
code. It can be read as follows: all artifacts for which the file tool
reports some kind of script or some kind of batch file (compare with,
e.g., Lst. 1) are categorized as scripts which are a sub-category of the
high-level category code.

Essentially, our categorization rules aggregate the classifications
from the file and DROID tools into our taxonomy. In case the tools
classify an artifact wrongly this wrong classification may propagate
into our categorization. For example, the tools may classify a Ruby
script generating HTML code wrongly as an HTML markup file
in case they find a corresponding pattern before finding a suitable
Rubypattern. In this case themisclassification is carried over into our
categorizationand theRubycodegetswrongly categorized asHTML,
i.e., markup and thereby data. Sec. 5.1 briefly discusses the quality
of classification and possible effects on our categorization showing
that misclassifications affecting our categorization are quite rare.

3.4 Characteristics of the Dataset
The dataset (categorized.csv in Fig. 1) on which all analysis in
Sec. 4 is based, consists of 23 715 repositories containing 13 840 142
artifacts. After deduplication of the originally 25 500 repositories,
23 718 unique repositories remained from which three were ex-
cluded17 as the received ZIP files were not valid archives. Another
single repository in the dataset18 (a security oriented repository)
was only analyzed with file and not with DROID as it contains Zip
Bombs [11] and DROID by default uncompresses archived artifacts
for analysis, whichwould cause a crash of the entire analysis system.
In total, we analyzed 648GB of uncompressed artifacts.

The repositories are quite diverse in that they range from big
projects from companies such as Google, Microsoft, IBM, Facebook

16https://github.com/HelgeCPH/msr2020_what_constitutes_software/blob/
ffffc004547ecadc1524f95c726accadae03b706/src/interpretation.py#L655
17illera88/Ponce, Entomy/libAnne,michael-valdron/course-transaction-system
18danielmiessler/SecLists

https://github.com/github/linguist
https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://github.com/HelgeCPH/msr2020_what_constitutes_software/blob/ffffc004547ecadc1524f95c726accadae03b706/src/interpretation.py#L655
https://github.com/HelgeCPH/msr2020_what_constitutes_software/blob/ffffc004547ecadc1524f95c726accadae03b706/src/interpretation.py#L655

What constitutes Software?
An Empirical, Descriptive Study of Artifacts

Figure 2: Distribution of relative frequencies per high-level
artifact category.

over big organizations, such as the Apache, Eclipse, or Python Soft-
ware Foundation over projects of lesser known organizations or
groups to small repositories of single users. They cover various
domains from scientific computing (many of the Fortran reposito-
ries) over mobile and web-applications (many of the Swift, Kotlin,
and JavaScript repositories) and operating systems (Linux kernel,
FreeBSD,OpenBSD,Minix, etc.) to gamesand retro computing (many
of the assembler repositories). The over 13M artifacts are not dis-
tributed equally over the the analyzed repositories. There is at mini-
mumone artifact and atmaximum90 976 artifacts in each repository.
On average there are ca. 583, median 73 (q1: 25,q3: 254, std. ca. 2 803)
artifacts per repository.

4 RESULTS
In this section we use the following symbols for more terse pre-
sentation median: q2, mean: µ, standard deviation: σ , minimum: ∧,
maximum:∨. The numbers given in the text are roundedwhen noth-
ing else is indicated. Rememberwhen reading this section, that Fig. 2,
Fig. 5, and Tab. 3 are about high-level categories and Fig. 3, Fig. 4, and
Tab. 4 are about concrete categories. Also all figures, tables and num-
bers in text can be found online for traceability and reproducibility19.

4.1 RQ1: To which degree is softwaremore than
code?

Fig. 2 illustrates the relative amount of artifacts of the correspond-
ing high-level categories over all repositories of the dataset. The
upper and lower box boundaries represent q1 and q3, the 25% and
75% quartile respectively and the green-line represents the median
(q2, 50% quartile). It shows that some repositories contain solely
code as the upper whisker of the code category is placed directly
on one, i.e., 100% code, and that usually 2

3 (q2: 67%, µ: 63%, σ : 0.24)
of a repository is code. Tab. 3 shows, that only 234 (ca. 1%) repos-
itories contain solely code artifacts in their various forms. These
234 code-only repositories, contain most often (71%) only source
code, 13% of them contain also binary code, and rarely (3%) build code.
Software consisting solely of scripts is virtually non-existent. Only
two repositories are script-only (iZsh/SSLSniffer a DTrace script
for network communication analysis and lpw25/girards-paradox
anOCaml script implementing a type-theoretical paradox, bothwith
19Repository: https://github.com/HelgeCPH/msr2020_what_constitutes_
software, DOI: 10.5281/zenodo.3701443

Category combination Occurrence
Frequency

Occurrence
in %

code, data, documentation 20 650 87.076%
code, data, documentation, other 1 068 4.503%
code, documentation 1 406 5.929%
code, data 286 1.206%
code 234 0.987%
documentation 23 0.097%
data 3 0.013%
data, documentation 35 0.148%
code, documentation, other 5 0.021%
code, data, other 3 0.013%
code, other 2 0.008%

Table 3: Overviewof amount of occurrences of thehigh-level
category combinations in the dataset.

a single script each). The 234 code-only repositories are all small
ranging from one to 152 artifacts (q2: 2, µ: 6.65, σ : 15.25).

The data shows that usually (99%) software consists of heteroge-
neous artifacts of more than a single artifact type.When considering
the 19 concrete artifact categories, there are only 212 repositories
(less than 1%) containing artifacts of a single concrete category only:
source code 165, prose 21, spec. source code 16, binary code 5, app data
2, script 2, configuration 1. Most commonly (more than 96%) of the
repositories consist of artifacts of at least three different concrete
categories. This diversity is illustrated in Fig. 4, which shows the
cumulative relative frequencies of concrete category combinations,
i.e., amount of repositories with a single artifact category, amount
of repositories with any combination of two categories, etc. Cumula-
tive means that, e.g., 405 different combinations with nine concrete
categories exist in the dataset and none of these appears with more
than 1.5% but together they sportmore than 12%. Additionally, Tab. 4
lists the fivemost common concrete category combinations and their
relative frequency of occurrence in the dataset, which are all below
4% for each single combination. Note, software with artifacts of all
possible concrete categories is unlikely to be found. The dataset,
contains only a single instance, the rapid7/metasploit-framework
tool, a penetration testing framework.

Since such a high amount (more than 96%) of repositories contain
artifacts fromat least three concrete categories and since frequencies
of each single combination are quite low, we do not only conclude
that software is usually more than code but also that it is usually
quite diverse in terms of kinds of artifacts.

4.2 RQ2: Is documentation an integral
constituent of software?

Out of the 23 715 repositories only 639 (roughly 3%) do not con-
tain any prose and 7 383 (31%) do not contain any legalese. Only 528
(2%) of all repositories contain neither prose nor legalese – the two
concrete categories which form together the high-level category
documentation –, see Tab. 3. Similar to above, repositories without
documentation are consistently smaller than those with documen-
tation (q2: 7, ∧: 1, ∨: 1 733, µ: 45, σ : 165.7 compared to q2: 76, ∧: 1, ∨:
90 976, µ: 596, σ : 2 833.6 in the repositories with documentation). In
the 23 187 (ca. 98%) repositories that contain documentation, usually
there are ca. 5% (q2: 5%, µ: 10%, σ : 0.12) prose artifacts and 0.5% (q2:

https://github.com/HelgeCPH/msr2020_what_constitutes_software
https://github.com/HelgeCPH/msr2020_what_constitutes_software
https://doi.org/10.5281/zenodo.3701443

Rolf-Helge Pfeiffer

Category combination # Concr.
Categ.

Abs.
freq.

Rel.
freq.

Code Data Docu.

source code, spec. source code, script, build app data, archive, config., image, markup prose, legalese 11 930 3.92%
source code, spec. source code, script, build app data, config., image, markup prose, legalese 10 546 2.3%
source code prose 2 445 1.88%
source code markup prose 3 351 1.48%
source code, spec. source code app data, config., image, markup prose, legalese 8 342 1.44%
Table 4: Occurrence frequencies of the fivemost common concrete category combinations grouped by high-level category.

da
ta

cod
e

do
cum

en
-

tat
ion oth

er

Figure 3: Distribution of relative frequencies per concrete
artifact category.

0.5%, µ: 2%,σ : 0.04) legalese artifacts. Thehigh amount of documenta-
tion in all kinds of repositories is also illustrated by the orange bars in
Fig. 4, which show the cumulative frequencies of concrete category
combinations of the repositories containing documentation.

Since ca. 98% of the repositories contain documentation, of which
the majority is usually prose, and since on average about a tenth of
the artifacts in these repositories are prose, we consider documen-
tation to be an integral constituent of software, i.e., in the “wild” it
is quite unlikely to find code or data artifacts that are not associated
with documentation artifacts.

4.3 RQ3: Does software without data artifacts
exist?

Surprisingly, we find 1 670 repositories (ca. 7%) that do not contain
any data, such as, images, videos, configuration, etc. Ondeeper inves-
tigation we find that repositories without data are most often either
libraries, i.e., software to be reused by other software, system-near
software, such as, low-level code for embedded/mobile devices, sci-
entific code that collects data at runtime, or they are just very small
projects.Again repositorieswithout data are smaller compared to the
size of those containing data (without data: q2: 6, ∧: 1, ∨: 1 824, µ: 21,
σ : 70.9 versus q2: 84, ∧: 1, ∨: 90 976, µ: 626, σ : 2 902.9 with data). On
the other extreme, repositorieswith high amounts of data (≥ 95%) are

Figure 4: Cumulative relative frequencies of repositories
with artifacts of x different concrete categories (blue). In
orange the amount of those containing documentation.

often either repositories containing fonts, icons, themes, or games
with many images or they are just repositories that document other
software, such as, API documentation.

We realize that software without data exists as ca. 7% of all repos-
itories do not contain data in separate artifacts. For small software
(≤ 10 artifacts) that share increases to above 13%. Additionally, it
seems as if softwarewithout datamainly appears in certain domains.

4.4 RQ4: Does software without code exist?
Only 61 (0.26%) repositories do not contain any kind of code, i.e.,
neither source code, scripts, nor binary code, etc. Further inspection
reveals, that most of these no-code repositories are quite small in
termsof number of artifacts (q2: 2,∧: 1,∨: 342, µ: 22,σ : 58.4 compared
to: q2: 73, ∧: 1, ∨: 90 976, µ: 585, σ : 2 806.6 in the entire dataset). The
no-code repositories contain either mostly prose artifacts, which is
especially true for the smallest ones or they are resource storages for
images, configuration and app data. It seems as if these repositories
are informational artifact libraries containing artifacts meant for
reuse either in other software (e.g., images or icons), they are train-
ing manuals/websites, or collections of links. Note, we find all of
the artifacts of no-code repositories (app data, configuration, image,
legalese, markup, prose, etc.) in other repositories, which contain
code too, i.e., they are not special themselves.

Osterweil [24] presents the idea of software that is not computer
software, i.e., software that is executed for example by humans. He
refers to law texts or recipes as examples for such non-computer
software. Here, we can confirm that such software really exists for

What constitutes Software?
An Empirical, Descriptive Study of Artifacts

example asmanuals or tutorials that explain humans how to perform
a certain task.

Even though quite rare, we find that software without code exists.
Remember, that this only means that there are no separate code ar-
tifacts. Multiple of the no-code repositories contain code embedded
in prose artifacts but not as separate code artifacts.

4.5 RQ5: Does a characteristic distribution of
frequencies of artifact categories exist?

When starting this study we had the following hypothesis concern-
ing the distribution of frequencies of high-level artifact categories:
Software consists mainly of code (in various forms such as source
code, scripts, binary code, etc.) to a medium amount of data such as
configuration files, images, databases, etc. and to minor amount of
documentation, licenses, etc. That is, we hypothesize that software
is usually more code than data and more data than documentation.

To test our hypothesis, we select all repositories, that contain
artifacts of the three high-level categories code, data, and documen-
tation and that contain at least six artifacts, as this is the lowest
amount of artifacts that could potentially produce amajor amount of
code, medium amount of data, and minor amount of documentation
distribution (Three code, two data, and one documentation artifact
respectively. In that case, there would be 1.5 times more code than
data and two times more data than documentation).

Thereare21 309repositories (ca. 90%of theentiredataset) that con-
tain at least six artifacts of the thee high-level categories code, data,
and documentation. For each of these repositories, we compute the
code-to-data-ratio (rc_dat) in between relative frequencies of code
and data artifacts, and the data-to-documentation-ratio rdat_doc in
between relative frequencies of data and documentation artifacts.
For example, with a code-to-data-ratio rc_dat >1, a repository con-
tains more code than data and with data-to-documentation-ratio
rdat_doc ≤ 1 a repository contains more documentation than data.
There are four different distribution types as illustrated in Fig. 5: a)
more code than data and more data than documentation (rc_dat >1
and rdat_doc >1), b)more data than code and more data than docu-
mentation (rc_dat ≤ 1 and rdat_doc >1), c)more code than data and
more documentation than data (rc_dat >1 and rdat_doc ≤ 1), and d)
more documentation than data and more data than code (rc_dat ≤ 1
and rdat_doc ≤ 1). In Fig. 5 we plot the median of the relative occur-
rences of code, data, and documentation respectively for the reposi-
tories categorized by these four different distribution types together
with their occurrence likelihood compared to the entire dataset.

Interestingly, only 45% of all repositories contain more code than
data and more data than documentation. Ca. 19% of the repositories
contain more data than code (rc_dat ≤ 1) and more data than docu-
mentation rdat_doc >1. Around a quarter of all repositories contain
more code than data (rc_dat >1) but less data than documentation
rdat_doc ≤1. An absolute minority (ca. 1%) of repositories consists
of a major amount documentation, a medium amount data, and a
small amount code (rdat_doc ≤ 1 and rc_dat ≤ 1). The remaining
repositories are those that do not contain artifacts of each of the
three high-level categories code, data, and documentation.

Consequently, we reject our initial hypothesis as less than half
of the repositories contain more code than data and more data than

Figure 5:Median (y-axis) of relative frequencies of code, data,
and documentation respectively in repositories with at least
six artifacts and per category distribution as given in legend.

documentation. It seems as if there does not exist one clear distribu-
tion pattern of high-level artifact categories for software. However,
we can say that it is quite unlikely (1%) to find software with more
documentation than data and more data than code.

4.6 RQ6: Does the ratio between frequencies of
artifact categories depend on the size
of software?

The question means: Is it that the bigger the software the more it
contains code than data and themore it contains data than documen-
tation?When starting this study we had the following hypothesis
concerning the size of software and frequencies of artifact categories:
The ratios of code to data and data to documentation are independent
of the size of the software.

To test our hypotheses, we use the same 21 309 repositories that
contain at least six artifacts of all three high-level categories code,
data, and documentation as in Sec. 4.5. Neither size (number of arti-
facts), the code-to-data-ratio rc_dat , nor the data-to-documentation-
ratio rdat_doc are normally distributed20. Therefore, we compute
Spearman’s ρ to test for a correlation between a) the size and rc_dat ,
and between b) the size rdat_doc respectively. For both cases, we use
the null hypothesesH0a) size and the rc_dat are uncorrelated and
H0b) size and the rdat_doc are uncorrelated.

The results of the test are: ρsize_code_data ≈ 0.1207, n = 21309,
p < 0.05, i.e., a very weak positive monotonic correlation, and
ρsize_data_doc ≈ 0.2672, n = 21309, p < 0.05, i.e., a weak positive
monotonic correlation. Since the p-values are in both cases very
close to zero(<0.05) we reject the null hypotheses. Thereby, we also
reject our hypothesis.

Since size and the code-to-data-ratio are very weakly correlated
and since size and the data-to-documentation-ratio are weakly cor-
related one may formulate that the bigger the software, the more

20Anderson-Darling test for normality with null hypothesis H0: the size, rc_dat ,
rdat_doc respectively are normally distributed returns very high values (5 655.11,
7 760.92, 6 479.58), all way above the critical values for any p-values. That is, we reject
the null hypotheses, i.e., none of the data is normally distributed.

Rolf-Helge Pfeiffer

it contains code than data and the more it contains data than doc-
umentation. But since the correlations are so weak, we are prudent
to conclude that in general.

5 DISCUSSION
With this study we confirm the common belief that software is usu-
ally more than just code as 99% of the studied repositories are not
code-only. Even though code in its various forms plays a major role
in software – commonly 2

3 of software is code –, our results suggest
that using software as synonym for code or programmay be inaccu-
rate. Software is more diverse, which is demonstrated by the fact
that the most common distribution of 11 artifact categories accounts
for only 3.92% of all studied software and the second most common
accounts for only 2.3%. Documentation is omni-present in software.
98% of the studied repositories contain it and on average 10% of a
repository are documentation artifacts.

So far, we cannot find a certain distribution of artifact categories
that is characteristic for software in general, see Sec. 4.5 and 4.6 but
it seems as if certain distributions are characteristic for certain kinds
of software, such as no data for libraries, high amount of images for
games, broad coverage of categories in large software, see Sec. 4.1.
We findweak correlations between size of software and code-to-data
ratio and data-to-documentation ratio, which suggests the larger the
software the more it contains more code than data and more data
than documentation. The lack of clear distribution patterns and the
diversity in artifact combinations suggest that software is any pos-
sible combination of artifacts though seldomly more documentation
than data and more data than code.

The concrete categories of our taxonomy (List 1) may be divided
further intoevenmoreconcrete categories. For example, archives can
be compressed or uncompressed, binary code can be categorized fur-
ther regarding a target architecture, etc. Sincewefind for all concrete
categories artifacts, we do not expect that the 19 concrete categories
will change drastically in future except for further sub-division.

5.1 Threats to Validity
The scope of analysis in our experiment is a Github repository. How-
ever, there is not necessarily a one-to-one relationship between a
repository and software. Some repositories, such as the Minix OS or
many of the games, contain self-contained software in the sense of
software products whereas others contain just libraries, i.e., soft-
ware to be reused by other software. That is, software may be an
aggregate of the contents of multiple repositories or of artifacts from
entirely different sources. Additionally, artifact distributions may
be different at development, delivery, or production time for the
same software. A closer study of artifacts and their distributions
across inter-dependent repositories, which together form a software
product remains future work.

Github does not list many highly starred Cobol or ABAP repos-
itories compared to Python repositories (Cobol stars: q2: 0, ∧: 0, ∨:
542, µ: 2.2, σ : 26.1 vs. Python stars: q2: 3 774, ∧: 1, ∨: 72 944, µ: 5 869,
σ : 6 905). This skew distribution of stars may affect our results as
low starred repositoriesmight be lessmature and less representative.
Another 2 000 highly starred projects might have changed the distri-
bution of artifact categories especially in Sec. 4.5. Though, we think
that the big amount of analyzed repositories minimizes this risk.

Besides that repositories on Github may not be representative,
projects may have differing politics on distributing executables and
documentation. Binary code and documentation may not be pro-
vided via the analyzed repositories. Due to the experimental setup
we do not analyze artifacts from other channels. We do not consider
this a major risk. For documentation we categorize its sources cor-
rectly and for binaries we categorize build code, which can serve as
a proxy for potential binary code.

Since based on heuristics, the tools file and DROIDmight clas-
sify some files wrongly. For example, a Ruby script generating an
HTML file might get classified as markup when the tools find an
HTML header encoded in a string. Similarly, binary data that acci-
dentally contains a magic number can be classified wrongly. Our
categorization does not fixmisclassifications of the underlying tools.
We randomly sampled 20 artifacts from each concrete category (320
files) and compared the tool’s verdict against a human classification.
We find that 12 files (3%) are classified wrongly. The majority of mis-
classifications remain within the same high-level category on which
much of our analysis is based. Four code artifacts (1%) are wrongly
categorized as data and three data artifacts (0.8%) are erroneously
categorized as code.

6 CONCLUSIONS & FUTUREWORK
Instead of understanding software metaphysically or by example,
see Sec. 2, we conduct an empirical study of 23 715 repositories con-
taining 13 840 142 artifacts. We find that artifacts of our 19 concrete
categories source code, specific source code, script code, binary code,
build code, infrastructure code, image, video, music, configuration,
database, font, archive,markup, document, app data, prose, legalese,
and other are constituents of software. Unlike in earlier definitions,
these are not examples but empirically confirmed.

Thus, our current working definition of software is: Software is
the collection of all of the above artifacts that humans collect and
store and these artifacts aremore than just code, documentation is an
integral part of them, depending on the domain data is not necessary,
and – even though rare – code is not strictly necessary.

We plan to complement this study by a) extending our initial
study of standard software sourcing contracts (Sec. 2.3), b) a litera-
ture study of what software quality models consider to be software,
and c) a survey amongst experts about their conceptions of software.

We aim for two major results a) a comprehensive taxonomy of
artifacts (a more detailed version of the one presented in List 1) that
can be used by practitioners as a kind of checklist of constituents of
software and b) a practical definition of software that can assist in
deciding which artifacts should be considered software.

ACKNOWLEDGMENTS
We thank Sami Brandt and Paolo Burelli for helping us understand
and interpret our data and Paolo Tell, Mircea Lungu and the anony-
mous reviewers for their valuable feedback on earlier versions of
this paper.

REFERENCES
[1] [n.d.]. Digital Economy and Society Index Report 2019. https://ec.europa.

eu/newsroom/dae/document.cfm?doc_id=59975. Accessed: 2020-01-08.
[2] [n.d.]. K01 Standard Contract for Short Term IT Projects. https:

//digst.dk/styring/standardkontrakter/k01-standardkontrakt-

https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59975
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59975
https://digst.dk/styring/standardkontrakter/k01-standardkontrakt-for-kortvarige-it-projekter/
https://digst.dk/styring/standardkontrakter/k01-standardkontrakt-for-kortvarige-it-projekter/
https://digst.dk/styring/standardkontrakter/k01-standardkontrakt-for-kortvarige-it-projekter/

What constitutes Software?
An Empirical, Descriptive Study of Artifacts

for-kortvarige-it-projekter/. Accessed: 2019-10-11.
[3] [n.d.]. K02 Standard Contract for Long Term IT Projects. https:

//digst.dk/styring/standardkontrakter/k02-standardkontrakt-
for-laengerevarende-it-projekter/. Accessed: 2019-10-11.

[4] [n.d.]. K03 StandardContract forAgile ITProjects. https://digst.dk/styring/
standardkontrakter/k03-standardkontrakt-for-agile-it-projekter/.
Accessed: 2019-10-11.

[5] [n.d.]. Model services contract. https://www.gov.uk/government/
publications/model-services-contract. Accessed: 2019-10-11.

[6] Luca Bigliardi, Michele Lanza, Alberto Bacchelli, Marco DAmbros, and Andrea
Mocci. 2014. Quantitatively exploring non-code software artifacts. In 2014 14th
International Conference on Quality Software. IEEE, 286–295.

[7] Pierre Bourque and Richard E. Fairley (Eds.). 2014. SWEBOK: Guide to the Software
Engineering Body of Knowledge (version 3.0 ed.). IEEE Computer Society, Los
Alamitos, CA. http://www.swebok.org/

[8] JN Buxton. 1990. Software engineering—20 years on and 20 years back. Journal
of Systems and Software 13, 3 (1990), 153–155.

[9] Bill Curran. 2001. What is Software Engineering? Ubiquity 2001, October, Article
5 (Oct. 2001). https://doi.org/10.1145/501305.763745

[10] Alexander Dekhtyar, Jane Huffman Hayes, and Tim Menzies. 2004. Text is
software too. InMSR 2004: International Workshop on Mining Software Repositories
at ICSE’04: Edinburgh, Scotland. 22.

[11] David Fifield. 2019. A better zip bomb. In 13th USENIX Workshop on Of-
fensive Technologies (WOOT 19). USENIX Association, Santa Clara, CA.
https://www.usenix.org/conference/woot19/presentation/fifield

[12] Risto Hilpinen. 1992. On artifacts and works of art 1. Theoria 58, 1 (1992), 58–82.
[13] IEEE 828-2012 2012. IEEE Standard for Configuration Management in Sys-

tems and Software Engineering. Standard. IEEE Standards Association.
https://ieeexplore.ieee.org/document/6170935

[14] Nurbay Irmak. 2012. Software is an Abstract Artifact. Grazer Philosophische
Studien 86, 1 (2012), 55–72. https://doi.org/10.1163/9789401209182_005

[15] ISO/IEC 19506:2012 2012. Information technology – Object Management Group
Architecture-Driven Modernization (ADM) – Knowledge Discovery Meta-Model
(KDM). Standard. International Organization for Standardization, Geneva, CH.
https://www.iso.org/obp/ui/#iso:std:iso-iec:19506:ed-1:v1:en

[16] ISO/IEC 19770-1:2017 2015. Information technology – IT asset man-
agement – Part 1: IT asset management systems–Requirements. Stan-
dard. International Organization for Standardization, Geneva, CH.
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-1:ed-3:v1:en

[17] ISO/IEC 19770-5:2015 2015. Information technology–IT asset management–
Overview and vocabulary. Standard. International Organization for Standard-
ization, Geneva, CH. https://www.iso.org/obp/ui/#iso:std:iso-iec:
19770:-5:ed-2:v1:en

[18] ISO/IEC 2382:2015 2015. Information technology – Vocabulary. Stan-
dard. International Organization for Standardization, Geneva, CH.
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en

[19] ISO/IEC 26513:2017 2017. Systems and software engineering–Requirements for
testers and reviewers of information for users. Standard. International Organization
for Standardization, Geneva, CH. https://www.iso.org/obp/ui/#iso:std:
iso-iec-ieee:26513:ed-1:v1:en

[20] ISO/IEC 26514:2008 2008. Systems and software engineering–requirements for
designers and developers of user documentation. Standard. International Organi-
zation for Standardization, Geneva, CH. https://www.iso.org/obp/ui/#iso:
std:iso-iec:26514:ed-1:v1:en

[21] ISO/IEC/IEEE 24765:2017 2017. Systems and software engineering – Vocabu-
lary. Standard. International Organization for Standardization, Geneva, CH.
https://www.iso.org/obp/ui/#iso:std:71952:en

[22] YuzhanMa, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed
Zogaan, andMehdiMirakhorli. 2018. Automatic classification of software artifacts
in open-source applications. In 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR). IEEE, 414–425.

[23] Peter Naur. 1968. Software Engineering-Report on a Conference
Sponsored by the NATO Science Committee Garimisch, Germany.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF (1968).
https://ci.nii.ac.jp/naid/10021847939/en/

[24] Leon J Osterweil. 2008. What is software? Automated software engineering 15,
3-4 (2008), 261–273.

[25] Leon J Osterweil. 2013. What Is Software? The Role of Empirical Methods in
Answering the Question. In Perspectives on the Future of Software Engineering.
Springer, 237–254.

[26] FR. Shapiro. 2000. Originof theTermSoftware:Evidence fromthe JSTORelectronic
journal archive. IEEE Annals of The History of Computing - ANNALS (01 2000).

[27] Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Julian Merelo. 2006.
Beyond source code: the importance of other artifacts in software development
(a case study). Journal of Systems and Software 79, 9 (2006), 1233–1248.

[28] SEVOCAB. 2019. Software and Systems Engineering Vocabulary. (2019). https:
//pascal.computer.org Accessed: 2019-09-15, with search term software.

[29] Ian Sommerville. 2010. Software Engineering (9th ed.). Addison-Wesley Publishing
Company, USA.

[30] AngusStevenson. 2010.OxforddictionaryofEnglish. OxfordUniversityPress,USA.
[31] Peter Suber. 1988. What is software? The Journal of Speculative Philosophy (1988),

89–119. https://dash.harvard.edu/handle/1/3715472
[32] John W Tukey. 1958. The teaching of concrete mathematics. The American

Mathematical Monthly 65, 1 (1958), 1–9.
[33] XiaoweiWang, Nicola Guarino, Giancarlo Guizzardi, and JohnMylopoulos. 2014.

Towards an Ontology of Software: a Requirements Engineering Perspective.. In
FOIS. 317–329.

https://digst.dk/styring/standardkontrakter/k01-standardkontrakt-for-kortvarige-it-projekter/
https://digst.dk/styring/standardkontrakter/k02-standardkontrakt-for-laengerevarende-it-projekter/
https://digst.dk/styring/standardkontrakter/k02-standardkontrakt-for-laengerevarende-it-projekter/
https://digst.dk/styring/standardkontrakter/k02-standardkontrakt-for-laengerevarende-it-projekter/
https://digst.dk/styring/standardkontrakter/k03-standardkontrakt-for-agile-it-projekter/
https://digst.dk/styring/standardkontrakter/k03-standardkontrakt-for-agile-it-projekter/
https://www.gov.uk/government/publications/model-services-contract
https://www.gov.uk/government/publications/model-services-contract
http://www.swebok.org/
https://doi.org/10.1145/501305.763745
https://www.usenix.org/conference/woot19/presentation/fifield
https://ieeexplore.ieee.org/document/6170935
https://doi.org/10.1163/9789401209182_005
https://www.iso.org/obp/ui/#iso:std:iso-iec:19506:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-1:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-5:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19770:-5:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:26513:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:26513:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:26514:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:26514:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:71952:en
https://ci.nii.ac.jp/naid/10021847939/en/
https://pascal.computer.org
https://pascal.computer.org
https://dash.harvard.edu/handle/1/3715472

	Abstract
	1 Introduction
	2 Motivation & Related Work
	2.1 Definition of terms
	2.2 Industrial Standards
	2.3 Standard Contracts
	2.4 Historical & Software Engineering Work
	2.5 Metaphysical Work
	2.6 Empirical Work

	3 The Experiment
	3.1 Research Questions
	3.2 Experimental Setup
	3.3 Method
	3.4 Characteristics of the Dataset

	4 Results
	4.1 RQ1: To which degree is software more than code?
	4.2 RQ2: Is documentation an integral constituent of software?
	4.3 RQ3: Does software without data artifacts exist?
	4.4 RQ4: Does software without code exist?
	4.5 RQ5: Does a characteristic distribution of frequencies of artifact categories exist?
	4.6 RQ6: Does the ratio between frequencies of artifact categories depend on the size of software?

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions & Future Work
	References

