
Verifying object-oriented programs with
higher-order separation logic in Coq

Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars Birkedal

IT University of Copenhagen

Abstract. We present a shallow Coq embedding of a higher-order sepa-
ration logic with nested triples for an object-oriented programming lan-
guage. Moreover, we develop novel specification and proof patterns for
reasoning in higher-order separation logic with nested triples about pro-
grams that use interfaces and interface inheritance. In particular, we
show how to use the higher-order features of the Coq formalisation to
specify and reason modularly about programs that (1) depend on some
unknown code satisfying a specification or that (2) return objects con-
forming to a certain specification. All of our results have been formally
verified in the interactive theorem prover Coq.

1 Introduction

Separation Logic [12,16] is a Hoare-style program logic for modular reasoning
about programs that use shared mutable data structures. Higher-order separa-
tion logic [3] (HOSL) is an extension of separation logic that allows for quan-
tification over predicates in both the assertion logic (the logic of pre- and post-
conditions) and the specification logic (the logic of Hoare triples). HOSL was
proposed with the purposes of (1) reasoning about data abstraction via quan-
tification over resource invariants, and (2) making formalisations of separation
logic easier by having one general expressive logic in which it is possible to de-
fine predicates, etc., needed for applications. In this article we explore these two
purposes further; we discuss each in turn.

The first purpose (data abstraction) has been explored for a first-order lan-
guage [4], for higher-order languages [9,11], and for reasoning about generics
and delegates in object-oriented languages (without interfaces and without in-
heritance) [18]. In this article we show how HOSL can be used for modular
reasoning about interfaces and interface-based inheritance in an object-oriented
language like Java or C]. Our current work is part of a research project in
which we aim to formally specify and verify the C5 generic collection library [8],
which is an extensive collection library that is used widely in practice and whose
implementation makes extensive use of shared mutable data structures. A first
case-study of one of the C5 data structures is described in [7]. C5 is written in
C] and is designed mainly using interface inheritance, rather than class-to-class
inheritance; different collection modules are related via an inheritance hierarchy
among interfaces. For this reason we focus on verifying object-oriented programs
that use interfaces and interface-based inheritance.

2 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

We explore the second purpose (formalisation) by developing a Coq formal-
isation of HOSL for an object-oriented class-based language and show through
verified examples how it can be used to reason about interfaces and inheritance.

Our formalisation makes use of ideas from abstract separation logic [6] and
thus consists of a general treatment of the assertion logic that works for many
models and for a general operationally-inspired notion of semantic command.
Our general treatment of the logic is also rich enough to cover so-called nested
triples [17], which are useful for reasoning about unknown code, either in the
form of closures or delegates [18] or, as we show here, in the form of code match-
ing an interface. To reason about object-oriented programs, we instantiate the
general development with the heap model for our object-oriented language and
derive suitable proof rules for the language. This approach makes it easier in the
future to experiment with other storage models and languages, e.g., variants of
separation logic with fractional permissions.

Summary of contributions. We formalize a shallow Coq embedding of a higher-
order separation logic for an object-oriented programming language. We have
designed a system that allows us to write programs together with their spec-
ifications, and then prove that each program conforms to its specification. All
meta-theoretical results have been verified in Coq1.

We introduce a pattern for interface specifications that allows for a modular
design. An interface specification is parametrised in such a way that any class
implementing the interface can be given a suitably expressive specification by
a simple instantiation of the interface specification. Moreover, we show how to
use nested triples to, e.g., write postconditions in the assertion logic that require
a returned object to match a certain specification. Our approach enables us to
verify dynamically dispatched method calls, where the dynamic types of the
objects are unknown.

Outline. The rest of this article is structured as follows. In Section 2 we demon-
strate the patterns we use for writing interfaces by providing a small example
program that uses interface inheritance and proving that it conforms to its spec-
ification. In Section 3 we cover the language and memory-model independent
kernel of our Coq formalisation. In Section 4 we specialise our system to handle
Java-like programs by providing constructs and a suitable memory model for a
subset of Java. Section 5 covers related work, and Section 6 concludes.

2 Reasoning with interfaces

To demonstrate how our logic is applied, we will use the example of a class
Cell that stores a single value and which is extended by a subclass Recell that
maintains a backup of the last overwritten value and has an undo operation. This
example is originally due to Abadi and Cardelli [1]; a variant of it was also used
1 The Coq development accompanying this article can be found at
http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz

http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz

Verifying object-oriented programs with higher-order separation logic in Coq 3

interface ICell {
int get();
void set(int v);
}

class ProxySet {
static void proxySet(ICell c, int v) {

c.set(v);
}
}

class Cell implements ICell {
int value;

Cell() { }
int get() {

return this.value;
}
void set(int v) {

this.value = v;
}
}

interface IRecell extends ICell {
void undo();
}

class Recell implements IRecell {
Cell cell;
int bak;

Recell() {
this.cell = new Cell();
}
int get() {

return this.cell.get();
}
void set(int v) {

this.bak = this.cell.get();
this.cell.set(v);
}
void undo() {

this.cell.set(this.bak);
}
}

Fig. 1. Java code for the Cell-Recell example with interface inheritance.

by Parkinson and Bierman [14] to show how their logic deals with class-to-class
inheritance.

We add to this example a method proxySet, which calls the set method of
a given object reference. It is a challenge to give a single specification to this
method that is powerful enough to expose any additional side effects the set
method might have in arbitrary subclasses. We will see in this section how our
specification style achieves this, and it is sketched in Section 5 how this compares
to related work.

Our model programming language is a subset of both Java and C]. It leaves
out class-to-class inheritance and focuses on interface inheritance. This mode of
inheritance captures the essential object-oriented aspect of dynamic dispatch,
while the code-reuse aspect has to be explicitly encoded with class composition.
A Java implementation of the Cell-Recell example can be found in in Figure 1.

2.1 Interface ICell

Interface ICell from Figure 1 is modelled as a parametrised specification that
states conditions for whether a class C behaves “Cell-like”. In the following, val
denotes the type of program values, in our case the union of integers, Booleans
and object references. Also, UPred(heap) is the type of logical propositions over
heaps, i.e., the spatial component of the assertion logic (see Section 3.1 for the

4 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

precise definition).

ICell , λC : classname. λT : Type. λR : val → T → UPred(heap).
λg : T → val . λs : T → val → T.

(∀t : T. C::get(this) 7→ {R̂ this t} {r. R̂ this t ∧ r = g t}) ∧ (1)
(∀t : T. C::set(this, x) 7→ {R̂ this t} {R̂ this (ŝ t x)}) ∧ (2)
(∀t, v. g (s t v) = v) (3)

There is some notation to explain here. ICell is a function that takes five argu-
ments and returns a result of type spec, which is the type of specifications. The
logical connectives at the outer level (∧ and ∀) thus belong to the specification
logic. The parameter R is the representation predicate of class C, so R c t intu-
itively means that c is a reference to an object that is mathematically modelled
by the value t of type T . The parameters g and s are functions that describe how
get and set inspect and transform this mathematical value. They are constrained
by (3) to ensure that get will actually return the value set with set.

The notation C::m(p̄) 7→ {P} {r. Q} from (1) and (2) specifies that method
m of class C has precondition P and postcondition Q. The arguments in a call
will be bound to the names p̄ in P and Q, and the return value will be bound to
r in Q. We support both static and dynamic methods, where dynamic methods
have an additional first argument, as seen in (1) and (2). The precise definition
is given in Section 4.2.

The notation f̂ from (1) and (2) lifts a function f such that it operates
on expressions, including program variables, rather than operating directly on
val . It is a technical point that can be ignored for a first understanding of this
example, but it is crucial for making HOSL work in a stack-based language.
Details are in Section 3.2.

The type of T refers to the Type universe hierarchy in Coq.

2.2 Method proxySet

Consider method proxySet from Figure 1. Operationally, calling proxySet(c, v)
does the same as calling c.set(v), and we seek a specification that reflects this.
It is crucial for modularity that proxySet can be specified and verified only once
and then used with any implementation of ICell that may be defined later. We
give it the following specification.

ProxySet spec , ∀C, T,R, g, s. ICell C T R g s→
∀t : T. ProxySet::proxySet(c, x) 7→ {c : C ∧ R̂ c t} {R̂ c (ŝ t x)}

The assertion c : C means that the object referenced by c is of class C. Thus,
the caller of proxySet can pass in an object reference of any class C as long as C
can be shown to satisfy ICell .

This specification is as powerful as that of set in ICell since it essentially for-
wards it. Any class that behaves Cell-like should be able to encode the behaviour
of its set method by a suitable choice of R and s. We will see in Section 2.6 that
it, for instance, is possible to pass in a Recell and deduce how proxySet affects
its backup value.

Verifying object-oriented programs with higher-order separation logic in Coq 5

2.3 Class Cell

A Java implementation of Cell can be found in Figure 1. We model constructors
as static methods that allocate the object before running the initialisation code
and return the allocated object, which is what happens in the absence of class-
to-class inheritance.

We give class Cell the following specification, which is a conjunction of what
we will call an interface specification and a class specification. These correspond
respectively to the dynamic and static specifications in [14].

Cell spec , ∃RCell. ICell Cell val RCell (λv. v) (λ , v. v) ∧ Cell class RCell

where
Cell class , λRCell : val → val → UPred(heap).

Cell::new() 7→ {true} {∃v. R̂Cell this v} ∧
(∀v. Cell::get(this) 7→ {R̂Cell this v} {r. R̂Cell this v ∧ r = v}) ∧
(∀v. Cell::set(this, x) 7→ {R̂Cell this v} {R̂Cell this x})

The representation predicate RCell is quantified such that its definition is visible
only while proving the specifications of Cell, thus hiding the internal representa-
tion of the class from clients [4,13].

It is crucial that RCell is quantified outside both the class and the interface
specification such that the representation predicate is the same in the two. In
practice, a client will allocate a Cell by calling new, which establishes RCell; later,
to model casting the object reference to its interface type, the client knows that
ICell holds for this same RCell.

The specifications of get and set in Cell class are identical to their counter-
parts in ICell when C, T,R, g, and s, are instantiated as in Cell spec. In general,
the class specification can be more precise than the interface specification, sim-
ilarly to the dynamic and static specifications of [14].

To prove Cell spec, the existential RCell is chosen as λc, v. c.value 7→ v. We
can then show that Cell class RCell holds by verifying the method bodies of get,
set and init, and the correctness of get and set can be used as a lemma in proving
the interface specification. In this way, each method body is verified only once.

2.4 Interface IRecell

To show the analogy to interface inheritance at the specification level, we ex-
amine an interface for classes that behave Recell-like. The Java code for that is
IRecell in Figure 1. The specification corresponding to this interface follows the
same pattern as ICell :

IRecell , λC : classname. λT : Type. λR : val → T → UPred(heap).
λg : T → val . λs : T → val → T. λu : T → T.

ICell C T R g s ∧ (4)
(∀t : T. C::undo(this) 7→ {R̂ this t} {R̂ this (u t)}) ∧ (5)
(∀t, v. g (u (s t v)) = g t) (6)

6 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

Notice that interface extension is modelled by referring to ICell in (4). We
do not have to respecify get and set since they were already general enough in
ICell due to it being parametric in g and s. Note how equation (6) specifies the
abstract behaviour of undo via g and s.

There is a pattern to how we construct a specification-logic interface predicate
from a Java interface declaration. For each method m(x1, . . . , xn), we add a
parameter fm : T → valn → (val × T). The product (val × T) can be replaced
with just val or T if the method should have no side effects or no return value,
respectively. We then add a method specification of the form:

∀t : T. C::m(p̄) 7→ {R̂ this t} {r. R̂ this (π2 (f̂m p̄ t)) ∧ r = π1 (f̂m p̄ t)}.

2.5 Class Recell

The specification of class Recell follows the same pattern as with Cell:

Recell spec , ∃RRecell : val → val → val → UPred(heap).
IRecell Recell (val × val) R g s u ∧ Recell class RRecell

where R = λthis, (v, b). RRecell this v b, g = λ(v, b). v,
s = λ(v, b), v′. (v′, v), u = λ(v, b). (b, b),

and Recell class is defined analogously to Cell class.

2.6 Class World

The correctness of the above specifications only matters if it enables client code
to instantiate and use the classes. The client code in World demonstrates this:

class World {
static ICell make() {

Recell r = new Recell();
r.set(5);
ProxySet::proxySet(r, 3);
r.undo();
return r;
}

static void main() {
ICell c = World::make();
assert c.get() == 5;
}
}

The body of make demonstrates the use of proxySet. Operationally, it should
be clear that r has the value 3 and the backup value 5 after the call to proxySet.
This can also be proved in our logic despite using a specification of proxySet that
was verified without knowledge of Recell and its backup field.

Upon returning from make, we choose to forget that the returned object is
really a Recell, upcasting it to ICell. Its precise class is not needed by the caller,
main, which only needs to know that the returned object will return 5 from get.

We capture the interaction between these two methods with the following
specification, in which FunI : spec → UPred(heap) injects the specification logic

Verifying object-oriented programs with higher-order separation logic in Coq 7

into the logic of propositions over heaps, thus generalising the concept of nested
triples. Section 3.5 describes FunI in more detail.

World spec ,World::main() 7→ {true} {true} ∧

World::make() 7→ {true}

{
r. ∃C, T,R, g, s. F̂unI (ICell C T R g s) ∧
∃t. R̂ r t ∧ g t = 5 ∧ r : C

}

The make method is specified to return an object whose class C is unknown,
but we know that C satisfies ICell .

This pattern of returning an object of an unknown type that satisfies a par-
ticular specification often comes up in object-oriented programming: think of
the method on a collection that returns an iterator, for example. The essence
of this pattern is to have a parametrised specification S : classname → spec
and a method specified as D::m() 7→ {true} {r. ∃C. r : C ∧ F̂unI (S C)}. A
more straightforward alternative to such a specification – one that does not re-
quire an embedding of the specification logic in the assertion logic – would be
∃C. S C ∧ D::m() 7→ {true} {r. r : C}. However, this restricts the body of m
to only being able to return objects of one class. The method body cannot, for
example, choose at run time to return either a C1 or a C2, where both C1 and
C2 satisfy S. We find that the most elegant way to allow the method body to
make such a choice is to embed the specification in the postcondition.

Using the notion of validity from Definition 5 in Section 3.4 we can now prove
that the whole program will behave according to specification:

Theorem 1. (ProxySet spec ∧ Cell spec ∧ Recell spec ∧World spec) is valid.

3 Abstract representation

The core of our system is designed to be language independent. To allow for dif-
ferent memory models, we adopt the notion of separation algebras from Calcagno
et al. [6]; we can then instantiate an assertion logic with any separation algebra
suitable for the problem at hand. Commands are modelled as relations on the
program state, which in turn consists of a mutable stack and a heap. Finally, we
define an expressive specification logic that can be used to reason about semantic
commands.

We use set-theoretic notation to describe our formalisation as this makes the
theories easier to read; in Coq we model these sets as functions into Prop, which
is the sort of propositions in Coq.

3.1 Uniform predicates

Definition 1 (Separation algebra). A separation algebra is a partial, can-
cellative, commutative monoid (Σ, ◦, 1) where Σ is the carrier, ◦ is the monoid
operator, and 1 is the unit element.

8 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

Intuitively, Σ can be thought of as a type of heaps, and the ◦-operator as
composition of disjoint heaps. Hence we refer to the elements of Σ as heaps.
Two heaps are compatible, written h1 # h2 if h1 ◦ h2 is defined. A heap h1 is a
subheap of a h2, written h1 v h2, if there exists an h3 such that h2 = h1 ◦ h3.
We will commonly refer to a separation algebra by its carrier Σ.

A uniform predicate [5] over a separation algebra is a predicate on heaps and
natural numbers; it is upwards closed in the heaps and downwards closed in the
natural numbers.

UPred(Σ) , {p ⊆ Σ × N | ∀g,m. ∀h w g. ∀n ≤ m. (g,m) ∈ p→ (h, n) ∈ p)}

The upward closure in heaps ensures that we have an intuitionistic separation
logic as is desirable for garbage-collected languages.

The natural numbers are used to connect the uniform predicates with the
step-indexed specification logic – this connection will be covered in Section 3.5.

We define the standard connectives for the uniform predicates as in [5]:

true , Σ × N false , ∅
p ∧ q , p ∩ q p ∨ q , p ∪ q

∀x : U. f ,
⋂

x:U f x ∃x : U. f ,
⋃

x:U f x

p→ q , {(h, n) | ∀g w h. ∀m ≤ n. (g,m) ∈ p→ (g,m) ∈ q}
p ∗ q , {(h1 ◦ h2, n) | h1 # h2 ∧ (h1, n) ∈ p ∧ (h2, n) ∈ q}
p −∗ q , {(h, n) | ∀m ≤ n. ∀h1#h. (h1,m) ∈ p→ (h ◦ h1,m) ∈ q}

For the quantifiers, U is of type Type, i.e. the sort of types in Coq, and f is any
Coq function from U to UPred(Σ). This allows us to quantify over any member
of Type in Coq.

3.2 Stacks

Stacks are functions from variable names to values: stack , var → val .
Two stacks are said to agree on a set V of variables if they assign the same

value to all members of V : s 'V s′ , ∀x ∈ V. s x = s′ x. In order to define
operators that take values from the stack as arguments we introduce the notion
of a stack monad. This approach is similar to that of Varming and Birkedal [20].

sm T , {(f : stack → T, V : P(var)) | ∀s, s′. s 'V s′ → f s = f s′}

Intuitively, V is an over-approximation of the free program variables in f . For
any m = (f, V) ∈ sm T , we write m s to mean f s and fv m to mean V .

Theorem 2. sm is a monad with return operation λx : T. ((λ . x), ∅) and bind
operation λm : sm T. λf : T → sm U. ((λs. f (m s) s), fv m ∪

⋃
t∈T fv (f t)).

We use the stack monad to model expressions (which can be evaluated to
values using data from the stack), pure assertions (that represent logical proposi-
tions that are evaluated without using the heap), and assertions (that represent
logical propositions that are evaluated using both the heap and the stack).

expr , sm val pure , sm Prop asn(Σ) , sm UPred(Σ)

Verifying object-oriented programs with higher-order separation logic in Coq 9

We create an assertion logic by lifting all connectives from UPred(Σ) into
asn(Σ). The definitions and properties of the liftings follow from the fact that
sm is a monad (Theorem 2).We prove that both the uniform predicates and the
assertions model separation logic [3].

Theorem 3. For any separation algebra Σ, UPred(Σ) and asn(Σ) are complete
BI-algebras.

The stack monad is also used for the lifting operator f̂ that was introduced in
Section 2.1. The operator takes a function f , and returns a function f̂ where any
argument type T that is passed to f is replaced with sm T , and any return type
U with sm U . As an example, the representation predicate R in the specification
for ICell , which has type val → T → UPred(heap), is lifted to R̂ in the assertion-
logic formulas of the specification. The resulting type for R̂ is sm val → sm T →
sm UPred(heap), i.e. expr → sm T → asn(heap).

We have to make this lifting explicit in specifications because it restricts
how program variables behave under substitution. We have that (f̂ e)[e′/x] =
f̂ (e[e′/x]) for any f : val → UPred(Σ), but it is not the case that (g e)[e′/x] =
g (e[e′/x]) for any g : expr → asn(Σ) because g e may have more free program
variables than those appearing in e, whereas f̂ e cannot, by construction. To
make HOSL useful in a stack-based language, where such substitutions are com-
monplace, we therefore typically quantify over functions into UPred(Σ) that we
then lift to asn(Σ) where needed.

3.3 Semantic commands

To obtain a language-independent core, we model commands as indexed relations
on program states (each consisting of a stack and a heap) – a semantic command
will relate, in a certain number of steps, a state either to another state or to an
error. The only requirements we impose on these commands are that they do
not relate to anything in zero steps, and that they satisfy a frame property
that will allow us to infer a frame-rule for all semantic commands. Intuitively,
the semantic commands can be seen as abstractions of rules of a step-indexed
big-step operational semantics. More formally, we have the following definitions.

Definition 2 (pre-command). A pre-command c̃ relates an initial state to
either a terminal state or the special err state:

precmd , P(stack ×Σ × ((stack ×Σ)] {err})× N)

We write (s, h, c̃) n x to mean that (s, h, x, n) ∈ c̃.

Definition 3 (Frame property). A pre-command c̃ has the frame property in
case the following holds. If (s, h1, c̃) 6 n err and (s, h1 ◦ h2, c̃) n (s′, h′) then
there exists h′1 such that h′ = h′1 ◦ h2 and (s, h1, c̃) n (s′, h′1).

10 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

Definition 4 (Semantic command). A semantic command satisfies the frame
property and does not evaluate to anything in zero steps.

semcmd , {ĉ ∈ precmd | ĉ has the frame property ∧ ∀s, h, x. (s, h, ĉ) 6 0 x}

To facilitate the encoding of imperative programming languages in our frame-
work, we create the following semantic commands that can be used as building
blocks for that purpose. These commands are similar to the ones found in [6].

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P check P

Intuitively, these semantic commands are defined as follows: The id-command
is the identity command – it does nothing; the seq-command executes two com-
mands in sequence; the +-operator nondeterministically executes one of two
commands; the ∗-command executes a command an arbitrary amount of times;
the assume-command assumes a pure assertion that can be used to prove cor-
rectness of future commands; the check-command works like the id-command
as long as a pure assertion can be inferred. Recall that pure assertions are logical
formulas that are evaluated without using the heap.

Theorem 4. id, seq, +, ∗, assume, and check are semantic commands.

3.4 Specification logic

With the assertion logic and the semantic commands in place, we can define
the specification logic. Semantically, a specification is a downwards-closed set of
natural numbers; this allows us to reason about (mutually) recursive programs
via step-indexing.

spec , {S ⊆ N | ∀m,n. m ≤ n ∧ n ∈ S → m ∈ S}

The set spec is a complete Heyting algebra under the subset ordering, i.e.,
logical entailment (|=) is modelled as subset inclusion. Hence a specification S
is valid if S = N.

Given assertions P and Q, and semantic command ĉ, we define a Hoare triple
specification:

{P}ĉ{Q} , {n | ∀m ≤ n. ∀k ≤ m. ∀s, h. (h,m) ∈ P s→ (s, h, ĉ) 6 k err ∧
∀h′, s′. (s, h, ĉ) k (s′, h′)→ (h′,m− k) ∈ Q s′}

A program is proved correct by proving that its specification is valid:

Definition 5. A specification is valid, written |= S, when true |= S.

3.5 Connecting the assertion logic with the specification logic

We define an embedding of the specification logic into the assertion logic as
follows:

FunI : spec → UPred(Σ) , λS. Σ × S.

Verifying object-oriented programs with higher-order separation logic in Coq 11

Lemma 1. FunI is monotone, preserves implication, and has a left and a right
adjoint, when spec and UPred(Σ) are treated as poset categories.

From the second part of this lemma it follows that FunI preserves both finite
and infinite conjunctions and disjunctions, which entails that all specification
logic connectives are preserved by the translation.

3.6 Recursion

The specification connectives defined in the previous section are not enough for
our purposes. When proving a program correct (by proving a formula of the
form |= S), it is commonplace that the proof of one part of specification in S
requires other parts of S – a typical example is recursive method calls, where
the specification of the method called must be available in the context during
its own verification. To accomplish this, we borrow the later operator (.) from
Gödel-Löb logic (see [2]).

.S , {n+ 1 | n ∈ S} ∪ {0}

This operator can be used via the Löb rule, which allows us to do induction
on the step-indexes of the semantic commands.

Γ ∧ .S |= S 0 ∈ Γ → 0 ∈ S
Γ |= S

Löb

In the inductive case .S is found on the left hand side of the turnstile and can
hence be used to prove S.

4 Instantiation to an object-oriented language

We define a Java-like language with syntax of programs P shown below. The
language is untyped and does not need syntax for interfaces; these exist in the
specification logic only.

We use a shallow embedding for expressions, which we denote with e, as
shown in Section 3.2.

P ::= C∗ f ∈ (field names)
C ::= class C f∗ (m(x̄){c; return e})∗

c ::= x := alloc C | x := e | x := y.f | x.f := e | x := y.m(ē)
| x := C::m(ē) | skip | c1; c2 | if e then c1 else c2
| while e do c | assert e

In order to provide a concrete instance of the assertion logic, we construct a sep-
aration algebra of concrete heaps. The carrier set is heap , (ptr × field)

fin
⇀ val ,

with the values defined as the union of integers, Booleans and object references.
The partial composition h1 ◦ h2 is defined as h1 ∪ h2 if dom h1 ∩ dom h2 = ∅;
otherwise the result is undefined. The unit of the algebra is the empty map,
emp. We denote this separation algebra (heap, ◦, emp) with heap. The points-to
predicate is defined as v.f 7→v′ , {(h, n) | h w [(v, f) 7→ v′]}.

12 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

skip ∼sem id
Skip-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

c1; c2 ∼sem seq ĉ1 ĉ2
Seq-Sem

c ∼sem ĉ

while e do c ∼sem seq (seq (assume e) ĉ)∗ (assume ¬e)
While-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

if e then c1 else c2 ∼sem (seq (assume e) ĉ1) + (seq (assume ¬e) ĉ2)
If-Sem

Fig. 2. The skip, sequential composition, conditional and loop cases of the semantics
relation

4.1 Semantics of the programming language

We define the semantics of the programming language commands by relating
them to semantic commands instantiated with heap as the separation algebra.
We write c ∼sem ĉ to denote that the syntactic command c is related to the
semantic command ĉ. The ∼sem relation can be thought of as a function; it is
defined as a relation only because this was more straightforward in Coq.

The commands skip, ;, if , and while can be related directly to composites
of the general semantic commands, defined in Section 3.3. The definition of ∼sem

for these commands can be found in Figure 2. For the remaining commands,
new semantic commands must be created.

In particular, for method calls, we define a semantic command

call x C::m(ē) with c ĉ

that, intuitively, calls method m of class C with arguments ē and assigns the
return value to x; the command c is the method body, and ĉ is its corresponding
semantic command. This semantic command works uniformly for both static and
dynamic methods, since in the dynamic case we can pass the object reference as
an additional argument. The definition of this semantic command is shown in
Figure 3. The definition makes use of a predicate

C::m(p̄){c; return r} ∈ P

which holds in case method m in class C has parameters p̄ and method body
c in program P. The program parameter P has been left implicit in the other
rules. The notation [p̄ 7→ (ē s)] denotes a finite map that associates each p in p̄
with the e at the corresponding position in ē evaluated in stack s.

The requirement that the method body is related to the semantic command
is not enforced by the construction of the semantic command, but rather by the
definition of ∼sem for respectively static and dynamic method calls:

c ∼sem ĉ

x := C::m(ē) ∼sem call x C::m(ē) with c ĉ
SCall-Sem

Verifying object-oriented programs with higher-order separation logic in Coq 13

([p̄ 7→ (ē s)], h, ĉ) n (s′, h′) C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 (s[x 7→ (r s′)], h′)

Call

C::m(p̄){c; return r} /∈ P
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail1

C::m(p̄){c; return r} ∈ P |p̄| 6= |ē|
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail2

([p̄ 7→ (ē s)], h, ĉ) n err C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 err

Call-Fail3

Fig. 3. Semantic call commands.

c ∼sem ĉ y : C
x := y.m(ē) ∼sem call x C::m(y, ē) with c ĉ

DCall-Sem

4.2 Syntactic Hoare triples and the concrete assertion logic

Hoare triples for syntactic commands are defined in the following manner:

{P}c{Q} , ∀ĉ. c ∼sem ĉ→ {P}ĉ{Q}.

From this definition we infer and prove sound Hoare rules for all commands of
our language. To define the rule for method calls we first define the predicate
that asserts the specification of methods, introduced in Section 2.1.

C::m(p̄) 7→ {P} {r. Q} , ∃c, e. wf (p̄, r, P,Q, c) ∧ C::m(p̄){c; return e} ∈ P
∧ {P}c{Q[e/r]},

where wf is a predicate to assert the following static properties: the method
parameter names do not clash; the pre- and postcondition do not use any stack
variables other than the method parameters and this (the postcondition may
also use the return variable); the method body does not modify the values of
the method parameters or this.

Selected proof rules for syntactic commands are shown in Figure 4. Note the
use of the later operator (.) in the method call rule; this means that this method
call rule will often be used in connection with the Löb rule.

Theorem 5. The rules in Figure 4 are sound with respect to the operational
semantics.

14 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

|= {P}skip{P}
Skip

{P}c1{Q} ∧ {Q}c2{R} |= {P}c1; c2{R}
Seq

{P ∧ e}c1{Q} ∧ {P ∧ ¬e}c2{Q} |= {P}if e then c1 else c2{Q}
If

{P ∧ e}c{P} |= {P}while e do c{P ∧ ¬e}
While

P ` e
|= {P}assert e{P}

Assert

|= {true}x := alloc C{∀∗f ∈ fields(C). x.f 7→null}
Alloc

|= {P}x := e{∃v. P [v/x] ∧ x = e[v/x]}
Assign

|= {x.f 7→ }x.f := e{x.f 7→e}
Write

P ` y.f 7→e
|= {P}x := y.f{∃v. P [v/x] ∧ x = e[v/x]}

Read

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |y, ē|
Γ |= {y : C ∧ P [y, ē/p̄]}x := y.m(ē){∃v. Q[x, y[v/x], ē[v/x]/r, p̄]}

DCall

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |ē|
Γ |= {P [ē/p̄]}x := C::m(ē){∃v. Q[x, ē[v/x]/r, p̄]}

SCall

P ` P ′ Q′ ` Q
{P ′}c{Q′} |= {P}c{Q}

Consequence
∀x ∈ fv R. c does not modify x

{P}c{Q} |= {P ∗R}c{Q ∗R}
Frame

P ` P ′ Q′ ` Q fv P ⊆ fv P ′ fv Q ⊆ fv Q′

C::m(p̄) 7→ {P ′} {r. Q′} |= C::m(p̄) 7→ {P} {r. Q}
Consequence-MSpec

fv R ⊆ {this} ∪ p̄
C::m(p̄) 7→ {P} {r. Q} |= C::m(p̄) 7→ {P ∗R} {r. Q ∗R}

Frame-MSpec

Fig. 4. Specification logic rules for syntactic Hoare triples

5 Related work

Formalisations of higher-order separation logic have been proposed before, e.g.
by Varming and Birkedal [20], who developed an Isabelle/HOL formalisation of
HOSL for partial correctness for a simple imperative language with first-order
mutually recursive procedures, using a denotational semantics of the program-
ming language, and by Preoteasa [15], who developed a PVS formalisation for
total correctness using a predicate-transformer semantics for a similar program-
ming language.

Parkinson and Bierman treated an extended version of the Cell-Recell exam-
ple in [14], improving upon their earlier work in [13]. Their approach is to tailor
the specification logic to build in a form of quantification over families of rep-

Verifying object-oriented programs with higher-order separation logic in Coq 15

resentation predicates following a fixed pattern determined by the inheritance
tree of the program. This construction is known as abstract predicate families
(APFs).

Where our logic allows quantification over a representation type T , as used
in Section 2.1, APFs have a built-in notion of variable-arity predicates to achieve
same effect: representation predicates of a subclass can add parameters to the
representation predicate they inherit. Class Cell defines a two-parameter repre-
sentation predicate family Val , which is extended to three arguments in Recell.
A Recell r having value 2 and backup field 1 would be asserted as Val(r, 2, 1).
This assertion implies Val(r, 2), which in turn implies ∃b.Val(r, 2, b) if it is known
that r is a Recell. Thus, casting to the two-argument representation predicate
that would be necessary for calling {∃v.Val(c, v)} proxySet(c, x) {Val(c, x)} will
lose any information about the backup field.

The logic of Parkinson and Bierman was extended by van Staden and Calcagno
[19] to handle multiple inheritance, abstract classes and controlled leaking of
facts about the abstract representation of either a single class or a class hier-
archy. Using the latter feature, we observe that their logic can also be used to
reason about the example in Section 2, by using parameters g and s to give a
precise specification of proxySet. Instead of being functions, g and s would be
abstract predicate families whose first argument would be an object reference
used only for selecting the correct member of the APF.

Compared to the logics based on abstract predicate families, our logic allows
families of not just predicates but also types, functions, class names or any other
type that can be quantified over in Coq. This gives us strong typing of logical
variables, and all this works without building it into the logic and requiring that
quantifications and proofs follow the shape of the inheritance tree.

6 Conclusion and Future Work

We have presented a Coq implementation of a generic framework for higher-order
separation logic. In this framework, instantiated with a simple object-oriented
language, we have shown how HOSL can be used to reason about interfaces and
interface inheritance.

Future work includes developing better support for automation via better
use of tactics. Our Coq proofs of example programs are cluttered with manual
reordering of the context because we do not yet have tactics to automate this. We
also plan to integrate the current tool with an Eclipse front-end that is currently
being researched within our project [10]. Moreover, we plan to use the tool for
formal verification of interesting data structures from the C5 collection library.

Although it is not necessary for the code we mostly want to verify, proper
support for class-to-class inheritance in both the logic and the design pattern
would enable more direct comparison with related work. It would also make our
Java subset more similar to actual Java.

Acknowledgements We are grateful for useful discussions with Hannes Mehnert,
Matthew Parkinson, Peter Sestoft, Kasper Svendsen, and Jacob Thamsborg.

16 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

This worked was supported in part by the ToMeSo project, funded by the Danish
Research Council.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1996.

2. A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model
of a modern, major, general type system. In Proceedings of POPL, 2007.

3. B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines and higher-order
separation logic. In Proceedings of ESOP, pages 233–247, 2005.

4. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5), 2007.

5. L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang.
Step-indexed kripke models over recursive worlds. In Proceedings of POPL, 2011.

6. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In Proceedings of LICS, pages 366–378, 2007.

7. J. Jensen, L. Birkedal, and P. Sestoft. Modular verification of linked lists with views
via separation logic. Journal of Object Technology, 2011. To Appear. Preliminary
version in FTfJP’10, available at www.itu.dk/people/birkedal/papers/views.pdf.

8. N. Kokholm and P. Sestoft. The C5 generic collection library for C# and CLI.
Technical Report ITU-TR-2006-76, IT University of Copenhagen, 2006.

9. N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse. Design
patterns in separation logic. In In Proceedings of TLDI, pages 105–116, 2009.

10. H. Mehnert. Kopitiam: modular incremental interactive full functional static ver-
ification of java code. In M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi,
editors, Proceedings of the Third NASA Formal Methods Symposium (NFM 2011).
NASA, April 2011.

11. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and
mutable ADTs in hoare type theory. In In Proc. of ESOP, pages 189–204, 2007.

12. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL, pages 1–19, 2001.

13. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In Pro-
ceedings of POPL, pages 247–258, 2005.

14. M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
In Proceedings of POPL, pages 75–86, 2008.

15. V. Preoteasa. Frame rules for mutually recursive procedures manipulating pointers.
Theoretical Computer Science, 2009.

16. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS, pages 55–74, 2002.

17. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and
frame rules for higher-order store. In Proceedings of CSL, 2009.

18. K. Svendsen, L. Birkedal, and M. Parkinson. Verifying generics and delegates. In
Proceedings of ECOOP, pages 175–199, 2010.

19. S. van Staden and C. Calcagno. Reasoning about multiple related abstractions
with multistar. In Proceedings of OOPSLA, pages 504–519, 2010.

20. C. Varming and L. Birkedal. Higher-order separation logic in Isabelle/HOLCF.
Electr. Notes Theor. Comput. Sci., 218:371–389, 2008.

	Verifying object-oriented programs with higher-order separation logic in Coq
	Introduction
	Reasoning with interfaces
	Interface ICell
	Method proxySet
	Class Cell
	Interface IRecell
	Class Recell
	Class World

	Abstract representation
	Uniform predicates
	Stacks
	Semantic commands
	Specification logic
	Connecting the assertion logic with the specification logic
	Recursion

	Instantiation to an object-oriented language
	Semantics of the programming language
	Syntactic Hoare triples and the concrete assertion logic

	Related work
	Conclusion and Future Work

