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Abstract

We use the interactive theorem prover Isabelle to prove that the algebraic axiomatization of bisimulation
equivalence in the pi-calculus is sound and complete. This is the first proof of its kind to be wholly machine
checked. Although the result has been known for some time the proof had parts which needed careful
attention to detail to become completely formal. It is not that the result was ever in doubt; rather, our
contribution lies in the methodology to prove completeness and get absolute certainty that the proof is
correct, while at the same time following the intuitive lines of reasoning of the original proof. Completeness
of axiomatizations is relevant for many variants of the calculus, so our method has applications beyond
this single result. We build on our previous effort of implementing a framework for the pi-calculus in
Isabelle using the nominal data type package, and strengthen our claim that this framework is well suited
to represent the theory of the pi-calculus, especially in the smooth treatment of bound names.
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1 Introduction

We derive a soundness and completeness proof for the axiomatization of strong late

bisimilarity in the pi-calculus [8]. The proof is machine checked in the interactive

theorem prover Isabelle [9], using the nominal data type package [1]. It represents

a continuation of our work [3] on formalizing the pi-calculus in Isabelle. The com-

pleteness proof is the first formally verified proof of its kind. The original manual

counterpart is little more than a sketch, and our mechanically verified proof follows

it quite closely in structure. Therefore we regard our contribution as threefold: it

clarifies exactly what is needed for the full formalization of this particular proof, it

opens the possibility to check similar proofs more easily, and it supports our claim

that the Isabelle formulation in the nominal data type package is very well suited

for deriving this kind of result.

The pi-calculus, like most similar calculi, is equipped with a structural operation

semantics (SOS) that defines the meaning of agents in terms of the communication

actions they can perform. This semantics is used to define bisimulation equivalence
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as, loosely put, the largest equivalence such that whatever an agent can do, any

equivalent agent can mimic and remain equivalent. There are several variants of

this and we study one of the most basic ones, namely late strong bisimilarity.

But there is also a completely different way to characterize an equivalence: pos-

tulate a set of algebraic laws and say that two agents are equivalent precisely when

they can be proved so from the laws and standard equational reasoning. This way

does not use the SOS semantics at all.

We here use algebraic laws from [8] and formalize the now well known result

that they precisely capture late strong bisimilarity. The proof follows the standard

structure and is partitioned into a soundness part (saying that each law is sound,

i.e. that in all instances the right hand side is bisimilar to the left hand side) and a

completeness part (saying that if two agents are bisimilar then there exists a proof of

equivalence from the algebraic laws). As is typical in these situations the soundness

proof is straightforward but tedious to write out in detail, while the completeness

proof requires a bit more ingenuity. A common way, which we shall follow, is to

define a subset of the agents to be so called head normal forms. These have their

immediate communication abilities as the outmost syntactic operators, so in a sense

the initial behaviour is apparent from the syntactic structure. We then conclude

the result by first showing that each agent has a provably equivalent head normal

form, and that two bisimilar head normal forms are provably equivalent.

The original manual proof of this particular result dates back to the very first

presentation of the pi-calculus [8] and its sketch occupies about one page (on pages

67 and 68) in the journal. The result was not controversial since it is one of many

similar results on complete axiomatizations in process algebras, the first being by

Hennessy and Milner on CCS [5]. Variants of the proof have been used in variants

of the calculus, but never written down in full detail. It contains several sweeping

statements which require quite some attention to detail to verify formally. An exam-

ple is the claim that if two head normal forms have provably equivalent summands

then the agents are provably equivalent using laws for commutativity, associativ-

ity and idempotence of the sum operator (formalized as Lemma 4.10 in Section 4

below).

In conclusion we regard this as one of the most extensive results from a mecha-

nized theorem prover concerning the meta theory of process algebra. We go beyond

other significant efforts on the pi-calculus [11,7,4,6] which do not treat completeness

at all. There are today several other mechanized proofs from meta mathematics,

for example on Gödel’s incompleteness result [12] and on typing in system F in the

PoplMark Challenge [2].

2 The pi-calculus and its complete axiomatization

2.1 Syntax

We assume the reader to be familiar with the basics of the pi-calculus. In this

paper we use a standard variant of the monadic pi-calculus without recursion and

replication. The syntax of the calculus is defined in Table 1. We let P,Q etc. range

J. Bengtson, J. Parrow / Electronic Notes in Theoretical Computer Science 192 (2007) 61–7562



Agents P ::= 0 Nil

ax . P Output Prefix

a(x) . P Input Prefix

τ . P Silent Prefix

P + P Sum

P | P Parallel

[x = y]P Match

[x �= y]P Mismatch

(νx)P Restriction

Table 1
The syntax of the π-calculus.

over agents and a, b, . . . , z over names.

In the input Prefix a(x) . P is said to bind x in P , and occurrences of x in P

are then called bound. In contrast the output Prefix ax . P does not bind x. These

Prefixes are said to have subject a and object x, where the object is called free in

the output Prefix and bound in the input Prefix. The silent Prefix τ has neither

subject nor object. The Restriction operator (νx)P also binds x in P . The free

names fn(P ) are those with a not bound occurrence, and we say that is x is fresh

for P to mean that x �∈ fn(P ), or just that x fresh to mean it is fresh for all agents

in the context of the discussion. Similarly the bound names bn(P ) are those with a

bound occurrence.

A substitution is a function from names to names. We write {x/y} for the

substitution that maps y to x and is identity for all other names. The agent P{x/y}
is P where all free names x are replaced by y, with alpha-conversion wherever needed

to avoid captures.

A sum of several agents P1 + · · ·+ Pn is written
∑n

i=1 Pi, or just
∑

j Pj when n

is unimportant or obvious, and we here allow the case n = 0 when the sum means

0.

2.2 Structural Operational Semantics

The actions ranged over by α consist of four classes:

(i) The internal action τ .

(ii) The (free) output actions of kind ax.

(iii) The input actions of kind a(x).

(iv) The bound output actions aνx.
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prefix
α .P

α
−→ P

sum P
α

−→ P ′

P + Q
α

−→ P ′

match P
α

−→ P ′

[x = x]P
α

−→ P ′

mismatch
P

α
−→ P ′, x �= y

[x �= y]P
α

−→ P ′

par
P

α
−→ P ′, bn(α) ∩ fn(Q) = ∅

P |Q
α

−→ P ′|Q

com
P

a(x)
−→ P ′, Q

au
−→ Q′

P |Q
τ

−→ P ′{u/x}|Q′

res P
α

−→ P ′, x �∈ α

(νx)P
α

−→ (νx)P ′

open
P

ax
−→ P ′, a �= x

(νx)P
aνx
−→ P ′

close
P

a(x)
−→ P ′, Q

aνu
−→ Q′

P |Q
τ

−→ (νu)(P ′{u/x}|Q′)

Table 2
The operational semantics. The symmetric versions of sum, par, com and close are elided. Agents are

identified up to alpha equivalence, i.e. choice of bound names.

We write x �∈ α to mean that x does not occur in α. The structural operational

semantics is given in Table 2. As can be seen it is a late version, without structural

congruence.

2.3 Bisimulation

We recapitulate the definition of strong late bisimulation.

Definition 2.1 A bisimulation is a symmetric binary relation R on agents satisfy-

ing the following: PRQ and P
α

−→ P ′ where bn(α) is fresh implies that
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(i) If α = a(x) then ∃Q′ : Q
a(x)
−→ Q′ ∧ ∀u : P ′{u/x}RQ′{u/x}

(ii) If α is not an input then ∃Q′ : Q
α

−→ Q′ ∧ P ′RQ′

P and Q are bisimilar, written P ∼ Q, if they are related by a bisimulation.

2.4 Axiomatization

The axioms for strong late bisimilarity are given in Table 3 and 4. We also implicitly

use the laws of equational reasoning, i.e., that equality between agents is reflexive,

symmetric and transitive. Note that substitutivity (that an agent can replace an

equal agent in any expression) is not implied, since bisimilarity is not a congruence.

Instead the congr laws define the substitutive properties.

The first laws str1-5 are normally part of a structural congruence which also

contains more laws. We here use only the structural laws that are actually needed

for the completeness proof. In particular we will not need any structural laws

for parallell since all instances of those can be derived from the expansion law.

Incidentally, law str5 can be replaced by the two simpler laws (νx)0 = 0 and

(νx)(νx)P = (νx)P .

We say that two agents P and Q are provably equivalent, written P ≡ Q, if their

equality can be established by these axioms and equational reasoning. The main

result is the theorem that relates provable equivalence with bisimilarity:

Theorem 2.2 P ∼ Q iff P ≡ Q

This theorem has been known since the late 1980’s when the pi-calculus was first

conceived. Its validity has never been in doubt, even though all proofs presented

until now have used hand waving at several points. To give the reader an overview

of the proof, and also to appreciate the level of detail this kind of proof usually

is presented with, we here cite parts of the proof from [10]. Soundness, i.e. the

implication from right to left, merits no more than “It is easily seen that all laws

are sound, so if P = Q is provable then it must hold that P ∼ Q.” (The original proof

in [8] is just a little more detailed; it goes on to postulate bisimulation relations for

all algebraic laws without actually proving that these relations are bisimulations).

Concerning the completeness part, on page 529 we read, for the subcalculus without

the parallel operator:

Let the depth of an agent be the maximal nesting of its Prefixes.

Proposition 7. Using the axioms every agent P is provably equal to a head

normal form (hnf) of kind
∑

i αi . Pi of no greater depth.

The proof is by induction over the structure of the agent and all cases are easy.

If P is a Match or Mismatch then m1–mm2 applies; if it is a Restriction then

r3 is used to distribute it onto the summands and r1–r2 to push it through the

Prefixes or form part of a bound output Prefix.
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str1 P + 0 = P

str2 P + Q = Q + P

str3 P + (Q + R) = (P + Q) + R

str4 (νx)(νy)P = (νy)(νx)P

str5 x �∈ fn(P ) → (νx)P = P

congr1 If P = Q then au . P = au .Q

τ . P = τ .Q

P + R = Q + R

P |R = Q|R

R|P = R|Q

(νx)P = (νx)Q

congr2 If P{y/x} = Q{y/x} for all y ∈ fn(P,Q, x) then a(x) . P = a(x) . Q

idem P + P = P

m1 [x = x]P = P

m2 [x = y]P = 0 if x �= y

mm1 [x �= x]P = 0

mm2 [x �= y]P = P if x �= y

r1 (νx)α .P = α . (νx)P if x �∈ α

r2 (νx)α .P = 0 if x is the subject of α

r3 (νx)(P + Q) = (νx)P + (νx)Q

Table 3
Axioms for strong late bisimilarity, except for Parallel.

Proposition 8 If P ∼ Q then P = Q is provable from the axioms.

The proof is by induction on the depths of P and Q. By Proposition 7 we can

assume P and Q are head normal forms. The base case P = Q = 0 is trivial.

For the inductive step we prove that for each summand in P there is a provably

equal summand in Q and vice versa. For example, take a summand a(x) . P ′ in

P . Assume by alpha-conversion that all top-level input actions have the same
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exp

Let P =
∑

i αi . Pi and Q =
∑

j βj . Qj where bn(αi) ∩ fn(Q) = ∅ and bn(βj) ∩
fn(P ) = ∅ for all i, j. Then

P |Q =
∑

i

αi . (Pi|Q) +
∑

j

βj . (P |Qj) +
∑

αi comp βj

τ .Rij

where the relation αicompβj and Rij are defined through the follwing four cases:

(i) αi = a(x) and βj = au in which case Rij = Pi{u/x}|Qj ,

(ii) αi = a(x) and βj = (νu)au in which case Rij = (νu)(Pi{u/x}|Qj),

(iii) The converse of 1,

(iv) The converse of 2.

Table 4
The traditional expansion law for strong bisimilarity. Here αi and βj range over the prefix forms (Input,

Output and Silent) and also over the combination of bound output prefix (νu)au.

bound object x. Then from P ∼ Q and P
a(x)
−→ P ′ we get Q

a(x)
−→ Q′ such that

P ′{u/x} ∼ Q′{u/x} for all u. By induction they are also provably equal for all

u. So a(x) . Q′ is a summand of Q and from congr2 we get that it is provably

equal to a(x) . P ′. The other cases are similar and simpler. So, each summand

of P is provably equivalent to a summand of Q and therefore, by the laws idem

(and str), P is provably equivalent to Q.

The original proof in [8] uses the same idea and is just a little bit more detailed

(writing out “the other cases” rather then saying they are “similar and simpler”).

Both get the definition of depth wrong. In the quote above, “maximal nesting”

is not correct if the agent is a parallel composition, and in [8] the definition only

applies to head normal forms and is later used for all agents.

3 The implementation in Isabelle: Soundness

In our earlier work [3] we have implemented the semantics and various bisimulation

definitions in Isabelle, and we refer the reader to that paper for details on the rep-

resentation of the SOS semantics, associated induction rules, and the co-inductive

definition of bisimulation. Our results include formal proofs of substitutivity prop-

erties such as P ∼ R → P |Q ∼ R|Q, and many algebraic laws.

Our implementation uses the nominal datatype package and treats bound names

efficiently, so that we almost never have to worry about alpha variants of agents or

actions.

The only exceptions are when bound names are explicitly mentioned and argu-

ments about their identities are part of the proofs. An example is in the algebraic

law (νx)(νy)P = (νy)(νx)P , where the proof will split in one case for x = y and

another case for x �= y. In all other situations the implementation will guarantee

that bound names are always suitably fresh, thus automatically formalizing the
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assumption that manual proofs often make.

We will begin by showing soundness and completeness for the sub-calculus that

only contains Nil, Prefix, Sum, Match and Mismatch. We will then expand our

proof to encompass also Restriction and Parallel.

To prove soundness of the axiomatization, we must prove that all provably equiv-

alent pairs of processes are also bisimilar. In [3] we proved that strong bisimulation

is preserved by all operators except input-prefix and that all structurally congruent

terms are also bisimilar. This meant that the proofs for str and congr1 from Table

3 are already complete. The soundness proofs for the rest of the axioms are trivial,

with the exception of congr2.

Lemma 3.1 If P{y/x} ∼ Q{y/x} for all y ∈ fn(P,Q, x) then a(x).P ∼ a(x).Q

Proof By definition of bisimulation and case analysis for the cases where x and y

clash with the introduced name u. �

We can then prove our theorem:

Theorem 3.2 If P ≡ Q then P ∼ Q

4 Completeness

At the core of the completeness proofs are head normal forms, or hnf for short. A

term is in head normal form if it is a sum of prefixed processes. In Isabelle, we use

the following function to determine whether or not a term is in hnf.

Definition 4.1 Definition of hnf.

hnf(0) = True

hnf(α.P ) = True

hnf(P + Q) = hnf(P ) ∧ hnf(Q) ∧ P �= 0 ∧ Q �= 0

hnf = False

We will reason about hnfs in terms of their summands. The summand of a term is

the set of its prefixed subterms that are composed by the +-operator.

Definition 4.2 Definition of summands

summands(α.P ) = {α.P}

summands(P + Q) = summands(P ) ∪ summands(Q)

summands = {}

In the intuitive version of the completeness proof (Proposition 8 cited above), there

is an appeal to the law idem to remove duplicate instances of provably equivalent

summands. In order to reason formally about this we would like to let the summands

be sets of equivalence classes (corresponding to ≡) of terms. In Isabelle it turns out
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to be more efficient to implement this by the notion of a unique hnf, or uhnf where

only one representative of each equivalence class is kept in the set.

Definition 4.3 Definition of uhnf

uhnf(P ) = hnf(P ) ∧ ∀P ′ P ′′ ∈ summands(P ). P ′ �= P ′′ −→ ¬(P ′ ≡ P ′′)

Our main proof will work by induction over the depth of the terms that are being

proved equal. Intuitively, the depth of a term is an upper bound of the number of

transitions it can make. We define the following function:

Definition 4.4 Depth of a term

depth(0) = 0

depth(α.P ) = 1 + depth(P )

depth([a = b]P ) = depth([a �= b]P ) = depth((νx)P ) = depth(P )

depth(P + Q) = max(depth(P ), depth(Q))

depth(P | Q) = depth(P ) + depth(Q)

For the rest of the completeness proof, we will mostly work with uhnf s. We therefore

need to be able to show that every term can be rewritten as a provably equal uhnf.

We must also make sure that the generated uhnfs have no larger depth than the

original terms as this would otherwise break our induction on the depth in the main

proof. In the following we present the sequence of lemmas needed for Isabelle to

complete the proof, together with indications of the involved proof strategies.

First, we will need the following auxiliary lemmas:

Lemma 4.5 If Q ∈ summands(P ) and Q ≡ Q′ then P + Q′ ≡ P .

Proof By induction on the structure of P . �

Lemma 4.6 If uhnf(P ) and uhnf(Q) then there exists an R such that uhnf(R),

P + Q ≡ R and depth(R) ≤ depth(P + Q).

Proof By induction on the structure of P . In the base case, Lemma 4.5 is used to

filter out the terms which are provably equal to some term in the summands(Q).

Base case: P is of the form α.P ′. If Q = 0 then set R to P , otherwise if there is

a Q′ ∈ summands(Q) s.t. Q′ ≡ P then Q + P ≡ Q by Lemma 4.5 so set R to Q,

otherwise set R to P + Q.

Inductive step: Since uhnf(P ), only the case where P is of the form P ′ + P ′′

applies:

We have that uhnf(P ′ + P ′′) hence uhnf(P ′) and uhnf(P ′′). From IH twice we

obtain a Q′ where uhnf(Q′), P ′′ + Q ≡ Q′ and depth(Q′) ≤ depth(P ′′ + Q). �

With these lemmas in place we can prove:

Lemma 4.7 For every P , there exists a Q s.t. uhnf(Q), P ≡ Q and depth(Q) ≤
depth(P ).
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Proof By induction on the structure of P . In the case where P is of the form

P ′ + P ′′, Lemma 4.6 is used. �

In order to prove the correspondence between bisimilarity and the axioms, we need

to form a link to the transition system. We find such a link in the summands.

Lemma 4.8 If hnf(P ) then P
α

−→ P ′ iff α.P ′ ∈ summands(P ).

Proof By induction on the structure of P . �

The intuitive way to express equality using summands is that if there is a bi-

jection f between the summands of two agents such that f(P ) ≡ P for all P ,

then the agents are provably equal. Clearly the way to prove this must be through

an induction over the summands, and there we shall need the following auxiliary

lemma:

Lemma 4.9 If uhnf(Q) and P ∈ summands(Q) then there exists a Q′ s.t. P +Q′ ≡
Q and summands(Q′) = summands(Q) − {P} ∧ uhnf(Q′).

Proof By induction on the structure of P . str2 and str3 are used to pull P to

the top level of Q. The intuition is that since the +-operator is commutative and

associative, one can always pull any summand to the front of the term. Since the

term is on uhnf, we know that no other provably equal sub terms exist and hence

the summands of the remainder will be the summands of the original term with the

pulled term removed. �

We can now prove the following lemma:

Lemma 4.10 If uhnf(P ) and uhnf(Q) and there exists a bijection f :

summands(P ) → summands(Q) s.t. P ≡ f(P ) then P ≡ Q.

Proof By induction on summands(P ).

Base case: summands(P ) = {}
Since f is a bijection, summands(Q) = {} and since uhnf(P ) and uhnf(Q), P = 0

and Q = 0. Hence P ≡ Q by reflexivity of ≡.

Inductive step: summands(P ) = {P ′} ∪ S

From Lemma 4.9 we obtain a P ′′ where P ′ + P ′′ ≡ P , summands(P ′′) =

summands(P ) − {P ′} and uhnf(P ′′). Since uhnf(P ′′), S = summands(P ). Since

f(P ′) ∈ summands(Q) we obtain a Q′′ where f(P ′) + Q′′ ≡ Q, summands(Q′′) =

summands(Q) − {f(P ′)} and uhnf(Q′′). Since f is a bijection and uhnf(P ′′) and

uhnf(Q′′) there exists a bijective function f ′ : summands(P ′) → summands(Q′′),

then by IH P ′′ = Q′′. Hence P ≡ P ′ + P ′′ ≡ f(P ′′) + Q′′ ≡ Q. �

In order to do induction we need to know that processes have greater depth than

their derivatives.

Lemma 4.11 If uhnf(P ) and P
α

−→ P ′ then depth(P ′) < depth(P ).

Proof By induction on the proof of P
α

−→ P ′. �

We can now prove completeness.
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Theorem 4.12 If P ∼ Q then P ≡ Q

Proof From Lemma 4.7 we can first convert P and Q to provably equal uhnfs.

The proof is then done by induction over depth(P ) + depth(Q). The idea is to

exhibit a bijection f satisfying the premises of Lemma 4.10.

Base case: depth(P ) + depth(Q) = 0

The only case where this can hold is when P = 0 and Q = 0. Hence P ≡ Q by

reflexivity of ≡.

Inductive step: depth(P ) + depth(Q) ≤ n (where n is a natural number).

Pick an arbitrary α.P ′ from summands(P ). We need to find f(α.P ′), i.e. a Q′ s.t.

α.P ′ ≡ α.Q′.

If α is a free action, by Lemma 4.8 we have P
α

−→ P ′. Since P ∼ Q, we know

that there is a Q′ s.t. Q
α

−→ Q′ and P ′ ∼ Q′. From Lemma 4.7 we get a P ′′ where

uhnf(P ′′), P ′ ≡ P ′′ and depth(P ′′) ≤ depth(P ′) and a Q′′ where uhnf(Q′′), Q′ ≡ Q′′

and depth(Q′′) ≤ depth(Q′). By transitivity and symmetry of ∼ and Theorem 3.2

we get that P ′′ ∼ Q′′ and thus by the fact that depth(P ′′)+depth(Q′′) < n (Lemma

4.11) and IH we get that P ′′ ≡ Q′′ and by transitivity and symetry of ≡, P ′ ≡ Q′

and hence α.P ′ ≡ α.Q′ by congr1.

If α is an input action of the form a(x) we prove that P ′{y/x} ≡ Q′{y/x} for all

y ∈ fn(P, Q, x). The strategy is the same as for the free actions and we get that

P ′{u/x} ∼ Q′{u/x} for all u, more specifically u = y, hence P ′{y/x} ≡ Q′{y/x}
and hence a(x).P ′ ≡ a(x).Q′ by congr2. �

5 Restriction

We add restriction to the calculus and the three laws r1–r3. These laws are first

proved sound in the expected way; the most tedious is r1 which requires a case

analysis on α.

For our completeness proof we need to expand our definitions of summands and

hnf. When restriction is added to the calculus, we have the possibility of bound

outputs. A process which generates a bound output is of form (νx)āx.P where

x �= a. We extend our definition of hnf with the following case:

hnf((νx)P ) = ∃a P ′. a �= x ∧ P = āx.P ′

and our definition of summands with:

summands((νx)P ) = if (∃a P ′. a �= x ∧ P = āx.P ′) then

{(νx)P}

else

{}

We also have to expand our proofs that state that for every term there exists a

provably equal uhnf. As with the +-operator we need an auxiliary lemma.
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Lemma 5.1 If uhnf(P ) then there exists a Q such that uhnf(Q), (νx)P ≡ Q and

depth(Q) ≤ depth((νx)Q).

Proof By induction on the structure of P . In the base case a case analysis is done

to check if the restricted name collides with any names in the prefix. �

The extension to Lemma 4.7 now becomes quite simple, but in the restriction

case, a second induction over P is required in order to prove how restriction

behaves when paired with each of the other operators.

We will also need an expanded version of Lemma 4.8 to create our link between

summands and transitions.

Lemma 5.2 If uhnf(P ) and a �= x then P
aνx
−→ P ′ iff (νx)āx.P ′ ∈ summands(P ).

Proof By induction on the structure of P . �

Theorem 4.12 has to be extended to take care of bound outputs. The summands

will have the form (νx)āx.P and we find derivatives P ′ and Q′ s.t. P ′ ∼ Q′, hence

āx.P ′ ≡ āx.Q′ and (νx)āb.P ′ ≡ (νx)āb.Q′ by congr1.

6 Parallel

We complete our proof by adding the parallel operator. To do this we must en-

code the expansion law in Isabelle. Unfortunately, the law as presented here and

elsewhere is not completely formally correct. The reason is that it makes use of

a function Σ which takes a set of agents as a parameter and returns the sum of

them. However, such a function cannot be defined in the usual inductive way (as

Σ({P} ∪ S) = P + ΣS) since this does not define Σ uniquely (elements can be

pulled from a set in different order, resulting in different order of the summands).

The reason the expansion law nevertheless is considered valid is that it implicitly

operates on equivalence classes of agents up to ≡ and here the sum operator is

idempotent, associative and commutative. As there is no easy way to incorporate

such functions in Isabelle we need to be a little more creative. We define a relation

S on agent× agent set with the intuition that if F is a set of agents then S(P,F )

if P can be obtained as a sum of the agents in F .

Definition 6.1 The relation S.

(0, {}) ∈ S

(P, {P}) ∈ S

Q ∈ F ∧ (P, F − {Q}) ∈ S =⇒ (P + Q, F ) ∈ S

We must now create the set of all terms generated by the expansion law (Table 4).
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Definition 6.2 The function expand which generates a set of all terms created

by the expansion law. Symmetric versions have been elided. Here α.P ranges also

over object restrictions of prefixes of kind (νx)āx.P .

expand(P,Q) =

{α.(P ′ | Q) : α.P ′ ∈ summands(P ) ∧ bn(α) ∩ fn(Q) = ∅} ∪

{τ.(P ′{y/x} | Q′) : a(x).P ′ ∈ summands(P ) ∧ āb.Q′ ∈ summands(Q)} ∪

{τ.(νy)(P ′{y/x} | Q′) : a(x).P ′ ∈ summands(P ) ∧ y �∈ fn(P )

∧ (νy)āy.Q′ ∈ summands(Q)}

We can now add the expansion law to our axioms in the following way:

Definition 6.3 The expansion law.

hnf(P ) ∧ hnf(Q) ∧ (R, expand(P,Q)) ∈ S =⇒ P | Q ≡ R

6.1 Soundness

To prove soundness of Def. 6.3 we will need the following auxilliary lemmas.

Lemma 6.4 If (P, F ) ∈ S, Q ∈ F and Q
α

−→ Q′ then P
α

−→ Q′.

Proof By rule induction on the construction of S. �

Lemma 6.5 If (R, F ) ∈ S and R
α

−→ R′ then there is a P in F s.t. P
α

−→ R′.

Proof By rule induction on the construction of S. In the inductive step a case

analysis is made on whether or not the inserted term can do the desired transition.

If so, that term is picked, otherwise the term is obtained through the induction

hypothesis. �

Lemma 6.6 If hnf(P ), hnf(Q) and (R, expand(P,Q)) ∈ S then P | Q
α

−→ P ′ iff

R
α

−→ P ′.

Proof In this proof Lemma 4.8 is used to translate summands to transitions and

vice versa.

=⇒ By case analysis of P | Q
α

−→ P ′. Each case matches one construction

in the expansion law and lemma 6.4 is used to prove that R can make

the desired transition.

⇐= Lemma 6.5 is used to find the summand in R in expand(P,Q) which

can make the transition. A case analysis of R is made and each case

is matched to its corresponding rule in the operational semantics.

�

We can now prove soundness.

Lemma 6.7 hnf(P ) ∧ hnf(Q) ∧ (R, expand(P,Q)) ∈ S =⇒ P | Q ∼ R.

Proof Follows trivially from the definition of ∼ and Lemma 6.6. �
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6.2 Completeness

All we need to do to show completeness is to prove that every expanded term has a

provably equal uhnf of no lesser depth. We will need the following auxiliary lemmas.

Lemma 6.8 If (P, F ) ∈ S and for all Q in F , uhnf(Q) then there exists a P ′ s.t.

uhnf(P ′), P ≡ P ′ and depth(P ′) ≤ depth(P ).

Proof By rule induction over the construction of S. �

Lemma 6.9 If uhnf(P ) and uhnf(Q) then there exists an R s.t.

(R, expand(P,Q)) ∈ S and depth(R) ≤ depth(P | Q).

Proof By case analysis of the construction of expand(P,Q). �

We finally need to modify Lemma 4.7. In the parallel case, we use the parallel

congruence laws from congr1 and Lemma 6.9 to find an expanded R of no greater

depth than depth(P | Q). Lemma 6.8 can then be used to convert R to a provably

equal uhnf.

In the restriction case one also has to take care of the situation when a restriction

is done on a parallel composition. This is done by first applying the expansion law

to the term and then Lemma 5.1.

7 Conclusion

We have presented a machine checked proof of the complete axiomatization of strong

late bisimilarity in the pi-calculus. It is difficult to estimate the time this has re-

quired since it was done in parallel with the development of the infrastructure in

Isabelle. As an example, the effort corresponding to Section 6 (adding the paral-

lel operator) turned out to be roughly one day, most of which was spent proving

soundness. Our experience is that the Isabelle system with its nominal datatype

package and our implementation of the pi-calculus [3] works well for this task, in

that the treatment of bound names is facilitated. This is not really apparent from

the presentation in this paper since the gain is in many low-level details. Ulti-

mately such judgements must be subjective, and we refer to our previous paper for

a comparison with other approaches. But our present result strengthens our claim:

similar completeness proofs have been around for more than 20 years, and no such

proof has been formalized inside a theorem prover before now.

The Isabelle code can be obtained from our homepage

http://www.it.uu.se/research/group/mobility/theorem

There are several obvious continuations of this work. Strong late bisimilarity is

but one of a large family of equivalences. There is the early variety and the weak

varieties where the completeness proofs are more complex and rely on saturation of

terms with summands, and there are the corresponding congruences where the hnfs

are different since matching and mismatching cannot be reduced. The saturation

technique could be adapted also to the proof in the present paper, with the idea to
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establish first that if P ∼ Q then Q ≡ Q + P by adding each of the summands of

P to Q; this would obviate the need for uhnfs but it is unclear if it would give a

shorter or more striking proof.
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