
Psi-calculi in Isabelle

Jesper Bengtson and Joachim Parrow

Dept. of Information Technology, Uppsala University, Sweden

Abstract. Psi-calculi are extensions of the pi-calculus, accommodating
arbitrary nominal datatypes to represent not only data but also com-
munication channels, assertions and conditions, giving it an expressive
power beyond the applied pi-calculus and the concurrent constraint pi-
calculus.
We have formalised psi-calculi in the interactive theorem prover Isabelle
using its nominal datatype package. One distinctive feature is that the
framework needs to treat binding sequences, as opposed to single binders,
in an efficient way. While different methods for formalising single binder
calculi have been proposed over the last decades, representations for such
binding sequences are not very well explored.
The main effort in the formalisation is to keep the machine checked
proofs as close to their pen-and-paper counterparts as possible. We dis-
cuss two approaches to reasoning about binding sequences along with
their strengths and weaknesses. We also cover custom induction rules to
remove the bulk of manual alpha-conversions.

1 Introduction

There are today several formalisms to describe the behaviour of computer sys-
tems. Some of them, like the lambda-calculus and the pi-calculus, are intended
to explore fundamental principles of computing and consequently contain as few
and basic primitives as possible. Other are more tailored to application areas
and include many constructions for modeling convenience. Such formalisms are
now being developed en masse. While this is not necessarily a bad thing there
is a danger in developing complicated theories too quickly. The proofs (for ex-
ample of compositionality properties) become gruesome with very many cases
to check and the temptation to resort to formulations such as “by analogy with
. . . ” or “is easily seen. . . ” can be overwhelming. For examples in point, both the
applied pi-calculus [1] and the concurrent constraint pi-calculus [8] have recently
been discovered to have flaws or incompletenesses in the sense that the claimed
compositionality results do not hold [5].

Since such proofs often require stamina and attention to detail rather than
ingenuity and complicated new constructions they should be amenable to proof
mechanisation. Our contribution in this paper is to implement a family of ap-
plication oriented calculi in Isabelle [12]. The calculi we consider are the so
called psi-calculi [5], obtained by extending the basic untyped pi-calculus with
the following parameters: (1) a set of data terms, which can function as both

2 Jesper Bengtson and Joachim Parrow

communication channels and communicated objects, (2) a set of conditions, for
use in conditional constructs such as if statements, (3) a set of assertions, used to
express e.g. constraints or aliases. We base our exposition on nominal data types
and these accommodate e.g. alpha-equivalence classes of terms with binders.
For example, we can use a higher-order logic for assertions and conditions, and
higher-order formalisms such as the lambda calculus for data terms and channels.

The main difficulty in representing calculi such as the lambda-, pi- or psi-
calculi is to find an efficient treatment of binders. Informal proofs often use the
Barendregt variable convention [4], that everything bound is unique. This con-
vention provides a tractable abstraction when doing proofs involving binders,
but it has recently been proven to be unsound in the general case [16]. Theorem
provers have commonly used approaches based on de Bruijn indices [9], higher
order abstract syntax, or nominal logic [13]. We use the nominal datatype pack-
age in Isabelle [15], and its strategy for dealing with single binders. Recent work
by Aydemir et. al. introduce the locally nameless framework [2] which might be
an improvement since the infrastructure is small and elegant.

One of our main contributions in the present paper is to extend the strat-
egy to finite sequences of binders. Though it is possible to recurse over such
sequences and treat each binder individually the resulting proofs would then be-
come morasses of details with no counterpart in the informal proofs. To overcome
this difficulty we introduce the notion of a binding sequence, which simultane-
ously binds arbitrarily finitely many names, and show how it can be implemented
in Isabelle. We use such binding sequences to formulate and establish induction
and inversion rules for the semantics of psi-calculi. The rules have been used to
formally establish compositionality properties of strong bisimilarity. The proofs
are close to their informal counterparts.

We are not aware of any other work on implementing calculi of this calibre in
a proof assistant such as Isabelle. The closest related work are implementations
of the basic pi-calculus, by ourselves [6] and also by others [10, 11, 14]. Neither
are we aware of any other general technique for multiple binders, other than the
yet unpublished work by Berghofer and Urban which we describe in Section 3.

The rest of the paper is structured as follows. In Section 2 we give a brief
account of psi-calculi and how they use nominal data types. Section 3 treats im-
plementation issues related to binding sequences and alpha-conversion. In Sec-
tion 4 we show how these are used to create our formalisation. In Section 5 we
report on the current status of the effort and ideas for further work.

2 Psi-calculi

This section is a brief recapitulation of psi-calculi and nominal data types; for a
more extensive treatment including motivations and examples see [5].

2.1 Nominal data types

We assume a countably infinite set of atomic names N ranged over by a, b, . . . , z.
Intuitively, names will represent the symbols that can be statically scoped, and

Psi-calculi in Isabelle 3

also represent symbols acting as variables in the sense that they can be subject to
substitution. A nominal set [13] is a set equipped with name swapping functions
written (a b), for any names a, b. An intuition is that (a b)·X is X with a replaced
by b and b replaced by a. A sequence of swappings is called a permutation, often
denoted p, where p ·X means the term X with the permutation p applied to it.
We write p− for the reverse of p. The support of X, written n(X), is the least
set of names A such that (a b) · X = X for all a, b not in A. We write a#X,
pronounced “a is fresh for X”, for a 6∈ n(X). If A is a set of names we write
A#X to mean ∀a ∈ A . a#X. We require all elements to have finite support, i.e.,
n(X) is finite for all X. A function f is equivariant if (a b) · f(X) = f((a b) ·X)
holds for all X, and similarly for functions and relations of any arity. Intuitively,
this means that all names are treated equally.

2.2 Agents

A psi-calculus is defined by instantiating three nominal data types and four
operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three
(not necessarily disjoint) nominal data types:

T the (data) terms, ranged over by M,N
C the conditions, ranged over by ϕ
A the assertions, ranged over by Ψ

and the four equivariant operators:

.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
`⊆ A×C Entailment

We require the existence of a substitution function for T, C and A. When X
is a term, condition or assertion we write X[ã := T̃] to mean the simultaneous
substitution of the names ã for the terms T̃ in X. The exact requisites of this
function will be covered in Section 4.

The binary functions above will be written in infix. Thus, if M and N are
terms then M

.↔ N is a condition, pronounced “M and N are channel equiva-
lent” and if Ψ and Ψ ′ are assertions then so is Ψ⊗Ψ ′. Also we write Ψ ` ϕ, “Ψ
entails ϕ”, for (Ψ, ϕ) ∈ `.

We say that two assertions are equivalent if they entail the same conditions:

Definition 2 (assertion equivalence). Two assertions are equivalent, writ-
ten Ψ ' Ψ ′, if for all ϕ we have that Ψ ` ϕ⇔ Ψ ′ ` ϕ.

Channel equivalence must be symmetric and transitive, ⊗ must be composi-
tional with regard to ', and the assertions with (⊗,1) form an abelian monoid.

4 Jesper Bengtson and Joachim Parrow

In the following ãmeans a finite (possibly empty) sequence of names, a1, . . . , an.
The empty sequence is written ε and the concatenation of ã and b̃ is written ãb̃.
When occurring as an operand of a set operator, ã means the corresponding set
of names {a1, . . . , an}. We also use sequences of terms, conditions, assertions etc.
in the same way.

A frame can intuitively be thought of as an assertion with local names:

Definition 3 (Frame). A frame F is a pair 〈BF , ΨF 〉 where BF is a sequence
of names that bind into the assertion ΨF . We use F,G to range over frames.

Name swapping on a frame just distributes to its two components. We identify
alpha equivalent frames, so n(F) = n(ΨF)− n(BF). We overload 1 to also mean
the least informative frame 〈ε,1〉 and ⊗ to mean composition on frames defined
by 〈B1, Ψ1〉⊗〈B2, Ψ2〉 = 〈B1B2, Ψ1⊗Ψ2〉 where B1 is disjoint from n(B2, Ψ2) and
vice versa. We also write Ψ⊗F to mean 〈ε, Ψ〉⊗F , and (νb)F to mean 〈bBF , ΨF 〉.

Definition 4 (Equivalence of frames). We define F ` ϕ to mean that there
exist BF and ΨF such that F = 〈BF , ΨF 〉, BF#ϕ, and ΨF ` ϕ. We also define
F ' G to mean that for all ϕ it holds that F ` ϕ iff G ` ϕ.

Intuitively a condition is entailed by a frame if it is entailed by the assertion and
does not contain any names bound by the frame. Two frames are equivalent if
they entail the same conditions.

Definition 5 (psi-calculus agents). Given valid psi-calculus parameters as in
Definition 1, the psi-calculus agents, ranged over by P,Q, . . ., are of the following
forms.

M N.P Output
M(λx̃)N.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
(|Ψ |) Assertion

In the Input M(λx̃)N.P we require that x̃ ⊆ n(N) is a sequence without dupli-
cates, and here any name in x̃ binds its occurrences in both N and P . Restric-
tion binds a in P . An assertion is guarded if it is a subterm of an Input or
Output . In a replication !P there may be no unguarded assertions in P , and in
case ϕ1 : P1 [] · · · [] ϕn : Pn there may be no unguarded assertion in any Pi.

Formally, we define name swapping on agents by distributing it over all con-
structors, and substitution on agents by distributing it and avoiding captures by
binders through alpha-conversion in the usual way. We identify alpha-equivalent
agents; in that way we get a nominal data type of agents where the support n(P)
of P is the union of the supports of the components of P , removing the names
bound by λ and ν, and corresponds to the names with a free occurrence in P .

Psi-calculi in Isabelle 5

In
Ψ `M .↔ K

Ψ B M(λey)N.P
K N [ey:=eL]−−−−−−−→ P [ey := eL]

Out
Ψ `M .↔ K

Ψ B M N.P
K N−−−→ P

Case
Ψ B Pi

α−→ P ′ Ψ ` ϕi

Ψ B case eϕ : eP α−→ P ′

Com

ΨQ⊗Ψ B P
M (νea)N−−−−−−→ P ′

ΨP⊗Ψ B Q
K N−−−→ Q′ Ψ⊗ΨP⊗ΨQ `M

.↔ K

Ψ B P |Q τ−→ (νea)(P ′ |Q′)
ea#Q

Par
ΨQ⊗Ψ B P

α−→ P ′

Ψ B P |Q α−→ P ′|Q
bn(α)#Q Scope

Ψ B P
α−→ P ′

Ψ B (νb)P
α−→ (νb)P ′

b#α, Ψ

Open
Ψ B P

M (νea)N−−−−−−→ P ′

Ψ B (νb)P
M (νea∪{b})N−−−−−−−−−→ P ′

b#ea, Ψ,M
b ∈ n(N)

Rep
Ψ B P | !P α−→ P ′

Ψ B !P
α−→ P ′

Table 1. Structured operational semantics. Symmetric versions of Com and Par are
elided. In the rule Com we assume that F(P) = 〈BP , ΨP 〉 and F(Q) = 〈BQ, ΨQ〉 where
BP is fresh for all of Ψ,BQ, Q,M and P , and that BQ is similarly fresh. In the rule
Par we assume that F(Q) = 〈BQ, ΨQ〉 where BQ is fresh for Ψ, P and α. In Open the
expression νã ∪ {b} means the sequence ã with b inserted anywhere.

Definition 6 (Frame of an agent). The frame F(P) of an agent P is defined
inductively as follows:

F(M(λx̃)N.P) = F(M N.P) = F(case ϕ̃ : P̃) = F(!P) = 1
F((|Ψ |)) = 〈ε, Ψ〉
F(P |Q) = F(P) ⊗ F(Q)
F((νb)P) = (νb)F(P)

2.3 Operational semantics

The actions ranged over by α, β are of the following three kinds: OutputM(νã)N ,
Input MN , and Silent τ . Here we refer to M as the subject and N as the object.
We define bn(M (νã)N) = ã, and bn(α) = ∅ if α is an input or τ .

Definition 7 (Transitions).

A transition is of the kind Ψ B P
α−→ P ′, meaning that in the environment

Ψ the agent P can do an α to become P ′. The transitions are defined inductively
in Table 1.

6 Jesper Bengtson and Joachim Parrow

3 Binding sequences

The main difficulty when formalising any calculus with binders is to handle
alpha-equivalence. The techniques that have been used thus far by theorem
provers share the trait that they only reason about single binders. This works well
for many calculi, but psi-calculi require binding sequences of arbitrary length.
For our psi-calculus datatype (Def. 5), a binding sequence is needed in the
Input-case where the term M(λx̃)N.P has the sequence x̃ binding into N and
P . The second place sequences are needed is when defining frames (Def 3).
Frames are derived from processes (Def. 6) and as agents can have an arbi-
trary number of binders, so can the frames. The third occurrence of binding
sequences can be found in the operational semantics (Table 1). In the transition

Ψ B P
M (νea)N−−−−−−→ P ′, the sequence ã represents the bound names in P which

occur in the object N .
In order to formalise these types of calculi efficiently in a theorem prover,

libraries with support for sequences of binders have to be added. In the next
sections we will discuss two approaches that have been made in this area, first
one by us, which we call explicit binding sequences, and then one by Berghofer
and Urban which we in this paper will call implicit binding sequences. They
both build on the existing nominal representation of alpha-equivalence classes
where a binding occurrence of the name a in the term T is written [a].T , and
the support of [a].T is the support of T with a removed. From this definition,
creating a term with the binding sequence ã in the term T , written [ã].T , can
easily be done by recursion over ã. The proof that the support of [ã].T is equal
to the support of T with the names of ã removed is trivial. Similarly, the notion
of freshness needs to be expanded to handle sequences. The expression ã#T is
defined as: ∀x ∈ set ã. x#T . This expression is overloaded for when ã is either
a list or a set.

3.1 Explicit binding sequences

Our approach is to scale the existing single binder setting to sequences. Isabelle
has native support for generating fresh names, i.e. given any finite context of
names C, Isabelle can generate a name fresh for that context. There is also
a distinctness predicate, written distinct ã which states that ã contains no
duplicates. From these we can generate a finite sequence ã of arbitrary length n
where length ã = n, ã#C and distinct ã by induction on n.

The term [a].T can be alpha-converted into the term [b].(a b)·T if b#T , where
we call (a b) an alpha-converting swapping. In order to mimic this behaviour with
sequences, we lift name swapping to sequence swapping by pairwise composing
the elements of two sequences to create an alpha-converting permutation. We
will write (ã b̃) for such a composition defined in the following manner:

Definition 8.
([] []) = []
((x :: xs) (y :: ys)) = (x, y) :: (xs ys)

Psi-calculi in Isabelle 7

All theories that construct permutations using this function will ensure that the
length of the sequences are equal.

We can now lift alpha-equivalence to support sequences.

Lemma 1. If length x̃ = length ỹ, distinct ỹ, x̃#ỹ and ỹ#T
then [x̃].T = [ỹ].(x̃ ỹ) · T .

Proof. By induction on the length of x̃ and ỹ.

The distinctness property is a bit stronger than strictly necessary; we only need
that the names in x̃ that actually occur in T have a unique corresponding member
in ỹ. Describing this property formally would be cumbersome and distinctness
is sufficient and easy to work with.

Long proofs tend to introduce alpha-converting permutations and it is there-
for important to have a strategy for cancelling these. If a term T has been
alpha-converted using the swapping (a b), becoming (a b) · T , it is possible to
apply the same swapping to the expression where (a b) ·T occurs. Using equivari-
ance properties, the swapping can be distributed over the expression, and when
it reaches (a b) · T , it will cancel out since (a b) · (a b) · T = T . It can also be
cancelled from any remaining term U in the expression, as long as a#U and
b#U . This technique is also applicable when dealing with sequences, where the
alpha-converted term has the form (ã b̃) · T , with one important observation.
Even though (a b) · (a b) ·T = T , it is not generally the case that p ·p ·T = T . To
cancel a permutation on a term, its inverse must be applied, i.e. p− ·p ·T = T . By
applying (ã b̃)− to the expression, the alpha-converting permutation will cancel
out. The permutation will also be cancelled from any remaining term U as long
as ã#U and b̃#U since ã#U and b̃#U implies (ã b̃) ·U = U and (ã b̃)− ·U = U

In this setting we are able to fully formalise our theories using binding se-
quences. The disadvantage is that facts regarding lengths of sequences and dis-
tinctness need to be maintained throughout the proofs.

3.2 Implicit binding sequences

Parallel to our work, Berghofer and Urban developed an alternative theory for
binding sequences which is also being included in the nominal package. Their
approach is to generate the alpha-converting permutation directly using the
following lemma:

Lemma 2. There exists a permutation p s.t. set p ⊆ set x̃ × set(p · x̃) and
(p · x̃)#C.

The intuition is that instead of creating a fresh sequence, a permutation is cre-
ated which when applied to a sequence ensures the needed freshness conditions.
The following corollary makes it possible to discard permutations which are
sufficiently fresh:

Corollary 1. If x̃#T , ỹ#T and set p ⊆ set x̃× set ỹ then p · T = T .

From this, a corollary to perform alpha-conversions can be created.

8 Jesper Bengtson and Joachim Parrow

Corollary 2. If set p ⊆ set x̃×set(p ·x̃) and (p ·x̃)#T then [x̃].T = [p ·x̃].p ·T .

Proof. since x̃#[x̃].T and (p · x̃)#T we have by Cor. 1 that [x̃].T = p · [x̃].T and
hence by equivariance that [x̃].T = [p · x̃] . p · T .

This method has the problem that when cancelling alpha-converting permu-
tations as in section 3.1, the freshness conditions we use to cancel the permuta-
tion from the remaining terms are lost since (p·x̃)#U does not imply (p− ·x̃)#U .
We define the following predicate to fix this.

Definition 9. distinctPerm p ≡ distinct((map fst p)@(map snd p))

Intuitively, the distinctPerm predicate ensures that all names in a permutation
are distinct.

Corollary 3. If distinctPerm p then p · p · T = T

Proof. By induction on p.

Thus, by extending Lemma 2 with the condition distintPerm p we get permu-
tations p which can be cancelled by applying p again rather than its inverse.

In general, proofs are easier if we know that the binding sequences are dis-
tinct. The following corollary helps.

Corollary 4. If ã#C then there exists an b̃ s.t. [ã].T = [b̃].T and distinct b̃
and b̃#C.

Proof. Since each name in ã can only bind once in T we can construct b̃ by
replacing any duplicate name in ã with a sufficiently fresh name.

The advantage of implicit alpha-conversions is that facts about length and
distinctness of sequences do not need to be maintained through the proofs. The
freshness conditions are the ones needed for the single binder case and the dis-
tinctness properties are only needed when cancelling permutations. For most
cases, this method is more convenient to work with. There are disadvantages re-
garding inversion rules, and alpha-equivalence properties that will be discussed
in the next section.

3.3 Alpha-equivalence

When reasoning with single binders, the nominal approach to alpha-equivalence
is quite straightforward. Two terms [a].T and [b].U are equal if and only if either
a = b and T = U or a 6= b, a#U and U = (a b) · T . Reasoning about binding
sequences is more difficult. Exactly what does it mean for two terms [ã].T and
[̃b].U to be equal? As long as T and U cannot themselves have binding sequences
on a top level we know that length ã = length b̃, but the problem with the
general case is what happens when ã and b̃ partially share names. As it turns
out, this case is not important in order to reason about these types of equalities,
but special heuristics are required.

Psi-calculi in Isabelle 9

The times where we actually get assumptions such as [ã].T = [̃b].U in our
proofs are when we do induction or inversion over a term with binders. Typically,
[̃b].U is the term we start with, and [ã].T is the term that appears in the induction
or inversion rule. These rules are designed in such a way that any bound names
appearing in the rules can be assumed to be sufficiently fresh. More precisely, we
can ensure that ã#b̃ and ã#U . If we are working with explicit binding sequences
we can also know that ã is distinct. In this case, the heuristic is straightforward.
Using the information provided by the induction rule we know using Lemma 1
that [̃b].U = [ã].(ã b̃) · U and hence that T = (ã b̃) · U . From here we continue
with the proofs similarly to the single binder case.

When working with implicit sequences the problem is a bit more delicate.
These rules have been generated using a permutation designed to ensure fresh-
ness conditions and we do not know exactly how ã and b̃ originally related to
each other. We do know that the terms are alpha-equivalent and as such, there
is a permutation which equates them. We first prove the following corollary:

Corollary 5. If [a].T = [b].U then a ∈ supp T = b ∈ supp U and a#T = b#U .

Proof. By the definition of alpha-equivalence on terms.

We can now prove the following lemma:

Lemma 3. If [ã].T = [̃b].U and ã#b̃ then there exists a permutation p s.t.
set p ⊆ set ã× set b̃, ã#U and T = p · U

Proof. The intuition here is to construct p by using Cor. 5 to filter out the pairs
of names from ã and b̃ that do not occur in T and U respectively and pairing
together the rest. The proof is done by induction on the length of ã and b̃.

The problem with this approach is that we do not know how ã and b̃ are
related. If we know that they are both distinct then we can construct p such
that ã = p · b̃ but generally we do not know this. The problematic cases are the
ones dealing with inversion, in which case we resort to explicit binding sequences,
but for the majority of our proofs Lemma 3 is enough.

4 Formalisation

Psi-calculi are parametric calculi. A specific instance is created by instantiating
the framework with dataterms for the terms, assertions and conditions of the
calculus. We also require an entailment relation, a notion of channel equality
and composition of assertions. Isabelle has good support for reasoning about
parametric systems through the use of locales [3].

4.1 Substitution properties

We require a substitution function on agents. Since terms, assertions and con-
ditions of psi-calculi are parameters, a locale is created to ensure that a set of
substitution properties hold.

10 Jesper Bengtson and Joachim Parrow

Definition 10. A term M of type α is a substType if there is a substitution
function subst :: α ⇒ name list ⇒ β list ⇒ α which meets the following
constraints, where length x̃ = length T̃ and distinct x̃

Equivariance: p · (M [x̃ := T̃]) = (p ·M)[(p · x̃) := (p · T̃)]
Freshness: if a#M [x̃ := T̃] and a#x̃ then a#M

if a#M and a#T̃ then a#M [x̃ := T̃]
if set x̃ ⊆ suppM and a#M [x̃ := T̃] then a#T̃
if x̃#M̃ then M [x̃ := T̃] = M

if x̃#ỹ and ỹ#T̃ then M [x̃ỹ := T̃ Ũ] = (M [x̃ := T̃])[ỹ := Ũ]
Alpha-equivalence: if set p ⊆ set x̃× set(p · x̃) and (p · x̃)#M then

M [x̃ := T̃] = (p ·M)[(p · x̃) := T̃]

The intuition is that subst is a simultaneous substitution function which replaces
all occurrences of the names in x̃ in M with the corresponding dataterm in T̃ .
All that the locale dictates is that there is a function of the correct type which
satisfies the constraints. Exactly how it works needs only be specified when
creating an instance of the calculus in order to prove that the constraints are
satisfied.

These constraints are the ones we need for the formalisation but we have not
proven that they are strictly minimal. We leave this for future work.

4.2 The psi datatype

Nominal Isabelle does not support datatypes with binding sequences or nested
datatypes. The two cases that are problematic when formalising psi-calculi are
the Input case, which requires a binding sequence, and the Case case which
requires a list of assertions and processes. The required datatype can be encoded
using mutual recursion in the following way.

Definition 11. The psi-calculi datatype has three type variables for terms, as-
sertions and conditions respectively. In the Res and the Bind cases, name is a
binding occurrence.

nominal datatype (α, β, γ) psi = Output α α (α, β, γ) psi
| Input α (α, β, γ) input
| Case (α, β, γ) case
| Par ((α, β, γ) psi) ((α, β, γ) psi)
| Res � name� ((α, β, γ) psi)
| Assert β
| Bang (α, β, γ) psi

and (α, β, γ) input = Term α (α, β, γ) psi
| Bind � name� ((α, β, γ) input)

and (α, β, γ) case = EmptyCase
| Cond γ ((α, β, γ) psi) ((α, β, γ) case)

Psi-calculi in Isabelle 11

In order to create a substitution function for (α β γ) psi we create a locale with
the following three substitution functions as substTypes.

substTerm :: α⇒ name list⇒ α list⇒ α
substAssert :: β ⇒ name list⇒ α list⇒ β
substCond :: γ ⇒ name list⇒ α list⇒ γ

These functions will handle substitutions on terms, assertions and conditions
respectively. Note that we always substitute names for terms.

The substitution function for psi can now be defined in the standard way
where the substitutions are pushed through the datatype avoiding the binders.
The axioms for substType can then be proven for the psi substitution func-
tion where the axioms themselves are used when the proofs reaches the terms,
assertions and conditions.

4.3 Frames

The four nominal morphisms from Def. 1 are also encoded using locales along
with their equivariance properties. From this definition, implementing Def. 2
and a locale for our requirements on assertion equivalence ' is straightforward.
To implement frames, the following nominal datatype is created:

Definition 12.
nominal datatype β frame = Assertion β

| FStep � name� (β frame)

In order to overload the ⊗ operator to work on frames as described in Def. 3
we create the following two nominal functions.

Definition 13.
insertAssertion (Assertion Ψ) Ψ ′ = Assertion(Ψ ′⊗Ψ)

x#Ψ ′ ⇒ insertAssertion (FStep x F) Ψ = FStep x (insertAssertion F Ψ ′)

(Assertion Ψ) ⊗ G = insertAssertion G Ψ
x#G⇒ (FStep x F) ⊗ G = FStep x (F ⊗ G)

The following lemma is then derivable:

Lemma 4. If BP#BQ, BP#ΨQ and BQ#ΨP
then 〈BP , ΨP 〉 ⊗ 〈BQ, ΨQ〉 = 〈BP@BQ, ΨP⊗ΨQ〉.

The implementations of Defs. 4 and 6 are then straightforward.

4.4 Operational semantics

The operational semantics in Def. 7 is formalised in a similar manner to [6].
Since the actions on the labels can contain bound names which bind into the
derivative of the transition, a residual datatype needs to be created which com-
bines the actions with their derivatives. Since a bound output can contain an
arbitrary number of bound names, binding sequences must be used here in a

12 Jesper Bengtson and Joachim Parrow

similar manner to psi and frame.

nominal datatype (α, β, γ) boundOutput =
Output α (α, β, γ) psi
| BStep � name� (α, β, γ) boundOutput

datatype α action = Input α α
| Tau

datatype (α, β, γ) residual = Free (α action) ((α, β, γ) psi)
| Bound α ((α, β, γ) boundOutput)

We will use the notation (νã)N ≺ P for a term of type boundOutput which has
the binding sequence ã into N and P . We can also write ΨBP 7−→ M (νã)N ≺ P ′

for Ψ B P
M (νea)N−−−−−−→ P ′ and similarly for input and tau transitions.

As usual, the operational semantics is defined using an inductively defined
predicate. As in [6] rules which can have either free or bound residuals are split
into these two cases. We also saturate our rules with freshness conditions to
ensure that the bound names are fresh for for all terms outside their scope.
This is done to satisfy the vc-property described in [16] so that Isabelle can
automatically infer an induction rule, but also to give us as much freshness
information as possible when doing induction on transitions. Moreover, all frames
are required to have distinct binding sequences. The introduction rules in Table 1
only include the freshness conditions which are strictly necessary and frames
with non distinct binding sequences. These can be inferred from our inductive
definition using regular alpha converting techniques and Cor. 4.

We will not cover the complete semantics here, just two rules to demonstrate
some differences to the pen-and-paper formalisation.

The transition rule Par has the implicit assumption that F(Q) = 〈BQ, ΨQ〉.
When formalising the semantics, one inductive case will look as follows:

Par
ΨQ⊗Ψ B P

α−→ P ′ F(Q) = 〈BQ, ΨQ〉

Ψ B P |Q α−→ P ′|Q
BQ#Ψ, P, α, P ′, Q
distinct BQ

Inferring the transition for P means selecting a specific alpha-variant of F(Q)
as ΨQ appears without binders in the inference of the transition. Freshness con-
ditions for BQ are central for the proofs to hold.

Next consider the rule Open. We want the binding sequence on the transition
to behave like a set in that we must not depend on the order of its names. Our
formalisation solves this by explicitly splitting the binding sequence in two and
placing the opened name in between. By creating a rule which holds for all such
splits, we mimic the effect of a set.

Open
Ψ B P

M (νeaec)N−−−−−−→ P ′

Ψ B (νb)P M (νeabec)N−−−−−−−→ P ′

b#ea,ec, Ψ,M
b ∈ n(N)ea#Ψ, P,M,ecec#Ψ, P,M

Psi-calculi in Isabelle 13

4.5 Induction rules

At the core of any nominal formalisation is the need to create custom induction
rules which allow the introduced bound names to be fresh for any given context.
Without these, the user is forced to do manual alpha-conversions throughout
the proofs and such proofs will differ significantly from their pen and paper
counterparts, where freshness is just assumed. An in depth description can be
found in [16]. Very recent additions to the nominal package generate induction
rules where the user is allowed to choose a set of name which can be arbitrarily
fresh for each inductive case. In most cases, this set will be the set of binders
present in the rule.

Standard induction Isabelle will automatically create a rule for doing in-
duction on transitions of the form Ψ B P 7−→ Rs, where Rs is a residual. In
nominal induction the predicate to be proven has the extra argument C, such
that all bound names introduced by the induction rule are fresh for C. Thus, the
predicate has the form Prop C Ψ P Rs. This induction rule is useful for very
general proofs about transitions, but we often need proofs which are specialised
for input, output, or tau transitions. We create the following custom induction
rules:

Lemma 5.

Ψ B P
M N−−−→ P ′

...
Prop C Ψ P M N P ′

Ψ B P
M (νea)N−−−−−−→ P ′

...
Prop C Ψ P M ((νã)(N ≺ P ′))

Ψ B P
τ−→ P ′

...
Prop C Ψ P P ′

Proof. Follows immediately from the induction rule generated by Isabelle.

The inductive steps for each rule have been left out as they are instances of the
ones from the automatically generated induction rule, but with the predicates
changed to match the corresponding transition.

These induction rules work well only as long as the predicate to be proven
does not depend on anything under the scope of a binder. Trying to prove the
following lemma illustrates the problem.

Lemma 6. If Ψ B P
M (νea)N−−−−−−→ P ′, x#P and x#ã then x#N and x#P ′

Proof. By induction over the transitions of the form Ψ B P
M (νea)N−−−−−−→ P ′.

The problem is that none of the induction rules we have will prove this lemma
in a satisfactory way. Every applicable case in the induction rule will introduce
its own bound output term (νb̃)N ′ ≺ P ′′ where we know that (νb̃)N ′ ≺ P ′′ =
(νã)N ≺ P ′. What we need to prove relates to the term P ′, what the inductive
hypotheses will give us is something related to the term P ′′ where all we know
is that they are part of alpha-equivalent terms.

14 Jesper Bengtson and Joachim Parrow

Proving this lemma on its own is not too difficult but in every step of ev-
ery proof of this type, manual alpha-conversions and equivariance properties are
needed. The following induction rule solves this problem.

Ψ B P
M (νea)N−−−−−−→ P ′

∀Ψ P M ã N P ′ b̃ p C.


ã#b̃, Ψ, P,M, C ∧ b̃#N,P ′ ∧
set p ⊆ set ã× set b̃ ∧
Prop C Ψ P M ã N P ′ −→
Prop C Ψ P M b̃ (p ·N) (p · P ′)


...

Prop C Ψ P M ã N P ′

The difference between this rule and the output rule in Lemma 5 is that the
predicate in Lemma 5 takes a residual (νã)N ≺ P ′ as one argument and the
predicate in this rule takes ã, N and P ′ as three separate ones. By disassoci-
ating the binding sequence from the residual in this manner we have lost the
ability to alpha-convert the residual, but we have gained the ability to reason
about terms under the binding sequence. The extra added case in the induction
rule above (beginning with ∀Ψ P M . . .) is designed to allow the predicate to
mimic the alpha-conversion abilities we have lost. When proving this induction
rule, Lemma 3 is used in each step to generate the alpha-converting permuta-
tion, Prop is proven in the standard way and then alpha-converted using the
new inductive case.

With this lemma, we must prove that the predicate we are trying to prove can
respect alpha-conversions. The advantage is that it only has to be done once for
each proof. Moreover, the case is very general and does not require the processes
or actions to be of a specific form.

Using this induction rule will not allow us to prove lemmas which reason
directly about the binding sequence ã. The new inductive case swaps a sequence
ã for b̃ but as in Lemma 3, we do not know exactly how these sequences relate
to each other.

Induction with frames A very common proof strategy in the psi-calculus is
to do induction on a transition of a process which has a specific frame. Trying
to prove the following lemma illustrates this.

Lemma 7. If Ψ B P
M N−−−→ P ′, F(P) = 〈BP , ΨP 〉, X#P and BP#X,Ψ, P,M

then there exists a K. s.t. Ψ⊗ΨP `M
.↔ K and X#K

Proof. By induction on the transition Ψ B P
M N−−−→ P ′. The intuition of the

proof is that K is the subject in the process P .

This lemma suffers from the same problem as Lemma 6 – every inductive step
will generate a frame alpha-equivalent to 〈BP , ΨP 〉 and many tedious alpha-
conversions have to be done to prove the lemma. Moreover, some of our lemmas

Psi-calculi in Isabelle 15

need to directly reason about the binding sequence of the frame. A similar in-
duction rule as for output transitions can be created to solve the problem.

Ψ B P
M N−−−→ P ′

F(P) = 〈BP , ΨP 〉
distinct BP

∀Ψ P M N P ′ BP ΨP p C.


(p ·BP)#Ψ, P,M, C, N, P ′, BP ∧BP#ΨP ∧
set p ⊆ set BP × set(p ·BP) ∧
Prop C Ψ P M N P ′ BP ΨP −→
Prop C Ψ P M N P ′ (p ·BP) (p · ΨP)


...

Prop C Ψ P M N P ′ BP ΨP

This lemma requires that the binding sequence BP is distinct. This added re-
quirement allows the alpha converting case to relate the sequence BP to p ·BP
allowing for a larger class of lemmas to be proven. Our semantics require all
frames to have distinct binding sequences making this added requirement un-
problematic.

A corresponding lemma has to be created for output transitions as well,
but since frames only affect subjects as far as input and output transitions are
concerned, this induction rule does not have to use the same mechanism for the
bound names in the residual as for the ones in the frame.

After introducing these custom induction rules, we were able to remove thou-
sands of lines of code which were only dealing with alpha-conversions.

5 Conclusions and future work

Nominal Isabelle has proven to be a very potent tool when doing this formali-
sation. Its support for locales has made the formalisation of parametric calculi
such as psi-calculi feasible and the nominal datatype package handles binders
elegantly.

Psi-calculi require substantially more infrastructure than the pi-calculus [6].
The reason for this is mainly that binding sequences are a very new addition to
the nominal package, and many of the automatic rules are not fully developed.
Extending the support for binding sequences will require a fair bit of work, but
we believe that the custom induction rules that we have designed can be created
automatically as they do not use any intrinsic properties of psi-calculi.

We are currently working on extending our framework to include weak bisim-
ulation and barbs. We also plan to work on typed psi calculi where we aim to
make the type system as general and parametric as psi calculi themselves.

The source files for this formalisation can be found at:
http://www.it.uu.se/katalog/jesperb/psi.tar.gz.

16 Jesper Bengtson and Joachim Parrow

Acknowledgments We want to convey our sincere thanks to Stefan Berghofer
for his hard work on expanding the nominal package to include the features we
have needed for this formalisation.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proceedings of POPL ’01, pages 104–115. ACM, Jan. 2001.

2. B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
formal metatheory. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 3–15, New
York, NY, USA, 2008. ACM.

3. C. Ballarin. Locales and locale expressions in isabelle/isar. In TYPES, pages
34–50, 2003.

4. H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

5. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile processes,
nominal data, and logic. Technical report, Uppsala University, 2009. Submitted.
See http://user.it.uu.se/~joachim/psi.pdf.

6. J. Bengtson and J. Parrow. Formalising the pi-calculus using nominal logic. In
Proceedings of FoSSaCS 2007, volume 4423 of LNCS, pages 63–77. Springer, 2007.

7. S. Berghofer and C. Urban. Nominal inversion principles. In TPHOLs ’08: Pro-
ceedings of the 21st International Conference on Theorem Proving in Higher Order
Logics, pages 71–85, Berlin, Heidelberg, 2008. Springer-Verlag.

8. M. G. Buscemi and U. Montanari. Open bisimulation for the concurrent constraint
pi-calculus. In S. Drossopoulou, editor, Proceedings of ESOP 2008, volume 4960
of LNCS, pages 254–268. Springer, 2008.

9. N. G. de Bruijn. Lambda calculus notation with nameless dummies. a tool for
automatic formula manipulation with application to the church-rosser theorem.
Indagationes Mathematicae, 34:381–392, 1972.

10. D. Hirschkoff. A full formalisation of pi-calculus theory in the calculus of construc-
tions. In TPHOLs ’97: Proceedings of the 10th International Conference on Theo-
rem Proving in Higher Order Logics, pages 153–169, London, UK, 1997. Springer-
Verlag.

11. F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory.
Theoretical Comput. Sci., 253(2):239–285, 2001.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186:165–193, 2003.

14. C. Röckl and D. Hirschkoff. A fully adequate shallow embedding of the π-calculus
in Isabelle/HOL with mechanized syntax analysis. J. Funct. Program., 13(2):415–
451, 2003.

15. C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327–356, May 2008.

16. C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule
inductions. In CADE-21: Proceedings of the 21st international conference on Au-
tomated Deduction, pages 35–50, Berlin, Heidelberg, 2007. Springer-Verlag.

