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ABSTRACT
Motivated by the asymmetric read and write costs of emerging

non-volatile memory technologies, we study lower bounds for

the problems of sorting, permuting and multiplying a sparse ma-

trix by a dense vector in the asymmetric external memory model

(AEM). Given an AEM with internal (symmetric) memory of size M ,

transfers between symmetric and asymmetric memory in blocks of

size B and the ratio ω between write and read costs, we show

Ω(min{N , ωNB logωM
B

N
B }) lower bound for the cost of permut-

ing N input elements. �is lower bound also applies to the problem

of sorting N elements. �is proves that the existing sorting algo-

rithms in the AEM model are optimal to within a constant factor

for reasonable ranges of parameters N , M , B, and ω. We also show

a lower bound of Ω
(
min

{
H , ωHB logωM

B

N
max{δ,M }

})
for the cost

of multiplying an N × N matrix with at most H = δN non-empty

entries by a vector with N elements.
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→Memory and dense storage;
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1 INTRODUCTION
Recent advances in Phase-Change Memory, Memristor-based Resis-

tive RAM, and Spin-Torque Transfer Magnetic RAM technologies

place non-volatile memory (NVM) technology on the path to be-

come dominant memory technology in the near future. Relative

to current DRAM, NVM provides be�er energy usage and higher

density. However, the most signi�cant di�erence between NVM

and DRAM is the asymmetry in the cost of reading and writing
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data, sometimes by orders of magnitude [8, 9, 12, 15]. Such drastic

di�erence in read and write costs motivated recent studies on the

e�ects of read-write asymmetry on algorithm design.

Most of the studies in the past focused largely on the e�ects of

read-write asymmetry in the NAND �ash memories [2, 3, 10, 13,

14, 17]. But recently, several papers focused on models designed

speci�cally for the NVM [4, 6, 7].

Blelloch et al. [6] de�ne (M,ω)-Asymmetric RAM (ARAM) model

to analyze algorithms in the se�ing with asymmetric read and write

costs. �e model consists of a small symmetric memory of size M
and unbounded asymmetric memory, which contains the input. To

perform any computation on the data, it must be �rst brought into

the symmetric memory. Write accesses to the asymmetric memory

cost ω times more than read accesses. If an algorithm performs Qr
read accesses andQw write accesses to the asymmetric memory, the

costQ of an algorithm is de�ned as Q = Qr +ωQw . �e model also

de�nes timeT of an algorithm to be equal to the total number of read

and write accesses to the symmetric memory, which represents

the time it takes to perform computations to within a constant

factor, similar to how time complexity is de�ned in the standard

(symmetric) RAM model.

A related (symmetric) external memory (EM) model was intro-

duce by Aggarwal and Vi�er [1]. �e EM model consists of two-

level memory hierarchy, with the faster internal memory of size M
and the slower external memory of unbounded size, but symmetric

unit cost, I/O cost, of accessing the external memory. To perform

computation on data, it has to be �rst brought into the internal

memory, and the transfer is performed in contiguous blocks of size

B ≥ 1 elements. �e cost Q of an algorithm in the EM model is

de�ned to be the total number of read and write accesses to the

external memory. It is assumed that the cost of accessing the exter-

nal memory is signi�cantly larger than accessing internal memory,

therefore, the EM model focuses only on the I/O cost and does not

count the number of accesses to the internal memory.

�e natural generalization of the EM model to the asymmet-

ric se�ing [7] de�nes the (M,B,ω)-Asymmetric External Memory
(AEM) model as an EM model with each write access to the exter-

nal memory costing ω times more than a read access. �e cost Q
of an algorithm, which performs Qr read and Qw write accesses

(I/Os) to the external memory of the (M,B,ω)-AEM model, is de-

�ned as Q = Qr + ωQw . Similarly to the (symmetric) EM model,

this de�nition of the AEM model does not consider accesses (and,

equivalently, computation) in the internal memory to be part of the

cost. Also, notice that the (M,ω)-ARAM model is equivalent to the

(M, 1,ω)-AEM model.



Blelloch et al. study a number of algorithms in the (M,B,ω)-
AEM [7] and (M,ω)-ARAM [6] models. In addition they prove lower

bounds to a number of problems in the (M,ω)-ARAM model [6].

1.1 Our contributions
In this paper we focus on the problems of sorting, permuting and

multiplying a sparse matrix by a dense vector in the (M,B,ω)-AEM

model.

Of the three previously published [7] sorting algorithms in the

(M,B,ω)-AEM model, sample sort and heapsort achieve the cost

O (ωn logωm n) unconditionally. However, to achieve the same

bound, the mergesort relies on the assumption that ω < B. In Sec-

tion 3, we show that we can implement mergesort in the (M,B,ω)-
AEM model with the same cost without relying on any assumptions.

In Section 4 we show an Ω(min{N ,ωn logωm n}) lower bound

for the problem of permuting N elements. Since every sorting

algorithm must be able to perform an arbitrary permutation, this

lower bound also applies to the problem of sorting N elements and

matches the sorting upper bound to within a constant factor for

reasonable ranges of the parameters ω, B, M and N . In addition to

proving the permutation lower bound via the standard counting

method, we also prove it via reduction to the unit-cost �ash memory

model of Ajwani et al. [2]. �is result shows a close relationship

between the (M,B,ω)-AEM and the unit-cost �ash model, which

might make this reduction of independent interest.

Finally, in Section 5 we present a lower bound on the cost of

multiplying a sparse matrix with a dense vector in the (M,B,ω)-
AEM model.

2 PRELIMINARIES
To simplify notation throughout this paper, we de�ne the following

variables, which are standard in the literature on the EM model:

• N : size of the input vector/array or a dimension of a matrix

• H = δN : number of non-zero entries in a sparse matrix

• M : internal (symmetric) memory size

• B : block size

• m = dM/Be
• n = dN /Be
• h = dH/Be = Θ(δn)
• ω : ratio in cost between a write and a read access to the

external (asymmetric) memory

Similar to [5], to prove our lower bounds, we distinguish between

an algorithm and a program in the following way. An algorithm

is one description of how the (M,B,ω)-AEM model handles an

arbitrary input. In particular the size of the input, the permutation,

or the structure of the sparse matrix is not �xed, and there are

loops and branches. In contrast, a program is a �xed sequence

of I/O operations and internal memory move operations (and ad-

ditions/multiplication in the semi-ring). Accordingly, a program

implements one particular permutation or one particular confor-

mation (structure of the non-zero entries, together with a layout)

of a sparse matrix. Each such program is a straight line program

that performs the same set of operations no ma�er what values

are given as input. We can view the inputs and outputs to such

programs as an ordered list of numbers and their meaning is given

solely by their position in the ordering, rather than their values.

Clearly, an algorithm gives rise to a family of programs – one for

each permutation or sparse matrix conformation. Hence, a lower

bound on the cost of any program for some permutation or sparse

matrix of a certain size induces the corresponding lower bound

on the cost of any algorithm. For all considered problems we give

upper bounds on the cost by means of describing an algorithm and

lower bounds by arguments about programs.

3 MERGE SORT
In this section we present a multi-way mergesort which achieves

O (ωn logωm n) read and O (n logωm n) write I/Os for any value of

ω.

Our AEM mergesort follows the standard framework for multi-

way mergesort algorithms: We divide the array into d = ωm subar-

rays, each of size O (N /d ), recursively sort each one and merge d
newly sorted subarrays into a single sorted array. At the base case,

using the algorithm for sorting small arrays by Blelloch et al [7,

Lemma 4.2], we can sort each subarray of size N ′ ≤ ωM elements

inO (ωn′) read I/Os andO (n′) write I/Os (for a total cost ofO (ωn′)
each), where n′ = N ′/B. If the cost of performing d-way merging

of the subarrays is O (ωn), then the cost of the overall algorithm is

de�ned by the following recurrence:

Q (N ,M,B,ω) =

{
d ·Q (N /d,M,B,ω) +O (ωn) if N > ωM
O (ωn) if N ≤ ωM

which solves to Q (N ,M,B,ω) = O (ωn logd n) = O (ωn logωm n).
�us, it remains to show how to perform ωm-way merging of

sorted subarrays, which collectively contain N elements, within

the desired O (ωn) cost.

3.1 Merging ωm sorted arrays
For ease of exposition, let M be a constant fraction of the available

internal memory. �is does not a�ect the asymptotic bounds above

and provides us with su�cient space to store a constant number of

additional words of auxiliary data with each element in the internal

memory.

To merge ωm sorted arrays, we proceed in R = dN /Me rounds.

At the end of each round we write a batch of the next M small-

est elements across all ωm arrays in sorted order in contiguous

addresses of external memory. Next, we show how to perform

each round in O (ωm) read and O (m) write I/Os, for a total of

O (N /M · ωm) = O (ωn) read and O (N /M ·m) = O (n) write I/Os.

Let Ai , 0 ≤ i < ωm, be the i-th sorted array to be merged. If ω >
B, then we do not even have enough space in the internal memory to

maintain the pointers to the next element of Ai in external memory.

�erefore, we must maintain these pointers in external memory.

To reduce the number of times we have to perform a write I/O to

update these pointers, rather than maintaining a pointer ptr [i] to

the next element e ofAi that is not in internal memory, we maintain

the pointer b[i] to the block ofAi that contains e . �is way, we have

to update each b[i] in external memory only a�er B elements are

merged from Ai , i.e., at most once for each of n blocks. �erefore,

the total write I/Os required to update the pointers b[i] for merging

N elements of ωm arrays is at most O (n). Let π denote the largest

element stored in internal memory at the time. �e next element

to be considered from an array Ai is the smallest element that is

larger than π . Note that it is always in the block pointed to by



b[i]. �us, we can always determine the correct element within

the b[i]-th block to be processed next. Initially, all b[i]s are set to

point to the �rst block of each array Ai . �is initialization takes

O (dωm/Be) = O (ωm) write I/Os.

In each round we scan the current elements of the arrays Ai
(as detailed later) and maintain M smallest elements in internal

memory. Since internal computations are not counted in the cost of

an AEM algorithm, we can, for example, maintain them in a sorted

arrayM. �e round ends when the next unprocessed element of

every Ai is larger than the largest element ofM, at which point

we writeM to external memory using O (m) write I/Os.

InitializingM: Starting with an empty arrayM, we read two

blocks from each array Ai , 0 < i < ωm, starting with the b[i]-th
block. Every time a block is read, its elements that are larger than π
are merged intoM. IfM grows beyond the size M , it is truncated

down to exactly M elements.

Identifying active arrays: We call an array Ai active, if more

blocks from that array might need to be loaded, i.e., the largest

element of the last block read from Ai (a) is not the last element of

Ai and (b) is among the M smallest in the internal memory so far.

Otherwise, we call Ai inactive. Observe that onceM contains M
elements the values of the elements ofM can only decrease during

that round. �erefore, once an array becomes inactive, it does not

need to be considered again until the next round. Observe, that it

is easy to identify active arrays by re-reading the blocks from the

initialization phase and comparing the last element read from each

array with the largest element inM. For every inactive array we

can also update b[i], if it has changed.

�e e�ciency of our merging algorithm relies on the following

observation.

Lemma 3.1. A�erM has been initialized, there are at mostm =
M/B active arrays for the rest of the round of the algorithm.

Proof. Since more than B elements are read from each array,

andM contains at most M elements, there can be at most M/B
blocks from each array with the last element inM, i.e., satisfying

the condition (b) in the de�nition of active arrays. �

Merging from active arrays: According to Lemma 3.1, there is

enough space in internal memory to maintain one block from each

active array. Observe that the initialization step ensures that one

block from each active array is already present in the internal

memory. Let µ be the largest value that the algorithm should write

out during the round. If µ were known to the algorithm, it could

simply read from eachAi all the elements smaller than µ and merge

them. As it is not known, the algorithm uses a classical M/B-way

merge on the active arrays to load the right elements.

More precisely, for any active Ai let si be the maximal element

already loaded into the internal memory. Recall that if si > π , the

array Ai is no longer active. Let j be be the index of the array with

the smallest element among all si . In each step the algorithm loads

the next block from Aj , merges it intoM, updates sj and repeats

until there are no more active arrays, which means µ = π . At this

point,M contains M smallest elements, which are wri�en out into

external memory in sorted order.

Theorem 3.2. Merging ωm sorted arrays, containing in total N
elements, takes O (ω (n +m)) read and O (n +m) write I/Os.

Proof. As has been argued earlier, since the b[i] pointers are

updated in external memory only once per block, the cost to main-

tain b[i]s is at most O (n) write I/Os. Additional writes are only to

output M next smallest elements in each of R = dN /Me rounds for

a total of R ·m = O
((

N
M + 1

)
·m

)
= O (n +m) write I/Os.

To compute the number of reads, observe that the use of π by

the algorithm implies that if in some round, array Ai contains an

element that is greater than π , then at most one block from Ai (the

one containing the smallest element larger than π ) is read from

external memory. �us, the number of reads in each round is at most∑ωm
i=1

( Ni
B + 1

)
, where Ni is the number of elements from Ai that

should be wri�en out in that round. Since in each round

∑
i Ni = M

(onlyM elements are to be wri�en out per round),

∑ωm
i (Ni/B+1) ≤

m +ωm, and over R = dN /Me rounds the number of reads adds up

to R · (m+ωm) = O
((

1 + N
M

)
· (m + ωm)

)
= O (ω (n+m)) I/Os. �

4 PERMUTATION LOWER BOUNDS
As explained in the introduction, we formulate this lower bounds

for programs and this implies the corresponding lower bound for

algorithms. Our approach to proving permutation lower bound in

the AEM model follows the framework of Hong and Kung [11]: We

de�ned anωm-round to be a sequence of operations of an (M,B,ω)-
AEM program of cost at mostωm. �us, a round may consist of any

combination of r read and w write I/Os, as long as r + ωw ≤ ωm.

Additionally, all but the last round must have the cost of at least

ω (m − 1).
We say a program is round-based, if it performs computation in

ωm-rounds and at the beginning and the end of each round the

internal memory is empty. We upper bound the progress that any

round-based program can make in any particular round, which

gives us a lower bound on the number of rounds that any program

must perform for the whole computation, resulting in the lower

bound for the whole program (and hence algorithm). We also

show that every program P in the (M,B,ω)-AEM model can be

converted into a round-based program P ′, without increasing the

cost by more than a constant factor (Lemma 4.1). �us, a lower

bound for P ′ implies a lower bound for P (Corollary 4.2).

Lemma 4.1. Any program P in the (M,B,ω)-AEM with the overall
cost of Q (N ,M,B,ω) can be implemented as a round-based program
P ′ in the (2M,B,ω)-AEM with cost

Q ′(N , 2M,B,ω) = O (Q (N ,M,B,ω))

Proof. Split P into rounds of cost at least ω (m − 1) and at

most ωm. To simulate each round of P on the (2M,B,ω)-AEM,

P ′ logically partition the internal memory of size 2M into two

halves:M ′ andM ′′.M ′ will maintain the contents of the internal

memory of P, whileM ′′ will bu�er the data being wri�en by P to

the external memory in each round. At the start of each round, P ′

initializesM ′ by reading the contents of the internal memory of P

from the end of the previous round (this step is skipped during the

�rst round.) For every write operation of P, P ′ copies the block

intoM ′′, instead of writing it to the external memory. For every

read operation of P, P ′ loads the block from the external memory if



and only if it is not present inM ′′ already; otherwise P ′ copies the

block fromM ′′ toM ′. When the cost limit of a round is reached,

P ′ writes the contents ofM ′′ to the external memory and deletes

the contents of bothM ′ andM ′′. �is completes the simulation

of a round.

Observe that P ′ ful�lls the requirements of a round-based pro-

gram. Since the cost of each round of P is at most ωm, all elements

to be wri�en during the round of P �t inM ′′. Excluding the reads

required to initialize the contents ofM ′ at the beginning of each

round, the number of read and write accesses of P ′ is at most the

same as those of P. Additional reads required for initializingM ′

cost at most ωm in each round, starting with the second one. If P

consists of at least two rounds, this additional cost in each round

can be charged to the cost of the previous one, thus, increasing the

overall cost only by a constant factor. If P consists of only one

round, there is no additional cost, because the �rst round of P ′

does not perform the initialization. �

Corollary 4.2. Any problem which requires cost Q on (M,B,ω)-
AEM using a round-based program, requires cost Ω(Q ) to be solved
on the (M/2,B,ω)-AEM.

Similar to the (symmetric) EM model, to prove non-trivial lower

bound for permutation, we must assume that each element is indi-

visible and new elements cannot be generated. To emphasize this

point from now on we will refer to such indivisible elements as

atoms.
With this, we are ready to prove the lower bound for the cost of

permuting an array of N elements, stored in n = N /B consecutive

blocks in the external memory. We take two approaches to prove

the lower bound. In the �rst approach, we perform a simulation

of the (M,B,ω)-AEM permutation program in the unit-cost �ash

model [2]. �us, the existing lower bounds in the unit-cost model

will imply a lower bound in the (M,B,ω)-AEM model. In the sec-

ond approach, we prove the lower bound directly via the counting

argument. �e second approach provides a slightly stronger lower

bound for some parameter ranges, due to some ine�ciencies in the

simulation. However, the simulation result might be of indepen-

dent interest because it implies a close relationship between the

(M,B,ω)-AEM and the unit-cost �ash model.

4.1 Lower bound via reduction to the unit-cost
�ash model

In the symmetric external memory model we could assume (by

a simulation that has only a constant slowdown) that reading a

block erases it on disc (and that there is no copying or deleting

of elements). In the asymmetric model, this is not true because a

simulation, which writes the contents of every block that is read

back to the external memory, might increase the cost of the program

by a factor of ω. Hence the following arguments are based on a

more re�ned trace of the program where we follow which copy of

an atom is actually used in the output. �is leads to the notion of a

read operation ’using’ some of the atoms of a block, meaning that

the copies read are the ones eventually leading to the output.

In the following, we use a simulation of AEM in the unit-cost

�ash memory model of [2]. �at model is an external memory

model where the size of the blocks that are wri�en is bigger than

the size of the blocks that are read. �is means that when one

big block is wri�en, it consists of several small blocks that can be

read independently. Moreover, the cost of reading and writing is

proportional to the number of elements in the block. Hence, similar

to the AEM model, a single write operation is more expensive

than a single read operation. Not too surprisingly, we choose a

situation where the factor between the two isω, more precisely, the

write blocks are of size B as the AEM blocks, and the read blocks

are of size B/ω. For this to make sense, B should be a multiple

of ω (or somewhat bigger such that rounding is irrelevant). Still,

the symmetry in the cost per element for reading and writing

simpli�es ma�ers and we have (see [2]) upper and lower bounds

for sorting and permuting as if all blocks were small. Interestingly,

for the task of permuting, which is about moving around indivisible

elements/atoms, there is a close connection between the two models.

Observe that in a round-based program for permuting in the AEM

model, only a 1/ω fraction of the atoms read during a round can

be wri�en. Hence, the average number of useful atoms brought

into the internal memory during a read operation is B/ω, which is

precisely the size of the read block of the associated �ash model.

�e only challenge with simulating an AEM program in the �ash

model is that in a single read I/O the AEM program can choose an

arbitrary subset of the B/ω atoms of the block, whereas in the �ash

model a read of B/ω elements must happen from the contiguous

memory. It is easy to address this challenge if we know how a big

block is going to be read in the future. However, this is well de�ned

and easy to determine, because we are considering programs and

not algorithms.
With this, we are ready to describe the simulation.

Lemma 4.3. Assume there is a round-based programPA for (M,B,ω)-
AEM that computes the permutation π over N elements with cost Q .
Assume B > ω and B is a multiple of ω. �en there is a program PF
in the unit-cost �ash memory model with read block of size B/ω and
write block of size B that performs I/Os of total volume of 2N +2QB/ω.
(i.e., an I/O volume corresponding to Q small (read-) blocks).

Proof. Observe that a read operation is an implicit copy opera-

tion: �e atom is both in internal memory and in the block. Clearly,

only one of the two copies will be moved further to become part of

the output. If this is the copy that is in internal memory, we can

think of the atom being deleted from the block. Because PA is a

program, at the time when the block is wri�en, we can determine

for all atoms the time when they will be removed from the block.

We normalize PA to write the block such that the atoms inside the

block are ordered by the time they will be removed. We create P ′A
from PA by �rst doing one read and write scan over the input and

then executing PA. �is scan has I/O volume 2N , can easily be

round-based and has the e�ect that all read operation happen on

normalized blocks, i.e., on blocks that are internally ordered by re-

moval time. In particular, all read operations use only a contiguous

interval of the atoms inside the block. To simulate PA with PF we

keep the indices (names) of blocks. Every write operation of PA is

replicated directly in PF . A read operation of PA leads to several

read operations of small blocks, just enough to cover the interval of

atoms that are actually removed from the block by this read opera-

tion. Observe that in this way every read operation of PA induces

at most 2 read operations in PF that are not using (removing from



the block) all of the read atoms. What remains is to determine the

I/O volume of PF , which is simpli�ed by PF being round-based.

Clearly, for any round the number k of e�ectively read atoms is

equal to the number of atoms wri�en. Letw be the number of block

writes in the round, leading to a cost of ωw , and the bound k ≤ Bw .

�e I/O volume for writing in PF is Bw . Let r be the number of

block read operations of PA, with cost r . All non-full read opera-

tions in PF will have a volume of 2rB/ω. �e full read operations

have a total volume of at most k ≤ Bw . Hence the overall volume of

a round in PF is Bw + 2rB/ω + k ≤ 2Bw + 2rB/ω ≤ 2(ωw + r )B/ω.

Summing over all rounds and accounting for the initial read and

write scan leads to the theorem. �

Using the classical lower bound on permuting [1] we get:

Corollary 4.4.

Q (N ,M,B,ω) = Ω
(
min

{
N ,ωn logωm n

})
− 2ωn

Note that the parameter range for which this lower bound is

non-trivial depends on the constant factor of the Ω.

4.2 Lower bound via counting
In this section we prove the lower bound for permutation directly.

It is a combination of the counting argument of [1] and the rounds

introduced in the previous section.

Observe that when performing a permutation, any atom that is

read from external memory but is not wri�en back to the external

memory does not contribute to generating a permutation. �erefore,

we require that atoms are moved between the external memory and

internal memory as follows. When reading a block Bi from external

memory, a program must decide which subset S of atoms of Bi will

be kept in internal memory to be wri�en later. Exact copies of

the atoms in S are created in internal memory, while destroying

their copies in the external memory. �e rest of the atoms of Bi are

le� unchanged in the external memory. When writing an internal

memory block B′i to the external memory, some atoms of B′i can be

set to be empty. However, writing B′i to external memory replaces

everything in the destination block Bi with the contents of B′i ,
i.e., any non-empty atom in Bi is destroyed. Since an atom can

exist either in the internal memory or in the external memory, but

not both, and since there is no way to generate destroyed atoms,

writing to external memory can only be performed into empty

blocks (either a new block location or all atoms of the destination

block had been destroyed via moving them into internal memory

in prior reads).

We upper bound the number P (R) of permutations a round-based

algorithm can generate a�er R rounds using the above rules. Since

every correct algorithm must be able to generate every possible

permutation, the inequality P (R) ≥ N ! will provide us with the

lower bound on the number of rounds R required to generate these

permutations. Finally, since every round (except possibly for the last

one) costsΘ(ωm) = Θ(ωM/B), every algorithm’s cost to permuteN
atoms is Ω(ωmR). More precisely, we count the number of di�erent

normalized programs with ` I/Os, where we make sure that every

permutation requires a di�erent program.

Typically, we are interested in algorithms which at the end of

computation, place the output within the �rst dN /Be = dne con-

tiguous blocks of external memory. However, for our lower bound

we only require the �nal output to reside in dne blocks of external

memory, without the requirement for these blocks to be adjacent.

Clearly, any lower bound with this relaxation holds in the more

stringent se�ing of requiring the output to be in the fully contiguous

space in external memory.

In the original permutation lower bound proof in the (symmetric)

EM model, Aggarwal and Vi�er [1] argued that the B! permutation

within each of dN /Be blocks should be counted only once (see [1]

for detailed argument). �ey count them only when a block Bi is

read for the �rst time. However, in the AEM model, a read of a block

might not necessarily use all the atoms of a block, so we cannot

argue that we can count those B! permutations when we read the

block for the �rst time. Instead, we can count them the last time a

block is wri�en. And since the �nal output is wri�en into dN /Be
blocks and each �nal block (except the last one) contains exactly

B atoms, counting the B! permutations within each �nal block Bi
during the �nal writing of Bi to the external memory adds up to a

total of B!
N /B

permutations. �us, when counting the upper bound

P (R) on the number of generated permutations, we simply ignore

the permutations within each block and require that P (R) ≥ N !

B!
N /B .

One can think of this as a normalization (selecting one out of many

programs that create the same permutation), where until the block

is �nally wri�en, the relative order of the atoms within that block

is the same as in the input. �is e�ectively reduces the content of a

block to be an (unordered) subset of the input atoms.

Let us compute the multiplicative factor of permutations that

the r -th round can generate. LetNr be the set of non-empty blocks

in the external memory at the beginning of the r -th round. Note,

|Nr | ≤ N because every atom can only be moved and no new atoms

are generated.

Let us compute the number of ways to pick up to M atoms in

external memory to bring into the internal memory. �ere are(
|Nr |
ωM/B

)
≤

( N
ωM/B

)
ways to pick ωM/B blocks from the input

residing in the external memory. Out of the chosen ωM atoms in

theωM/B blocks, there are ≤
(ωM
M

)
2
M

ways to pick up to M atoms

to keep in internal memory:

(ωM
M

)
ways to pick exactly M atoms

out of ωM possible ones and 2 ways for each of these M atoms to

decide whether to keep it in the internal memory or not.

Since we empty the internal memory between the rounds, at the

end of the r -th round we have to write all the atoms that we chose to

bring into the internal memory back to the external memory. Even if

we chose to bring allM atoms into internal memory, there are
M !

B!
M/B

ways to permute M elements, without counting the permutations

within each block, since we are ignoring those. Finally, each block

in the internal memory can be wri�en to ≤ 2|Nr | + 1 distinct

locations in the external memory: one of |Nr | blocks of Nr which

might have become empty due to reading at the beginning of r -th

round, or one of the |Nr | + 1 locations between the blocks of Nr .

So the choice of writing ≤ M/B blocks from the internal memory

to the external memory provides a multiplicative factor of at most

(2|Nr | + 1)M/B ≤ (3N )M/B
.

�us, the total number of permutations that can be generated

a�er R rounds is at most



P (R) ≤

[(
N
ωM
B

) (
ωM

M

)
2
M M!

B!
M/B

(3N )M/B
]R

(1)

Using the inequalities

(n
k

)
≤

(
n ·e
k

)k
and

(
k
3

)k
≤ k! ≤

(
k
2

)k
, the

above expression simpli�es to

P (R) ≤



(
Ne

ωM/B

)ωM/B
(eω)M 2

M
(

3M

2B

)M
(3N )M/B



R

≤


*
,

N 1+ 1

ω · 3
1

ω e

ωM/B
+
-

ωM/B

(3eωm)M


R

≤


*
,

N 1+ 1

ω · 3
1

ω e

ωm
+
-
(3eωm)B/ω



ωmR

Since we must have
N !

B!
N /B ≤ P (R),

ωmR ≥
log

N !

B!
N /B

log

((
N 1+ 1

ω ·3
1

ω e
ωm

)
(3eωm)B/ω

)
≥

N log(2N /3B)

log

(
N 1+ 1

ω ·3
1

ω e
ωm

)
+ (B/ω) log(3eωm)

≥
N log(N /2B)

2 ·max

{
log

(
N 1+ 1

ω ·3
1

ω e
ωm

)
, Bω log(3eωm)

}
Observe that log

(
N 1+ 1

ω ·3
1

ω e
ωm

)
= O

(
ω+1

ω logN
)
≤ c logN , for

some constant c > 0 and su�ciently large N (the last inequality

following from the fact that ω ≥ 1, i.e.,
ω+1

ω ≤ 2).

Assuming ω ≤ N /B or, equivalently, ωB ≤ N , we distinguish

two cases, depending on which term in the denominator dominates:

(1) If B ≥
cω logN

log(3eωm) then ωmR = Ω(n logωm n)

(2) If B <
cω logN

log(3eωm) then

log
N
2B = log

N
2

√
B ·B
≥ log

N
2

√
Bcω logN

≥ log
N

2

√
cN logN

= Ω(logN )

and, therefore, ωmR = Ω(N ).

�us, we obtain the following lower bound on the cost of any

round-based algorithm:

Q (N ,ω,M,B) = Ω(ωmR) = Ω
(
min

{
N ,ωn logωm n

})
Combining with Corollary 4.2, we obtain the following theorem:

Theorem 4.5. Assuming that ω ≤ N /B, the cost of permuting N
elements of an array in the (M,B,ω)-AEM model is at least

Ω
(
min

{
N ,ωn logωm n

})
5 COMPLEXITY OF SPMXV, COLUMN MAJOR

LAYOUT
In this section we will mainly prove a lower bound for computing

the product A · x between a sparse matrix A by a dense vector x

in the (M,B,ω)-AEM model. �is proof extends the ideas of [5]

to the (M,B,ω)-AEM model. In an a�empt to be somewhat self

contained, we present a complete but concise whole proof.

We consider an N ×N matrix A stored in the column-major order

in the external memory. �is means that the non-zero entries of A
are stored in the following way: Start with the �rst column, list the

non-zero elements for increasing row index, then take the second

column, and so on. �e stored list consists of triples (i, j,ai j ). A
consists of a total of H = δ · N non-zero entries, for some integer

δ ≥ 1, i.e., on average every column or row has δ non-zero entries.

We start by stating the upper bounds in the (M,B,ω)-AEM model.

�ey follow the well-known algorithms in the (symmetric) EM

model. Similar to permuting, for each conformation of the ma-

trix, there is a direct or naive algorithm that produces the output

vector in its natural order. For each output element yi , the pro-

gram considers all entries ai j in the i-th row of A, multiplying it

by xi and adding the result to yi . �e cost of this program in the

(M,B,ω)-AEM model is O (H + ωn).
Alternatively, there is a sorting based algorithm. It performs a

simultaneous scan of A (in column-major order) and x and replaces

the matrix entry ai j with the elementary product ai jx j . Next, it

divides the matrix into δ meta columns, and sorts the N entries

of the meta column by the row indices of the entries, virtually

reordering the meta columns into row-major layout. �is essentially

results in δ dense vectors, which need to be added up to yield the

overall result.

�e cost of this algorithm in the (M,B,ω)-AEM model is dom-

inated by sorting the input and writing the output for a total of

O
(
ωh logωm

N
max{δ,B } + ωn

)
. �e max{δ ,B} term in the logarithm

arises from the fact that each column is already sorted by the row

indices and the base case of the mergesort is a sorted sequence of δ
elements.

Hence, the upper bound for SpMxV problem in the (M,B,ω)-
AEM model is (note, the last term ωn is the cost of writing the

output):

Q (N ,H ,ω,M,B) = O

(
min

{
H ,ωh logωm

N

max{δ ,B}

}
+ ωn

)
When proving the permutation lower bounds in Section 4, we

had to assume indivisibility of individual elements, i.e., that no

new elements can be created by combining several elements or

combining subset of bits from several elements. To that end, the

only operation that was allowed was moving individual elements

as atomic/indivisible entities between the external and internal

memories. Since matrix multiplication inherently generates new

elements via multiplications and additions, we must relax these

constraints.

Following the approach of [5], we work with the semi-ring model,

i.e., we consider only algorithms or programs that work over an

arbitrary semi-ring. �is means in particular that we restrict our

a�ention to algorithms that do not rely on the existence of inverse

elements and cancellation. �is would disallow an algorithm like

Strassen’s matrix-matrix multiplication algorithm [16], but it is

less of a restriction here because there are no known algorithms

for SpMxV that use this. As for the other lower bounds, we con-

sider programs that work only for one particular conformation of

matrices, i.e., the structure of A is �xed, and the semi-ring atoms



signifying the ai j are stored in the input in column major layout.

�is task is actually already di�cult for the input vector being the

all ones vector, meaning that we only have to compute the sum of

the elements of each row.

�e proof of the following theorem is an adaptation of the proof

of �eorem 6.2 in [5] to our situation. Note that the assumption

ω · δ ·M · B ≤ N 1−ε
is presumably stronger than necessary. We use

it here to simplify the calculations signi�cantly in comparison to

the original proof in [5].

Theorem 5.1. Consider any semi-ring program in the (M,B,ω)-
AEM model, where B > 2, M > 4B and ω · δ ·M · B ≤ N 1−ε , for a
constant ε > 0. �ere is a sparse N ×N matrix A with precisely δ ≥ 1

non-zero entries per column such that for A stored in column major
layout, multiplying A with the all ones vector incurs a cost of at least

Q (N ,H ,ω,M,B) = Ω

(
min

{
H ,ωh logωm

N

max{δ ,B}

})
Proof. Assume the program is round-based, which by Corol-

lary 4.2 is irrelevant for the statement of the theorem. A con�g-

uration of a program describes which atoms are stored in which

memory cell at a certain time. We trace the computation backward,

i.e., there is a unique �nal con�guration, and we count how many

di�erent initial con�gurations are possible if R many rounds are

available. Since we are working with programs, rather than al-

gorithms, we can assume that all atoms are actually used for the

output. Because we consider multiplying with the all ones vec-

tor, all atoms used by the program are (partial) sums

∑
j ∈S ai j for

some S , including the input elements for |S | = 1 and the output

elements for S consisting of all (non empty) columns of that row. It

is su�cient to trace the program by marking for each atom the row

it belongs to. In this abstract trace, the �nal con�guration is �xed.

Additionally, the initial con�guration of this trace identi�es the

conformation of the input matrix (because it is stored in column

major layout and has precisely δ entries per column). Further we

insist on the atoms stored in one block being sorted by the row

they belong to. �is e�ectively means that a block stores a subset

of rows. To account for the additional choice of the program to

change this order in the input blocks, we introduce the function τ
below. So far we follow precisely the approach of [5]. Since the

program is round-based, it su�ces to focus on con�gurations with

empty internal memory between the rounds. Also, note that the

con�gurations can be described by the choices of atoms (initial or

intermediate) within the blocks with the order within each block

being irrelevant.

For permuting, in both the simulation in the �ash model and

in the counting lower bound it is important that the amount of

data usefully read equals the amount (usefully) wri�en. �is is

no longer true for the task of SpMxV because here the data read

might be partial sums of the same row that are added together

to form an atom that is wri�en out. Fortunately, this reduction

in volume is fairly limited: Every correct program for the task

performs exactly (δ − 1)N additions. If a round of the computation

does not perform any additions, the number of e�ectively read

elements and wri�en elements is identical. �e number of additions

performed during one round is precisely the di�erence between

the number of elements read and wri�en. Let sr , r = 1, . . . ,R be

the number of additions in round r . We have

∑R
r=1

sr = (δ − 1)N .

Because round r writes at most M atoms, it can usefully read at

most M + sr atoms.

For a �xed con�guration a�er executing the round, we are in-

terested in the number of di�erent possible con�gurations before

the round. First, we �x the blocks this round uses for reading and

writing; this gives a certain multiplicity we will see in the formulas.

If an atom is wri�en out and read in again within one round, we

don’t record this individual movement, but only the net e�ect of

the round. Having �xed this, there is a well de�ned set of rows for

which intermediate results are wri�en in this round; its size is at

most M .

In each round r , we have at most ω M
B read operations, each

reading ck ≤ B atoms, and in total reading

∑
k ck ≤ M + sr atoms.

For a �xed choice of where the output is wri�en to, the memory

content (as a subset of size at most M of rows) is �xed. We calculate

the number of di�erent con�gurations that are possible before the

round, not (yet) accounting for the choice of block where input is

read from (i.e. only considering content).

ω M
B∏

k=1

(
M

ck

)
≤

(∑ω M
B

k=1
M∑ω M

B
k=1

ck

)
≤

(
ω M

B M

M + sr

)

≤ *
,

eω M
B M

M + sr
+
-

M+sr

≤

(eωM
B

)M+sr
Here, the �rst inequality follows from a combinatorial argument:

To describe all choices, we can create a marked/disjoint union of

the individual universes. �e individual subsets lead to a subset of

size ‘sum of the sizes’.

By choosing the addresses of the involved blocks, which is at

most H , the total number of di�erent preceding con�gurations for

round r is at most

H (ω+1) MB ·

(eωM
B

)M+sr
.

Multiplying this over R rounds bounds the number of di�erent

set-wise starting con�gurations, which must be enough to handle

all di�erent conformations of sparse matrices:

R∏
r=1

H (ω+1) MB ·

(eωM
B

)M+sr
= HR (ω+1) MB ·

(eωM
B

)Mr+(δ−1)N

Additionally, the algorithm is free to choose the sr and the order

of atoms within the input block, and we get the following inequality

that bounds R:

HR (ω+1) MB ·

(eωM
B

)Mr+(δ−1)N
· HR ≥

(
N

δ

)N
/τ (N ,δ ,B) ,

using the de�nition of [5] for τ :

τ (N ,δ ,B) =




3
δN

if B < δ ,

1 if B = δ ,

(2eB/δ )δN if B > δ .



Solving for R we get

R (ω + 1)
M

B
logH + (Mr + (δ − 1)N ) log

(eωM
B

)
+ R logH ≥

≥ δN log

N

δ
− logτ (N ,δ ,B) ,

R
(
2ω

M

B
logH +M log

eωM

B
+ logH

)
≥ δN

(
log

(N
δ

B

eωM

))
− logτ (N ,δ ,B)

implying that the cost is

Q (·) = Rω
M

B
≥
δN log

N
δ − logτ (N ,δ ,B) − log

B
eωM

2 logH + B
ω log

eωM
B + B

ωM logH

Simplifying the enumerator using the de�nition of τ , this is:

Q (·) = Rω
M

B
≥

δN log

(
N

max{3δ,2eB }
B

eωM

)
2 logH + B

ω log
eωM
B + B

ωM logH

We distinguish cases by the leading term of the denominator.

�e last term is always dominated by the �rst, so we can ignore it

for asymptotic considerations. If the �rst term in the denominator

dominates the second one, we use the assumptionω ·δ ·M ·B ≤ N 1−ε

to conclude Q (·) = Ω(H ). If, on the other hand, the second term in

the denominator dominates the �rst one, then

Q (·) ≥
ωδN

3B
*.
,

log
N

max{3δ,2eB }

log
eωM
B

− 1
+/
-

= Ω

(
ωh logωm

N

max{δ ,B}

)
matching the bound of the sorting-based algorithm. �
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