
Overview of the SISAP 2025 Indexing Challenge

Eric S. Tellez1 , Edgar Chavez2 , Martin Aumüller3 , and Vladimir Mic4

1 eric.tellez@ieee.org INFOTEC; IxM SECIHTI, México.
2 elchavez@cicese.edu.mx CICESE, México.
3 maau@itu.dk ITU Copenhagen, Denmark.

4 v.mic@cs.au.dk Aarhus University, Denmark.

Abstract. This paper summarizes the innovative solutions presented at
the third edition of the SISAP Indexing Challenge held at SISAP 2025.
The challenge featured two distinct tasks involving vector embeddings
derived from a large corpus using neural encoders. It proposed the fol-
lowing two tasks under strict memory and computational constraints:

– Task 1: Approximate nearest neighbor search achieving an average
recall of at least 0.7 for 30-NN, using out-of-distribution objects as
queries.

– Task 2: k-NN (k = 15) graph construction for large datasets, re-
quiring an average recall of at least 0.8.

Both tasks required solutions to operate within strict resource limits: 16
GB of RAM, 8 virtual CPUs, and a 12-hour wall-clock time for the
end-to-end pipeline (including data loading, pre-processing, indexing,
and searching). Each task imposes different minimum quality require-
ments and ranking specifications. Participants developed strategies such
as data compression, optimized indexing, and efficient search algorithms
to meet these constraints. This paper details the challenge design, ex-
plains the evaluation framework, and provides an overview of the sub-
mitted solutions.

1 Introduction

The SISAP 2025 Indexing Challenge5 is an initiative that brings researchers and
practitioners together to promote progress in similarity search. Historically, the
SISAP Challenge has focused on evaluating k-nearest neighbor search algorithms
and encoders under various conditions, using image embeddings from the LAION
dataset [20,21]. The 2025 edition introduces two metric tasks: first, the indexing
and retrieval of k-nearest neighbors (k-NN search), and second, the computation
of the k-nearest neighbor graph (k-NN graph). Each task uses a distinct dataset,
PUBMED23 and GOOAQ, resp., which consist of text passages encoded with
Sentence-BERT models (see [19] for details on these models). In particular, the
queries for Task 1 follow a different distribution than the dataset, presenting a
realistic challenge for similarity search engines.

5 Site: https://sisap-challenges.github.io/2025/index.html

https://orcid.org/0000-0001-5804-9868
https://orcid.org/0000-0002-0148-695X
https://orcid.org/0000-0002-7212-6476
https://orcid.org/0000-0002-8813-303X
https://sisap-challenges.github.io/2025/index.html


2 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

Recent advances in deep learning have expanded the scope of similarity search
beyond large-scale engines, integrating it into processing pipelines that run on
standard hardware. Examples include workloads for Retrieval-Augmented Gen-
eration (RAG) [3] or k-NN graphs used in non-linear dimensionality reduction
methods like UMAP [17].

The challenge’s experimental environment was resource-constrained, designed
for workloads that fit in memory or on disk. Thereby, it allows a trade-off be-
tween search speed and quality. This setup reflects common scenarios, such as
(i) workloads processed on standard computing hardware, and (ii) applications
demanding low-latency responses where disk access is prohibitive.

To ensure reproducibility, the challenge’s methodology is consistent with pre-
vious editions. The process is structured as follows:

– The challenge is divided into a development stage and an evaluation stage.
– Separate datasets and queries are provided for each stage.
– Ground truth data is available for the development stage.
– Participants are given access to development data, while evaluation data is

withheld until the final assessment.

The two tasks employ neural embeddings derived from Sentence-BERT mod-
els applied to the textual datasets. For Task 1, we provide both in-distribution
(data and query vectors come from the same distribution) and out-of-distribution
queries (data and query vectors come from different distributions), which enables
robust development and comparative analysis. The final evaluation is performed
using only the out-of-distribution queries. Out-of-distribution tasks are designed
to challenge the limits of current techniques and foster the development of highly
efficient and scalable solutions, see for example [12] for a more detailed discus-
sion.

Hardware specifications

The evaluation phase was conducted on a computer workstation equipped with
2x Intel(R) Xeon(R) CPU E5-2690 v4, operating at 2.60GHz with a total of 28
cores, supplemented by 512 GB of DDR4 RAM and a 1 TB SSD. The system
runs a Linux kernel version 5.4 on Ubuntu 20.04.6 LTS. Each solution was ex-
ecuted within a Docker container, adhering to predefined resource constraints.
The challenge was designed to operate within a strict 16GB physical RAM limit,
with swap memory disabled to enforce this constraint. However, a postmortem
analysis of the evaluation environment revealed that a minor memory overhead
inherent to the containerization system itself could cause solutions operating
very close to the 16GB limit to utilize a minimal amount of swap simply to
function. This behavior was an artifact of the environment, not an intentional
relaxation of the rules for any team.

Roadmap

Section 2 details the preprocessing and search methods we employed as baselines
for both tasks. Section 3 provides an overview of Task 1, the solutions suggested



Overview of the SISAP 2025 Indexing Challenge 3

Table 1. List of participating teams and its members.

Team Members Task Ref.

BrownCICESE Foster, Magdaleno-Gatica, Kimia 1, 2 [9]
cm-lll Lou, Ma, Luo, Ruan, Wu, Lu, Mao 1 [14]
Crusty Coders Dearle, Connor, Claydon, McKeogh 1, 2 [4]
DCC-UChile Bustos, Chen 2 [1]
hforest Imamura 1, 2 no
JLapeyra Lapeyra 1, 2 no
TeamDoubleFiltering Higuchi, Imamura, Shinohara, Hiratta, Kuboyama 1 [11]

by the teams, and an analysis of the results. Section 4 presents the solutions
and results for Task 2. Lastly, Section 5 concludes the challenge and explores
potential future directions.

Participating Teams

Table 1 provides an overview of the teams that participated in the SISAP 2025
Indexing Challenge. It contains the team names, members, and a reference to
each team’s explanatory article. Four teams participated in both Task 1 and 2,
two teams focused solely on Task 1, and one team addressed just Task 2.

2 Baselines

To enrich the context of the results achieved by competing teams, we add two
baselines: BL-SearchGraph and BL-Bruteforce, based on the Julia’s package
SimilaritySearch.jl on the v0.12 series and PCA projections of different di-
mensionalities. The BL-SearchGraph uses the SearchGraph graph-based index
using the beam search metaheuristic as its navigation algorithm; see [21,20,22].
It supports online auto-tuning of a couple of hyperparameters (∆,β) to achieve
a minimum recall r as the desired quality, and it also supports tuning to achieve
a different recall r∗ for search. The self-optimized parameter β ≥ 2 controls the
size of the beam size (i.e. backtracking memory) and 0 < ∆ < 2 that specifies
the exploration tendency of the navigation (i.e. what objects could be considered
for backtracking); see [22] for more details.

In contrast to other graph indexes like HNSW [15], instead of a hierarchy
of neighbors to start a search, it uses a sample of diverse objects to provide
fast initialization of navigation and promotes the use of small neighborhoods of
variable size selected filtered with a half-space partitioning (HSP or SAT [18])
over a ball of logb(n) initial neighbors. BL-Bruteforce is a simple but parallel
implementation of exhaustive scan.

The baselines use Principal Component Analysis (PCA) to reduce the mem-
ory footprint and speed up distance computations. In particular, after PCA
projection, we applied scalar quantization to 8-bit integers. Baselines use the



4 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

Euclidean distance instead of the angle between vectors due to PCA projection;
our implementation casts each byte component to a 32-bit floating point number
before arithmetic computations.

3 Task 1: Resource-limited Indexing

Participants in Task 1 were required to develop memory-efficient solutions for an
approximate nearest neighbor search. The task demands solutions that operate
under strict 16 GB RAM, 8 virtual CPUs, and a wall-clock time of 12 hours for
the complete pipeline, which includes loading data, preprocessing, indexing, and
searching. The target recall was set to be at least 70%. The team’s final score
is determined by the highest search throughput exceeding the recall threshold
measured across up to 16 different search hyperparameters.

The dataset for this task is derived from the PUBMED corpus of scientific
papers 6. We computed neural embeddings using the Sentence BERT model7 for
this task.8 The vectors comprise 23.9 million 384-dimensional vectors, and use
35GB of hard disk space using 32-bit floating point numbers. This means that the
original dataset cannot be loaded into memory within the resource constraints.
The similarity between two objects is measured by their dot product. The dataset
is composed of abstracts of scientific articles, and their titles are utilized as
queries; this origin distinction of the type of text leads to an implicit distribution
change that should be addressed by the indexes. Teams received 11,000 query
objects for development, with solutions evaluated on a separate permutation
of the dataset and a different 10,000 query set with the same distributions.
Table 2 shows the distance distribution quantiles for the in-distribution and out-
of-distribution query sets for the development dataset; it shows these statistics
for 1NN and 30NN queries.

Table 2. Distance distribution quantiles of the PUBMED dataset.

query quantiles of the kth nearest neighbor radius

type k min. 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 max.

in-dist 1 0.000 0.117 0.141 0.159 0.174 0.189 0.205 0.224 0.246 0.276 0.513
out-dist 1 0.000 0.137 0.161 0.180 0.196 0.213 0.229 0.248 0.271 0.307 0.566

in-dist 30 0.000 0.207 0.234 0.253 0.270 0.285 0.301 0.317 0.338 0.368 0.579
out-dist 30 0.131 0.247 0.275 0.296 0.314 0.332 0.350 0.369 0.392 0.424 0.646

6 PUBMED corpus https://huggingface.co/datasets/MedRAG/pubmed.
7 Sentence BERT model https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
8 The embeddings can be accessed in https://huggingface.co/datasets/sadit/

SISAP2025

https://huggingface.co/datasets/MedRAG/pubmed
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/datasets/sadit/SISAP2025
https://huggingface.co/datasets/sadit/SISAP2025


Overview of the SISAP 2025 Indexing Challenge 5

3.1 Solutions Overview for Task 1

This section outlines the range of solutions received in the SISAP 2025 Index-
ing Challenge. These solutions were developed in the programming languages
C, C++, and Rust, with Python and the Linux’s shell serving as high-level in-
terfaces. Our baselines were implemented in the Julia language. As elaborated
below, the solutions utilized various indexing structures and dimensionality re-
duction methodologies. Each submission was meticulously designed to take ad-
vantage of the dataset’s specific attributes and execution environments.

Task 1 baselines. The BL-SearchGraph was built with r = 0.97, r∗ = 0.9 and
b = 1.3 on the PCA 160d 8-bit quantized dataset. We use r∗ = 0.9, which is
above the expected 0.7 minimum recall for Task 1, but is required to deal with
the implicit loss due to the PCA projection. Note that r is relatively high since,
as studied by [8], a high-quality graph index can significantly improve search
performance at the cost of increasing indexing time. We generate 16 different
hyperparameter setups for the search stage by geometrically varying the self-
optimized parameter ∆. The starting point for this variation is ∆opt/1.052, with
subsequent values increasing by a factor of 1.05. BL-Bruteforce uses the same
PCA projection, but performing an exhaustive evaluation of the dataset.

3.2 Solutions of Task 1 from Teams

The TeamDoubleFiltering solution [11] approach focuses on an online approxi-
mate k-NN search using a two-stage filtering strategy. The first stage employs
short binary sketches (16 – 20 bits) derived from selected pivots, with an An-
nealing by Increasing Resampling (AIR) process used to identify effective pivot
sets. This stage filters candidates based on the asymmetric distance between the
query vector and the indexed sketches, which provides higher recall compared
to the traditional Hamming distance. The second filtering stage utilizes longer
quantized projections, called QSMAP images, derived from dimension-reduced
vectors, e.g., 192-bit QSMAPs from 1-bit quantization of 192-dimensional pro-
jections. These are stored in sketch-sorted order to improve memory locality and
cache performance during filtering. For the final reranking, the system uses 8-bit
quantized vectors instead of the original 32-bit floating vectors, further reducing
the memory footprint while preserving accuracy. The entire system is designed
to be memory-resident.

The cm-lll team [14] introduces two key optimizations to the DiskANN [13]
pipeline to tackle the task. First, PCA-based dimensionality reduction is applied
to compress vectors from 384 to 192 dimensions. This significantly reduces the
memory footprint, enabling in-memory indexing for large datasets that would
otherwise exceed the memory limit during graph merging. This reduction is
shown to retain over 90% of the original information. Second, a refined shard-
assignment mechanism is introduced. Instead of the standard DiskANN 2x repli-
cation of points across two nearest shards, this optimized strategy assigns each



6 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

point to its primary shard and then to the secondary shard with only a probabil-
ity of 0.5. This reduces the expected replication rate to 1.5x, decreasing indexing
overhead, a smaller disk footprint, and faster build times while maintaining re-
call.

The Brown-CICESE [9] solution compresses each 32-bit floating-point value
into an 8-bit integer through scalar quantization, achieving a 4x data compres-
sion. The team uses a graph-based index for an efficient k-NN search, the com-
pression strategy is designed to preserve neighborhood relationships with high
accuracy. The Half-Space Proximal (HSP) Test is employed as an edge selection
strategy to create a sparse but geometrically diverse set of neighbors for the
search index. The performance of this approach is influenced by the maximum
degree of the graph and the number of bits used for data compression.

The JLapeyra team proposes a straightforward but effective pipeline built
around Faiss [6]. It incorporates optional PCA-based dimensionality reduction to
minimize memory usage and accelerate searches, particularly for high-dimensional
datasets. The core indexing and search mechanism is based on Faiss IndexFlat
IP, which performs an efficient brute-force search using inner product similarity.
For Task 1, the dataset is processed in batches to overcome RAM limitations,
with previously found candidates retained and merged across batches to en-
sure result consistency. The system also leverages multithreading to parallelize
queries. After an initial candidate retrieval from Faiss, a re-ranking stage refines
the results using inner product similarity, with top k results managed via a heap
structure. The reported recall for Task 1 is 99.7%.

The methodology adopted by the Crusty Coders team [4] is linked to that
detailed in 4, which leverages a special 2-bit quantization for vector databases
and a related distance function b2sp. The solution firstly uses their Task 2 so-
lution to create a k-NN graph. This graph is enhanced with reverse neighbors
and integrates a navigational algorithm analogous to that presented in [16]. The
search algorithm is optimized for speed, employing their b2sp function; subse-
quently, a reranking step is executed using the original vectors among the top
100 neighbors retrieved with b2sp to meet the minimum quality requirements.

We did not receive a formal description from the hforest team; however, based
on their source code,9 and previous work of the authors and related work [10,2],
the solution is based on binary sketches produced through Hilbert trees, a spatial
method that uses the locality preservation properties of a space-filling Hilbert
curve. The purpose is to map a sweep the high-dimensional dataset with the
Hilbert curve, changing the range queries to interval queries in 1D. The team
utilized several trees to form a forest, thereby overcoming the inherent limitations
of the approach and enabling them to meet the minimum recall requirements.
Note that the Hilbert curve approach produces candidates that must be verified
in the original high-dimensional space.



Overview of the SISAP 2025 Indexing Challenge 7

Table 3. Performance listing for Task 1; the table shows the best performant setup
per team among the 16 possible search setups that surpasses the recall lower bound.
Memory usage statistics of the container’s resident memory (rmem) are also shown.

team rank recall build query throughput container rmem (GB)

time (s) time (s) (q/s) time (s) median max.

BL-SearchGraph 1 0.7322 4,320 0.60 16,769 4,667 9.6 13.2
BrownCICESE 2 0.7884 9,563 1.44 6,928 9,646 14.2 14.3
TeamDoubleFiltering 3 0.7212 - 9.25 1,081 324 9.6 9.6
hforest 4 0.7053 2,243 15.70 637 2,594 12.2 16.0
cm-lll 5 0.8347 6,419 34.61 289 6,457 11.6 11.6
Crusty Coders 6 0.8048 2,980 178.00 56 3,161 14.5 14.5
JLapeyra 7 1.0000 - 870.32 11 873 7.9 15.3
BL-Bruteforce 8 0.8559 0 1,265.15 8 1,588 5.2 5.3

3.3 Results for Task 1

Table 3 shows the final ranking for Task 1, where solutions are ranked by query
throughput for setups achieving the minimum 0.7 average recall. The table in-
cludes build time, total query time for 10,000 objects, and the total container
time (the end-to-end pipeline). We also report the median and maximum resident
memory (rmem) used by each solution’s container.

The ranking is led by our BL-SearchGraph baseline. The top-performing
participant was BrownCICESE, which secured the second rank with a query
time of 1.44 seconds. TeamDoubleFiltering and cm-lll followed in the ranking.
All participating teams developed solutions that surpassed the BL-Bruteforce
baseline. In terms of overall efficiency, the TeamDoubleFiltering solution stands
out; its total pipeline time of 324 seconds is nearly five times faster than the
brute-force baseline, and its query phase is over 100 times faster, demonstrating
the effectiveness of its two-stage filtering approach.

Figure 1 illustrates the speed-recall trade-offs for teams that submitted mul-
tiple hyperparameter configurations. Some solutions, like JLapeyra, performed
a single, high-recall run, which is characteristic of their exhaustive search-based
approach.

4 Task 2: k-NN Graph Construction

Task 2 requires memory-efficient solutions to approximate the k-NN graph, par-
ticularly for k = 15. The resource limits are identical to Task 1, see §3. Solutions
must run with identical computing specifications to Task 1, yet with a mini-
mum average recall of 0.8. Here we used the Google Question & Answers corpus
GOOAQ10, which consists of 3 million 384-dimensional vectors, where the sim-
ilarity between two objects is measured by their dot product. The database

9 SISAP 2025 fork https://github.com/sisap-challenges/sisap25-hforest.
10 https://huggingface.co/datasets/sentence-transformers/gooaq

https://github.com/sisap-challenges/sisap25-hforest
https://huggingface.co/datasets/sentence-transformers/gooaq


8 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

Fig. 1. Comparative performance for Task 1 with up to 16 search hyperparameters by
team.

occupies 7.4GB using 32-bit floating point numbers. Along with quality control,
solution ranking is determined by total computation time, which includes pre-
processing, graph computation, and post-processing. We provided a development
dataset that participants could test, while we used a different permutation of the
same dataset for evaluation.

Task 2 baselines. We used three baselines:

– A BL-SearchGraph that first indexes the dataset and then searches all el-
ements of the dataset using the same index. However, instead of using the
typical internal structure to determine a good starting point to navigate,
here we used the precomputed nearest neighbor already stored in the graph-
index as the starting point, implemented in the function allknn of the
SimilaritySearch package. We created the index with r = 0.9, r∗ = 0.9,
and b = 1.3;11 on the dataset projected with PCA 160d using 8-bit quanti-
zation.

– Two instances of the bruteforce search algorithm BL-Bruteforce, using a
PCA 160d and 32d, both with 8-bit quantization.

11 Note that r = 0.9 is faster than the r = 0.97 used for Task 1 but it will produce
slower searches; also note that the PCA projection and quantization imply a recall
loss.



Overview of the SISAP 2025 Indexing Challenge 9

4.1 Solution of Task 2 from Teams

The DCC-UChile [1] team’s solution is based on an approximate algorithm
called Root Join, enhanced with several preprocessing steps and modifications.
The original Root Join algorithm [7] divides the dataset into disjoint groups
and computes k-NN by considering elements within the same group and the
next closest group. To improve performance for high-dimensional data, Principal
Component Analysis (PCA) is used for dimensionality reduction. A key modifi-
cation addresses group uniformity, as the original Root Join can create groups of
non-uniform sizes. The improved version aims to ensure that all groups contain
roughly the same number of elements, reducing the cost of finding the nearest
neighbors. The solution also introduces a substitution to the farthest point dur-
ing group creation, where if a new element is closer to a group’s true center than
its current furthest object, the furthest object is replaced. To enhance effective-
ness, a small list (two in their implementation) of the next closest group centers
is explicitly stored for each element. The target set for the k-NN computation
is expanded to include the element’s group plus these two next-closest groups,
resulting in searches among a larger target size. Finally, the algorithm leverages
parallelization by distributing k-NN searches within groups, which is simplified
by their disjoint nature.

The Crusty Coders solution [4] introduces a technique called ultra-quantiza-
tion focusing on data compression. This method compresses the data into two
bits per original 32-bit floating point number, enabling a very compact data rep-
resentation (each 384-dimensional embedding is stored in just 1024 bits). A fast
bitwise metric is associated with this representation, providing a good approx-
imation to the scalar product of the original data. The NN table is built using
a modified version of the NN-Descent algorithm [5]. Key modifications include
calculating a single reverse link table, removing all sampling (which was found
to reduce output quality in their context), and a different local join algorithm
that computes distances among all new links combined with all reverse links,
and new links with old links. The implementation is in Rust, using parallelism
with the Rayon package and employing lock-free table updates for the nearest-
neighbor, similarities, and flags tables to achieve concurrent updates without
race conditions.

As mentioned in §3, the solution of the hforest team was not documented
in an article submitted along with the implementation. Based on a review of
the source code and related manuscripts from the authors, the solution is based
on the Hilbert Tree. It works by mapping multidimensional data points to a
one-dimensional line, then building a B+ tree on these sorted 1D values to en-
able efficient k-NN queries through interval searches and candidate verification.
For improved accuracy and robustness, instead of using a single tree, a number
of them are used, that is, a Hilbert forest comprising multiple trees built from
slightly transformed data versions. This structure proved very efficient in Task 2.
The method processes points in their 1D Hilbert order, considering only local
neighbors, which allows for significant computational reuse, and low-memory rep-



10 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

Table 4. Performance listing for Task 2, ranked by total container time. An asterisk
(*) denotes solutions that did not meet all constraints.

team rank recall all-knn container rmem (GB)

time (s) time (s) median max.

hforest 1 0.8049 99 105 7.1 7.4
BL-SearchGraph 2 0.8257 112 165 1.9 2.3
BrownCICESE 3 0.8198 446 450 6.2 6.2
Crusty Coders 4 0.8012 542 548 3.1 3.1
BL-Bruteforce (160d) - 0.5210∗ 9,378 9,410 1.2 1.6
JLapeyra - 0.9944 61,430 61,433∗ 5.4 14.8
DCC-UChile - 0.5432∗ 113,203 113,213∗ 8.2 16.0

resentation without costly intermediate structures. Inherent parallelism across
CPU cores enables high-performance k-NN graph construction.

Brown-CICESE [9] team introduces an iterative approach to build the k-
NN graph directly for Task 2, bypassing the need for a separate upfront index.
This method initiates with a random graph and iteratively refines it by querying
each dataset element over the current graph, similar to [5], yet using a beam
search algorithm. The returned candidate neighbors are then used to update
the graph links. Key strategies and hyperparameter optimizations for improved
convergence include adding reverse links, which proved significantly impactful.
A top-layer graph, built on a sample of the dataset, is used to mitigate local
minima and provide structure for the beam search. The degree of the graph is
also optimized. Additionally, increasing the beam width of the search improves
graph quality and allows for more updates to reverse neighbors.

The JLapeyra team solution leverages the fact that the GOOAQ dataset
fits within memory. Therefore, the entire dataset is processed at once, with
the dataset itself serving as both the source and the target of queries. PCA
transformation can be applied globally to the dataset. As for Task 1, the solution
uses a linear scan implemented in the FAISS library; it includes an optional self-
loop exclusion for constructing the k-NN graph.

4.2 Results for Task 2

Table 4 shows the performance for Task 2, ranked by the total container time for
valid solutions. The hforest team achieved the first position, completing the task
in 105 seconds. The BL-SearchGraph baseline was second, followed by Brown-
CICESE and Crusty Coders.

Several solutions were disqualified for not meeting the minimum require-
ments. For instance, JLapeyra achieved high recall but exceeded the 12-hour
time limit, while DCC-UChile did not meet the time or recall constraints. The
BL-Bruteforce baseline with 32d PCA projection, while within the time limit,
was disqualified for its low recall of 0.5210.



Overview of the SISAP 2025 Indexing Challenge 11

5 Conclusions

This manuscript presents the results of the SISAP 2025 Indexing Challenge,
which featured tasks in memory-limited environments. The strict 16 GB RAM
constraint for Task 1 (Approximate Nearest-Neighbor Search) and Task 2 (k-
NN Graph Construction) required participants to create highly optimized and
memory-efficient solutions.

Out-of-distribution queries in Task 1 reflected real-world search scenarios
where indexing and search strategies must be resilient to distributional shifts.
Teams employed data compression and dimensionality reduction methods like
PCA, scalar quantization, and bit-sketches to manage memory limits.

In Task 1, our baseline, BL-SearchGraph, achieved the fastest search time.
The BrownCICESE team was the top-ranked participant with a query time of
1.44 seconds. The TeamDoubleFiltering solution had the shortest total container
time at 324 seconds, making it well-suited for applications requiring fast end-
to-end processing. In Task 2, the hforest team led the ranking with the fastest
total container time of 105 seconds, followed by BL-SearchGraph at 165 seconds
and BrownCICESE at 450 seconds.

The insights gained from these challenges, including the complex relation-
ship between speed and low-memory data representations, contribute to the
advancement of algorithms and techniques vital for a wide range of real-world
technologies, from large-scale databases and search engines to machine learning
and data analysis platforms.

Acknowledgments. The work of V. Mic on this challenge was supported by a
research grant (VIL50110) from VILLUM FONDEN.

Disclosure of Interests. All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest or non-
financial interest in the subject matter or materials discussed in this manuscript.

References

1. Bustos, B., Chen, J.: Sisap indexing challenge 2025 – solution for task 2 using root
join. In: Similarity Search and Applications: 18th International Conference, SISAP
2025, October 1st-3rd, Proceedings. Springer-Verlag, Berlin, Heidelberg (2025)

2. Chen, H.L., Chang, Y.I.: All-nearest-neighbors finding based on the hilbert curve.
Expert Systems with Applications 38(6), 7462–7475 (2011)

3. Cuconasu, F., Trappolini, G., Siciliano, F., Filice, S., Campagnano, C., Maarek,
Y., Tonellotto, N., Silvestri, F.: The power of noise: Redefining retrieval for rag
systems. In: Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 719–729 (2024)

4. Dearle, A., Connor, R., Claydon, B., McKeogh, F.: Building a near-neighbour
table using equi-voronoi polytopes. In: Similarity Search and Applications: 18th
International Conference, SISAP 2025, October 1st-3rd, Proceedings. Springer-
Verlag, Berlin, Heidelberg (2025)



12 E. Tellez, E. Chavez, M. Aumüller, and V. Mic.

5. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th international conference
on World wide web. pp. 577–586 (2011)

6. Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P., Lomeli,
M., Hosseini, L., Jégou, H.: The faiss library. CoRR abs/2401.08281 (2024)

7. Ferrada, S., Bustos, B., Reyes, N.: An efficient algorithm for approximated self-
similarity joins in metric spaces. Information Systems 91, 101510 (2020)

8. Foster, C., Kimia, B.: Computational enhancements of hnsw targeted to very large
datasets. In: Similarity Search and Applications: 16th International Conference,
SISAP 2023, A Coruña Spain, October 9-11, Proceedings. Springer (2023)

9. Foster, C., Magdaleno-Gatica, S., Kimia, B.: Refinement-based graph construction
for search in low-memory systems. In: Similarity Search and Applications: 18th
International Conference, SISAP 2025, October 1st-3rd, Proceedings. Springer-
Verlag, Berlin, Heidelberg (2025)

10. Higuchi, N., Imamura, Y., Kuboyama, T., Hirata, K., Shinohara, T.: Fast nearest
neighbor search with narrow 16-bit sketch. In: ICPRAM. pp. 540–547 (2019)

11. Higuchi, N., Imamura, Y., Shinohara, T., Hirata, K., Kuboyama, T.: Double filter-
ing using short and long quantized projections. In: Similarity Search and Applica-
tions: 18th International Conference, SISAP 2025, October 1st-3rd, Proceedings.
Springer-Verlag, Berlin, Heidelberg (2025)

12. Jääsaari, E., Hyvönen, V., Ceccarello, M., Roos, T., Aumüller, M.: VIBE: vector
index benchmark for embeddings. CoRR abs/2505.17810 (2025)

13. Krishnaswamy, R., Manohar, M.D., Simhadri, H.V.: The diskann library: Graph-
based indices for fast, fresh and filtered vector search. IEEE Data Eng. Bull. 48(3),
20–42 (2024)

14. Lou, Y., Ma, L., Luo, K., Ruan, Y., Wu, H., Lu, M., Mao, R.: Efficient faiss-based k-
nn indexing for sisap 2025 challenge. In: Similarity Search and Applications: 18th
International Conference, SISAP 2025, October 1st-3rd, Proceedings. Springer-
Verlag, Berlin, Heidelberg (2025)

15. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence 42(4), 824–836 (2018)

16. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Scalable distributed algo-
rithm for approximate nearest neighbor search problem in high dimensional general
metric spaces. In: Navarro, G., Pestov, V. (eds.) Similarity Search and Applica-
tions. pp. 132–147. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

17. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

18. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB
Journal 11(1), 28–46 (2002)

19. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics (11 2019)

20. Tellez, E.S., Aumüller, M., Chavez, E.: Overview of the sisap 2023 indexing
challenge. In: Similarity Search and Applications: 16th International Conference,
SISAP 2023, A Coruña, Spain, October 9–11, 2023, Proceedings. p. 255–264.
Springer-Verlag, Berlin, Heidelberg (2023)

21. Tellez, E.S., Aumüller, M., Mic, V.: Overview of the sisap 2024 indexing challenge.
In: Similarity Search and Applications: 17th International Conference, SISAP 2024,
Providence, RI, USA, November 4–6, 2024, Proceedings. p. 255–265. Springer-
Verlag, Berlin, Heidelberg (2024)



Overview of the SISAP 2025 Indexing Challenge 13

22. Tellez, E.S., Ruiz, G.: Similaritysearch.jl: Autotuned nearest neighbor indexes for
julia. Journal of Open Source Software 7(75), 4442 (2022)


	Overview of the SISAP 2025 Indexing Challenge

